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Abstract

We provide necessary and sufficient conditions for general Sheffer poly-
nomials Pn(x) to satisfy the Touchard congruence Pn+p(x) ≡ xpPn(x) +
Pn+1(x) (mod pZ[x]) and its generalizations, or to satisfy the elegant
congruence Pn+p(x) ≡ Pp(x)Pn(x) (mod pZ[x]), for a prime p, that is a
feature of e.g. factorial polynomials. Eventually, we examine periodicity
of the related number sequences modulo a prime number. Some examples
are provided as well. The obtained congruences might be understood as
a wide extension of divisibility properties of the Touchard (Bell) poly-
nomials and Stirling numbers of both kinds. However, despite the high
generality of the results, we employ relatively simple methods.

1 Introduction

In this article, we investigate the divisibility properties of Sheffer sequences, which
constitute a wide class of polynomials, including e.g. the Touchard (Bell), factorial,
Hermite, Bernoulli, Laguerre and derangement polynomials, and contains a subclass
of Appell polynomials. Furthermore, (finite) moments of Lévy processes are Sheffer
polynomials of the time parameter. For two formal power series f(t) =

∑∞
n=0 fnt

n/n!,
g(t) =

∑∞
n=0 gnt

n/n! with f0 = 0, f1, g0 �= 0, we define the Sheffer sequence as the
sequence of polynomials

Pn(x) =
n∑

k=0

S(n, k)xk

given by its exponential generating function [34]

G(t, x) :=

∞∑
n=0

Pn(x)
tn

n!
= g(t)exf(t). (1.1)
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Fixing x = 1, we obtain related number sequences (Pn)n≥0 := (Pn(1))n≥0. Addition-
ally, given our focus on divisibility properties, we assume fn and gn to be integers.
In fact p-adic integers might be considered as well.

One of the most classical results for these kind of polynomials is the Touchard
congruence (see [38, 28, 14, 11]), which states that

Bn+p(x) ≡ xpBn(x) +Bn+1(x) (mod pZ[x]), (1.2)

where p is any prime, n ∈ N0 = {0, 1, 2, 3, . . .} and Bn(x) =
∑n

k=0

{
n
k

}
xk is the

Touchard (called also Bell) polynomial arising from (1.1) with g(t) = 1, f(t) = et−1.
Note that

{
n
k

}
is the Stirling number of the second kind. It was further extended in

[24] onto r-Bell polynomials (g(t) = ert, f(t) = et − 1) as well. Similar congruences
hold for factorial polynomials (g(t) = 1, f(t) = ln(1+t); S(n, k) are then the Stirling
numbers of the first kind): Pn+p(x) ≡ (xp − x)Sn(x) (mod p) and derangement
polynomials (g(t) = e−t/(1− t), f(t) = t): Dn+p ≡ (xp − 1)Dn(x) (mod p). Finally,
let us remark that all these congruences can be expressed in the language of the
coefficients S(n, k), which might be understood as generalized Stirling numbers. For
example, (1.2) is equivalent to

S(n+ p, k) ≡ S(n, k − p) + S(n + 1, k) (mod p), 0 ≤ k ≤ n + p.

In the literature, there there are many results on congruences concerning the Bell
numbers and Touchard polynomials [2, 13, 14, 15, 16, 26, 32, 35, 37], related sequences
[41, 31, 24], and other Sheffer sequences [1, 4, 19, 36, 40].

The main goal of the paper is to examine whether the aforementioned congruences
are driven by more universal laws. In order to make the investigation somehow
systematic, we begin with a general congruence (see Lemma 2.1) for n = 0:

Pp(x) ≡ g0f1x
p + g0fpx+ gp (mod pZ[x]). (1.3)

Knowing that P0(x) = g0 and P1(x) = xg0f1+g1, we will express the right-hand side
above by means of P0(x) and P1(x) and extend it onto all n ∈ N0. Obviously, there
are many possibilities to consider, but we will focus, in the author’s opinion, on the
most natural and simple choices. First of all, we assume g0 �≡ 0 (mod p). Otherwise
Pp(x) is equivalent to a constant and the most straightforward extension leads to a
sequence of constant polynomials of the trivial form Pn(x) = gn.

Knowing the Touchard congruence (1.2), it is natural to look for it in (1.3).
Indeed, if fp ≡ f1, gp ≡ g1 (mod p), we get Pp(x) ≡ xpf1P0(x) + P1(x). Following
this observation, we eventually reach the first main result of the article, Theorem
3.1, which states that the congruence

Pn+p(x) ≡ f1x
pPn(x) + aPn+1(x) (mod pZ[x]) (1.4)

holds if and only if fn+p ≡ afn+1, gn+p ≡ agn+1 (mod p) for every n ∈ N0. Note that
an additional parameter a ∈ Z has been added to make the result more universal.
Furthermore, we generalize (1.4) in Proposition 3.3 by providing congruences for
Pn+kpm(x). See [14, 11] for the case of the Touchard polynomials.
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Another approach to (1.3) is based on replacing any g0 simply with P0(x) and
gp with P0(x) multiplied by some constant a ∈ Z. This results in the congruence
Pp(x) ≡ (f1x

p+fpx+a)P0(x) (mod pZ[x]), which appears to generalize conveniently
into

Pn+p(x) ≡ (f1x
p + fpx+ a)Pn(x) (mod pZ[x]).

In Theorem 4.1, we precisely identify the class of sequences admitting this equiva-
lence. Furthermore, this congruence takes a very appealing form of factorisation, if
we additionally assume g0 ≡ 1 (mod p). Namely, we show in Corollary 4.3 that in
this case the equivalence

Pn+p(x) ≡ Pp(x)Pn(x) (mod pZ[x])

holds if and only if fn+1 ≡ 0 and gn+p ≡ gn (mod p) for n ∈ N0. Such a congruence
has already appeared also in the context of non-Sheffer sequences. Namely, for
the exponential generating function Hd(x) of the numbers of permutations being
products of pairwise disjoint d-cycles, we define polynomials Wd,n(x) by the relation
dn

dxnHd(x) = Wd,n(x)Hd(x). Then, for any prime p and n ∈ N0 it holds that ([25],
Theorem 6.7)

Wp,n+p(x) ≡ Wp,pWp,n (mod pZ[x]).

Another interesting and intensively studied problem is the modular periodicity.
This concerns the numbers Pn rather than polynomials Pn(x). In [13] Marshall Hall
showed that

Np := 1 + p+ . . .+ pp−1 =
pp − 1

p− 1

is a period of the sequence of Bell numbers Bn = Bn(1) modulo p. This holds true for
r-Bell numbers as well (see [24, 33]). Theorem (5.2) demonstrates that the sufficient
condition for such a property is simply satisfying the Touchard congruence ((1.2)
with x = 1). Note that this requires f1 ≡ a ≡ 1 (mod p) in (1.4). If f1 �≡ 1
(mod p), one can consider Pn(x0) instead of Pn = Pn(1) for x0 being the inverse of f1
in GF (p). In the case a �≡ 1 (mod p), we refer the reader to Section 5 for some more
details. It is also worth mentioning that even in the case of Bell numbers Np is proven
to be the minimal period only for p < 126 and for p = 137, 149, 157, 163, 167, 173
[20, 26, 39]. See [7, 21, 33] for further results in this direction.

The approach to the problem is strongly based on the exponential generating
function (1.1). This tool seems to be slightly forgotten, while it still remains one of
the most powerful. In the form of the characteristic function or the Fourier transform,
it plays a crucial rule in probability theory. One of the reasons, in the context of the
article, is that it allows one to deal with such a generality. For example, in the case
of the Touchard congruence, a particular form of studied polynomials was exploited,
which allowed one to conveniently employ the umbral calculus [4, 13, 24].
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2 Preliminaries

2.1 Notation

Throughout the article, p stands for any prime number. By N0 we denote the set of
non-negative integers. Furthermore, by Z[x] we understand the ring of polynomials
with integer coefficients.

For any formal series of functions ϕ(t, x) =
∑∞

n=0 ϕn(x)
tn

n!
we define

(ϕ(·, x))n := ϕn(x). (2.1)

If ϕ does not depend on x, we skip it in the above notation. In the case when the
series is convergent for some x ∈ R and t ∈ R − {0}, (ϕ(·, x))n is simply the n-th
derivative with respect to t at zero.

Finally, for n ∈ N0 and q > 0 we denote by [n]q the q-analog of n, i.e.

[n]q =
1− qn

1− q
for q �= 1, [n]1 = n. (2.2)

2.2 Sheffer sequences

We have defined Sheffer sequences (Pn(x))n≥0 in (1.1). Using the notation from
equation (2.1), one can simply write

Pn(x) = (G(·, x))n .
They might be equivalently introduced by the recurrence QPn = nPn−1 for n ≥ 1
and QP0 = 0, where Q is a shift-equivariant linear operator acting on polynomials.
Additionally, following the notation from [30], we may say that Pn(x) is the Sheffer
sequence for the pair

(
1/g(f̄(t)), f̄(t),

)
, where f̄(t) is the compositional inverse of

f(t). This nomenclature is related to the algebraic approach related to orthogonality
properties of the polynomials.

The history of Sheffer polynomials dates back to the seminal paper [34]. The
modern approach has been presented in [30]. We also refer the reader to [10] for an
overview of the development of the theory, and to [8, 9, 17, 22, 29] for some recent
advances.

For a Sheffer sequence (Pn(x))n≥0 we define (P̃n(x))n≥0 (the associated sequence
for f̄(t)) as the sequence whose exponential generating function is given by

G̃(t, x) :=

∞∑
n=1

P̃n(x)
tn

n!
= exf(t),

which arised from (1.1) by taking g(t) = 1. Then, the following binomial-like identity
holds

n∑
k=0

(
n

k

)
Pk(x)P̃n−k(y) = Pn(x+ y).
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Furthermore, since

∂

∂t
(g(t)exf(t)) = g′(t)exf(t) + xf ′(t)g(t)exf(t), (2.3)

the Sheffer sequence satisfies the recurrence

Pn+1(x) =
n∑

k=0

(
n

k

)[
xfk+1Pn−k(x) + gk+1P̃n−k(x)

]
. (2.4)

The coefficients of Pn(x) =
∑n

k=0 S(n, k)x
k are given by

S(n, k) =
1

k!
(gfk)n. (2.5)

In particular, for n ≥ 1 we have

S(n, 0) = gn,

S(n, 1) = (gf)n,

S(n, n) = g0f
n
1 . (2.6)

Here, the product of two formal power series is understood simply as the Cauchy
product. The equality (2.6) follows from the assumption f0 = 0. It also explains
the assumption f1, g0 �= 0, since the degree of any Pn(x) is supposed to be n. Ad-
ditionally, since fn, gn ∈ Z, all the coefficients S(n, k) are integers, which might be
deduced e.g. from (2.4). Below, we present congruences for S(n, k) with n = p, that
are the initial point of our considerations.

Lemma 2.1 For a prime p we have

S(p, 1) ≡ g0fp (mod p),
S(p, p) ≡ g0f1 (mod p),
S(p, k) ≡ 0 (mod p), 2 ≤ k ≤ p− 1.

Equivalently,

Pp(x) ≡ g0f1x
p + g0fpx+ gp (mod p). (2.7)

Proof. First, by (2.5) and Lucas’s congruence, we get

S(p, 1) = (gf)p =

p∑
i=0

(
p

i

)
gifp−1 ≡ g0fp + gpf0 = g0fp (mod p).

The congruence for S(p, p) follows from (2.6) and Fermat’s little theorem. Next, for
2 ≤ k ≤ p− 1 the general Leibniz formula and Lucas’s congruence give us

S(p, k) =
(gfk)p
k!

=
(f · gfk−1)p

k!
=

1

k!

p∑
i=0

(
p

i

)
fi(gf

k−1)p−i

≡ 1

k!

(
f0(gf

k−1)p + fpg0f
k−1
0

)
= 0 (mod p),

where the last equality follows from the general assumption f0 = 0. Finally, the
equivalence (2.7) is a consequence of (2.5). �
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An important subclass of the Sheffer polynomials are the Appell polynomials.
Namely, we obtain them for f(t) = t. Note that, by the formula (2.5) and the
general Leibniz rule, their coefficients take the form

S(n, k) =

(
n

k

)
gn−k.

It is therefore sometimes more reasonable simply to consider the sequence (gn).

2.3 Technical lemmas

In this section we gather two lemmas on divisibility properties of coefficients of formal
power series. For convenience of proofs, they are described in the language of p-adic
integers Zp.

Lemma 2.2 Let u, v be formal power series with integer coefficients. Assume that
u0 �≡ 0 (mod p) and fix a ∈ Z. Then

un+p ≡ aun+1, wn+p ≡ awn+1 (mod pZp) for all n ≥ 0

�
un+p ≡ aun+1, (uw)n+p ≡ a(uw)n+1 (mod pZp) for all n ≥ 0.

Proof. (⇓) By the general Leibniz rule applied twice we have for n ≥ 0 that

(uv)n+p =

n∑
i=0

p∑
j=0

(
n

i

)(
p

j

)
ui+jwn+p−i−j.

By virtue of Lucas’s congruence we obtain

(uv)n ≡
n∑

i=0

(
n

i

)
(uiwn+p−i + ui+pwn−i) ≡ a

n∑
i=0

(
n

i

)
(uiwn+1−i + ui+1wn−i)

= a[(uw′)n + (u′w)n] = a(uw)n+1 (mod pZp).

(⇑) Due to the assumption u0 �≡ 0 we can write

w =
uw

u
=

uw

u0[1− (1− u/u0)]
=

uw

u0

∞∑
k=0

(1− u/u0)
k. (2.8)

From the previous implication (and by an induction argument) we know that for any
i, n ≥ 0 it holds that (1 − u/u0)

k
n+p ≡ a(1 − u/u0)

k
n+1 (mod pZp). Thus, for n ≥ 0

we have ( ∞∑
k=0

(1− u/u0)
k

)
n+p

=
∞∑
k=0

(1− u/u0)
k
n+p ≡

∞∑
k=0

a(1− u/u0)
k
n+1

=

( ∞∑
k=0

a(1− u/u0)
k

)
n+1

(mod pZp),

and applying the previous implication to (2.8) we complete the proof. �
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Lemma 2.3 Under the assumptions of the previous lemma we have

un, wn ≡ 0 (mod pZp) for all n ≥ p

�
un, (uw)n ≡ 0 (mod pZp) for all n ≥ p.

Proof. (⇓) We have

(uw)n =

n∑
k=0

(
n

k

)
ukwn−k ≡

p−1∑
k=n−p+1

n!

k!(n− k)!
ukwn−k (mod pZp).

Since k, (n − k) ≤ p − 1, the denominator in the quotient under the sum is not
divisible by p, while the numerator is for n ≥ p. Hence, every term is divisible by p,
and therefore (uw)n ≡ 0 (mod pZp) for n ≥ p.

(⇑) The proof in this case is analogous to the corresponding part of the proof of
Lemma 2.2. �

3 Touchard congruence

The Touchard congruence turns out to be not an exclusive property of the Touchard
polynomials and Bell numbers or their weighted version. Below we present necessary
and sufficient conditions for a Sheffer sequence to possess this property, even in a
more general form.

Theorem 3.1 Let p be a prime number and a ∈ Z. The equivalence

Pn+p(x) ≡ xpf1Pn(x) + aPn+1(x) (mod pZ[x]), n ≥ 0, (3.1)

holds if and only if

fn+p ≡ afn+1 and gn+p ≡ agn+1 (mod p), n ≥ 0.

Proof. (⇒) Assuming (3.1) holds, we get

gn+p = S(n+ p, 0) ≡ aS(n + 1, 0) = agn+1 (mod p),

and
(gf)n+p = S(n+ p, 1) ≡ aS(n + 1, 1) = a(gf)n+1 (mod p).

Next, by Lemma 2.2, we conclude fn+p ≡ afn+1 (mod p), n ≥ 0.

(⇐) For n = 0 we use Lemma 2.1 and get

Pp(x) ≡ xpg0f1 + axg0f1 + ag1 = xpf1P0(x) + aP1(x) (mod pZ[x]),

as required. Assume now that the congruence (3.1) holds for n ≤ N for some
N ≥ 0 and any sequence (Pn(x))n≥0 satisfying the assumptions of the theorem. In
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particular, the sequence (P̃n(x))n≥0 is included. Furthermore, the relation (2.3) gives
us

PN+1+p(x) =
[(
g′ + xgf ′)G̃(·, x)]

N+p
=
[
g′G̃(·, x) + xf ′G(·, x)]

N+p
. (3.2)

Thus, using the general Leibniz rule twice we obtain

PN+1+p(x) =

p∑
i=0

N∑
j=0

(
p

i

)(
N

j

)[
gi+j+1P̃N+p−i−j(x) + xfi+j+1PN+p−i−j

]
. (3.3)

Now we split the above sum into two parts. Using Lucas’s congruence and the
inductive assumption we deal with the first one as follows

p∑
i=0

N∑
j=0

(
p

i

)(
N

j

)
gi+j+1P̃N+p−i−j(x)

≡
N∑
j=0

(
N

j

)[
gj+1P̃N+p−j(x) + gp+j+1P̃N−j(x)

]

≡
N∑
j=0

(
N

j

)[
gj+1

(
xpf1P̃N−j(x) + aP̃N−j+1(x)

)
+ agj+2P̃N−j(x)

]
= f1x

p(g′G̃(·, x))N + a
(
(g′G̃′(·, x))N + (g′′G̃(·, x))N

)
= f1x

p(g′G̃(·, x))N + a(g′G̃(·, x))N+1 (mod pZ[x]), (3.4)

and, analogously, we get

p∑
i=0

N∑
j=0

(
p

i

)(
N

j

)
fi+j+1PN+p−i−j(x) ≡ f1x

p(f ′G(·, x))N + a(f ′G(·, x))N+1 (mod pZ[x]).

Summing up, we arrive at

PN+1+p(x) ≡ f1x
p(g′G̃(·, x) + xf ′G(·, x))N + a(g′G̃(·, x) + xf ′G(·, x))N+1 (mod pZ[x])

= f1x
pPN+1(x) + aPN+2(x),

where the last inequality is a consequence of (2.3). �

Note that for Z � f1, a ≡ 1 (mod p) (3.1) becomes the classical Touchard congruence.

Let ((TP )n(x))n≥0 be the binomial transform of (Pn(x))n≥0, i.e.

(TP )n(x) =

n∑
i=0

(−1)k
(
n

k

)
Pk(x).

Corollary 3.2 If the sequence (Pn(x))n≥0 satisfies (3.1), then

(TP )n+p(x) ≡ −xpf1(TP )n(x) + a(TP )n+1(x) (mod pZ[x]).
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Proof. The exponential generating function of ((TP )n(x))n≥0 is

∞∑
n=0

(TP )n
tn

n!
= etg(t)exf(−t).

We clearly have

fn+p ≡ afn+1 (mod p) ⇔ (f(−(·)))n+p ≡ a(f(−(·)))n+1 (mod p), n ≥ 0.

Furthermore, in view of the congruences(
e(·)
)
n+p

= 1 =
(
e(·)
)
n+1

,

(f(−(·)))1 ≡ −f1,

(mod p), the assertion follows from Theorem 3.1 and Lemma 2.2. �

We finish this section with some generalizations of Theorem 3.1 involving powers
of p and their multiplicities. They play an important role in Section 5.

Proposition 3.3 Let p be a prime number, k ∈ N0, m ≥ 1 and a ∈ Z. Then (3.1)
implies

Pn+kpm(x) ≡
k∑

i=0

(
k

i

)
amifk−i

1 (am−1xp+am−2xp2 + . . .+xpm)k−iPn+i(x) (mod pZ[x]).

Proof. We prove the proposition by mathematical induction with respect to m. The
case m = 1 is covered by (3.1) and another induction argument with respect to k
with the following induction step:

Pn+(k+1)p(x) = Pn+p+kp(x)

≡
k∑

i=0

(
k

i

)
aifk−i

1 (xp)k−iPn+i+p(x)

≡
k∑

i=0

(
k

i

)
aifk−i

1 (xp)k−i
[
xpf1Pn+i(x) + aPn+i+1

]
(mod pZ[x])

= fk+1
1 (xp)k+1Pn(x) +

k∑
i=1

[(
k

i

)
+

(
k

i− 1

)]
aifk+1−i

1 (xp)k+1−iPn+i(x)

+ ak+1Pn+k+1(x)

=
k+1∑
i=0

(
k + 1

i

)
aifk+1−i

1 (xp)k+1−iPn+i(x).

Let us assume now that the assertion is satisfied for some m ≥ 1 and all k ∈ N0.
Lucas’s congruence and Fermat’s little theorem give us

Pn+kpm+1 = Pn+(kp)pm
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≡
kp∑
l=0

(
kp

l

)
amlfkp−l

1

(
am−1xp + am−2xp2 + · · ·+ xpm

)kp−l

Pn+l(x)

≡
k∑

i=0

(
k

i

)
aimpfkp−ip

1

(
am−1xp + am−2xp2 + · · ·+ xpm

)kp−ip

Pn+ip(x)

≡
k∑

i=0

(
k

i

)
aimfk−i

1

(
am−1xp2+am−2xp3+· · ·+xpm+1

)k−i
i∑

j=0

(
i

j

)
ajf i−j

1 (xp)i−jPn+j(x)

(mod pZ[x]).

Changing the order of summation we get

k∑
j=0

(
k

j

)
fk−j
1 Pn+j(x)a

(m+1)j

×
k∑

i=j

(
k − j

i− j

)(
am−1xp2 + am−2xp3 + . . .+ xpm+1

)(k−j)−(i−j)

(amxp)i−j

=

k∑
j=0

(
k

j

)
fk−j
1 Pn+j(x)a

(m+1)j
(
amxp + am−1xp2 + am−2xp3 + . . .+ xpm+1

)k−j

.

This ends the proof. �

In particular, taking k = 1 or m = 1, we get

Corollary 3.4 We have

Pn+pm(x) ≡ f1

[
m∑
i=1

am−ixpi

]
Pn(x) + amPn+1(x) (mod pZ[x]), (3.5)

Pn+kp(x) ≡
k∑

i=0

(
k

i

)
aifk−i

1 xp(k−i)Pn+i(x) (mod pZ[x]),

or, equivalently,

S(n+ pm, l) ≡ f1

m∑
i=1

am−iS(n, l − pi) + amS(n+ 1, l) (mod p),

S(n + kp, l) ≡
k∑

i=0

(
k

i

)
ak−if i

1S(n+ k − i, l − ip) (mod p).



G. SERAFIN /AUSTRALAS. J. COMBIN. 89 (1) (2024), 116–136 126

4 Multiplicative congruence

Due to the orthogonality property of the Stirling numbers of both kinds we can see
a relation between Touchard and factorial polynomials, as their coefficients are given
by the aforementioned numbers. The previous section was devoted to general rules
standing behind divisibility properties of Touchard polynomials. In this section,
we present congruences linked to the factorial ones. Namely, we will investigate
when Pn+p(x) is equivalent to Pn(x) multiplied by a fixed polynomial. This kind of
congruence has been studied for Appell polynomials in [3].

Theorem 4.1 Let p be a prime number and a ∈ Z. Then

Pn+p(x) ≡ (f1x
p + fpx+ a)Pn(x) (mod pZ[x]) (4.1)

holds for any n ∈ N0 if and only if

fn+p+1 ≡ 0 and gn+p ≡ agn (mod p) for n ≥ 0. (4.2)

Proof. (⇒) Due to the terms xp and x on the right-hand side we have

gn+p = S(n+ p, 0) ≡ aS(n, 0) = agn (mod p), n ≥ 0.

This proves the congruence for the series g. Similarly, comparing coefficients of the
term x, we obtain

(gf)n+p = S(n+ p, 1) ≡ fpS(n, 0) + aS(n, 1) = fpgn + a(gf)n (mod p).

Due to Lucas’s congruence and (4.2) we may rewrite the left-hand side as follows

(gf)n+p =

p∑
i=0

n∑
j=0

(
p

i

)(
n

j

)
gn+p−i−jfi+j

≡
n∑

j=0

(
n

j

)
[gn+p−jfj + gn−jfj+p]

≡ a(gf)n +

n∑
j=0

(
n

j

)
gn−jfj+p (mod pZ[x]).

Thus, we get
n∑

j=1

(
n

j

)
gn−jfj+p ≡ 0 (mod p), n ≥ 1.

Using this and mathematical induction with respect to n, we will show the desired
congruence concerning the series f . Taking n = 1, we conclude g0fp+1 ≡ 0 (mod p).
Due to the assumption g0 �≡ 0 (mod p), we have fp+1 ≡ 0 (mod p). Assume now
that fp+j ≡ 0 (mod p) for 1 ≤ j ≤ m for some m ≥ 1. Then

0 ≡
m+1∑
j=1

(
n

j

)
gm+1−jfj+p ≡

m∑
j=1

(
n

j

)
gm+1−j · 0 + g0fm+p+1 ≡ g0fm+p+1 (mod p),
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which implies fm+p+1 ≡ 0 (mod p), as required.

(⇐) This part of the proof is similar to the corresponding part of the proof of
Theorem 3.1. For N = 0 the assertion is true in view of Lemma 2.1. Assume that
the congruence (4.1) holds for n ≤ N for some N ≥ 0 and any sequence (Pn(x))n≥0

satisfying (4.2) for any a ∈ Z. In particular, for such a sequence
(
Pn(x)

)
n∈N0

, the

sequence
(
P̃n(x)

)
n∈N0

satisfies (4.2) with a = 0. Then, similarly to (3.4), by virtue

of Lucas’s congruence, the inductive assumption and (4.2), we get

p∑
i=0

N∑
j=0

(
p

i

)(
N

j

)
gi+j+1P̃N+p−i−j(x)

≡
N∑
j=0

(
N

j

)[
gj+1P̃N+p−j(x) + gp+j+1P̃N−j(x)

]

≡
N∑
j=0

(
N

j

)
gj+1

(
f1x

p + fpx+ a
)
P̃N−j(x)

=
(
f1x

p + fpx+ a
)
(g′G̃(·, x))N (mod pZ[x]),

as well as
p∑

i=0

N∑
j=0

(
p

i

)(
N

j

)
fi+j+1PN+p−i−j(x) ≡

(
f1x

p + fpx+ a
)
(f ′G(·, x))N (mod pZ[x]).

Applying these to (3.3) and using (3.2) we get

PN+p+1(x) ≡ (f1x
p + fpx+ a)

[
g′G̃(·, x) + xf ′G(·, x)

]
N

= (f1x
p + fpx+ a)PN+1(x) (mod pZ[x]).

The proof is complete. �

Remark 4.2 Verifying whether g (for a = 0) or f (if fp ≡ 0 (mod p)) satisfy
the assumptions of the theorem, one can find Lemma 2.3 helpful. In particular, it
follows that for a formal power series h with integer coefficients and h0 = 1 it holds
hn, (

1
h
)n ≡ 0 (mod p) for n ≥ p if and only if hn, 1n ≡ 0 (mod p) for n ≥ p. Thus,

for f = 1
h
− 1 the congruence fn ≡ 0 (mod p) is valid for n ≥ p if and only if hn ≡ 0

(mod p) for n ≥ p.

The congruence (4.1) takes an especially elegant form, if g0 ≡ 1 and gp ≡ a (mod p).
In that case, by (2.7), we have (f1x

p+fpx+a) ≡ Pp(x) (mod pZ[x]). In the corollary
below, we do not require gp ≡ a (mod p), as it follows from other assumptions.

Corollary 4.3 Let p be a prime number and g0 ≡ 1 (mod p). Then

Pn+p(x) ≡ Pp(x)Pn(x) (mod pZ[x]) (4.3)

holds for any n ∈ N0 if and only if

fn+p+1 ≡ 0 and gn+p ≡ gpgn (mod p) for n ≥ 0.
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5 Modular periodicity

In this section, we investigate modular periods of the Sheffer sequences, which are
the smallest numbers N ∈ N = {1, 2, 3, . . .} such that Pn+N ≡ Pn (mod p). In
the case of sequences considered in Theorem 4.1, the answer is quite simple. If
f1 + fp + a ≡ 1 (mod p), then we have N = p. If f1 + fp + a ≡ 0 (mod p), then
Pn ≡ 0 (mod p) for n ≥ p. In the remaining case, when f1 + fp + a is congruent
neither to 0 nor to 1, let k be the multiplicative order of f1 + fp + a. Then N equals
pk or divides k. Note that the situation is similar in the setting of Theorem 3.1, if
a ≡ 0 or f1 ≡ 0 (mod p).

The case described in Theorem 3.1 with a �≡ 0 (mod p) is more complex. Using
the notation (2.2) of q-analogs, the equivalence (3.5) with x = 1 takes the form

Pn+pm ≡ f1[m]aPn + amPn+1 (mod p), n,m ∈ N0. (5.1)

This somehow explains how q-analogs appear in this theory. The q-Stirling numbers
of the first kind

[
n
k

]
q
are defined by the formula

x(x+ [1]q)(x+ [2]q) · . . . · (x+ [n− 1]q) =
n∑

k=0

[
n

k

]
q

xk,

with
[
0
0

]
q
= 1. The recursive relation is analogous as in the classical case ([12],

formula (3.20)): [
n+ 1

k

]
q

= [n]q

[
n

k

]
q

+

[
n

k − 1

]
q

, 0 ≤ k ≤ n. (5.2)

The next proposition is the key one in proving Theorem 5.2. It also shows the
obstacles that occur when dealing with a �≡ 1 (mod p).

Proposition 5.1 Let a ∈ N0 be such that a �≡ 0 (mod p). If Pn+p ≡ f1Pn + aPn+1

for any n,m ∈ N0, then

Pn+p1+...+pm ≡ a(
m
2 )

m∑
i=0

[
m+ 1

i+ 1

]
1/a

aifm−i
1 Pn+i (mod p), n,m ∈ N0. (5.3)

For m = 0 the left-hand side is interpreted as Pn.

Proof. For m = 0 the assertion is trivial. Assume (5.3) holds for some m ∈ N0.
Then, by the congruence (5.1) and mathematical induction we get

Pn+p1+...+pm+1 ≡ a(
m
2 )

m∑
i=0

[
m+ 1

i+ 1

]
1/a

aifm−i
1 Pn+i+pm+1

≡ a(
m
2 )

m∑
i=0

[
m+ 1

i+ 1

]
1/a

aifm−i
1

(
f1[m+ 1]aPn+i + am+1Pn+i+1

)
(mod p)
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= a(
m
2 )am

m∑
i=0

[
m+ 1

i+ 1

]
1/a

aifm−i
1

(
f1
[m+ 1]a

am
Pn+i + aPn+i+1

)
.

Next, due to the equalities [m+ 1]a/a
m = [m+ 1]1/a and (5.2) we get

Pn+p1+...+pm+1 = a(
m+1

2 )
m∑
i=0

[
m+ 1

i+ 1

]
1/a

aifm−i
1

(
f1[m+ 1]1/aPn+i + aPn+i+1

)
≡ a(

m+1
2 )

m+1∑
i=0

aifm+1−i
1 Pn+i

(
[m+ 1]1/a

[
m+ 1

i+ 1

]
1/a

+

[
m+ 1

i

]
1/a

)

≡ a(
m+1

2 )
m+1∑
i=0

aifm+1−i
1 Pn+i

[
m+ 2

i+ 1

]
1/a

, (mod p),

where we also used
[
n
0

]
1/a

= 0 for n ≥ 1. �

As mentioned in the Introduction, the number

Np := [p]p =
pp − 1

p− 1

is a period of the Bell numbers modulo p. Below, we show that this is a more general
feature.

Theorem 5.2 Assume f1 �≡ 0 (mod p). If Pn+p ≡ f1Pn + Pn+1 (mod p) for any
n ∈ N0, then we we have

Pn+Np ≡ f1Pn (mod p), n ≥ 0.

Proof. Applying Proposition 5.1 with m = p − 1 and a = 1, by Fermat’s little
theorem, Wilson’s theorem and Lagrange’s congruence (

[
p
i

] ≡ 0 (mod p) for 2 ≤ i ≤
p− 1) we obtain

Pn+Np ≡
p−1∑
i=0

[
p

i+ 1

]
f p−1−i
1 Pn+1+i

≡
[
p

1

]
f p−1
1 Pn+1 +

[
p

p

]
Pn+p = (p− 1)!f p−1

1 Pn+1 + Pn+p

≡ −Pn+1 + (f1Pn + Pn+1) = f1Pn (mod p),

as required. �

Unfortunately, the argument from the above proof cannot be adapted for a �≡ 1.
The reason is that the q-analogs of the Stirling numbers of the first kind do not
possess such convenient divisibility properties as their classical counterparts; see
e.g. [31] for some examples for q being a natural number. In our case q = 1/a is not
natural, but we can for example verify that

N0 � ap−2

[
p

p− 1

]
1/a

= ap−2

p−1∑
i=1

(1/a)i − 1

(1/a)− 1
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=
1− pap−1 + (p− 1)ap

(1− a)2

≡ (1− a)p−2 (mod p),

which is congruent to 0 only if a ≡ 1 (mod p).

Nevertheless, this is not only a disadvantage of the proof. Let us present a
precise example and consider g(t) = 1 and f(t) =

∑∞
k=0

aktk(p−1)+1

(k(p−1)+1)!
. Then we have

Pk = fk
1 = 1 for 0 ≤ k ≤ p− 1 and Pp = f p

1 + fp = 1 + a. Next, by Proposition 5.1,
we have

PNp ≡ a(
p−1
2 )

p−1∑
i=0

[
p

i+ 1

]
1/a

aiPi+1

= a(
p−1
2 )

(
p−1∑
i=0

[
p

i+ 1

]
1/a

ai +

[
p

p

]
1/a

ap

)
= a(

p−1
2 ) (a(a + [1]1/a)(a+ [2]1/a) · . . . · (a+ [p− 1]1/a) + ap

)
= a[1]a[2]a · . . . · [p]a + a(

p−1
2 )+1 (mod p).

Fermat’s little theorem implies [p− 1]a ≡ 0 (mod p), thus PNp ≡ a(
p−1
2 )+1 (mod p),

which may not be congruent to P0 = 1. We leave it as an open question what is the
form of the period of Pn modulo p (if exists) for a �≡ 0, 1 (mod p).

6 Examples

The first example is in fact one of the motivations of conducting the research de-
scribed in this article. Now we will present how the classical Touchard congruence
(1.2) follows from general theory developed before.

(1) The Touchard (Bell) polynomials Tn(x): g(t) = 1, f(t) = et − 1.

Clearly, for n ≥ 1 we have fn = 1 and by Theorem 3.1 with a = 1 the Touchard
congruence holds.

One of the strengths of the equivalence in Theorem 3.1 is that it shows that Sheffer
polynomials satisfying the Touchard congruence for any prime p are relatively rare.
It is not easy to produce such a non-trivial sequence. In the next example we narrow
our attention to odd primes.

(2) The central Bell polynomials Bc
n(x): g(t) = 1, f(t) = 2 sinh(t/2).

The central Bell polynomials (see e.g. [6, 18]) are related to the Touchard (Bell)
polynomials by the fact that the function f(t) = fT (t/2)−fT (−t/2), where fT is
associated with the Touchard polynomials. Here, it holds that fn = 21−n1{2�n}
and therefore the polynomials 2nBc

n(x) satisfy the Touchard congruence with
a = 1. It might be also reasonable to consider the polynomials 2nBc

n(x/2), since
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then f(t) = sinh(t), fn = 1{2�n} and consequently the Touchard congruence is
valid for odd primes p.

The next sequence satisfies the Touchard congruence for one chosen prime only.

(3) g(t) = 1, f(t) =
∑∞

n=1
tnk

(nk)!
for a fixed k ∈ {1, 2, 3, . . .}.

In this case gn = 1{n=0} and fn = 1{k|n}. Clearly, the assumptions of Theorem
3.1 are satisfied for p ≡ 1 (mod k) only. Therefore Pn+p(x) ≡ xpPn(x) +
Pn+1(x) (mod pZ[x]) for all n ≥ 0 if and only if p ≡ 1 (mod k).

In the following series of examples, some well-known polynomials are considered that
satisfy the multiplicative congruence (4.3).

(4) The factorial polynomials (rising factorials) x(n) = x(x+1)·. . .·(x+n−1):
g(t) = 1, f(t) = ln(1 + t).

The coefficients of these fundamental polynomials are the (unsigned) Stirling
numbers of the first kind. Their divisibility properties are therefore well known
and Corollary 4.3 simply recovers some of them. Nevertheless, the author has
not found them presented in the form from the corollary.

(5) The central factorial polynomials x[n] = x(x− n
2
+ 1)(n−1):

g(t) = 1, f(t) = 2 sinh−1(t/2) =
∑∞

k=0

(
2k
k

) (−1)k

24k
t2k+1

2k+1
.

They are clearly related to the factorial polynomials, however, in a different
manner than the central Bell polynomials are related to the Touchard polyno-
mials, associated by their functions f .

Due to the non-integer values of the coefficients of the polynomials x[n], let
us consider 2nx[n] and p ≥ 3 (for p = 2 and n ≥ 1 all the coefficients are
even and consequently 2nx[n] ≡ 0 (mod pZ[x]), n ≥ 1). Unfortunately, the
coefficients of f corresponding to 2nx[n] are still non-integers, hence we will
pass through the polynomials 4nx[n]. In that case we have g̃n = 0, n ≥ 1, and
f̃n = 4(−1)(n−1)/2(n − 1)!

(
n−1

(n−1)/2

)
1{2�n}. Since p|(n − 1)!1{2�n} for n ≥ p + 1,

f̃1 = 4 and, by Wilson’s theorem, we have

f̃p = 4(−1)(p−1)/2 [(p− 1)!]2

[(p−1
2
)!]2

≡ 4(−1)(p−1)/2 [−1]2

(−1)(p+1)/2
= −4 (mod p),

Theorem 4.1 with a = 0 implies the congruence

4n+px[n+p] ≡ 4px[p]4nx[n] ≡ 4n+p(xp − x)x[n] (mod pZ[x]), n ∈ N0.

Since p ≥ 3 and 2nx[n] ∈ Z[x], we can simply divide by 2n+p and get

2n+px[n+p] ≡ 2n+px[p]x[n] ≡ 2n+p(xp − x)x[n] (mod pZ[x]), n ∈ N0.
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(6) The generalized Laguerre polynomials multiplied by factorials

n!L
(r)
n (x): g(t) = 1/(1− t)r−1, f(t) = −t/(1− t), r ∈ Z.

Similarly as in the previous example, the coefficients of the polynomials L
(r)
n (x)

are not integers and it is more convenient to consider the product of them and
factorials n!Ln(x). In particular, the coefficients of n!L2r−1

n (x) are the r-Lah
numbers [27]. We clearly have p|fn = −n!, n ≥ p. Furthermore, since the
coefficients of the power series g are integer, we have p|(n+ p)!|gn+p for n ≥ 0.
Consequently, Theorem 4.1 with a = 0 gives us

L
(r)
n+p(x) ≡ L(r)

p (x)L(r)
n (x) ≡ xpL(r)

n (x) (mod pZ[x]), n ∈ N0.

(7) The derangement polynomials Dn(x): g(t) = et

1−t
, f(t) = t. Here, gn =∑n

k=0
n!
k!
. By Lucas’s congruence we have

gn+p − gn =

n+p∑
k=0

(n+ p)!

k!
−

n∑
k=0

n!

k!
≡

n+p∑
k=0

(n+ p)!

k!
−

n∑
k=0

(n+ p)!

(k + p)!

=

p−1∑
k=0

(n+ p)!

k!
(mod p).

In the last sum, every term is divisible by p, hence gn+p ≡ gn ≡ gpgn (mod p)
for n ≥ 0. Thus, Theorem 4.1 with a = 1 gives us

Dn+p(x) ≡ Dp(x)Dn(x) ≡ (xp + 1)Dn(x) (mod pZ[x]), n ∈ N0.

(8) The Hermite polynomials Hn(x): g(t) = e−t2/2, f(t) = t.

In this case it holds that gn = (−1)n/2(n−1)(n−3)·. . .·1·1{2|n} and fn = 1{n=1}.
Thus, the Hermite polynomials satisfy the assumptions of Corollary 4.3 for
prime p ≥ 3. Since fp ≡ gp ≡ 0 (mod p), Theorem 4.1 we have

Hn+p(x) ≡ Hp(x)Hn(x) ≡ xpHn(x) (mod pZ[x]), n ∈ N0.

This could be deduced directly from the explicit formula of the polynomials as
well

Hn(x) = n!

�n/2�∑
k=0

(−1)k

2kk!(n− 2k)!
xn−2k.

(9) The Mott polynomials sn(x): g(t) = 1, f(t) =
(√

1− t2 − 1
)
/t.

Here, we have gn = 1{n=0} and fn = −n!C(n−1)/2

2n
1{2�n}, where Cn are the Catalan

numbers. The coefficients in the Mott polynomials are rational numbers with
powers of 2 in denominators, so we will consider the polynomials 2nsn(x),
similarly as in the case of the central factorial numbers. The corresponding
coefficients fn take then the form f̃n = 2nfn = −n!C(n−1)/21{2�n}. Since Catalan
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numbers are integer numbers, f ′
n ≡ 0 (mod p) for n ≥ p. Hence, by Theorem

4.1 with a = 1, we have

2n+psn+p(x) ≡ 2n+psp(x)sn(x) ≡ 2n+pxpsn(x) (mod pZ[x]), n ∈ N0.

When considering congruences in the ring of polynomials with p-adic coeffi-
cients Zp[x], one can clearly get rid of 2n+p above, if p ≥ 3.

(10) The Mittag-Leffler polynomials Mn(x): g(t) = 1, f(t) = 2 tanh−1 t =
ln
(
t+1
t−1

)
.

Since fn = 2 · (n − 1)!1{2�n}, we have fn, gn ≡ 0 (mod p) for n ≥ p ≥ 3 and,
similarly as in the previous two examples, Theorem 4.1 for a = 0 gives us

Mn+p(x) ≡ Mp(x)Mn(x) ≡ xpMn(x) (mod pZ[x]), n ∈ N0.

It is quite common in literature to consider so called r-polynomials by taking
g(t) = [f(t)]r, r ∈ N0. We will denote them by Pn,r(x). This is how the r-Bell
polynomials Bn,r(x) [23], the “shifted” factorial polynomials (x+r)(n), and the poly-

nomials n!L
(2r−1)
n (x) arise. Equivalently, we deal with the r-Stirling numbers of both

kinds [5] and the r-Lah numers. A similar procedure may be also applied to approach
the r-derangement numbers [40].

(11) r-polynomials Pn,r(x): g(t) = [f ′(t)]r.

By Theorem 3.1 and Lemma 2.2 we deduce that for fixed a, r ∈ N0 and prime
p the congruence

P
(r)
n+p(x) ≡ xpf1P

(r)
n (x) + aP

(r)
n+1(x) (mod pZ[x]), n ∈ N0,

holds if and only if fn+p ≡ afn+1 (mod p) for n ≥ 0. On the other hand, by
Theorem 4.1 and Lemma 2.3 the congruence

P
(r)
n+p(x) ≡ P (r)

p (x)P (r)
n (x) ≡ (xp + fpx)P

(r)
n (x) (mod pZ[x]), n ∈ N0,

holds if and only if fn+p+1 ≡ 0 (mod p) for n ≥ 0.
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[27] G. Nyul and G. Rácz, The r-Lah numbers, Discrete Math. 338 (2015), 1660–
1666.

[28] C. Radoux, Une congruence pour les polynômes Pn(x) de fonction génératrice
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