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Abstract

A partial latin square is uniquely completable if there is exactly one latin
square in which it is contained. A uniquely completable partial latin
square is a critical set if removing any entry renders it no longer uniquely
completable. These are well-studied concepts for finite latin squares; we
offer the first consideration of them for infinite latin squares. We focus
on the addition table of the integers. Results include the construction of
critical sets of densities 1/4 and 95/176 and of infinitely many densities
between these values, a chain of uniquely completable partial latin squares
with empty intersection, a family of uniquely completable partial latin
squares that contain no critical sets, and a partition of the addition table
of the integers into three critical sets.
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1 Introduction

There has been much work done with partial latin squares in the finite case, with
particular emphasis on when they are uniquely completable and critical (definitions
and references below). The most extensively studied squares are the addition tables
of Zn, the integers modulo n. Here we extend this study to the infinite, considering
unique completability and criticality of partial latin squares contained in the addition
table of the integers Z.

We prove results that are analogous to some of those from the finite case and
others that have no finite version or are simply false for finite situations.

A finite latin square is an n × n array with n symbols arranged such that each
symbol appears once in each row and once in each column. See [9] for a comprehensive
account of the theory of latin squares.

An infinite latin square on Z has symbol set Z and rows and columns also indexed
by Z. As in the finite case, every integer must appear exactly once in each row and
once in each column. Similarly to the finite case, an infinite latin square on Z can
be thought of as a set of triples {(x, y, z) : x, y, z ∈ Z}, where the first coordinate is
the column index, the second coordinate is the row index, and the third coordinate
is the entry, or symbol, contained in the cell in that row and column. Note that in
this notation the positions of row and column indices are the reverse of that usually
used for finite latin squares. We use this order because we shall consider our squares
with cells indexed by the integer lattice embedded in R

2 and so we may talk about
x- and y-coordinates with the usual meaning for R2.

In particular, the integer addition square, which we denote LZ, is given by

LZ = {(x, y, x+ y) : x, y ∈ Z} .
Infinite latin squares are less well studied than finite squares. See [3, 4, 6, 8, 10,

11, 13, 15] for some examples. More generally, for a brief survey of infinite design
theory, a broader category that includes the study of infinite latin squares, see [5].

A partial latin square is an array with empty cells allowed that has each symbol
at most once in each row and at most once in each column. Again, we often think
of partial latin squares as sets of triples and describe them as subsets of non-partial
latin squares when appropriate.

Example 1.1. For (a, b) ∈ Z
2, let the quartered partial square (a,b) be given by

(a,b) = {(x, y, x+ y) : x < a, y ≤ b} ∪ {(x, y, x+ y) : x ≥ a, y > b} ⊆ LZ.

We will be focused on the particular instance of this class of partial latin squares
centered at the origin, namely (0,0), which we abbreviate as . That is, contains
the non-axis integer lattice entries in the first and third quadrants along with the
entries on the negative x-axis and the positive y-axis. The central part of is given
in Figure 1.

A partial latin square P is uniquely completable if there is exactly one latin
square L with P ⊆ L. A uniquely completable partial latin square P is critical
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· · · · 4 5 6 7 8
· · · · 3 4 5 6 7
· · · · 2 3 4 5 6
· · · · 1 2 3 4 5 · · ·

· · · −4 −3 −2 −1 � · · · ·
−5 −4 −3 −2 · · · · ·
−6 −5 −4 −3 · · · · ·
−7 −6 −5 −4 · · · · ·
−8 −7 −6 −5 · · · · ·

. .
. ...

Figure 1: The partial square , with the origin denoted by �.

0 1 2 · · · 0 1 2 3 4 ·
1 2 · · · · 1 2 3 4 · ·
2 · · · · · 2 3 4 · · ·
· · · · · · 3 4 · · · ·
· · · · · 3 4 · · · · ·
· · · · 3 4 · · · · · ·

Figure 2: Two critical sets in L6

if it is also minimal, in the sense that removing any single entry from P results in a
partial square that is no longer uniquely completable. These are standard definitions
for finite latin squares and it is natural to apply them without modification to the
infinite case.

Let Mn be the addition table of the integers modulo n. For every n, there is a
critical set of Mn with 	n2/4
 entries. It is known that there are no critical sets with
fewer entries than this when n is even or when n < 10, and it is conjectured that
this is the case for all latin squares of order n. In [12] it is shown that for sufficiently
large n a critical set for a latin square of order n must have at least n2/104 entries.

At the other extreme, there is a critical set of Mn with n(n − 1)/2 entries for
every n; it is conjectured to be the one with the most filled cells. For squares of order n
other than Mn, critical sets with more entries are known, but it is conjectured that
there is no square of order n that has a critical set smaller than 	n2/4
. For n = 6,
critical sets with 	n2/4
 = 9 and n(n− 1)/2 = 15 entries are given in Figure 2.

In [1] the question of whether it is possible to partition a latin square into critical
sets is considered. They show that Mn can be partitioned into four critical sets for
all n > 1 and give examples of other small latin squares that can be partitioned into
two, three or four critical sets.

More details, history, context and references concerning critical subsets of Mn
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and other finite latin squares may be found in [2, 14].

We consider infinite versions of some of these results and questions. In the next
two sections we see that the quartered partial square is critical and define two
further families of uniquely completable partial squares, the diagonal partial squares

(a,b) and the bowtie partial squares (a,b), that we use throughout the paper.

In Sections 4 and 5 we give examples of ways in which the infinite situation differs
from the finite one. In Section 4 we build a chain of uniquely completable partial
latin squares with each contained in the previous one such that intersection of the
whole chain is empty and in Section 5 we show that a uniquely completable square
may have no critical subsquares.

In Section 6 we introduce “density”, a natural notion of how full a partial latin
square is, in the sense of how much space it fills up in the ambient coordinate system.
For finite squares, we can rephrase some of the work on the smallest and largest
critical subsets of Mn as saying that all known critical subsets of Mn have density ρ
in the range 1/4 ≤ ρ < 1/2 and that this is conjectured to be the range in which
all critical sets of Mn lie. For LZ we give critical subsets with densities 1/4, 3/8
and infinitely many values for ρ in the range 1/2 ≤ ρ ≤ 95/176 (including the end-
points). In Section 7 we show that it is possible to decompose LZ into three critical
subsets, one of density 1/2 and two of density 1/4.

Finally, we collect various questions that arise from this work in Section 8.

2 Unique Completability

In this section we show that three classes of partial latin squares are uniquely com-
pletable to LZ: the quartered squares (a,b), introduced in Example 1.1, the diagonal
squares (a,b), and the bowtie squares (a,b), defined below. It is useful to notate
these partial squares with some indication as to the shape, since, in LZ, the unique
completability (and indeed, the criticality) of the squares is translation invariant.
That is, roughly speaking, the shape is what matters, not the exact location. We
will first make this precise.

The translation of a (partial) latin square L = {(x, y, z) : x, y, z ∈ Z} by (a, b),
where (a, b) ∈ Z

2, is given by L+(a, b) = {(x+ a, y+ b, z+ a+ b) : (x, y, z) ∈ L}. Of
course LZ, considered as a latin square, is invariant under translations (up to symbol
names). This invariance is inherited by uniquely completable subsets of LZ.

Another “invariance” property of unique completability of latin subsquares of LZ

is transposition. The transpose of a (partial) latin square L = {(x, y, z) : x, y, z ∈ Z}
is given by LT = {(y, x, z) : (x, y, z) ∈ L}.

Clearly both the translation and the transpose of an infinite latin square are still
infinite latin squares.

Lemma 2.1. Let P be a uniquely completable subset of LZ. Then both the trans-
pose P T and the translation P + (a, b), for any (a, b) ∈ Z

2, are also uniquely com-
pletable to LZ.
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· · · · · · · · 8
· · · · · · · 6 7
· · · · · · 4 5 6
· · · · · 2 3 4 5
· · · · 0 1 2 3 4 · · ·
· · · −2 −1 0 1 2 3
· · −4 −3 −2 −1 0 1 2
· −6 −5 −4 −3 −2 −1 0 1

−8 −7 −6 −5 −4 −3 −2 −1 0

. .
. ...

. . .

Figure 3: The diagonal partial square centered at the origin, with the origin
denoted by a bolded 0.

Proof. As P is uniquely completable to LZ we have that P T is uniquely completable
to LT

Z
, which is LZ.

If P +(a, b) ⊆ L for some infinite Latin square L, then P ⊆ L+(−a,−b). By the
unique completability of P we have L + (−a,−b) = LZ and then by the invariance
of LZ under translation we have L = LZ.

Next we define a class of partial latin subsquares which we refer to as diagonal
squares. For (a, b) ∈ Z

2 let

(a,b) = {(x, y, x+ y) : y − b ≤ x− a} .

This gives a class of partial latin subsquares. Of particular interest is the one centered
at the origin, namely:

(0,0) = {(x, y, x+ y) : y ≤ x}.
Again we abbreviate the one centered at the origin as = (0,0). That is, contains
all entries on and below the line y = x. The central part of is given in Figure 3.

For (a, b) ∈ Z
2 let

(a,b) = {(x, y, x+ y) : y ≥ b and y < −x+ a} ∪ {(x, y, x+ y) : y < b and y ≥ −x+ a} .

In particular, we are interested in = (0,0), which contains the negative entries
in the second quadrant (including cells on the negative x-axis) and the non-negative
entries in the fourth quadrant (excluding cells on the non-negative x-axis). We refer
to this class of partial squares as bowtie partial squares. The central part of is
given in Figure 4.

Lemma 2.2. The quartered, diagonal, and bowtie partial latin squares , , and
are uniquely completable to LZ.
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−1 · · · · · · · · · ·
−2 −1 · · · · · · · · ·
−3 −2 −1 · · · · · · · ·
−4 −3 −2 −1 · · · · · · ·

· · · −5 −4 −3 −2 −1 � · · · · ·
· · · · · · 0 1 2 3 4 · · ·
· · · · · · · 0 1 2 3
· · · · · · · · 0 1 2
· · · · · · · · · 0 1
· · · · · · · · · · 0

. . .

Figure 4: The bowtie partial square , with the origin denoted by �.

Proof. First, note that each partial square is a subset of LZ, so if they are uniquely
completable then they are uniquely completable to LZ.

Consider completing . The only symbol we may place in position (0, 0) is 0, as
row 0 contains integers less than 0 and column 0 contains integers greater than 0.
Having added (0, 0, 0), similar arguments successively force us to add (1, 0, 1),
(2, 0, 2), . . ., completing row 0. We are now forced to add (0,−1,−1) and then
(1,−1, 0), (2,−1, 1), . . ., completing row −1. Rows of index −2 and less follow in the
same way, as do rows of index 1 and above, completing to LZ.

Next, consider completing . Each cell with coordinates of the form (x, x+1) is
forced to contain 2x+1 as column x contains all symbols less than 2x+1 and row x+1
contains all symbols greater than 2x+ 1. Once these entries are added, we have the
translated partial square (0,1). The same argument then obtains (0,2), (0,3) and
indeed (0,n) for all n ∈ N, completing to LZ.

Finally, consider completing . We must put 0 in row 0 and the only avail-
able slot is in column 0, as the other cells are either filled or in a column that
already contains 0. So, add (0, 0, 0). Having added (0, 0, 0), similar arguments suc-
cessively force us to add (1, 0, 1), (2, 0, 2). . . ., completing row 0. We are now forced to
add (−1, 1, 0) for similar reasons to those for (0, 0, 0) and then (0, 1, 1), (1, 1, 2), . . .,
completing row 1. Rows of index 2 and above follow in the same way, as do rows −1
and less, completing to LZ.

By Lemma 2.1, this means that for any coordinate (a, b) on the integer lattice,
the partial latin squares (a,b), (a,b), and (a,b) are also uniquely completable to LZ.

By Lemma 2.1, we also have that for any (a, b) ∈ Z
2, the transpose of the bowtie

partial square, namely
T
(a,b) = (a,b), is also uniquely completable to LZ.

In the next section we show that , , and = (0,0) are critical.
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3 Latin Trades and Criticality

First we note that criticality of partial subsquares of LZ is translation and transpose
invariant.

Lemma 3.1. Let P be a critical subset of LZ. Then both the transpose P T and the
translation P + (a, b), for any (a, b) ∈ Z

2, are also critical.

Proof. Straightforward and analogous to proof of Lemma 2.1

With finite latin squares, “latin trades” are the most powerful available tool for
proving criticality of sets. We find that their infinite analogs are similarly powerful.

Let L and L′ be distinct latin squares and let T ⊆ L and T ′ ⊆ L′ with T ∩T ′ = ∅.
If L \ T = L′ \ T ′ then T is a latin trade or latin interchange and T ′ is its disjoint
mate (and vice versa).

There is a trivial method of finding trades that works in both the infinite and
finite cases: take all instances of a pair of symbols. A disjoint mate is found by
swapping them. The same can be done with either rows or columns in place of
symbols. In LZ these give trades two of whose symbols, row indices and column
indices are all unbounded. In fact, in LZ latin trades necessarily have this property.
This follows from [8] where it is shown that a torsion-free abelian group does not
have a finite trade (although torsion-free non-abelian ones may); Lemma 3.2 gives a
direct proof.

Lemma 3.2. Let T be a latin trade of LZ. Then at least two of the row indices,
column indices and symbols of T are unbounded above and at least two of the row
indices, column indices and symbols of T are unbounded below.

Proof. As the (x, y)-entry of LZ is given by x + y, if the symbols are unbounded
above then at least one of the row or column indices must also be unbounded above.
So, assume that the symbols are bounded above. Let c be the largest symbol used
and take (a, b, c) ∈ T . Let T ′ be a disjoint mate of T .

As T is a trade, we must have (a, b′, c′) ∈ T , where c′ < c (hence b′ < b) and
(a, b′, c) ∈ T ′. As c may not appear twice in a row in (LZ \ T ) ∪ T ′, we must have
(a′, b′, c) ∈ T . As b′ < b, we have a′ = c−b′ > a. Hence the row indices are unbounded
above. A similar argument shows that the column indices are also unbounded above.

The analogous argument shows that two of the row indices, column indices and
symbols of T are unbounded below.

The following two lemmas demonstrate how trades are used with respect to unique
completability and criticality. The arguments for these results in the finite case
(see [7, 14]) apply equally well to the infinite case.

Lemma 3.3. Let T be a latin trade of a latin square L and let P ⊆ L. If T ∩P = ∅
then P is not uniquely completable (and so not a critical set).
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0 1 2 3 4 5 6 7 8 0 3 2 1 4 5 6 7 8
−1 0 1 2 3 4 5 6 7 −1 0 1 2 3 4 5 6 7

· · · −2 −1 0 1 2 3 4 5 6 · · · · · · −2 −1 0 3 2 1 4 5 6 · · ·
−3 −2 −1 0 1 2 3 4 5 −3 −2 −1 0 1 2 3 4 5
−4 −3 −2 −1 0 1 2 3 4 4 −3 −2 −1 0 3 2 1 4

...
...

Figure 5: The staircase trade S1,0,2 in LZ and the resulting square obtained by
replacing it with S′

1,0,2. The trade entries are italicised and blue; the origin is
bold.

Proof. P can be completed to both L and (L \ T ) ∪ T ′, where T ′ is a disjoint mate
of T .

Lemma 3.4. Let P be a uniquely completable subset of L. If for each e ∈ P there
is a latin trade T with T ∩ P = {e} then P is a critical set.

Proof. Let e be an arbitrary element of P . We have that T ∩ (P \ {e}) = ∅ and
so P \ {e} is not uniquely completable by Lemma 3.3. Hence, P is critical.

In this section we introduce two trades in LZ that have a regular structure and
we use them to prove criticality of and .

Let h be a positive integer and for any pair of integers (a, b) let

Sa,b,h = {(a− ht, b+ ht, a+ b) : t ∈ Z} ∪ {(a− ht, b+ ht+ h, a+ b+ h) : t ∈ Z} ⊆ LZ.

This is a trade; its disjoint mate is given by

S ′
a,b,h = {(a− ht, b+ ht, a+ b+ h) : t ∈ Z} ∪ {(a− ht, b+ ht+ h, a + b) : t ∈ Z} .

Note that for any “height” h, the trade Sa,b,h has two entries per row and per column
and uses exactly two symbols, namely a+b and a+b+h; whereas S ′

a,b,h is constructed
by switching the two symbols in all of these positions. Call a trade with this structure
a staircase trade. Figure 5 illustrates the staircase trade S1,0,2 = S−1,2,2.

Here (a, b) designate the coordinates of a kind of “starting position” for the trade,
and there are many ways to label one trade with this notation. It is helpful to label
the trades by the position rather than the symbol. It is also worth mentioning that
the “staircase” structure in these staircase trades can go only in one direction, which
is downhill (going in the positive x-axis direction) or negatively sloped. This is
because of the structure of LZ and the fact that the staircase is essentially swapping
some instances of pairs of symbols, and in the other direction, this would not be the
case.

One use of staircase trades is to show that quartered squares are critical.

Theorem 3.5. The quartered partial latin square is a critical set.
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0 · · · 4 5 6 7 8
· · · · 3 4 5 6 7
· · · · 2 3 4 5 6

−3 · · 0 1 2 3 4 5 · · ·
· · · −4 −3 −2 −1 � · · · ·

−5 −4 −3 −2 · · · · ·
−6 −5 −4 −3 · · 0 · ·
−7 −6 −5 −4 · · · · ·

. .
. ...

. . .

Figure 6: The staircase trade S−1,−2,3 and the partial latin square . The trade
entries that do not intersect are italicised and blue; the one that does is italicised
and purple.

Proof. We have that is uniquely completable by Lemma 2.2. To show that it is
critical, we show that for each entry of there is a staircase trade that intersects
only in that entry, using Lemma 3.4. Suppose (a, b, a + b) ∈ and consider the
staircase trade Sa,b,−(a+b). The two symbols in Sa,b,−(a+b) are a + b and 0 and all
entries lie in the second and fourth quadrants (possibly including the x-axis), except
for (a, b, a + b). Hence

Sa,b,−(a+b) ∩ = {(a, b, a + b)}.

Figure 6 illustrates the trade when (a, b, c) = (−1,−2,−3).

Let h be a positive integer and for any pair of integers (a, b) let

Ha,b,h = {(a+ ht, b, a + b+ ht) : t ∈ Z} ∪ {(a+ ht, b+ h, a+ b+ ht + h) : t ∈ Z}

and let

Va,b,h = {(a, b+ ht, a+ b+ ht) : t ∈ Z} ∪ {(a + h, b+ ht, a + b+ ht + h) : t ∈ Z} .

Each of these is a trade. The disjoint mates are given by

H ′
a,b,h = {(a+ ht, b, a + b+ ht+ h) : t ∈ Z} ∪ {(a + ht, b+ h, a + b+ ht) : t ∈ Z}

and

V ′
a,b,h = {(a, b+ ht, a+ b+ ht+ h) : t ∈ Z} ∪ {(a + h, b+ ht, a + b+ ht) : t ∈ Z}

respectively. To see this for Ha,b,h, note that the affected cells lie in two rows and for
each row they use exactly the integers that are congruent to a (mod h). The entries
used in the rows are lined up so that each column has either zero or two affected
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...
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0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
−1 0 1 2 3 4 5 6 7 −3 0 −1 2 1 4 3 6 5

· · · −2 −1 0 1 2 3 4 5 6 · · · · · · −2 −1 0 1 2 3 4 5 6 · · ·
−3 −2 −1 0 1 2 3 4 5 −1 −2 1 0 3 2 5 4 7
−4 −3 −2 −1 0 1 2 3 4 4 −3 −2 −1 0 1 2 3 4

...
...

Figure 7: The horizontal ladder trade H1,−1,2 in LZ and the resulting square
obtained by replacing it with H ′

1,−1,2. The trade entries are italicized and blue;
the origin is bold.

entries; those columns with two entries have those entries exchanged. The argument
for Va,b,h is similar, with the roles of rows and columns switched.

Call a trade of the form Ha,b,h a horizontal ladder trade and one of the form Va,b,h

a vertical ladder trade. Figure 7 illustrates the ladder trade H1,−1,2.

Ladder trades are helpful in showing that bowtie squares are critical.

Theorem 3.6. The bowtie partial latin square is a critical set.

Proof. We show that for each entry of there is a vertical ladder trade that inter-
sects only in that entry.

Let (a, b, a + b) ∈ with a > 0. Consider the vertical ladder trade V0,b,a. The
two columns of the trade are 0 and a. There are no entries of in column 0. The
entries of the trade in column a are congruent to a+ b (mod a). As the entries of
in column a are 0, 1, . . . a− 1 there is exactly one entry included in the ladder trade:
(a, b, a + b). A similar argument works for a < 0, using the trade V0,b,|a|.

Figure 8 illustrates the trade when (a, b, a+ b) = (3,−1, 2).

. . .
...

...
−1 · · · · · · · · ·
−2 −1 · · 2 · · 5 · ·
−3 −2 −1 · · · · · · ·

. . . −4 −3 −2 −1 � · · · · ·
· · · · −1 0 1 2 3 4 · · ·
· · · · · · 0 1 2 3
· · · · · · · 0 1 2
· · · · −4 · · −1 0 1
· · · · · · · · · 0

...
...

. . .

Figure 8: The ladder trade V0,−1,3 and the partial latin square . The trade entries
that do not intersect are italicized and blue; the one that does is italicized and
purple.
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Corollary 3.7. For any pair of integers (a, b), the partial subsquares (a,b), (a,b),
and (a,b) of LZ are critical sets.

Proof. This follows immediately from Lemma 3.1 and Theorems 3.5 and 3.6.

4 Infinite chains of uniquely completable subsets

In the finite case there is a conceptually straightforward (if not usually easy to
implement) method to find a critical subset of any uniquely completable set. If
the set itself is not critical then there is an element that may be removed and the
resulting set is also uniquely completable. Remove it. Continuing the procedure we
must find a critical set at some point as the empty set is not uniquely completable
and is only finitely many steps away.

This argument does not hold for the infinite case. Is it possible that we can
keep removing elements indefinitely? Yes. For example, in LZ consider removing the
elements

(0, 0, 0), (0, 1, 1), (0, 2, 2), . . .

one at a time. At each stage the partial square is clearly still uniquely completable.
In this section we show the perhaps more surprising result that there can be an
infinite chain of uniquely completable sets with each contained in the previous one
and with empty intersection.

Another natural question is whether it is possible for a uniquely completable set
to have no critical subset. In the next section, we show that the answer to the second
question is also yes.

Theorem 4.1. There is a sequence Q0, Q1, . . . of uniquely completable sets of LZ

with the properties that Qi+1 ⊆ Qi for each i ≥ 0 and
⋂∞

i=0Qi = ∅.
Proof. Consider Qi = (i,0) for each i ≥ 0. As is uniquely completable, we have
that Qi is uniquely completable for all i by Lemma 2.1. The filled cells of Qi are
exactly those that lie on or below the line y = x−i, so Qi+1 ⊆ Qi and

⋂∞
i=0Qi = ∅.

5 A uniquely completable set with no critical subset

In this section we study a family of variations of the bowtie critical set in order to
show that a uniquely completable set might not have a critical subset in the infinite
case.

Let T be a subset of N = {1, 2, 3, . . .} and let QT be the subsquare of LZ given
by the union of the sets {(x, y, x+ y) : x < 0 and 0 ≤ y < −x}, {(1, t− 1, t) : t ∈ T}
and {(x, y, x+ y) : x > 1 and − x ≤ y < 0}. Equivalently,

QT = ( \ {(1,−1, 0)}) ∪ {(1, t− 1, t) : t ∈ T}.
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. . .

−1 · · · · · · · · · ·
−2 −1 · · · · 4 · · · ·
−3 −2 −1 · · · 3 · · · ·
−4 −3 −2 −1 · · · · · · ·

· · · −5 −4 −3 −2 −1 � · · · · ·
· · · · · · · 1 2 3 4 · · ·
· · · · · · · 0 1 2 3
· · · · · · · · 0 1 2
· · · · · · · · · 0 1
· · · · · · · · · · 0

. . .

Figure 9: The partial square Q{3,4} with the origin denoted by �.

That is, we obtain QT from by removing the symbol 0 in column 1 and adding
each t ∈ T to column 1 in the appropriate position. For example, Figure 9 shows
Q{3,4}.

Whether QT is uniquely completable depends on T . For example, when the
complement of T in N is finite we have:

Lemma 5.1. If N \ T is finite then QT is uniquely completable.

Proof. Suppose that the complement of T in N is finite. Any symbol s ∈ T with
s > 0 must appear in a non-negative row of column 1, as s already appears in every
negative row. The number of such s is equal to the number of available gaps in
column 1. Now consider where 0 can go in column 1. It cannot be in a non-negative
row as there is no space; it cannot be in a row less than −1 as 0 already appears in
those rows. Therefore 0 is in row −1. This means that we have completed all of the
entries of and hence the set is uniquely completable to LZ by Lemma 2.2.

When the complement of T in N is infinite the situation is trickier. Say that T is
sequential if for every k ∈ N there is a sequence of k consective integers in T ; that is,
T is sequential if it contains runs of arbitrarily long length. If N \ T is finite then T
is necessarily sequential.

Our goal is to show that sequentiality of T characterizes the unique completability
of QT . We start with an example that illustrates the main points of the argument.

Example 5.2. Suppose T = {1, 2, 4, 7, 8, . . .} and N\T = {c1, c2, . . .} is infinite with
c1 < c2 · · · . We attempt to construct a square that is not LZ that contains QT .

In such an alternative completion, the symbol 0 must appear in row −1 in a
column other than 1, otherwise we have all of which we know to be uniquely
completable to LZ. For this example, we consider the consequences of putting it in
column −2.
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...
3 4 · · · 8 9
2 3 · · · 7 8
1 2 · · · 5 7
0 1 · · · 3 6
−1 0 · · · 4 5

· · · −2 −1 3 1 2 0 4 · · ·
−3 −2 −1 0 1 2 3
−4 −3 −2 −1 0 1 2
−5 −4 0 −2 −1 −3 1
−6 −5 −4 −3 −2 −1 0
−7 −6 −5 −4 −3 −2 −1
−8 −7 −3 −5 −4 −6 −2

...

Figure 10: A partially filled square from Example 5.2 where the elements of T in
column 1 are italicised and in blue and all elements that differ from LZ are bold
and red. The origin is also bold.

5 7 8 9 6 10 5 ∗ ∗ ∗ 9 10
4 6 5 7 8 9 4 6 5 7 8 9
3 5 6 4 7 8 3 5 6 4 7 8
2 4 3 6 5 7 2 4 3 6 5 7
1 2 4 5 3 6 1 2 4 5 3 6

Figure 11: The region {(x, y) : −3 ≤ x ≤ 2, 4 ≤ y ≤ 8} for the two scenarios of
Example 5.2. On the left, 9 ∈ T and everything works smoothly. On the right,
9 ∈ T and one of the cells marked with an asterisk must contain a 6. Entries in
columns −2 through 1 that are new since Figure 10 are italicised and blue.

Complete columns with index less than −2 and greater than 1 exactly as in LZ.
Fill the grid from row 2 downwards making only the switches from LZ implied by
exchanging the entries of the vertical ladder trade V−2,2,3 with its disjoint mate. Next,
fill the gaps in column 1 by putting ci in the row ci+1−1 (that is, the space where the
symbol ci+1 is in LZ). At this point we have the partially completed square shown
in Figure 10.

We fill the gaps in the remaining rows in increasing order of index. This is
successful for rows up to index 7. Whether we are able to extend to row 8 depends
on whether 9 ∈ T . If 9 ∈ T , we may place 6 in cell (1, 8) and proceed successfully.
However, if 9 ∈ T we must place 6 in one of cells (−2, 8), (−1, 8) or (0, 8), which is
forbidden as we have used 6 in each of these columns already. Figure 11 illustrates
the two situations.

The next lemma shows that when T is not sequential then we may complete QT
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using the approach of the scenario in Example 5.2 with 9 ∈ T . The subsequent
lemma shows that if T is sequential then we necessarily hit an issue of the type
encountered with 9 ∈ T in Example 5.2.

Lemma 5.3. If T is not sequential then QT is not uniquely completable.

Proof. Let N \ T = {c1, c2, . . .}, where c1 < c2 · · · and ci+1 − ci ≤ M for all i.
Choose c ∈ N\T with c ≥ M . We complete QT to a square that is not LZ as follows.

1. Fill all columns with index less than −c+1 or greater than 1 with their usual LZ

entries.

2. For each ci with ci < c, put ci in row ci − 1 of column 1 (that is, in its usual
LZ position).

3. In row c − 1, put c in column −c + 1 and 0 in column 1. Fill the remainder
of this row and all rows with lower index using the ladder trade of width c
induced by these entries.

4. For each ci with ci > c, put ci in row ci+1 − 1 of column 1 (that is, everything
not in T that has not already been assigned a slot in column 1 gets shifted up
to the next gap).

5. Fill the remaining rows one at a time in increasing order of index. There are
two situations for row b:

b+ 1 ∈ T : We have the symbols {b − c + 1, b − c + 2, . . . , b} to place. This is
possible as there are at least q columns where b−c+q has not yet appeared
for each q.

b+ 1 ∈ T : We have the symbols {b− c+ 1, b− c+2, . . . , b+ 1} \ {z} to place,
where z ∈ N \ T (and we know that b − c + 1 ≤ z < b + 1 because N \ T
has bounded gaps, bounded by c ≥ M). This is possible as there are again
at least q columns where a required b − c + q has not yet appeared for
each q ≤ c, and c columns where b+ 1 has not yet appeared.

This gives the required latin square.

Lemma 5.4. If T is sequential then QT is uniquely completable to LZ.

Proof. We attempt alternative completions of QT and see that we run into a contra-
diction.

First, consider the placement of 0 in row −1. It cannot be in column 1 as this
would give all of the entries of , which uniquely completes to LZ. So, it must be
placed in a column with index less than 1. Choose an arbitrary such column index a.
The remainder of the argument considers rows with non-negative index. We work
through them in increasing order.
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In row 0, the two cells in columns 0 and 1 must contain symbols {0, 1}. If 1 ∈ T
then we are forced to put 0 in column 0; in this case, if a = 0 then we immediately
reach a contradiction. The remainder of the row—that is, columns with index at
least 2—is now forced, and these cells contain the same symbols as they do in LZ.

Continue row-by-row while the row index is less than |a|. In row y we must fill
the y + 2 columns −y to 1 with symbols {0, 1, . . . y + 1}. If this is ever impossible
then we are done, so assume it is possible. Again, the columns with index at least 2
are forced to have the same entries as they do in LZ.

In row |a| we must likewise fill the |a|+2 columns a to 1 with symbols {0, 1, . . . |a|+
1}. Here there is the additional constraint that 0 cannot be placed in column a. The
remainder of the row is forced to match LZ. Again assuming this is possible, we have
now used |a|+ 2 copies of the symbol 0 in the |a|+ 2 rows with indices −1 to |a|.

In row |a|+ 1, we are forced to place 0 in column a− 1. We must then place the
symbols {1, 2, . . . |a| + 2} in columns a to 1, and then the remainder of the row is
forced. This continues: in row |a|+y, the entries in columns with index less than a or
greater than 1 are forced to match LZ and we must place symbols {y, y+1, . . . , |a|+
y + 1} in columns a to 1.

As T has unbounded gaps, there must be arbitrarily larges values s such that s ∈
T and {s + 1, s + 2. . . . , s + |a| + 1} ⊆ T . Choose one with s > |a|. Assume the
above process reaches row s − 1 (which has a gap where s would go in column 1)
without a contradiction. We know that 0 has appeared in column 1 with row index
less than s − 1. Therefore, when placing the symbols {s− |a| − 1, s− |a|, . . . , s} in
row s− 1, we know that at least one of the values {s− |a| − 1, s− |a|, . . . , s− 1} has
not yet appeared in column 1 and therefore must do so now: there is no opportuntity
to do so for the next |a|+ 1 rows, at which point these symbols will have no further
opportunity to appear in columns a to 1.

Now consider the |a|+2 rows indexed s−1 to s+|a|. In each of them the symbol s
must appear somewhere in the |a|+1 columns indexed a to 0. But a symbol cannot
appear |a|+2 times in |a|+1 columns, so we are guaranteed to reach a contradiction.

Hence QT is uniquely completable to LZ

Combining Lemmas 5.3 and 5.4 we characterize exactly when QT is uniquely
completable and, as a consequence, deliver the promise of the section heading.

Theorem 5.5. The partial square QT is uniquely completable if and only if T is
sequential.

Corollary 5.6. The uniquely completable partial latin square QN has no critical
subset.

Proof. As N is sequential, QN is uniquely completable by Lemma 5.4. We can not
remove an entry with column index other than 1 while maintaining unique com-
pletability by the argument of the proof of Theorem 3.6. Hence any critical subset
of QN must be of the form QT for some T ⊆ N.



A. CALLAHAN ET AL. /AUSTRALAS. J. COMBIN. 89 (1) (2024), 137–166 152

As a critical set is uniquely completable, by Theorem 5.5 we know that T must
be sequential. However, for any t ∈ T , the set T \{t} is also sequential. Hence QT\{t}
is also uniquely completable and QT is not critical.

6 Density, and More Critical Sets

In the finite case, asking how many entries a uniquely completable or critical set may
have for a given n has been a fruitful question in the study of partial latin squares.
In this section we consider the analagous questions in the infinite setting.

It is possible that a partial latin square of order n with n entries cannot be
completed: consider the example

{(x, 1, x) : 1 ≤ x < n} ∪ {(2, n, n)}.

A similar construction gives an infinite partial latin square that cannot be completed:

{(x, 0, x) : x = 0} ∪ {(0, 1, 0)}.

Contrarily, any partial latin square of order n with at most n− 1 entries can be
completed to at least one latin square of order n. The analogous infinite result in
this case is that every infinite partial latin square with finitely many entries can be
completed to at least one infinite latin square. One way to see this is to complete the
given symbols to a finite latin square of some order n and then, assuming without
loss of generality that the symbols used are {0, 1, . . . , n − 1}, construct an infinite
square using this square and its translates.

Given a partial latin subsquare P of LZ, define σn(P ) to be the number of entries
(x, y, x+ y) that have −n ≤ x, y ≤ n, and define ρn(P ) to be σn(P )/(2n+1)2. So ρn
is the fraction of the square box of side length 2n + 1 centered at the origin that is
filled. Let ρ+(P ) = lim supn→∞ ρn(P ) be called the upper density of P and ρ−(P ) =
lim infn→∞ ρn(P ) be called the lower density of P . Let ρ(P ) = limn→∞ ρn(P ), if it
exists; call this the density of P .

One can imagine successively larger and larger square boxes, centered at the
origin in the integer lattice. To find density, find the proportion of filled-in entries
over all possible entries from LZ in these larger and larger boxes, and take the limit.
First note that choice of “origin” is insignificant for subsquares of LZ.

Theorem 6.1. Density is independent of the choice of origin for infinite partial
subsquares.

Proof. Given a Latin subsquare P , fix one of the origins without loss of generality
to be (0, 0, 0). Let the other arbitrary origin be (a, b, a+ b).

For large n two square boxes of side length s = 2n+1, one centered at each origin,
overlap in a rectangular region of (s−|a|)(s−|b|) cells. There is an “L-shape” region
contained in the first box but not the second, and an identical L-shape (rotated 180◦)
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contained in the second but not the first. Each of these regions has s|a|+ s|b|− |a||b|
cells.

Therefore the difference in the number of entries in the two boxes is at most
s|a|+ s|b| − |a||b|, which occurs when one L-shape’s cells are all filled and the others
are all empty. Hence the difference in densities from the two calculations is at most

lim
s→∞

s|a|+ s|b| − |a||b|
s2

= 0.

Moreover, density is translation and transpose invariant for partial subsquares
of LZ.

Lemma 6.2. Let P be a partial subsquare of LZ. Then ρ(P ) = ρ(PT) and for
any (a, b) ∈ Z

2, we have that ρ(P ) = ρ(P + (a, b)).

We can compute densities of the partial subsquares considered thus far.

Lemma 6.3. For any (a, b) ∈ Z
2, the density of the quartered partial latin square

(a,b) is 1/2.

Proof. Consider the quartered partial square . The numbers of filled entries in
the square box of side length 2n + 1 centered at the origin is 2n2 + 2n. Therefore,
ρ( ) = limn→∞ 2n2+2n

(2n+1)2
= 1/2. By Lemma 6.2 we obtain the same value for (a,b).

Lemma 6.4. For any (a, b) ∈ Z
2, the density of the bowtie square (a,b) is 1/4, as

is the density of the transposed bowtie square (a,b).

Proof. Consider the bowtie partial square . The numbers of filled entries in the
square box of side length 2n+1 centered at the origin is n2 + n. Therefore, ρ( ) =
lima→∞ n2+n

(2n+1)2
= 1/4. By Lemma 6.2 we obtain the same value for (a,b) and (a,b).

Clearly 0 is the minimum density of a partial subsquare of LZ, and 1 is the
greatest. Can there be critical subsets of any density in between? In Section 6.1
we give critical subsquares with other densities. Then in Section 6.2 we give an
example of a uniquely completable partial subsquare of LZ in which the upper and
lower densities are not equal.

6.1 A family of critical sets with myriad densities

We define a family of partial subsquares of LZ with a range of densities close to 1/2.
These squares consist of two wings, R+

m and R−
m, which are mirror images of each

other in the line y = −x. For an integer m > 2 define M = m2 −m− 1. The edges
of the wing R+

m are given by lines through the origin with slopes −1/m and M and
those for R−

m are found by taking the reflection:

R+
m =

{
(x, y, x+ y) : x > 0 and − 1

m
x < y ≤ Mx

} ⊆ LZ,
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. .
.

· · · · · · · · · · 10
· · · · · · · · · 8 9
· · · · · · · · 6 7 8
· · · · · · · 4 5 6 7
· · · · · · 2 3 4 5 6
· · · · · � 1 2 3 4 5 · · ·
· · · · −2 −1 · · 2 3 4
· · · −4 −3 −2 · · · · 3
· · −6 −5 −4 −3 −2 · · · ·
· −8 −7 −6 −5 −4 −3 · · · ·

−10 −9 −8 −7 −6 −5 −4 −3 · · ·
. .
. ...

. . .

Figure 12: The partial subsquare R2, with the origin denoted by �.

R−
m =

{
(x, y, x+ y) : y < 0 and My ≤ x < − 1

m
y
} ⊆ LZ.

Set Rm = R+
m ∪R−

m. See Figures 12 and 13 for for visual depictions of R2 and R3 as
partial latin subsquares of LZ.

Theorem 6.5. For m ≥ 2, the partial square Rm is a critical subsquare of LZ.

Proof. We show the unique completability ofRm first, and then the minimality (using
Lemma 3.4).

Unique Completeness: The first entry that is always immediately determined is
(0, 0, 0), since all of the Rm squares include the negative y-axis and the positive
x-axis. Next we show that there is only one way to fill in each entry in quadrant
IV. This is enough, as one would now have a superset of , which by Lemma 2.2
is uniquely completable.

Assume you have been able to uniquely complete the unfilled entries of the gap in
quadrant IV, row by row, and are now attempting to fill the entry in coordinate
(x, y) ∈ Z

2. Note that it must be the case that 1 ≤ �−y/m� ≤ x ≤ −my and
−1 ≥ 	−x/m
 ≥ y ≥ −mx since the unfilled entries are in this gap.

Now we take inventory of what symbols in Z are available to us for this entry.
We know that our choice cannot include anything in the closed interval [My +
y, x+ y − 1], based off what is already in our current row to the left. Moreover,
to the right, we know we any entries in the interval [−my + y + 1,∞) are taken,
and based off what is below, we cannot have anything in (−∞,−mx + x − 1].
Finally, from the entries above, anything in the closed interval [x+y+1,Mx+x]
is excluded.
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. .
.

· · · · · · · · 8 9 10 11 12
· · · · · · · 6 7 8 9 10 11
· · · · · · · 5 6 7 8 9 10
· · · · · · · 4 5 6 7 8 9
· · · · · · · 3 4 5 6 7 8
· · · · · · · 2 3 4 5 6 7
· · · · · · � 1 2 3 4 5 6 · · ·
· −6 −5 −4 −3 −2 −1 · · · 3 4 5
−8 −7 −6 −5 −4 −3 −2 · · · · · ·
−9 −8 −7 −6 −5 −4 −3 · · · · · ·
−10 −9 −8 −7 −6 −5 −4 −3 · · · · ·
−11 −10 −9 −8 −7 −6 −5 −4 · · · · ·
. .
. ...

. . .

Figure 13: The partial subsquare R3, with the origin denoted by �.

Letting s be the symbol we are looking to add, we have:

s /∈ (−∞,−mx+x−1]∪[My+y, x+y−1]∪[x+y+1,Mx+x]∪[−my+y+1,∞).

However, recall that M = m2 −m− 1. This means that

s /∈ (−∞,−(m−1)x−1]∪[m(m−1)y, x+y−1]∪[x+y+1,m(m−1)x]∪[−(m−1)y+1,∞).

Moreover notice that since 1 ≤ �−y/m� ≤ x we have that −y ≤ mx, and
multiplying by m− 1 > 0 gives

−(m− 1)y ≤ (m− 1)mx.

Similarly, using that −1 ≥ 	−x/m
 ≥ y we obtain −x ≥ my and multiplying by
m− 1 here gives

−(m− 1)x ≥ (m− 1)my.

This means that s /∈ (−∞, x+ y − 1] ∪ [x+ y + 1,∞), so the missing entry must
be x+ y as desired.

Minimality: To show that Rm is critical, we show that for an arbitrary point
(a, b, a + b) ∈ Rm, there is a latin trade intersecting Rm precisely at that point.
In fact we may assume without loss of generality that (a, b, a + b) ∈ R−

m, since
any trade we have for R−

m for a point (a, b, a + b) can be reflected to the point
(−b,−a,−b − a) ∈ R+

m.

In particular we find staircase trades. See Figure 18 for the trade we find for
m = 2 and the point (0,−2,−2) and Figure 19 for the trade found for m = 3
with the point (4,−1, 3).



A. CALLAHAN ET AL. /AUSTRALAS. J. COMBIN. 89 (1) (2024), 137–166 156

To find the appropriate staircase trade for (a, b, a + b) ∈ R−
m proceed as follows.

View Rm in the xy-plane restricted to the integers, and the boundaries of Rm are
essentially defined by four lines. Lines of fixed symbol have slope −1. Staircase
trades consist of points on two such (parallel) lines with slope −1.

See where the line y = −x + a + b intersects with the “boundary” lines defining
the left wing: y = 1

M
x and y = −mx (the left wing is actually bounded by the

equations y = � 1
M
x� − 1 and x = 	− 1

m
y
 in R

2 so these lines are estimates). Let
(x1, y1, a+ b) /∈ Rm be the first point in LZ on the line y = −x+ a+ b not in Rm

to the right of/below R−
m. Similarly let (x2, y2, a + b) /∈ Rm be the first point in

LZ on the line y = −x+ a+ b to the left of/above R−
m with x2 < x1 and y2 > y1.

Let h1 = x1 − a = b− y1, and let h2 = a− x2 = y2 − b.

We may approximate the values of the distances h1 and h2 by intersecting the
boundary lines of the left wing with the line y = −x + a + b. Indeed it follows
that:

h1 =

⌈
b+ma

1−m

⌉
(1)

and
a−Mb

M + 1
< h2 ≤ a−Mb

M + 1
+ 1. (2)

From here we break up into cases based first on how h1 and h2 compare, and
then on whether a > 0 or not. In all cases, we use staircase trades of the form
Sa,b,d, where d ≥ 0, is chosen so that d ≥ h1, h2. The reason for this is because of
the following claim.

Claim 6.5.1. Let d ≥ h1, h2. Then the staircase trade Sa,b,d intersects Rm only
in (a, b, a + b) if and only if the two distinct points (a, b + d, a + b + d) and
(a+ d, b, a+ b+ d) lie outside of Rm.

Proof (of Claim). In order to ensure that a staircase trade intersects Rm exactly
at one point, it is enough to focus on making sure one of the lines in the trade
intersects Rm once, and the other one never does. Beyond these intersection
points, we can then guarantee we never intersect Rm again. (Indeed, lines make
up the trade and the boundaries of Rm and can only intersect once.) By making
d ≥ h1, h2, we have already guaranteed that the line with constant symbol a + b
intersects Rm only at the point (a, b, a+ b), so all that is left is to show the other
line defining the trade never intersects Rm.

The best case scenario would be if we could use the larger of h1, h2 as the height
of our staircase trade. However, some peculiarities come up and we have to find
a potentially larger height in some cases. We give some figures illustrating the
situation for each of the cases – we may use h2 as the height in the first part of
Case 1, and we may use h1 in Case 2(b).

Recall that (a, b, a + b) is assumed to be in R−
m, so by definition, b < 0 and

Mb ≤ a < − 1
m
b.
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Case 1: h2 ≥ h1. Consider whether or not (a, y2, a+y2) = (a, b+h2, a+b+h2) ∈
Rm.

If not, use the staircase trade Sa,b,h2 . This works by Claim 6.5.1 because it
implies that (a+h2, b, a+ b+h2) /∈ Rm. To see this, we need to verify, by the
definition of Rm and the positioning of this point, that a + h2 ≥ − 1

m
b (true

since it is for a+ h1 and h2 ≥ h1) and − 1
m
(a+ h2) ≥ b. The last inequality is

equivalent to saying h2 ≤ −a−mb. But using inequality (2) this follows from
the fact that a−Mb

M+1
+ 1 ≤ −a−mb, which is true because

b ≤ − m2 −m+ 1

m3 − 2m2 +m+ 1
a− m2 −m

m3 − 2m2 +m+ 1
.

This follows from the fact that (a, b, a + b) is in the left wing, which by
definition means b < −ma. Indeed the slope − m2−m+1

m3−2m2+m+1
> −m and the

y-intercept − m2−m
m3−2m2+m+1

> −1 for m ≥ 2.

Otherwise, we need to find (x0, y0, a+ b) where y0 > y2 and x0 < x2 such that
(a, y0, a+ y0) /∈ Rm. Then use the staircase trade Sa,b,y0−b.

Using Claim 6.5.1, we are done if we can establish (a+ y0 − b, b, a+ y0) /∈ R+
m

(it cannot be in R−
m since h1 ≤ h2 = y2 − b < y0 − b).

Case 1(a): a > 0. Notice that in this case, by the definition of R−
m (in par-

ticular b < 0 and a > 0 are integers), b = −ma − n for some n ∈ N. Let
y0 = Ma+1. See Figure 14 for the situation. We have that −b ≥ ma+ 1

m−1

since −b > ma and a, b ∈ Z. From this it follows from our value of b above
(and since M = m2 −m− 1) that b ≤ − 1

m
(a+ y0 − b), which means that

(a + y0 − b, b, a + y0) /∈ R+
m, as desired.

Case 1(b): a ≤ 0. See Figure 15. Let y0 = 	a−1
M


. In this case it is easy to
see that Sa,b,y0−b avoids intersecting with R+

m since entries there are always
positive, whereas both entries a + b and a + y0 in the trade are less than
or equal to 0.

Case 2: h1 > h2. Again we split into cases depending on a.

Case 2(a): a ≤ 0. Here we may use the staircase trade Sa,b,h where h is a
positive integer and

−mb − a ≥ h ≥ max

(
b+ma

1−m
,
a−Mb

M
+ 1

)
.

Note that it will always be true that −mb − a ≥ b+ma
1−m

since Mb ≤ a. So
such an h exists since

(−mb− a)−
(
a−Mb

M

)
> 1.

This is because as a < 0, we have that Mb(1 − m) > M + a(M + 1),
since the left side is positive and the right side is negative. From this our
desired inequality follows.
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R+
m

R−
m

•
(a, b, a + b)

• •(a, y0, a+ y0)

•(x2, y2, a+ b) •(x2, y2, a+ b)

•
(a + y0 − b, b, a + y0)

Figure 14: Illustration of Case 1(a) of criticality proof.

R+
m

R−
m

•
(a, b, a+ b)

• •(a, y0, a+ y0)

•(x2, y2, a+ b) •

•
(a+ y0 − b, b, a+ y0)

Figure 15: Illustration of Case 1(b) of criticality proof.
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R+
m

R−
m

•
(a, b, a + b)

•
(a + h, b, a+ b+ h)

•(a, b+ h, a+ b+ h)

Figure 16: Illustration of Case 2(a) of criticality proof.

We then have ensured that (a + h, b, a + b + h) and (a, b + h, a + b + h)
are not in Rm using this value of h. First of all it has to be the case
that h ≥ h1 > h2 based on our definition h and the case we are in. This
tells us (a + h, b, a + b + h) /∈ R−

m. (Note (a, b + h, a + b + h) /∈ R+
m since

a ≤ 0.) It immediately follows from our bounds on h that the first point
(a+ h, b, a+ b+ h) is in the gap between the left wing and the right wing,
namely, b ≤ − 1

m
(a+h), and the second point is above the left wing, namely

a < M(b+ h). See Figure 16 for a sketch of the situation. By Claim 6.5.1
the trade Sa,b,h works as desired.

Case 2(b): a > 0. It turns out this can only happen ifm = 2. In this case we
may use the staircase trade Sa,b,h1. The points (x1, b, a+ b+h1), (a, y1, a+
b+h1) /∈ R2, namely we have that b ≤ −1

2
(a+h1) and b+h1 ≤ −a

2
. These

follow from plugging in m = 2 into (1) (we see that h1 = −b − 2a) and
using that b ≤ a. See Figure 17 for a sketch of the situation.

Theorem 6.6. For m ≥ 2, m ∈ N, the density of Rm is given by

ρ(Rm) =
2m3 −m2 − 4m− 1

4m3 − 4m2 − 4m
.

Proof. For all n we have σn(R
+
m) = σn(R

−
m); that is, the number of entries in each

wing in a square region centered at the origin is the same. We compute σn(R
+
m)

in three parts and multiply by 2 to get σn(Rm). Suppose that n = mq + r with
0 ≤ r < m and that n = MQ +R with 0 ≤ R < M .
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R+
2

R−
2

•
(a, b, a + b)

•
(x1, b, a+ b+ h1)

•(a, y1, a+ b+ h1)

•
(x1, y1, a+ b) /∈ R−

2

•(x2, y2, a+ b) /∈ R−
2

Figure 17: Illustration of Case 2(b) of criticality proof.

. .
.

· · · · · · · · · · 10
· 0 · · · · · · · 8 9
· · · · · · · · 6 7 8
· −2 · 0 · · · 4 5 6 7
· · · · · · 2 3 4 5 6
· · · −2 · 0 1 2 3 4 5 · · ·
· · · · −2 −1 · · 2 3 4
· · · −4 −3 −2 · 0 · · 3
· · −6 −5 −4 −3 −2 · · · ·
· −8 −7 −6 −5 −4 −3 −2 · 0 ·

−10 −9 −8 −7 −6 −5 −4 −3 · · ·
. .
. ...

. . .

Figure 18: Illustration of R2 criticality with a = 0 and b = −2. The staircase
trade S0,−2,2 is italicised, with entries not in the partial square in blue and the
point of intersection in purple.
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. . .
... . .

.

3 · · · · · · · 11 12 13 14 15
· · · · · · · · 10 11 12 13 14
· · · · · · · · 9 10 11 12 13
· · · · · · · · 8 9 10 11 12
· · · · · · · 6 7 8 9 10 11
· · · · · · · 5 6 7 8 9 10
· · · · · · · 4 5 6 7 8 9
· · · · · · · 3 4 5 6 7 8
· · · · · · · 2 3 4 5 6 7

· · · · · · · · · � 1 2 3 4 5 6 · · ·
−7 −6 −5 −4 −3 −2 −1 · · · 3 4 5
−8 −7 −6 −5 −4 −3 −2 · · · · · ·
−9 −8 −7 −6 −5 −4 −3 · · · · · ·
−10 −9 −8 −7 −6 −5 −4 −3 · · · · ·
−11 −10 −9 −8 −7 −6 −5 −4 · · · · ·
−12 −11 −10 −9 −8 −7 −6 −5 · · · · ·
−13 −12 −11 −10 −9 −8 −7 −6 −5 · · · ·
−14 −13 −12 −11 −10 −9 −8 −7 −6 · · · ·
−15 −14 −13 −12 −11 −10 −9 −8 −7 · · · ·
−16 −15 −14 −13 −12 −11 −10 −9 −8 −7 · · ·
−17 −16 −15 −14 −13 −12 −11 −10 −9 −8 −7 · ·
−18 −17 −16 −15 −14 −13 −12 −11 −10 −9 · · ·
−19 −18 −17 −16 −15 −14 −13 −12 −11 −10 −9 · ·

. .
. ...

. . .

Figure 19: llustration of R3 criticality with a = 4 and b = −1; the entries of the
staircase trade S−6,−1,10 are italicized, with those not in the partial square in blue
and the point of intersection in purple.
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First, consider the contribution to σn(R
+
m) for the x-axis. All of the positive x-axis

is included, which gives us n entries. Second, consider the part of R+
m in quadrant

IV. We have

m · q(q − 1)

2
+ qr

entries. Similarly, for quadrant I we have

n2 −M · Q(Q− 1)

2
−QR

entries. Sum these three terms and multiply by 2 to get the value

σn(Rm) = 2

(
n +m · q(q − 1)

2
+ qr + n2 −M · Q(Q− 1)

2
−QR

)
.

By the squeeze theorem, it is enough to only look at the limit of ρn(Rm) for n
divisible by mM , in which case both r and R are 0. This gives

ρ(Rm) = lim
n→∞

ρn(Rm) = lim
n→∞

σn(Rm)

(2n+ 1)2

= lim
n→∞

2
(
n+m · q(q−1)

2
+ n2 −M · Q(Q−1)

2

)
4n2 + 4n+ 1

= lim
n→∞

n[(n/m)− 1] + 2n2 − n[(n/M)− 1]

4n2

= lim
n→∞

n2/m+ 2n2 − n2/M

4n2

=
M + 2Mm−m

4Mm
.

Recalling that M = m2 −m− 1, we obtain

ρ(Rm) =
2m3 −m2 − 4m− 1

4m3 − 4m2 − 4m

as required.

The values of ρ(Rm) form = 2, 3, 4, 5 are 3/8, 8/15, 95/176, 51/95. The maximum
value is the 95/176 obtained at m = 4 and they decrease from this point with
limm→∞ ρ(Rm) = 1/2. Given that critical sets of the finite squares Ln based on the
integers modulo n are conjectured to all have densities less than 1/2, the existence
of infinitely many (indeed, any) critical sets for LZ with density greater than 1/2 is
perhaps surprising.

6.2 Undefined density

First, recall that it is perfectly reasonable to consider the (asymptotic) density of
a subset of Z (see, for example, [16]). Define ρn(A) for A ⊆ Z to be the number
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of elements of A between −n and n, i.e., ρn(A) = |A ∩ [−n, n]|. Then the density
ρ(A) = limn→∞ ρn(A).

One can construct many subsets of Z with undefined density, i.e., find A ⊆ Z

such that the limit defining its density does not exist. For example, A could have
extended gaps with nothing in it, so its lower density is 0, and then periods where
you throw everything in so that its upper density is 1.

Using such a subset A of Z of undefined density we may find a set of undefined
density for LZ, for example by gluing part of one critical set on top of another one
using indices from the A, as we show below.

It seems useful in the following to view LZ as a function (the function is ad-
dition) from Z × Z to Z, because for density it only matters whether the entry
is filled, not what the entry in each coordinate is. Thus, we will use domP =
{(x, y) : (x, y, x+ y) ∈ P} for subsquares P ⊆ LZ.

Theorem 6.7. There is a uniquely completable partial subsquare of LZ with unde-
fined density.

Proof. We build the desired subsquare of LZ as follows. Start with the full bowtie
square . On column indices in a set A ⊆ Z with undefined density, add entries
from . Call the resulting subsquare RA. Clearly RA is uniquely completable, as
it contains the full . It is not critical because all of the entries from could be
removed and it would still be uniquely completable.

To see that RA also has undefined density, we have the following computation:

ρ(RA) = lim
n→∞

| dom(RA) ∩ [−n, n]2|
(2n+ 1)2

= ρ( ) + lim
n→∞

|A ∩ [−n, n]| · (n+ 1)

(2n + 1)2

= ρ( ) + 1/2 lim
n→∞

|A ∩ [−n, n]|
2n+ 1

.

Therefore the density of RA depends on the density of A, and since A’s density
is undefined, this means that the density of RA is also undefined.

7 Partitions into Critical Sets

In [1], it is shown that Mn can be partitioned into four critical sets for all n > 1
and into three critical sets when n ∈ {4, 5, 6}. Theorem 7.1 shows that the infinite
analog LZ may be partitioned into three critical sets.

Theorem 7.1. It is possible to partition LZ into three critical sets that have densi-
ties 1/4, 1/4 and 1/2.

Proof. We check that the quartered partial square , the bowtie partial square (0,1)

and the transpose of a bowtie partial square (0,1) together contain each entry of LZ

exactly once.
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The boundaries of the three sets are the two axes and the line y = −x. The set
covers the interiors of the first and third quadrants, the negative x-axis and the
positive y-axis. The sets (0,1) and (0,1) cover the interiors of the second and fourth
quadrants, with the 0s in the second quadrant (other than the identity) included in

(0,1) and the 0s in the fourth quadrant (including the identity) included in (0,1).
The positive x-axis is in (0,1) and the negative y-axis is in (0,1).

The density of is 1/2 and the densities of (0,1) and (0,1) are each 1/4, thus
these critical sets provide the required partition.

8 Questions

We have shown that LZ has a critical set of density ρ for ρ = 1/4, for ρ = 3/8 and
for infinitely many values of ρ in the range 1/2 ≤ ρ ≤ 95/176.

Question 8.1. What is the full spectrum of possible densities for critical sets of LZ?
In particular, what are the smallest and largest possible densities?

Consider the partial square S given by the union of

{(x, y, x+ y) : x > 0 and y > x} , {(x, y, x+ y) : x < 0 and 0 ≤ y < −x}
and

{(x, y, x+ y) : x > 0 and − x ≤ y < −x/2} .
It has density 5/16. If it is a critical set then this is a new value; however, we have
been unable to show whether or not it is critical. Similar constructions are possible
that give candidates for further new densities close to 1/4.

More generally, we ask the same question for arbitrary infinite latin squares:

Question 8.2. What is the full spectrum of possible densities for critical sets of an
infinite latin square?

In particular, the conjectured lower bound is 1/4 for the finite case; are there
critical sets in an infinite square (whether LZ or a different square) with a lower
density?

In Section 6.2 we constructed a uniquely completable set with undefined density.
However, it was not critical.

Question 8.3. Is there a critical set with undefined density?

In Section 7 we saw that it is possible to partition LZ into three critical sets with
densities 1/4, 1/4 and 1/2.

Question 8.4. Is it possible to partition LZ into two or four (or more) critical sets?
What about other infinite latin squares?

More generally, we ask:
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Question 8.5. For what sets {ρ1, ρ2, . . . , ρk :
∑

ρi = 1} is it possible to partition LZ

into k critical sets with these densities? What possibilities exist for other infinite
latin squares?

Note that a partition with five or more parts requires a critical set with density
less than 1/4.
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[9] J. Dénes and A.D. Keedwell, Latin Squares and Their Applications (2nd Ed.),
North Holland (2015).

[10] H. Dietrich and I.M. Wanless, Small partial latin squares that embed in an
infinite group but not into any finite group, J. Symb. Comp. 18 (2018), 142–52.



A. CALLAHAN ET AL. /AUSTRALAS. J. COMBIN. 89 (1) (2024), 137–166 166

[11] A.B. Evans, G.N. Martin, K. Minden and M.A. Ollis, Infinite latin squares:
neighbor balance and orthogonality, Electron. J. Combin. 27(3) (2020), #P3.52,
22pp.

[12] H. Hatami and Y. Qian. Teaching dimension, VC dimension, and critical sets
in latin squares, J. Comb., 9 (2018), 9–20.

[13] A. J.W. Hilton and J. Wojciechowski, Amalgamating infinite latin squares, Dis-
crete Math. 292 (2005), 67–81.

[14] A.D. Keedwell, Critical sets in latin squares and related matters: an update,
Utilitas Math. 65 (2004), 97–131.

[15] M.E. Mays, m-tuples in infinite latin squares, Congr. Numer. 124 (1997), 107–
115.

[16] M.B. Nathanson, Elementary Methods in Number Theory, Springer (2000).

(Received 18 Nov 2023; revised 29 Dec 2023, 10 Feb 2024)


