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Abstract

A graph G whose vertex set can be partitioned into a total dominating
set and an independent dominating set is called a TI-graph. There exist
infinite families of graphs that are not TI-graphs. We show that, with
a few exceptions, every graph or its complement is a TI-graph. From
this result, it follows that with the exception of the cycle on five vertices,
every nontrivial, self-complementary graph is a TI-graph. We also char-
acterize the complementary prisms which are TI-graphs and explore such
partitions in prisms.

1 Introduction

We study graphs whose vertex set can be partitioned into a total dominating set and
an independent dominating set. We begin with some basic definitions. Let G be a
graph with vertex set V = V (G), edge set E = E(G), and order n = |V |. Let G
denote the complement of G. The open neighborhood NG(v) of a vertex v ∈ V is the
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set of vertices adjacent to v, and its closed neighborhood is NG[v] = NG(v) ∪ {v}.
The open neighborhood of a set S ⊆ V is NG(S) =

⋃
v∈S NG(v), while the closed

neighborhood of a set S ⊆ V is the set NG[S] =
⋃

v∈S NG[v]. Two vertices are
neighbors if they are adjacent. The degree of a vertex v is degG(v) = |NG(v)|. The
minimum and maximum degrees of a vertex in a graph G are denoted δ(G) and Δ(G),
respectively. An isolated vertex in G is a vertex of degree 0 in G. An isolate-free
graph is a graph which contains no isolated vertex. A trivial graph is the graph of
order 1, and a nontrivial graph has order at least 2. A self -complementary graph is a
graph which is isomorphic to its complement. If G is clear from the context, then we
will use N(v), N [v], N [S], N(S) and deg(v) in place of NG(v), NG[v], NG[S], NG(S)
and degG(v), respectively.

The subgraph of G induced by a set S ⊆ V is denoted by G[S]. A set S is a
dominating set of a graph G if N [S] = V , that is, every vertex in V \ S is adjacent
to at least one vertex in S. The minimum cardinality of a dominating set in a graph
G is the domination number of G and is denoted by γ(G). A universal vertex in a
graph G of order n, also called a dominating vertex in the literature, is a vertex v
adjacent to every other vertex of G, and so deg(v) = n− 1. A dominating set S is a
total dominating set, abbreviated TD-set, of an isolate-free graph G if G[S] has no
isolated vertices, that is, N(S) = V . If X and Y are sets of vertices in G, where
possibly X = Y , then the set X totally dominates the set Y if every vertex in Y has
a neighbor in X. A dominating set S is an independent dominating set, abbreviated
ID-set, of G if S is an independent set in G, that is, G[S] consists of isolated vertices.
The independent domination number i(G) is the minimum cardinality of a ID-set of
G and an ID-set of cardinality i(G) is called an i-set of G. For other graph theory
terminology not defined herein, the reader is referred to [12], and for other recent
books on domination in graphs, we refer the reader to [10, 11, 17].

2 Motivation and known results

The following classic 1962 result by Ore showed that for any isolate-free graph, its
vertex set can be partitioned into two dominating sets.

Theorem 2.1 ([20]) If G is an isolate-free graph and S is a minimal dominating
set of G, then V \ S is a dominating set.

A natural question is which graphs can be partitioned into two types of domi-
nating sets. Let Cn denote the cycle on n vertices. Note that the cycle C5 cannot
be partitioned into a dominating set and a TD-set. Graphs having such a partition
were studied in [15, 16]. Henning and Southey [15] established the following sufficient
condition for graphs whose vertex set can be partitioned into a dominating set and a
TD-set. An F -component of a graph G is a component of G that is isomorphic to F .

Theorem 2.2 ([15]) If G is a graph with δ(G) ≥ 2 and no C5-component, then the
vertices of G can be partitioned into a dominating set and a total dominating set.
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In 2019 Delgado, Desormeaux, and Haynes [7] studied graphs whose vertex set
can be partitioned into a TD-set and an ID-set, which is the problem we consider
in this paper. We refer to such a partition of the vertices of a graph G as a TDID-
partition of G. If G has a TDID-partition, then we say that G is a TI -graph. We
remark that if a graph G is a TI-graph, then every TD-set of G contains at least
two vertices from every component of G and every ID-set of G contains at least one
vertex from every component of G, implying that every component of G has order at
least 3. In particular, if G is connected, then G has order at least 3. Not all graphs
are TI-graphs as can be easily seen with the cycle C5 and the path P5. The paths
and cycles having a TDID-partition were determined in [7].

Proposition 2.1 ([7]) The following hold.

(a) A cycle Cn is a TI-graph if and only if n ≡ 0 (mod 3).

(b) A nontrivial path Pn is a TI-graph if and only if n ≡ 1 (mod 3).

A constructive characterization of TI-trees is given in [7], as well as a character-
ization of the TI-graphs of diameter 2.

Proposition 2.2 ([7]) A graph G of diameter 2 is a TI-graph if and only if G has
a maximal independent set that is not the open neighborhood of some vertex.

Several sufficient conditions for a graph to be a TI-graph were also given in [7].

Theorem 2.3 ([7]) Let G be a graph of order n and minimum degree δ(G), and let
G be the complement of G. If any of the following conditions holds, then G is a
TI-graph:

(a) δ(G) > 1
2
n.

(b) γ(G) ≥ 3.

(c) G is claw-free and δ(G) ≥ 3.

(d) i(G) < δ(G).

In general, characterizing TI-graphs seems to be a challenging problem. Del-
gado et al. [7] claimed that with the exception of a few graphs, every graph or its
complement is a TI-graph. Unfortunately, their result is missing a case and thus is
incorrect. One main aim of this paper is to correct this and to characterize the graphs
G for which at least one of G or G is a TI-graph. Other goals are to characterize
the complementary prisms which are TI-graphs and investigate TDID-partitions in
prisms.
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3 Graphs and their complements

In this section we characterize the graphs G such that at least one of G and its
complement G is a TI-graph. We show that unless a graph G or its complement G
is in a given family of graphs, then G or G has a TDID-partition.

Definition 3.1 Let A be the family that consist of the following graphs:

• the trivial graph K1,

• the cycle C5,

• the complete bipartite graphs Kr,s for r ∈ {1, 2} and r ≤ s, and

• the disjoint union Kr ∪Ks for r ∈ {1, 2} and r ≤ s.

We first show that no graph in the family A is a TI-graph.

Proposition 3.1 If G ∈ A, then neither G nor its complement G is a TI-graph.

Proof. Let G ∈ A. By our earlier observations, every TI-graph has order at
least 3. Thus, if G = K1, then G is not a TI-graph. If G = C5, then every TD-
set in G contains at least three consecutive vertices of the cycle, and therefore its
vertex set cannot be partitioned into a TD-set and an ID-set. Since the 5-cycle is
self-complementary, we have G ∼= G = C5 and therefore infer that G has no TDID-
partition. Further, since the only ID-set of a bipartite graph Kr,s, for 1 ≤ r ≤ s, is
one of its partite sets and the remaining partite set is not a TD-set, the graph Kr,s is
not a TI-graph. Moreover the complement of Kr,s is the graph Kr∪Ks. As observed
earlier, every component of a TI-graph has order at least 3. Hence if r ∈ {1, 2}, then
Kr ∪Ks has a component of order at most 2, and is therefore not a TI-graph. �

We next present a characterization of the graphs G such that at least one of G
and its complement G is a TI-graph.

Theorem 3.1 At least one of a graph G and its complement G is a TI-graph if and
only if G /∈ A.

Proof. By Proposition 3.1, if G ∈ A, then neither G nor G is a TI-graph. Thus,
it remains to show that if G /∈ A, then G or G is a TI-graph. Assume that G is a
graph of order n and G /∈ A. Thus, G /∈ A since K1 and C5 are self-complementary,
and Kr,s and Kr ∪Ks are complements. Since G /∈ A and G /∈ A, it follows that G
has order n ≥ 3. We proceed by a series of claims.

Claim 1 If G has a complete component, then G or G is a TI-graph.

Proof. Assume that G has a complete component F ∼= Kk for some k ≥ 1. If G
is the complete graph, that is, G = F , then since n ≥ 3, the sets I = {x} for any
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vertex x of G and T = V (G)\ I form a TDID-partition of G. Thus, G is a TI-graph.
Hence, we may assume that G is not complete.

Let X be the set of vertices in the complete component F , and so F = G[X ]. Let
Y = V (G) \X. Since G is not a complete graph, the set Y 
= ∅. In the complement
G, we note that X is an independent set and [X, Y ] is full, that is, every vertex in
X is adjacent to every vertex Y in G. Since G /∈ A, we have that G 
= Kr,s for r ≤ s
and r ∈ {1, 2}. Hence, either G is the graph Kr,s for 3 ≤ r ≤ s, or the subgraph
G[Y ] of G induced by the set Y has at least one edge. If G = Kr,s for 3 ≤ r ≤ s,
then G = Kr ∪Ks for 3 ≤ r ≤ s and G is a TI-graph.

Thus, we may assume that the subgraph G[Y ] has at least one edge. Let I be a
maximal independent set of G[Y ], and let T = V (G)\ I. Note that I ⊂ Y , |I| < |Y |,
and so |T | ≥ 2. By our previous observations, every vertex in V (G)\X is adjacent to
a vertex in X in G. Hence, G[T ] is isolate-free. Since every superset of a dominating
set is a dominating set, and since X ⊂ T , we therefore infer that T is a TD-set of
G. Thus, T and I is a partition of the vertex set of G into a TD-set and an ID-set,
respectively. Hence, G is a TI-graph. (�)

By Claim 1, we may assume that G has no complete component, for otherwise
the result holds. In particular, we may assume that G has no isolated vertex, that
is, δ(G) ≥ 1. Similarly, δ(G) ≥ 1. Since neither G nor G has an isolated vertex,
it follows that n ≥ 4. Further, since G has no isolated vertex, the graph G has no
universal vertex and so i(G) ≥ γ(G) ≥ 2. Similarly, i(G) ≥ γ(G) ≥ 2.

Claim 2 If i(G) ≥ 3, then G is a TI-graph.

Proof. Assume that i(G) ≥ 3. Consider the graph G, and let I be any i-set of G.
Since δ(G) ≥ 1, every vertex in I has a neighbor in V \I, that is, V \I is a dominating
set of G. Suppose that V \ I is not a TD-set of G. In this case, there exists a vertex
v ∈ V \ I such that v is an isolated vertex in G[V \ I], that is, NG(v) ⊆ I. But then
the set {u, v}, where u ∈ NG(v) ∩ I, is an ID-set of G, and so, i(G) ≤ |{u, v}| = 2,
contradicting our supposition that i(G) ≥ 3. Hence, V \ I is a TD-set of G, and
so V \ I and I is a partition of the vertex set of G into a TD-set and an ID-set,
respectively. Thus, G is a TI-graph. (�)

By Claim 2, we may assume that i(G) ≤ 2, for otherwise the desired result holds.
Thus, Claim 1 implies that i(G) = 2. Similarly, i(G) = 2.

Claim 3 If δ(G) ≥ 3, then G is a TI-graph.

Proof. Assume that δ(G) ≥ 3, and let I be any i-set of G. Thus, |I| = i(G) = 2.
Since δ(G) ≥ 3, every vertex in G has a neighbor in V \ I, implying that V \ I is a
TD-set of G, and so G is a TI-graph. (�)

By Claims 1 and 3, we may assume that δ(G) ∈ {1, 2} and δ(G) ∈ {1, 2}, for
otherwise the result holds. Let {a, b} be an i-set of G. Since δ(G) ≥ 1, the set
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V \ {a, b} is a dominating set of G. If G′ = G− {a, b} is an isolate-free graph, then
V \ {a, b} is a TD-set of G, and so G is a TI-graph. Thus, we may assume further
that there exists a vertex x ∈ V \ {a, b} such that NG(x) ⊆ {a, b}. We use this
terminology as we continue proving three more claims.

Claim 4 If δ(G) = δ(G) = 2, then G or G is a TI-graph.

Proof. Assume that δ(G) = δ(G) = 2. Since δ(G) = 2 and NG(x) ⊆ {a, b}, we have
NG(x) = {a, b}. Each of {a, x} and {b, x} is therefore an ID-set in the graph G. If
V \ {a, x} or V \ {b, x} is a TD-set of G, then G is a TI-graph and the result holds.
Hence, we may assume that there is a vertex w ∈ V \{a, x} such that NG(w) ⊆ {a, x}
and a vertex y ∈ V \ {b, x} such that NG(y) ⊆ {b, x}. Since δ(G) = δ(G) = 2, it
follows that NG(w) = {a, x} and NG(y) = {b, x}, and so w 
= y. Thus, abyxwa is an
induced 5-cycle in G.

If n = 5, then G = G = C5 ∈ A, a contradiction. Thus, n ≥ 6. Since the vertex
w is adjacent in G to every vertex except for the vertices a and x, and since the
vertex a is adjacent in G to x, the set I = {a, w} is an ID-set of G. Analogously,
the set {b, y} is an ID-set of G. In particular, {b, y} is a dominating set of G. Let
T = V (G) \ I. Since every superset of a dominating set is a dominating set and
since {b, y} ⊂ T , the set T is a dominating set of G. Moreover, since the vertex y is
adjacent in G to every vertex except for the vertices b and x, and since the vertex b
is adjacent in G to x, the subgraph of G induced by the set T is isolate-free. Hence,
the set T is a TD-set of G. Therefore, T and I is a partition of the vertex set of G
into a TD-set and an ID-set, respectively. Thus, G is a TI-graph. (�)

By Claim 4, we may assume that δ(G) = 1 or δ(G) = 1. Without loss of
generality, assume that δ(G) = 1 and δ(G) ∈ {1, 2}.

Claim 5 If NG(x) = {a, b}, then G or G is a TI-graph.

Proof. Let NG(x) = {a, b}. Since δ(G) = 1, there exist a vertex w ∈ V \ {x} such
that degG(w) = 1. First suppose that w = a. Then since {a, b} is an ID-set of G,
the vertex b dominates V \{a}. Recall by our earlier assumptions that n ≥ 4, and so
V \ {a, b, x} 
= ∅. Let Gb = G−{a, b, x} and let Ib be an ID-set of Gb. In particular,
we note that b /∈ Ib. The set Ib ∪ {a} is an ID-set of G and V (G) \ (Ib ∪ {a}) is a
TD-set of G (that contains both vertices b and x). Thus, G is a TI-graph. Hence, we
may assume that w 
= a and similarly, w 
= b, for otherwise the result holds. Thus,
degG(a) ≥ 2 and degG(b) ≥ 2. Therefore, w ∈ V \ {a, b, x} and since {a, b} is an
ID-set, the neighbor of w is either a or b, say a. But now {a, x} is an ID-set of G
and V (G) \ {a, x} is a TD-set of G. Hence, G is a TI-graph. (�)

By Claim 5, we may assume that x is adjacent to exactly one of a and b in G, and
so, degG(x) = 1. Without loss of generality, let x be adjacent to a. Since δ(G) = 1,
vertex b has a neighbor in V \ {a, b, x}. Furthermore, since by Claim 1 the graph
G has no complete component, it follows that a has a neighbor in V \ {a, b, x} and
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degG(a) ≥ 2. As before, {a, x} is an ID-set of G and V \ {a, x} is a dominating set
of G. If V \ {a, x} is a TD-set of G, then the result holds. Thus, assume that there
is a vertex y ∈ V \ {a, x} such that NG(y) ⊆ {a, x}.

Claim 6 If y = b, then G or G is a TI-graph.

Proof. Suppose that y = b. This implies that the vertex b is adjacent in G to every
vertex different from a and x, that is, NG(b) = V \ {a, b, x}. By the structure of
the graph G, the set {b, x} is an ID-set of G and the set V \ {b, x} is a dominating
set of G. If V \ {b, x} is a TD-set of G, then G is a TI-graph and the result holds.
Thus, assume that V \ {b, x} is not a TD-set of G, that is, there exists a vertex
z ∈ V \ {b, x} such that NG(z) ⊆ {b, x}. Since degG(a) ≥ 2 and a is not adjacent to
b in G, we note that a 
= z, and so NG(z) = {b}.

Let a′ be a neighbor of a in G different from x. We note that a′ /∈ {b, x, z},
implying that G has order at least 5, that is, n ≥ 5. The set {b, z} is an ID-set of G
and the set V \ {b, z} is a dominating set of G. Let S = V \ {b, z}. If S is a TD-set
of G, then again G is a TI-graph and the result holds. Hence, we assume that S is
not a TD-set of G. Since x is adjacent to every vertex in G except vertex a and since
n ≥ 5, the only possible vertex that is isolated in the subgraph G[S] of G induced by
the set S is the vertex a. But then {a, z} is an ID-set of G. Let W = V \ {a, b, x, z}.
By our earlier observations, every vertex in W is adjacent in G to both the vertex a
and the vertex b. If there is an edge in G[W ], then let IW be an ID-set of G[W ]. In
this case, IW ∪ {x, z} is an ID-set of G and V \ (IW ∪ {x, z}) is a TD-set of G, and
so G is a TI-graph. If there is no an edge in G[W ], then V \ {a, b} is a clique in G.
In this case, {a, a′} is an ID-set of G and V \ {a, a′} is a TD-set of G. Hence, G is a
TI-graph and the result holds. (�)

By Claim 6, we may assume that y 
= b, for otherwise the desired result follows.
Let b′ be a neighbor of b in G different from a and x. By assumption, y 
= b′. We note
that y is adjacent to x in G. However, y may or may not be adjacent to a in G. The
vertex b′ is not adjacent in G to the vertex b. Since {a, b} is an ID-set of G, vertex
b′ is therefore adjacent to vertex a. Furthermore, vertex y dominates V \ {a, x} in
G. Thus, {x, y} is an ID-set of G, and V \ {x, y} is a dominating set of G.

If V \ {x, y} is a TD-set of G, then G is a TI-graph and the result holds. Thus,
assume that there exists a vertex z ∈ V \ {x, y} such that NG(z) ⊆ {x, y}. Since
{a, b} ⊂ V \ {x, y}, every vertex in V \ {a, b} has a neighbor in {a, b}, and a is
adjacent to b′, we infer that z = b and NG(b) = {y}. Hence, in the graph G, the
vertex a dominates V \ {b, y}, the vertex y dominates V \ {a, x}, and possibly a is
adjacent to y.

Let R = {a, b, x, y} and let GR = G−R. Let I be an ID-set of GR. If a is adjacent
to y in G or if V \ (I ∪R) 
= ∅, then I ∪ {b, x} is an ID-set of G and V \ (I ∪ {b, x})
is a TD-set of G. If a is not adjacent to y in G and V \ (I ∪ R) = ∅, then V \ R is
an independent set of vertices in G, and so G[V \R] is a clique. From the structure
of the graph G, we infer that {y, b′} is an i-set of G and V \ {y, b′} is a TD-set of G.
Hence, G is a TI-graph. This completes the proof of Theorem 3.1. �
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Since the trivial graph K1 and the cycle C5 are the only self-complementary
graphs in A, the following result is an immediate consequence of Theorem 3.1.

Corollary 3.1 Every nontrivial, self-complementary graph different from the 5-cycle
is a TI-graph.

4 Complementary prisms

Let G be a graph and G its complement. For every vertex v ∈ V (G), we denote
v ∈ V (G) as its corresponding vertex, and for a set X ⊆ V (G), let X denote the cor-
responding set of vertices in V (G). A variation of the prism, called a complementary
prism, was introduced in [13] as follows, and is studied, for example, in [2, 3, 5, 14]
and elsewhere.

For a graph G with vertex set V (G) = {v1, . . . , vn} and edge set E(G), the
complementary prism of G is the graph, denoted by GG, with vertex set V (GG) =
{v1, . . . , vn} ∪ {v1, . . . , vn} and edge set E(GG) = E(G) ∪ E(G) ∪ {v1v1, . . . , vnvn}.
Thus, GG is constructed from G ∪ G by adding a perfect matching between the
vertices of G and the corresponding vertices of G.

For example, if G is the 5-cycle given by v1v2v3v4v5v1, then the complementary
prism GG is the Petersen graph P (5, 2) illustrated in Figure 1. We observe that the
shaded vertices in Figure 1 form an independent set in G and the white vertices form
a TD-set in G. Moreover, these two sets partition the set V (G), thereby forming
a TDID-partition of G. Thus, the complementary prism C5C5 of a 5-cycle is the
Petersen graph, which is a TI-graph.

v1

v2

v3

v4v5

v1

v2 v3

v4v5

Figure 1: The complementary prism C5C5 of a 5-cycle C5

Since by Theorem 3.1, if G 
∈ A, then G or G is a TI-graph, it seems logical to
next consider for which graphs G is the complementary prism GG a TI-graph. Let
G1 be the complementary prism of the path v1v2v3, and let G2 be the complementary
prism of the 4-cycle v1v2v3v4v1. The graphs G1 and G2 are illustrated in Figure 2(a)
and 2(b), respectively. We shall show that with the exception of these two comple-
mentary prisms, G1 and G2, every complementary prism of a nontrivial graph is a
TI-graph. We show firstly that neither G1 nor G2 is a TI-graph.
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v1
v2

v3

v3v1

v2
(a) G1

v1

v2

v2

v4

v4

v3

v3

v1

(b) G2

Figure 2: The complementary prisms G1 and G2

Proposition 4.1 The complementary prisms G1 and G2 shown in Figure 2 are not
TI-graphs.

Proof. We consider firstly the complementary prism G1 of the path P3 given by
v1v2v3 as shown in Figure 2(a). Suppose, to the contrary, that G1 contains a TDID-
partition {I, T} where I is an ID-set of G1 and T is a TD-set of G1. In order to
totally dominate the vertex v2, the TD-set T contains the vertex v2. Thus, in order
to dominate the vertex v2, the ID-set I contains the vertex v2. In order to totally
dominate the vertex v2, at least one of v1 and v3 belongs to the set T . By symmetry,
we may assume that v1 ∈ T . It follows that v1 ∈ I in order for the ID-set I to
dominate the vertex v1. Since I is an independent set, this in turn implies that
v3 ∈ T . In order to totally dominate the vertex v3, we infer that v3 ∈ T . However,
v3 is not dominated by I, a contradiction. Hence, G1 is not a TI-graph.

Next we consider the complementary prism G2 of the 4-cycle C4 given by
v1v2v3v4v1 as shown in Figure 2(b). Suppose, to the contrary, that G2 contains
a TDID-partition {I, T} where I is an ID-set of G2 and T is a TD-set of G2. Let
X = {v1, v2, v3, v4} and let X = {v1, v2, v3, v4}, and so V (G2) = X ∪X. If X ⊆ T ,
then in order to dominate the vertices in X , we must have X ⊆ I. However, the
resulting set I is then not an independent set, a contradiction. Hence, at least one
vertex of X does not belong to the set T . By symmetry, and renaming vertices if nec-
essary, we may assume that v1 /∈ T , and so v1 ∈ I. Thus, N(v1) = {v1, v2, v4} ⊆ T .
In order to totally dominate the vertex v1, we infer that v3 ∈ T . It follows that v3 ∈ I
in order for the ID-set I to dominate the vertex v3. This in turn implies that v2 and
v4 belong to the set T in order for T to totally dominate v2 and v4, respectively. But
now the ID-set I dominates neither v2 nor v4, a contradiction. Hence, G2 is not a
TI-graph. �

We proceed further with the following property of TI-graphs.

Lemma 4.1 If G is a TI-graph and G is not complete, then there exists a TDID-
partition {T, I} of G with TD-set T and ID-set I such that |I| ≥ 2.

Proof. Let G be a TI-graph different from the complete graph. Let {T, I} be a
TDID-partition of G with TD-set T and ID-set I. If |I| ≥ 2, then the desired result
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is immediate. Hence, we may assume that |I| = 1, and so i(G) = 1. Let I = {x},
and so the vertex x is a universal vertex of G. Since G is not complete, the set
T = V \{x} has at least two non-adjacent vertices, say u and v. Let I ′ be a maximal
independent set of G containing the vertices u and v. Since x is adjacent to both
u and v, we note that x /∈ I ′. Since T is a TD-set of G, every vertex of G has a
neighbor in T , and so |T \ I ′| ≥ 1. Hence, I ′ is an ID-set of G and T ′ = V \ I ′ is a
TD-set of G forming a TDID partition {T ′, I ′} such that |I ′| ≥ 2. �

We are now in a position to show that the complementary prism of every non-
trivial graph is a TI-graph, unless it is one of the two complementary prisms G1 and
G2 shown in Figure 2.

Theorem 4.1 The complementary prism GG of a nontrivial graph G is a TI-graph
if and only if GG is not one of the two graphs G1 and G2 shown in Figure 2.

Proof. Let G be a nontrivial graph. If GG is one of the two complementary prisms
G1 and G2 shown in Figure 2, then, by Proposition 4.1, the complementary prism
G is not a TI-graph. Suppose next that GG is not one of the two graphs G1 and G2

shown in Figure 2. Thus, G has order at least 2 and G /∈ {P3, C4}.
Suppose that G 
∈ A. By Theorem 3.1, at least one of G and G is a TI-graph.

Without loss of generality, we may assume that G is a TI-graph. In particular, G has
order at least 3. If G is a complete graph, then the vertices of G form a TD-set of
GG and the vertices of G form an ID-set of GG, implying that GG is a TI-graph. If
G is not a complete graph, then by Lemma 4.1, there exists a TDID-partition {T, I}
of G, where T is a TD-set of G, I is an ID-set of G, and |I| ≥ 2. We note that I
induces a complete graph in G.

Let S be an ID-set of the induced subgraph G[T ]. We claim that I∗ = I ∪S is an
ID-set of GG and T ∗ = V (GG)\(I∪S) is a TD-set of GG, that is, GG is a TI-graph.
To see this, we note that I∗ is independent, I dominates the vertices of V (G) ∪ I,
and S dominates the vertices of T = V (G) \ I. Since T is a TD-set of G, the set T
totally dominates the vertices of V (G), and by construction of the complementary
prism the set T totally dominates the vertices of T . Further since |I| ≥ 2 and I is a
clique, the vertices of I are totally dominated by I. Hence, T ∗ is a TD-set of GG.
Thus, GG is a TI-graph, and therefore has order at least 4.

Next assume that G ∈ A. Since GG has order at least 4, the graph G has order
at least 2. In particular, G 
= K1. If G = C5, then GG is the Petersen graph, which
by our earlier observations is a TI-graph. Suppose, therefore, that G or G, say G,
is a complete bipartite graph Kr,s for some r ∈ {1, 2} and r ≤ s. Suppose firstly
that r = 1, and so G = K1,s where s ≥ 1. If G = K1,1, then the complementary
prism GG is a path P4, which is a TI-graph. Hence, we may assume that s ≥ 2.
If G = K1,2, then GG is the complementary prism G1 shown in Figure 2(a), a
contradiction. Hence, s ≥ 3. Let v1 be the center of the star and label the leaves of
G by v2, . . . vs+1. Then, I = {v1, v2, . . . , vs, vs+1} is an ID-set of GG and V (GG) \ I
is a TD-set of GG, implying that GG is a TI-graph.
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Suppose next that r = 2, and so G = K2,s where s ≥ 2. If G = K2,2 = C4, then
GG is the complementary prism G2 shown in Figure 2(b), a contradiction. Hence,
s ≥ 3. Let v1 and v2 be the vertices in the smaller partite set of G and label the
vertices in the other partite set v3, v4, . . . , vs+2. Then I = {v1, v3, v4 . . . vs+1, vs+2} is
an ID-set of GG and V (GG) \ I is a TD-set of GG, implying that GG is a TI-graph.

�

5 Prisms

The Cartesian product G�H of graphs G and H is the graph whose vertex set is
V (G) × V (H) and two vertices (g1, h1) and (g2, h2) are adjacent in G�H if either
g1 = g2 and h1h2 is an edge in H , or h1 = h2 and g1g2 is an edge in G. The prism of
a graph G is the graph G�K2. Thus, it is defined by taking two disjoint copies G1

and G2 of G, and adding an edge between each pair of corresponding vertices. The
resulting added edges form a perfect matching in the prism. We refer to the vertices
joined by such a matching edge as partners. If G is a path or a cycle, then we call
the prism G�K2 a path prism and cycle prism, respectively. If every vertex of G is
contained in a triangle, then we call the prism G�K2 a triangle prism.

The relationship between domination parameters in the graph and its prism have
been studied extensively. See, for example, [1, 4, 6, 8, 9, 14, 18, 19, 22, 21]. Since
the complementary prism is a variant of the prism of a graph G where one takes a
copy of G and its complement G instead of two copies of G, a natural next step is
to consider the problem of determining for which graphs G is the prism G�K2 a
TI-graph. Recall that we showed in Section 4 that the complementary prism of every
nontrivial graph is a TI-graph, unless it is one of the two complementary prisms G1

and G2 shown in Figure 2. The characterization of prisms that are TI-graphs seems
to be a more difficult problem than for complementary prisms. In this section, we
characterize the path, cycle, and triangle prisms that are TI-graphs, and provide two
infinite families of graphs G for which the prism G�K2 is not a TI-graph.

5.1 Path prisms

We show in this section that the path prism Pn�K2 is a TI-graph for all n ≥ 3
except for n = 4. We observe that the path prism P1�K2 = K2 is not a TI-graph
and that P2�K2 is the 4-cycle, which is not a TI-graph. We show next that the
path prism P4�K2 is not a TI-graph.

Proposition 5.1 The path prism P4�K2 is not a TI-graph.

Proof. Let G = P4�K2 be the path prism shown in Figure 3. Suppose, to the
contrary, that G contains a TDID-partition {I, T} where I is an ID-set of G and T
is a TD-set of G. If neither u1 nor v1 belong to the set I, then {u2, v2} ⊆ I in order
for I to dominate u1 and v1, contradicting the independence of the set I. Hence,
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u1 or v1 belongs to the set I. By symmetry, we may assume that u1 ∈ I, and so
{v1, u2} ⊆ T . Thus, v2 ∈ T in order for T to totally dominate v1, implying that
v3 ∈ I in order for I to dominate v2, and so {u3, v4} ⊆ T . Hence, u4 ∈ I in order for
I to dominate u4. But then the vertex v4 is not totally dominated by the set T . �

u1 u2 u3 u4

v1 v2 v3 v4

Figure 3: The path prism P4�K2

Proposition 5.2 The path prism Pn �K2 is a TI-graph for all n ≥ 3 and n 
= 4.

Proof. For n ≥ 3 and n 
= 4, let G be the path prism Pn �K2. Let G1 and G2 be
the two disjoint copies of the path Pn in the prism G, where G1 is the path u1u2 . . . un

and G2 is the path v1v2 . . . vn. Further, let the vertices ui and vi be partners in the
path prism G, and so uivi is an edge in G. We consider three cases. In all three
cases, we give a TDID-partition {I, T} where I is an ID-set of G and T is a TD-set
of G.

Case 1. n ≡ 0 (mod 3). Thus, n = 3k for some k ≥ 1. In this case, we let
I =

⋃k
i=1{u3i−2, v3i} and T = V (G) \ I. For example, when n = 9 (and k = 3) the

set I is given by the shaded vertices in Figure 4.

u1 u2 u3 u4 u5 u6 u7 u8 u9

v1 v2 v3 v4 v5 v6 v7 v8 v9

Figure 4: A path prism Pn �K2 where n ≡ 0 (mod3)

Case 2. n ≡ 1 (mod 3) and n ≥ 7. Thus, n = 3k + 1 for some k ≥ 2. In this
case, we let I = {un−2, vn} ∪

⋃k−1
i=1 {u3i−2, v3i} and T = V (G) \ I. For example, when

n = 10 (and k = 3) the set I is given by the shaded vertices in Figure 5.

u1 u2 u3 u4 u5 u6 u7 u8 u9 u10

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

Figure 5: A path prism Pn �K2 where n ≡ 1 (mod3) and n ≥ 7

Case 3. n ≡ 2 (mod 3) and n ≥ 5. Thus, n = 3k+2 for some k ≥ 1. In this case,
we let I = {un} ∪ ⋃k

i=1{u3i−2, v3i} and T = V (G) \ I. For example, when n = 11
(and k = 3) the set I is given by the shaded vertices in Figure 6.
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u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

Figure 6: A path prism Pn �K2 where n ≡ 2 (mod3)

We deduce from the above three cases that the path prism G = Pn �K2 is a
TI-graph. �

5.2 Cycle prisms

We show that with the exception of the prism C5�K2, the cycle prism Cn�K2 is
a TI-graph for all n ≥ 3.

Proposition 5.3 The cycle prism C5�K2 is not a TI-graph.

Proof. Let G = C5�K2 be the cycle prism shown in Figure 7. Suppose, to the
contrary, that G contains a TDID-partition {I, T} where I is an ID-set of G and
T is a TD-set of G. We note that G is vertex-transitive. Renaming the vertices
if necessary, we may assume that v1 ∈ I, implying that NG(v1) = {v2, v5, u1} ⊆ T .
Suppose that u2 or u5 belongs to the set I. By symmetry, we may assume that u2 ∈ I.
In order for the set T to totally dominate the vertices u1 and v2, we infer that u5 ∈ T
and v3 ∈ T , respectively. This in turn implies that u4 ∈ I in order for the set I to
dominate the vertex u5, and therefore the neighbors u3 and v4 of u4 belong to the
set T . But then the set I does not dominate the vertex v3, a contradiction. Hence,
{u2, u5} ⊂ T . This implies that {u3, u4} ⊂ I in order for the set I to dominate
the vertices u2 and u5. However, the ID-set I then contains two adjacent vertices,
namely u3 and u4, a contradiction. �

v1

v2

v3

v4v5

u1

u2
u3
u4u5

Figure 7: The prism C5�K2

Proposition 5.4 The cycle prism Cn�K2 is a TI-graph for all n ≥ 3 and n 
= 5.

Proof. For n ≥ 3 and n 
= 5, let G be the cycle prism Cn �K2. Let G1 and G2

be the two disjoint copies of the cycle Cn in the prism G, where G1 is the cycle
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u1u2 . . . unu1 and G2 is the cycle v1v2 . . . vnv1. Further, let the vertices ui and vi be
partners in the cycle prism G, and so uivi is an edge in G. We consider three cases.
In all three cases, we give a TDID-partition {I, T} where I is an ID-set of G and T
is a TD-set of G.

Case 1. n ≡ 0 (mod 3). Thus, n = 3k for some k ≥ 1. In this case, we let
I =

⋃k
i=1{u3i−2, v3i} and T = V (G) \ I. For example, when n = 9 (and k = 3) the

set I is given by the shaded vertices in Figure 8.

u1
u2 u3 u4 u5 u6 u7 u8

u9

v1
v2 v3 v4 v5 v6 v7 v8

v9

Figure 8: A cycle prism Cn�K2 where n ≡ 0 (mod 3)

Case 2. n ≡ 1 (mod 3). Thus, n = 3k + 1 for some k ≥ 1. In this case, we let
I =

⋃k
i=1{u3i−2, v3i} and T = V (G) \ I. For example, when n = 10 (and k = 3) the

set I is given by the shaded vertices in Figure 9.

u1
u2 u3 u4 u5 u6 u7 u8 u9

u10

v1
v2 v3 v4 v5 v6 v7 v8 v9

v10

Figure 9: A cycle prism Cn�K2 where n ≡ 1 (mod 3)

Case 3. n ≡ 2 (mod 3) and n ≥ 8. Thus, n = 3k+2 for some k ≥ 2. In this case,
we let I = {un−3, vn−1} ∪ ⋃k−1

i=1 {u3i−2, v3i} and T = V (G) \ I. For example, when
n = 11 (and k = 3) the set I is given by the shaded vertices in Figure 8.

u1
u2 u3 u4 u5 u6 u7 u8 u9 u10

u11

v1
v2 v3 v4 v5 v6 v7 v8 v9 v10

v11

Figure 10: A cycle prism Cn�K2 where n ≡ 2 (mod 3) and n ≥ 8

We deduce from the above three cases that the graph G is a TI-graph. �



T.W. HAYNES AND M.A. HENNING/AUSTRALAS. J. COMBIN. 89 (1) (2024), 97–115 111

5.3 Triangle prisms

Let G be a graph in which every vertex belongs to a triangle. Let I be an ID-set
in G and let T = V (G) \ I. Let v be an arbitrary vertex in T , and let Tv be a
triangle that contains the vertex v. The triangle Tv contains at most one vertex from
the independent set I, implying that the vertex v has at least one neighbor in T .
Thus, the set T totally dominates the set T . Moreover, since I is an ID-set of G,
the set T totally dominates the set I, and so T is a TD-set of G. Hence, {T, I} is a
TDID-partition of G, and so G is a TI-graph. We state this formally as follows.

Observation 5.1 If G is a graph in which every vertex belongs to a triangle, then
G is a TI-graph.

As a consequence of Observation 5.1, this yields the following class of graphs G
for which the prism G�K2 is a TI-graph.

Proposition 5.5 If G is a graph in which every vertex belongs to a triangle, then
the prism G�K2 is a TI-graph.

5.4 Prisms that are not TI-graphs

Next we present several classes of graphs G for which the prism G�K2 is not a TI-
graph. For notational convenience in this section, we label the two disjoint copies of
G used to construct G�K2 as G1 and G2, where the vertices of G1 are labeled with
subscript 1 and their partners have corresponding labels with subscript 2. Thus, if
v is a vertex of G, then v is labeled vi in Gi for i ∈ {1, 2} and v1v2 ∈ E(H). The
corona G ◦K1 of a graph G is the graph obtained from G by adding for each vertex
v ∈ V a new vertex v′ and the edge vv′. We consider next the prism (G′ ◦K1)�K2

of the corona G′ ◦K1 of a graph G′.

Proposition 5.6 If G = G′ ◦ K1 is the corona of an arbitrary graph G′, then the
prism G�K2 is not a TI-graph.

Proof. Let G′ be an arbitrary graph, G = G′ ◦ K1, and H = G�K2. Using the
notation mentioned in our previous comments, we let G1 and G2 be the two disjoint
copies of G = G′ ◦K1 in the prism H .

Suppose, to the contrary, that H contains a TDID-partition {I, T} where I is
an ID-set of H and T is a TD-set of H . Let v1 be an arbitrary vertex that belongs
to the graph G′ in the copy of G1 and v2 its partner in G2. Thus, vi ∈ V (Gi) for
i ∈ {1, 2} and v1v2 is a matching edge in the prism H . Let ui be the neighbor of vi
of degree 1 in the corona graph Gi for i ∈ {1, 2}, and so u1 and u2 are partners in
H and both have degree 2 in H . As an illustration, when G′ is the path P3 given by
vxw and the neighbors of v, x, and w of degree 1 in the corona G′ ◦K1 are u, y, and
z, respectively, then the vertices in the prism H are as labelled in Figure 11.
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v1

u1

v2

u2

x1
y1

x2
y2

w1

z1

w2

z2

Figure 11: The prism (P3 ◦K1)�K2

We now consider a vertex u of degree 1 in the corona G′ ◦K1, and let v denote
the (unique) neighbor of u in G′ ◦ K1. Thus, v1v2u2u1v1 is an induced 4-cycle in
the prism H . If neither u1 nor u2 belongs to the set I, then in order to dominate
the vertices u1 and u2 the ID-set I contains both v1 and v2. However, v1 and v2 are
adjacent vertices, contradicting the fact that I is an independent set. Hence, exactly
one of u1 and u2 belongs to the set I. By symmetry, we may assume that u1 ∈ I, and
so NH(u1) = {v1, u2} ⊆ T . In order to totally dominate the vertex u2, the vertex v2
belongs to the set T . In order to dominate the vertex v2, a neighbor of v2, say x2,
belongs to the set I.

Since the partner v1 of v2 belongs to the set T , we note that x2 ∈ V (G2) and that
its partner x1 belongs to V (G1). Let yi be the neighbor of xi of degree 1 in the corona
graph Gi for i ∈ {1, 2}, and so y1 and y2 are partners in H and both have degree 2
in H . Moreover, x1x2y2y1x1 is an induced 4-cycle in the prism H . Since x2 ∈ I,
the neighbors x1 and y2 of x2 belong to the set T . Thus, NH(y1) = {x1, y2} ⊂ T ,
implying that y1 ∈ I in order for the set I to dominate the vertex y1. But then
NH(y2) = {x2, y1} ⊂ I, and so the set T does not totally dominate the vertex y2, a
contradiction. Hence, the prism H = (G′ ◦K1)�K2 is not a TI-graph. �

For k ≥ 3, let Hk be obtained from a complete graph Kk by adding for each
vertex v in the complete graph a 5-cycle Cv and adding an edge from v to exactly
one vertex in Cv. The graph H4, for example, is illustrated in Figure 12.

Figure 12: The graph H4

Proposition 5.7 For k ≥ 3, the prism Hk �K2 is not a TI-graph.

Proof. For k ≥ 3, let G = Hk and H be the prism G�K2. Using the labelling
notation previously described, let G1 and G2 be the two disjoint copies of G in the
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prism H . Suppose, to the contrary, that H contains a TDID-partition {I, T} where
I is an ID-set of H and T is a TD-set of H . Let u1 be an arbitrary vertex in G1 that
belongs to the complete graph Kk in G1, and let Q1 : v1w1x1y1z1v1 be the 5-cycle
added to the vertex u1 in the complete graph when constructing G1, where u1v1 is
the edge added from u1 to a vertex of Q1 in G1. Then u2, v2, w2, x2, y2, and z2 are the
partners of the vertices u1, v1, w1, x1, y1, and z1, respectively, in the prism H . Thus,
the graph F shown in Figure 13 is a subgraph of the prism H . We note that if v is a
vertex of F different from u1 and u2, then the degree of v in F is equal to its degree
in H .

z1

y1

x1

w1

v1

u1

z2

y2

x2

w2

v2

u2

Figure 13: A subgraph F of the prism Hk �K2

We proceed further with the following claim.

Claim 7 The set I contains one of u1 and u2.

Proof. We show firstly that the ID-set I contains one of z1 and z2. Suppose,
to the contrary, that neither z1 nor z2 belongs to the set I. If neither y1 nor y2
belongs to the set I, then in order to dominate the vertices y1 and y2, the set I
contains both x1 and x2, contradicting the fact that I is an independent set. Hence,
I contains one of y1 and y2. By symmetry, we may assume that y1 ∈ I, implying that
{x1, y2} ⊆ T . In order to dominate the vertex z2, we have v2 ∈ I. Thus, NH(v2) ⊆ T ,
implying in particular that {v1, w2} ⊂ T . Thus, NH(w1) = {v1, w2, x1} ⊂ T and
NH(x2) = {w2, x1, y2} ⊂ T . In order to dominate the vertices w1 and x2, the set I
contains both these two vertices. But then NH(x1) = {w1, x2, y1} ⊂ I, and so the
vertex x1 is not totally dominated by the set T , a contradiction. Hence, the ID-set
I contains one of z1 and z2.

Suppose that z1 ∈ I. Hence, NH(z1) = {v1, y1, z2} ⊆ T . If y2 ∈ I, then the vertex
x2 ∈ T . Moreover, in this case the set T contains the vertex v2 in order to totally
dominate the vertex z2, and the set T contains the vertex x1 in order to totally
dominate the vertex y1. This in turn implies that the set I contains the vertex w1

in order to dominate the vertex x1. Thus, w2 ∈ T . Since {v1, v2, w2} ⊂ T , the set I
contains the vertex u2 in order to dominate the vertex v2. If y2 /∈ I, then the set I
contains the vertex x2 in order to dominate the vertex y2. Therefore, the neighbors
of x2 belong to the set T , and so {x1, w2} ⊂ T . Hence, NH(w1) = {v1, w2, x1} ⊂ T ,
and so the set I contains w1 in order to dominate the vertex w1. This in turn
implies that the set T contains v2 in order to totally dominate the vertex w2. Since
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{v1, v2, w2} ⊂ T , the set I contains the vertex u2 in order to dominate the vertex v2.
Therefore, we have shown that if z1 ∈ I, then the set I contains the vertex u2. By
symmetry, if z2 ∈ I, then the set I contains the vertex u1. (�)

We now return to the proof of Proposition 5.7. Let Xi be the clique of size k in
Gi, and so the set Xi induces a complete graph Kk in Gi for i ∈ {1, 2}. Let u1 be
an arbitrary vertex in the clique X1. Then, u2 is the partner of u1, the vertex u2

belongs to the clique X2, and u1u2 is an edge of H . By Claim 7, the set I contains
one of u1 and u2. This is true for every vertex that belongs to X1 and its partner
that belongs to X2. Thus, since k ≥ 3, the set I contains at least �k/2� ≥ 2 vertices
that belong the clique Kk in G1 or the clique Kk in G2. Hence, the independent set
I contains at least two adjacent vertices, a contradiction. Therefore, for k ≥ 3 and
G = Hk, the prism H = G�K2 is not a TI-graph. �

By Propositions 5.6 and 5.7, there exists an infinite family of connected graphs
G with minimum degree δ(G) = 1 and δ(G) = 2, respectively, such that the prism
G�K2 is not a TI-graph.

6 Concluding remarks and open problems

In this paper we characterize the graphs G such that at least one of G and its
complement G is a TI-graph. As an application of this characterization, we show
that the complementary prism of every nontrivial graph is a TI-graph, unless it is
one of the two complementary prisms G1 and G2 shown in Figure 2. It remains,
however, an open problem to characterize the (connected) graphs G for which the
prism G�K2 a TI-graph. Among other results, we show that there are infinitely
many graphs G for which the prism G�K2 is not a TI-graph, and there are infinitely
many graphs G for which the prism G�K2 is a TI-graph.
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