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Abstract

A graph is maximal k-degenerate if every subgraph has a vertex of degree
at most k, and the property does not hold if any new edge is added to
the graph. A well-known subclass of maximal k-degenerate graphs is
the k-trees. We explore the Zagreb indices M1 (G) =

∑
v (d (v))

2 and
M2 (G) =

∑
uv d (u) d (v) for maximal k-degenerate graphs of order n ≥

k + 2. Estes and Wei previously studied these indices mostly for k-trees,
and made three claims about Zagreb indices of maximal k-degenerate
graphs. We show that one of their claims is true, and two are false. We
also provide shorter proofs of several existing results on Zagreb indices.

1 Introduction

In this paper, we consider the Zagreb indices of maximal k-degenerate graphs.

Definition 1.1. [13] A graphG is k-degenerate if the vertices ofG can be successively
deleted, so that when each vertex v is deleted, it has degree at most k in the remaining
graph. A graph is maximal k-degenerate if no edges can be added without violating
the property of being k-degenerate. A k-leaf is a degree-k vertex of a maximal
k-degenerate graph.

The size of a maximal k-degenerate graph with order n ≥ k is kn − (
k+1
2

)
[13].

One class of maximal k-degenerate graphs is particularly important.

Definition 1.2. A k-tree is a graph that can be formed by starting with Kk+1 and
iterating the operation of adding a k-leaf adjacent to all the vertices of a k-clique
of the existing graph. The neighborhood of a new k-leaf is its root. We refer to the
process of adding k-leaves as constructing the graph.

The maximal 2-degenerate graphs of order 5 and 6 are shown in Figure 1.
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Figure 1: The maximal 2-degenerate graphs of order 5 and 6 are shown above. Those
in the first column are outerplanar. Those in the second column are 2-trees, but not
outerplanar. The rest are not 2-trees.

See [3] for a survey of maximal k-degenerate graphs and k-trees. One subclass of
k-trees is of particular interest.

Definition 1.3. A simple k-tree is defined recursively by starting with Kk+1 and
iteratively adding a vertex adjacent to all vertices of a k-clique Q not previously used
as the neighborhood of a k-leaf.

A plane drawing of a graph is a drawing in the plane that has no crossings. A
graph is outerplanar if it has a plane drawing with all vertices on the boundary of
the exterior region. A graph is a maximal outerplanar graph (MOP) if no edge can
be added so that the resulting graph is still outerplanar.

The simple 2-trees are exactly the MOPs with order n ≥ 3.

Definition 1.4. The join of graphs G and H , denoted G+H , has all possible edges
between copies of G and H . The k-star with order n is Kk + Kn−k, also denoted
Sk,n−k. The k

th power Gk of a graph G adds all edges between pairs of vertices with
distance at most k.

Any k-star is a k-tree. The kth power of the path Pn, P
k
n , is a simple k-tree.

These classes often occur as extremal graphs among all k-trees.

There are many results that bound graph parameters on maximal k-degenerate
graphs, k-trees, and simple k-trees and determine the extremal graphs. See [4] for
Albertson irregularity and sigma irregularity, and [3] for many other parameters.
This paper focuses on two Zagreb indices.

Definition 1.5. The first and second Zagreb indices are M1 (G) =
∑

v (d (v))
2 and

M2 (G) =
∑

uv d (u) d (v).
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These indices have applications to the study of chemical molecules. There are
dozens of papers studying these indices on various graph classes. Nikolic et al. [15]
survey M1, M2, and other related indices. Gutman and Das extend this work to
survey M1 [10] and M2 [6]. Borovicanin et al. [5] survey bounds for Zagreb indices,
and Gutman et al. [11] have a recent survey of related concepts. More recent papers
on Zagreb indices include [7, 9, 12, 14, 16], and they contain references to many other
such papers.

Das and Gutman [6, 10] showed that among trees, M1 and M2 are maximum for
stars and minimum for paths. Hou et al. [12] found sharp bounds on M1 and M2 for
MOPs. Estes [8] and Estes and Wei [9] studied M1 and M2 for k-trees and maximal
k-degenerate graphs, proving several sharp bounds.

Estes and Wei [9] stated that “It may be interesting to show that for a maximally
k-degenerate graph G and a k-degenerate graph G′, Mi

(
P k
n

) ≤ Mi (G) for 1 ≤ i ≤ 2
and M2 (G

′) ≤ M2 (Sk,n−k).” For clarity, we will separate out these three claims.

1. For a maximally k-degenerate graph G, M1

(
P k
n

) ≤ M1 (G).

2. For a maximally k-degenerate graph G, M2

(
P k
n

) ≤ M2 (G).

3. For a k-degenerate graph G′, M2 (G
′) ≤ M2 (Sk,n−k).

We will show that claim 3 is true, while claims 1 and 2 are false.

Definitions of terms and notation not defined here appear in [2]. In particular,
n (G) and m (G) are the number of vertices and edges of G, respectively. The neigh-
borhood of a vertex v is denoted N (v), and the closed neighborhood is denoted N [v].
If vertices u and v are adjacent, we write u ↔ v, and if they are nonadjacent, we
write u � v.

2 Maximum M1 for Maximal k-degenerate Graphs

Estes and Wei [9] found a sharp upper bound on M1 for k-degenerate graphs. We
will give an alternative proof of this result. Note that M1 is determined only by the
degree sequence of a graph. Thus we can define this for a sequence (which need not
be graphic).

Definition 2.1. Let L be a (finite) list of numbers d1, . . . , dn. The Zagreb index of
L is

M1 (L) =
∑

(di)
2 .

Lemma 2.2. Let S be the set of all (finite) lists of integers d1, . . . , dn with Δ ≥ d1 ≥
. . . ≥ dn ≥ δ and fixed sum

∑
di satisfying δn ≤ ∑

di ≤ Δn. Then the list with
maximum M1 in S is the list with at most one term that is not δ or Δ.

Proof. Let L be a list in S, and denote d0 = Δ and dn+1 = δ. Suppose that there is
more than one term that is not δ or Δ. Let i and j be indices (1 ≤ i < j ≤ n) such
that di−1 > di ≥ dj > dj+1. Let L

′ be a list formed from L by replacing di with di+1
and dj with dj − 1. Then L′ is also in S. Now M1 (L

′) = M1 (L)+ (di + 1)2− (di)
2+
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(dj − 1)2 − (dj)
2 = M1 (L) + 2di + 1 − 2dj + 1 > M1 (L). Thus we can successively

increase M1 until at most one term of the list is not δ or Δ.

This can be applied to the degree sequences of maximal k-degenerate graphs.

Theorem 2.3. (Estes/Wei [9]) Let G be a k-degenerate graph with order n ≥ k.
Then M1 (G) ≤ k (n− 1)2 + (n− k) k2, and the k-degenerate graphs that maximize
M1 are the k-stars Kk +Kn−k.

Proof. Adding edges can only increase M1, so we assume that G is maximal k-
degenerate. The result is trivial when n ∈ {k, k + 1}. A maximal k-degenerate
graph has maximum degree Δ ≤ n − 1, minimum degree δ = k, and degree sum
2kn− k (k + 1). The algorithm in Lemma 2.2 produces a unique list with maximum
M1 that satisfies these bounds. The list (n− 1)k kn−k (rs means r is listed s times)
must be this list, since it has sum 2kn− k (k + 1) and all terms are n− 1 or k. The
M1 of this list is clearly k (n− 1)2 + (n− k) k2. When n ≥ k + 2, the k-leaves of a
maximal k-degenerate graph are nonadjacent. Thus k-stars are the only graphs with
this list as their degree sequence, and k (n− 1)2 + (n− k) k2 is the value of M1 on
these graphs.

3 Minimum M1 for Maximal k-degenerate Graphs

Estes and Wei [9] suggested that for a maximal k-degenerate graph G, M1

(
P k
n

) ≤
M1 (G). We will show that this is false. Note that since the definition of M1 depends
only on degrees, the graphs with minimum M1 can be defined only by their degree se-
quence. There is a characterization of the degree sequences of maximal k-degenerate
graphs.

Theorem 3.1. [1] A nonincreasing sequence of integers d1, . . . , dn is the degree se-
quence of a maximal k-degenerate graph G if and only if

k ≤ di ≤ min {n− 1, k + n− i}
and

∑
di = 2

[
k · n− (

k+1
2

)]
for 0 ≤ i ≤ n− 1.

We use this characterization to describe the graphs that minimize M1.

Definition 3.2. A near-regular sequence is a nonincreasing sequence of integers
d1, . . . , dn with k ≤ di ≤ min {n− 1, k + n− i} containing at most two consecutive
integers other than those with di = k + n − i. A maximal k-degenerate graph is
near-regular if it has a near-regular degree sequence.

Theorem 3.3. Let S be a near-regular sequence of n ≥ k + 1 integers. Then any
maximal k-degenerate graph with degree sequence S minimizes M1.

Proof. Let S be a graphic sequence for a maximal k-degenerate graph G. Let i and
j be indices (1 ≤ i < j ≤ n) such that di > dj + 1. Let L′ be a list formed from L
by replacing di with di − 1 and dj with dj + 1. Now M1 (L

′) = M1 (L) + (di − 1)2 −
(di)

2 + (dj + 1)2 − (dj)
2 = M1 (L)− 2di + 1 + 2dj + 1 < M1 (L).
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Thus we can successively decrease M1 until we obtain a sequence with at most
two distinct consecutive terms, except for those at the end with di = k + n − i.
This degree sequence minimizes M1 over all maximal k-degenerate graphs, and by
Theorem 3.1, some maximal k-degenerate graph has this degree sequence. Thus any
maximal k-degenerate graph with this degree sequence is extremal.

When k = 1, the extremal graphs are paths. When k = 2 and n ≥ 5, they are all
those with degree sequence 4n−5342.

4 Minimum M1 for k-trees

Estes and Wei [9] found the extremal graphs that minimize M1 for k-trees. We
provide a shorter proof of their result.

To facilitate an inductive proof, we define an order relation R on nonincreasing
lists. For lists L with d1 ≥ d2 ≥ · · · ≥ dk and L′ with d′1 ≥ d′2 ≥ · · · ≥ d′k, we say
L ≺ L′ if di ≤ d′i for all i. We minimize R if L ≺ L′ for all lists L′.

Lemma 4.1. Among all k-trees of order n, a k-clique that minimizes R occurs in P k
n .

Proof. This holds when n = k. Let T be a k-tree of order n containing a k-clique
S. We can construct T starting with S and iteratively adding k-leaves. Each time
we do, the new k-leaf and its neighbors induce Kk+1, and each new Kk+1 has all but
one vertex in common with the previous Kk+1. Thus for vi, the ith vertex added
(after the first k + 1), |N(vi) ∩ S| ≥ max {k + 1− i, 0}. When i ≤ k, equality is
only possible when it is achieved for all smaller values of i. Thus minimizing R for S
requires making each vi adjacent to exactly max {k + 1− i, 0} vertices in S. When
n ≤ 2k+1, this must produce P k

n . For larger orders, P
k
n has a k-clique that minimizes

R, but other graphs do also.

Theorem 4.2. (Estes/Wei [9]) The unique k-tree of order n that minimizes M1

is P k
n .

Proof. We use induction on n, noting that the result is clear when n ∈ {k, k + 1}.
Assume that for order r, P k

r minimizes M1. Let G be a k-tree with order r + 1
containing a k-leaf v. We know that M1 (G− v) is minimized when G− v = P k

r . We
now show that when adding v to G − v, the increase in M1 is minimum when v is
rooted on a clique that minimizes relation R. Thus adding v results in P k

r+1 when
G− v = P k

r .

We add a new k-leaf v with neighborhood S and consider how this changes M1.
Note that v adds k2 to M1 regardless of S.

For each vertex vi ∈ S, dG (vi) = dG−v (vi) + 1. Note that the difference between
consecutive squares (s+ 1)2 − s2 = 2s+1 is smallest when s is smallest. Thus when
S = N (v) minimizes R, the increase in M1 is minimized.

By Lemma 4.1, P k
r has a k-clique that minimizes R over all cliques of k-trees of

order r. This completes the proof.
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Estes and Wei’s proof is about three pages, including essential lemmas. They
also prove the (rather complicated) formula for M1

(
P k
n

)
.

For simple k-trees, P k
n must also be the extremal graph for the lower bound. Estes

[8] proved an upper bound on M1 for simple k-trees and characterized the extremal
graphs.

5 Maximum M2 for Maximal k-degenerate Graphs

Estes and Wei [9] suggested that M2 is maximized by k-stars over all maximal k-
degenerate graphs. We will prove this. We could try induction adding one vertex at
a time, but this runs into trouble. Instead, we add one edge at a time.

Lemma 5.1. Increasing the degree of vertex u by 1 increases M2 of the edges incident
with u by

∑
x∈N(u) d (x) .

Proof. When uv ∈ E (G), increasing the degree of u by 1 increases the product for
uv by (d (u) + 1) d (v) − d (u) d (v) = d (v). Thus the increase is

∑
d (x) over all

neighbors of u.

Definition 5.2. A dominating vertex of a graph is a vertex adjacent to all other
vertices.

Theorem 5.3. Let G be a k-degenerate graph with order n ≥ k. Then M2 (G) ≤(
k
2

)
(n− 1)2 + k2 (n− k) (n− 1), and the k-degenerate graphs that maximize M2 are

the k-stars Kk +Kn−k.

Proof. Adding edges can only increaseM2, so we only consider maximal k-degenerate
graphs. The result is trivial when n = k. We use induction on n; assume the result
holds for order r. Let G be a maximal k-degenerate graph with order r + 1 that
maximizes M2, and v be a k-leaf. We consider G−v and add the edges incident with
v one by one. By Lemma 5.1, adding edge uv to G increases M2 by

∑
x∈N(u)

d (x) +
∑

x∈N(v)

d (x) + (d (u) + 1) (d (v) + 1)

=
∑

x∈N [u]

d (x) +
∑

x∈N(v)

d (x) + d (u) d (v) + d (v) + 1.

Now
∑

x∈N [u] d (x) ≤ 2m, with equality exactly when u is a dominating vertex.

Since d (v) = k, d (u) d (v) is maximized exactly when u is a dominating vertex and∑
x∈N(v) d (x) is maximized exactly when all neighbors of v are dominating vertices.

Thus when successively adding edges incident with v, making all of its neighbors
dominating vertices maximizes the increase in M2. This is possible (only) when
G− v is a k-star, and G− v has maximum M2 when it is a k-star, so G is also. It is
easily verified that M2

(
Kk +Kn−k

)
=

(
k
2

)
(n− 1)2 + k (n− k) k (n− 1).
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Estes and Wei [9] proved this result for the special case of k-trees. Their proof is
about two pages.

6 Minimum M2 for Maximal k-degenerate Graphs

Estes and Wei [9] suggested that for a maximally k-degenerate graph G, M2

(
P k
n

) ≤
M2 (G). This is true when k = 1, but false for every other value of k. The smallest
counterexample occurs when k = 2 and n = 5. Let K4• be formed by subdividing
an edge of K4. Then M2 (K4•) = 51, while M2 (P

2
5 ) = 59.

Definition 6.1. A rotation of edge vw to uw deletes vw and replaces it with uw.

Lemma 6.2. Let G be a graph containing vertices u and v with d (v) = a and
d (u) = b, a ≥ b+ 2, so that v has no neighbor with degree less than b, and u has no
neighbor with degree greater than a. Let H be the result of rotating vw to uw. Then
M2 (H) ≤ M2 (G), with equality only if a = b + 2, all neighbors of v have degree b,
all neighbors of u have degree a, and u � v.

Proof. Assume the hypothesis. Note that there must be a vertex w in the neigh-
borhood of v that is not in the neighborhood of u. Now M2 is decreased at least
(a− 1) b+ad (w) by removing vw and increased at most ba+(b+ 1) d (w) by adding
uw (equality requires u � v). Now (a− 1) b + ad (w) − (ba + (b+ 1) d (w)) =
d (w) (a− b− 1) − b ≥ 0, so rotating vw to uw decreases M2 unless a = b + 2,
all neighbors of v have degree b, all neighbors of u have degree a, and u � v.

Rotations can be used to find information about the structure of graphs that
minimize M2.

Lemma 6.3. Any maximal k-degenerate graph with n ≥ k + 3 and minimum M2

has one k-leaf.

Proof. Let G be a maximal k-degenerate graph with n ≥ k + 3 with k-leaves u and
w. Say w ↔ v, where v has largest degree among all neighbors of u and w (if not,
exchange u and w). Form H by rotating vw to uw. Since v cannot be adjacent only
to k-leaves, Lemma 6.2 implies that M2 (H) < M2 (G). This reduces the number
of k-leaves unless dH (v) = k. In that case, rotate an edge incident with v to be
adjacent with w, and repeat this process until no new k-leaf is produced. (This must
occur since n ≥ k + 3, so Δ (G) ≥ k + 2 unless k = 2, n = 5, and G has only one
2-leaf). The preceding operation can be iterated until we find a graph with smaller
M2 and only one k-leaf.

This shows that Estes and Wei’s suggestion is incorrect for all n ≥ k + 3 ≥ 5.

We can determine the minimum value of M2 for maximal 2-degenerate graphs
by considering a larger class of graphs. Let G be the class of all graphs with size
m = 2n − 3, minimum degree δ = 2, and exactly one 2-leaf (which is adjacent to a
degree 3 vertex). The maximal 2-degenerate graphs with minimum M2 are contained
in G when n ≥ 5.
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Lemma 6.4. Any graph in G with minimum M2 is near-regular.

Proof. Let G be a graph in G with 2-leaf u adjacent to a degree 3 vertex y and
suppose G contains v with d (v) = Δ (G) > 4. Note that G must contain at least
five degree 3 vertices since its degree sum is 4n− 6.

First assume u ↔ v. Let w be a vertex with d (w) = 3 so that u � w. We rotate
uv to uw, decreasing M2 by Lemma 6.2.

Now assume u � v. Let w and x be vertices with d (w) = d (x) = 3 so that
v ↔ w and w � x, and x �= y. We rotate vw to wx, resulting in a graph with M2

no larger by Lemma 6.2.

We successively apply rotations, each time decreasing the degree of a vertex
with degree above 4. Eventually, it is not possible for all neighbors of (the vertex
designated) x to have maximum degree, so M2 is decreased. Thus we see that any
graph minimizing M2 over G has maximum degree Δ ≤ 4, so it must be near-
regular.

Let an f − g edge be an edge that joins vertices of degrees f and g. Since graphs
in G can only have degrees 2, 3, and 4, we can consider all possible types of f − g
edges for all possible values of f and g. A maximal 2-degenerate graph with Δ = 4
has mostly 4-4 edges. Let G be maximal 2-degenerate with Δ = 4 with a 2-3 edges,
b 2-4 edges, c 3-3 edges, and d 3-4 edges. Then

M2 (G) = 6a+8b+9c+12d+16 (2n− 3− (a+b+c+d)) = 32n−48−10a−8b−7c−4d.

By Lemma 6.3, G has one 2-leaf, so 1 ≤ a ≤ 2 and a + b = 2. We can list
all possibilities for edges other than 4-4 edges using a code (a, b, c, d). These are
contained in the following table, along with the resulting formula for M2.

code M2 (G) code M2 (G)
(1, 1, 4, 3) 32n− 106 (2, 0, 4, 2) 32n− 104
(1, 1, 3, 5) 32n− 107 (2, 0, 3, 4) 32n− 105
(1, 1, 2, 7) 32n− 108 (2, 0, 2, 6) 32n− 106
(1, 1, 1, 9) 32n− 109 (2, 0, 1, 8) 32n− 107
(1, 1, 0, 11) 32n− 110 (2, 0, 0, 10) 32n− 108

Note that (1, 1, 0, 11) gives the smallest values for M2. We can solve the problem
of minimizing M2 for maximal 2-degenerate graphs by demonstrating the existence
of graphs with code (1, 1, 0, 11). Note that such a graph must have n ≥ 9, since
there must be at least one 4-4 edge for a triangle to exist, and there are 11 3-4 edges.
The following graph works for n = 9, and it can be extended to all larger orders by
adding a new 2-leaf adjacent to the old 2-leaf and its degree 3 neighbor.
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This implies the following.

Theorem 6.5. The minimum possible value of M2 (G) over all maximal 2-degenerate
graphs of order n ≥ 9 is 32n−110, and the extremal graphs are all near-regular graphs
with code (1, 1, 0, 11).

We can also determine the minimum of M2 for smaller maximal 2-degenerate
graphs. For n ∈ {3, 4, 5}, K3, K4 − e, and K4• (formed by subdividing an edge
of K4) are clearly extremal. For n = 6, deleting a 2-leaf must produce K4•. For
n = 7, there are two degree 4 vertices, and hence at most 7 3-4 edges. For n = 8, we
have seen that code (1, 1, 0, 11) is not possible. Graphs achieving the minimum for
n ∈ {6, 7, 8} are shown below.

The minimum values of M2 for small n are shown in the following table.

n 3 4 5 6 7 8 9
min M2 12 33 51 86 116 147 178

The argument used to characterize maximal 2-degenerate graphs with minimum
M2 does not generalize easily to larger values of k.

Conjecture 6.6. Any maximal k-degenerate graph with minimum M2 is near-
regular.

7 Minimum M2 for k-trees

Estes and Wei [9] found the extremal graphs that minimize M2 for k-trees. We
provide a shorter proof of their result.

Theorem 7.1. (Estes/Wei [9]) The unique k-tree of order n that minimizes M2

is P k
n .

Proof. This holds when n = k. We use induction on n. Assume the result holds for
k-trees of order at most n and let T be a k-tree of order n + 1 ≥ k + 1. Let v be a
k-leaf of T rooted on S and H = T − v.
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Among all k-trees of order n, we seek a k-clique for which the increase in M2

will be minimum when it is the root of a new k-leaf. We successively add all edges
between v and S = {v1, . . . , vk}. By Lemma 5.1, the increase in M2 is

A (S) =
k∑

i=1

⎛
⎝ ∑

uj∈N(vi)

dH (uj) + i− 1

⎞
⎠ =

k∑
i=1

⎛
⎝ ∑

uj∈N(vi)

dH (uj)

⎞
⎠+

(
k

2

)

for existing edges and k (
∑

dH (vi) + k) for new edges. The latter is clearly minimized
when

∑
dH (vi) is smallest. By Lemma 4.1, this occurs for a k-clique of P k

n .

We claim there is a k-clique in P k
n that minimizes A (S). Say we start constructing

H with S and consider the change in A (S) when a new k-leaf x is added. Now A (S)
increases by k for each vertex in S that x is adjacent to (and this will increase further
if x has other neighbors). When x is adjacent to y /∈ S, A (S) increases by 1 for each
neighbor of y in S. Thus at each step, the increase in A (S) is minimized when each
newly added vertex has as few neighbors in S as possible and its neighbors not in S
have as few neighbors in S as possible. Further, minimizing these quantities in each
step requires minimizing them in all previous steps. As in Lemma 4.1, this occurs
when T − v is a k-tree.

By induction, M2 is minimized when T − v is a k-tree. We have seen that the
increase in M2 is minimized when v is added adjacent to a root that minimizes
relation R. Thus T must be a k-tree also.

The proof of Estes and Wei is two pages, not including two pages of lemmas. The
calculation of the formula for M2

(
P k
n

)
is in a 3.5 page lemma.

8 Maximum M2 for MOPs

Hou et al. [12] found an upper bound on M2 for simple 2-trees (MOPs). We present
a shorter proof.

Theorem 8.1. (Hou et al. [12]) For any MOP G with order n �= 6, M2 (G) ≤
3n2 + n− 19. Equality is achieved exactly by fans Pn−1 +K1.

Proof. This is easily verified when 4 ≤ n ≤ 7. We use induction on order n. Assume
the result holds for MOPs of order less than n and let G be a MOP of order n ≥ 8.

Assume G has a 2-leaf v with neighbors u and w, and H = G−v. By assumption,
M2 (H) ≤ 3 (n− 1)2 + (n− 1)− 19, with equality only if H is a fan. When we add
v to H , we first add edge vw, then uv. This adds 1 to dH (w), increasing M2 by∑

dH (vi), vi ∈ N (w) by Lemma 5.1. Then this adds 1 to dH (u), increasing M2 by∑
dH (vi) + 1, vi ∈ N (u). We also add 2 (dH (w) + dH (u) + 2) due to uv and vw.

Thus

M2 (G) = M2 (H) +
∑
N(u)

dH (vi) +
∑
N(w)

dH (vi) + 1 + 2 (dH (w) + dH (u) + 2) .
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Note that the neighborhoods of u and w in H overlap on a single vertex x, so
dH (w) + dH (u) ≤ n. Now

2m (H) =
∑
V (H)

dH (vi) =
∑
N(u)

dH (vi) +
∑
N(w)

dH (vi)− d (x) +
∑

V (H)−N(u)−N(w)

dH (vi)

and x has at most 4 neighbors in N (u) ∪N (w). Thus

M2 (G) ≤ M2 (H) + 2m (H) + 4 + 2n (G) + 5

≤ [
3 (n− 1)2 + (n− 1)− 19

]
+ [4 (n− 1)− 6] + 4 + 2n+ 5

= 3n2 + n− 18.

Now x only has 4 neighbors in N (u) ∪N (w) when H is not a fan, so M2 (G) ≤
3n2 + n− 19. Equality requires dH (w) + dH (u) = n. If H were not a fan, deleting
a 2-leaf whose neighbors do not neighbor all vertices of H and adding one that does
must increase M2 by the argument above. Thus H is a fan, so G is also.

The proof of Hou et al. is about four pages. Note that n = 6 has an exceptional
case, as M2 (P5 +K1) = 95 < 96 = M2 (Tr2) (see Figure 1).
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