Partitioning the vertices of a graph or its complement into a total dominating set and an independent dominating set

TERESA W. HAYNES

Department of Mathematics and Statistics East Tennessee State University Johnson City, TN 37614-0002, U.S.A. haynes@etsu.edu

MICHAEL A. HENNING^{*}

Department of Mathematics and Applied Mathematics University of Johannesburg Auckland Park, 2006 South Africa mahenning@uj.ac.za

Abstract

A graph G whose vertex set can be partitioned into a total dominating set and an independent dominating set is called a TI-graph. There exist infinite families of graphs that are not TI-graphs. We show that, with a few exceptions, every graph or its complement is a TI-graph. From this result, it follows that with the exception of the cycle on five vertices, every nontrivial, self-complementary graph is a TI-graph. We also characterize the complementary prisms which are TI-graphs and explore such partitions in prisms.

1 Introduction

We study graphs whose vertex set can be partitioned into a total dominating set and an independent dominating set. We begin with some basic definitions. Let G be a graph with vertex set V = V(G), edge set E = E(G), and order n = |V|. Let \overline{G} denote the complement of G. The open neighborhood $N_G(v)$ of a vertex $v \in V$ is the

 $^{^{\}ast}~$ Research supported in part by the University of Johannes burg and the South African National Research Foundation

set of vertices adjacent to v, and its closed neighborhood is $N_G[v] = N_G(v) \cup \{v\}$. The open neighborhood of a set $S \subseteq V$ is $N_G(S) = \bigcup_{v \in S} N_G(v)$, while the closed neighborhood of a set $S \subseteq V$ is the set $N_G[S] = \bigcup_{v \in S} N_G[v]$. Two vertices are neighbors if they are adjacent. The degree of a vertex v is $\deg_G(v) = |N_G(v)|$. The minimum and maximum degrees of a vertex in a graph G are denoted $\delta(G)$ and $\Delta(G)$, respectively. An isolated vertex in G is a vertex. A trivial graph is the graph of order 1, and a nontrivial graph has order at least 2. A self-complementary graph is a graph which is isomorphic to its complement. If G is clear from the context, then we will use N(v), N[v], N[S], N(S) and $\deg(v)$ in place of $N_G(v)$, $N_G[v]$, $N_G[S]$, $N_G(S)$ and $\deg_G(v)$, respectively.

The subgraph of G induced by a set $S \subseteq V$ is denoted by G[S]. A set S is a dominating set of a graph G if N[S] = V, that is, every vertex in $V \setminus S$ is adjacent to at least one vertex in S. The minimum cardinality of a dominating set in a graph G is the domination number of G and is denoted by $\gamma(G)$. A universal vertex in a graph G of order n, also called a dominating vertex in the literature, is a vertex v adjacent to every other vertex of G, and so $\deg(v) = n - 1$. A dominating set S is a total dominating set, abbreviated TD-set, of an isolate-free graph G if G[S] has no isolated vertices, that is, N(S) = V. If X and Y are sets of vertices in G, where possibly X = Y, then the set X totally dominates the set Y if every vertex in Y has a neighbor in X. A dominating set S is an independent dominating set, abbreviated ID-set, of G if S is an independent set in G, that is, G[S] consists of isolated vertices. The independent domination number i(G) is called an *i-set* of G. For other graph theory terminology not defined herein, the reader is referred to [12], and for other recent books on domination in graphs, we refer the reader to [10, 11, 17].

2 Motivation and known results

The following classic 1962 result by Ore showed that for any isolate-free graph, its vertex set can be partitioned into two dominating sets.

Theorem 2.1 ([20]) If G is an isolate-free graph and S is a minimal dominating set of G, then $V \setminus S$ is a dominating set.

A natural question is which graphs can be partitioned into two types of dominating sets. Let C_n denote the cycle on *n* vertices. Note that the cycle C_5 cannot be partitioned into a dominating set and a TD-set. Graphs having such a partition were studied in [15, 16]. Henning and Southey [15] established the following sufficient condition for graphs whose vertex set can be partitioned into a dominating set and a TD-set. An *F*-component of a graph *G* is a component of *G* that is isomorphic to *F*.

Theorem 2.2 ([15]) If G is a graph with $\delta(G) \ge 2$ and no C_5 -component, then the vertices of G can be partitioned into a dominating set and a total dominating set.

In 2019 Delgado, Desormeaux, and Haynes [7] studied graphs whose vertex set can be partitioned into a TD-set and an ID-set, which is the problem we consider in this paper. We refer to such a partition of the vertices of a graph G as a *TDIDpartition* of G. If G has a TDID-partition, then we say that G is a *TI-graph*. We remark that if a graph G is a TI-graph, then every TD-set of G contains at least two vertices from every component of G and every ID-set of G contains at least one vertex from every component of G, implying that every component of G has order at least 3. In particular, if G is connected, then G has order at least 3. Not all graphs are TI-graphs as can be easily seen with the cycle C_5 and the path P_5 . The paths and cycles having a TDID-partition were determined in [7].

Proposition 2.1 ([7]) The following hold.

- (a) A cycle C_n is a TI-graph if and only if $n \equiv 0 \pmod{3}$.
- (b) A nontrivial path P_n is a TI-graph if and only if $n \equiv 1 \pmod{3}$.

A constructive characterization of TI-trees is given in [7], as well as a characterization of the TI-graphs of diameter 2.

Proposition 2.2 ([7]) A graph G of diameter 2 is a TI-graph if and only if G has a maximal independent set that is not the open neighborhood of some vertex.

Several sufficient conditions for a graph to be a TI-graph were also given in [7].

Theorem 2.3 ([7]) Let G be a graph of order n and minimum degree $\delta(G)$, and let \overline{G} be the complement of G. If any of the following conditions holds, then G is a TI-graph:

(a) δ(G) > ¹/₂n.
(b) γ(G) ≥ 3.
(c) G is claw-free and δ(G) ≥ 3.
(d) i(G) < δ(G).

In general, characterizing TI-graphs seems to be a challenging problem. Delgado et al. [7] claimed that with the exception of a few graphs, every graph or its complement is a TI-graph. Unfortunately, their result is missing a case and thus is incorrect. One main aim of this paper is to correct this and to characterize the graphs G for which at least one of G or \overline{G} is a TI-graph. Other goals are to characterize the complementary prisms which are TI-graphs and investigate TDID-partitions in prisms.

3 Graphs and their complements

In this section we characterize the graphs G such that at least one of G and its complement \overline{G} is a TI-graph. We show that unless a graph G or its complement \overline{G} is in a given family of graphs, then G or \overline{G} has a TDID-partition.

Definition 3.1 Let \mathcal{A} be the family that consist of the following graphs:

- the trivial graph K_1 ,
- the cycle C_5 ,
- the complete bipartite graphs $K_{r,s}$ for $r \in \{1,2\}$ and $r \leq s$, and
- the disjoint union $K_r \cup K_s$ for $r \in \{1, 2\}$ and $r \leq s$.

We first show that no graph in the family \mathcal{A} is a TI-graph.

Proposition 3.1 If $G \in A$, then neither G nor its complement \overline{G} is a TI-graph.

Proof. Let $G \in \mathcal{A}$. By our earlier observations, every TI-graph has order at least 3. Thus, if $G = K_1$, then G is not a TI-graph. If $G = C_5$, then every TDset in G contains at least three consecutive vertices of the cycle, and therefore its vertex set cannot be partitioned into a TD-set and an ID-set. Since the 5-cycle is self-complementary, we have $G \cong \overline{G} = C_5$ and therefore infer that \overline{G} has no TDIDpartition. Further, since the only ID-set of a bipartite graph $K_{r,s}$, for $1 \leq r \leq s$, is one of its partite sets and the remaining partite set is not a TD-set, the graph $K_{r,s}$ is not a TI-graph. Moreover the complement of $K_{r,s}$ is the graph $K_r \cup K_s$. As observed earlier, every component of a TI-graph has order at least 3. Hence if $r \in \{1, 2\}$, then $K_r \cup K_s$ has a component of order at most 2, and is therefore not a TI-graph. \Box

We next present a characterization of the graphs G such that at least one of G and its complement \overline{G} is a TI-graph.

Theorem 3.1 At least one of a graph G and its complement \overline{G} is a TI-graph if and only if $G \notin A$.

Proof. By Proposition 3.1, if $G \in \mathcal{A}$, then neither G nor \overline{G} is a TI-graph. Thus, it remains to show that if $G \notin \mathcal{A}$, then G or \overline{G} is a TI-graph. Assume that G is a graph of order n and $G \notin \mathcal{A}$. Thus, $\overline{G} \notin \mathcal{A}$ since K_1 and C_5 are self-complementary, and $K_{r,s}$ and $K_r \cup K_s$ are complements. Since $G \notin \mathcal{A}$ and $\overline{G} \notin \mathcal{A}$, it follows that G has order $n \geq 3$. We proceed by a series of claims.

Claim 1 If G has a complete component, then G or \overline{G} is a TI-graph.

Proof. Assume that G has a complete component $F \cong K_k$ for some $k \ge 1$. If G is the complete graph, that is, G = F, then since $n \ge 3$, the sets $I = \{x\}$ for any

vertex x of G and $T = V(G) \setminus I$ form a TDID-partition of G. Thus, G is a TI-graph. Hence, we may assume that G is not complete.

Let X be the set of vertices in the complete component F, and so F = G[X]. Let $Y = V(G) \setminus X$. Since G is not a complete graph, the set $Y \neq \emptyset$. In the complement \overline{G} , we note that X is an independent set and [X, Y] is full, that is, every vertex in X is adjacent to every vertex Y in \overline{G} . Since $\overline{G} \notin \mathcal{A}$, we have that $\overline{G} \neq K_{r,s}$ for $r \leq s$ and $r \in \{1, 2\}$. Hence, either \overline{G} is the graph $K_{r,s}$ for $3 \leq r \leq s$, or the subgraph $\overline{G}[Y]$ of \overline{G} induced by the set Y has at least one edge. If $\overline{G} = K_{r,s}$ for $3 \leq r \leq s$, then $G = K_r \cup K_s$ for $3 \leq r \leq s$ and G is a TI-graph.

Thus, we may assume that the subgraph $\overline{G}[Y]$ has at least one edge. Let I be a maximal independent set of $\overline{G}[Y]$, and let $T = V(\overline{G}) \setminus I$. Note that $I \subset Y$, |I| < |Y|, and so $|T| \ge 2$. By our previous observations, every vertex in $V(\overline{G}) \setminus X$ is adjacent to a vertex in X in \overline{G} . Hence, $\overline{G}[T]$ is isolate-free. Since every superset of a dominating set is a dominating set, and since $X \subset T$, we therefore infer that T is a TD-set of \overline{G} . Thus, T and I is a partition of the vertex set of \overline{G} into a TD-set and an ID-set, respectively. Hence, \overline{G} is a TI-graph. (\Box)

By Claim 1, we may assume that G has no complete component, for otherwise the result holds. In particular, we may assume that G has no isolated vertex, that is, $\delta(G) \geq 1$. Similarly, $\delta(\overline{G}) \geq 1$. Since neither G nor \overline{G} has an isolated vertex, it follows that $n \geq 4$. Further, since G has no isolated vertex, the graph \overline{G} has no universal vertex and so $i(\overline{G}) \geq \gamma(\overline{G}) \geq 2$. Similarly, $i(G) \geq \gamma(G) \geq 2$.

Claim 2 If $i(\overline{G}) \geq 3$, then G is a TI-graph.

Proof. Assume that $i(\overline{G}) \geq 3$. Consider the graph G, and let I be any *i*-set of G. Since $\delta(G) \geq 1$, every vertex in I has a neighbor in $V \setminus I$, that is, $V \setminus I$ is a dominating set of G. Suppose that $V \setminus I$ is not a TD-set of G. In this case, there exists a vertex $v \in V \setminus I$ such that v is an isolated vertex in $G[V \setminus I]$, that is, $N_G(v) \subseteq I$. But then the set $\{u, v\}$, where $u \in N_G(v) \cap I$, is an ID-set of \overline{G} , and so, $i(\overline{G}) \leq |\{u, v\}| = 2$, contradicting our supposition that $i(\overline{G}) \geq 3$. Hence, $V \setminus I$ is a TD-set of G, and so $V \setminus I$ and I is a partition of the vertex set of G into a TD-set and an ID-set, respectively. Thus, G is a TI-graph. (\Box)

By Claim 2, we may assume that $i(\overline{G}) \leq 2$, for otherwise the desired result holds. Thus, Claim 1 implies that $i(\overline{G}) = 2$. Similarly, i(G) = 2.

Claim 3 If $\delta(G) \geq 3$, then G is a TI-graph.

Proof. Assume that $\delta(G) \geq 3$, and let *I* be any *i*-set of *G*. Thus, |I| = i(G) = 2. Since $\delta(G) \geq 3$, every vertex in *G* has a neighbor in $V \setminus I$, implying that $V \setminus I$ is a TD-set of *G*, and so *G* is a TI-graph. (1)

By Claims 1 and 3, we may assume that $\delta(G) \in \{1, 2\}$ and $\delta(\overline{G}) \in \{1, 2\}$, for otherwise the result holds. Let $\{a, b\}$ be an *i*-set of G. Since $\delta(G) \geq 1$, the set

 $V \setminus \{a, b\}$ is a dominating set of G. If $G' = G - \{a, b\}$ is an isolate-free graph, then $V \setminus \{a, b\}$ is a TD-set of G, and so G is a TI-graph. Thus, we may assume further that there exists a vertex $x \in V \setminus \{a, b\}$ such that $N_G(x) \subseteq \{a, b\}$. We use this terminology as we continue proving three more claims.

Claim 4 If $\delta(G) = \delta(\overline{G}) = 2$, then G or \overline{G} is a TI-graph.

Proof. Assume that $\delta(G) = \delta(\overline{G}) = 2$. Since $\delta(G) = 2$ and $N_G(x) \subseteq \{a, b\}$, we have $N_G(x) = \{a, b\}$. Each of $\{a, x\}$ and $\{b, x\}$ is therefore an ID-set in the graph \overline{G} . If $V \setminus \{a, x\}$ or $V \setminus \{b, x\}$ is a TD-set of \overline{G} , then \overline{G} is a TI-graph and the result holds. Hence, we may assume that there is a vertex $w \in V \setminus \{a, x\}$ such that $N_{\overline{G}}(w) \subseteq \{a, x\}$ and a vertex $y \in V \setminus \{b, x\}$ such that $N_{\overline{G}}(y) \subseteq \{b, x\}$. Since $\delta(G) = \delta(\overline{G}) = 2$, it follows that $N_{\overline{G}}(w) = \{a, x\}$ and $N_{\overline{G}}(y) = \{b, x\}$, and so $w \neq y$. Thus, abyxwa is an induced 5-cycle in \overline{G} .

If n = 5, then $\overline{G} = G = C_5 \in \mathcal{A}$, a contradiction. Thus, $n \ge 6$. Since the vertex w is adjacent in G to every vertex except for the vertices a and x, and since the vertex a is adjacent in G to x, the set $I = \{a, w\}$ is an ID-set of G. Analogously, the set $\{b, y\}$ is an ID-set of G. In particular, $\{b, y\}$ is a dominating set of G. Let $T = V(G) \setminus I$. Since every superset of a dominating set is a dominating set and since $\{b, y\} \subset T$, the set T is a dominating set of G. Moreover, since the vertex y is adjacent in G to every vertex except for the vertices b and x, and since the vertex b is adjacent in G to x, the subgraph of G induced by the set T is isolate-free. Hence, the set T is a TD-set of G. Therefore, T and I is a partition of the vertex set of G into a TD-set and an ID-set, respectively. Thus, G is a TI-graph. (D)

By Claim 4, we may assume that $\delta(G) = 1$ or $\delta(\overline{G}) = 1$. Without loss of generality, assume that $\delta(G) = 1$ and $\delta(\overline{G}) \in \{1, 2\}$.

Claim 5 If $N_G(x) = \{a, b\}$, then G or \overline{G} is a TI-graph.

Proof. Let $N_G(x) = \{a, b\}$. Since $\delta(G) = 1$, there exist a vertex $w \in V \setminus \{x\}$ such that $\deg_G(w) = 1$. First suppose that w = a. Then since $\{a, b\}$ is an ID-set of G, the vertex b dominates $V \setminus \{a\}$. Recall by our earlier assumptions that $n \ge 4$, and so $V \setminus \{a, b, x\} \neq \emptyset$. Let $G_b = G - \{a, b, x\}$ and let I_b be an ID-set of G_b . In particular, we note that $b \notin I_b$. The set $I_b \cup \{a\}$ is an ID-set of G and $V(G) \setminus (I_b \cup \{a\})$ is a TD-set of G (that contains both vertices b and x). Thus, G is a TI-graph. Hence, we may assume that $w \neq a$ and similarly, $w \neq b$, for otherwise the result holds. Thus, $\deg_G(a) \ge 2$ and $\deg_G(b) \ge 2$. Therefore, $w \in V \setminus \{a, b, x\}$ and since $\{a, b\}$ is an ID-set of \overline{G} and $V(\overline{G}) \setminus \{a, x\}$ is a TD-set of \overline{G} . Hence, \overline{G} is a TI-graph. (\square)

By Claim 5, we may assume that x is adjacent to exactly one of a and b in G, and so, $\deg_G(x) = 1$. Without loss of generality, let x be adjacent to a. Since $\delta(G) = 1$, vertex b has a neighbor in $V \setminus \{a, b, x\}$. Furthermore, since by Claim 1 the graph G has no complete component, it follows that a has a neighbor in $V \setminus \{a, b, x\}$ and $\deg_{\overline{G}}(a) \geq 2$. As before, $\{a, x\}$ is an ID-set of \overline{G} and $V \setminus \{a, x\}$ is a dominating set of \overline{G} . If $V \setminus \{a, x\}$ is a TD-set of \overline{G} , then the result holds. Thus, assume that there is a vertex $y \in V \setminus \{a, x\}$ such that $N_{\overline{G}}(y) \subseteq \{a, x\}$.

Claim 6 If y = b, then G or \overline{G} is a TI-graph.

Proof. Suppose that y = b. This implies that the vertex b is adjacent in G to every vertex different from a and x, that is, $N_G(b) = V \setminus \{a, b, x\}$. By the structure of the graph G, the set $\{b, x\}$ is an ID-set of G and the set $V \setminus \{b, x\}$ is a dominating set of G. If $V \setminus \{b, x\}$ is a TD-set of G, then G is a TI-graph and the result holds. Thus, assume that $V \setminus \{b, x\}$ is not a TD-set of G, that is, there exists a vertex $z \in V \setminus \{b, x\}$ such that $N_G(z) \subseteq \{b, x\}$. Since $\deg_G(a) \ge 2$ and a is not adjacent to b in G, we note that $a \neq z$, and so $N_G(z) = \{b\}$.

Let a' be a neighbor of a in G different from x. We note that $a' \notin \{b, x, z\}$, implying that G has order at least 5, that is, $n \geq 5$. The set $\{b, z\}$ is an ID-set of \overline{G} and the set $V \setminus \{b, z\}$ is a dominating set of \overline{G} . Let $S = V \setminus \{b, z\}$. If S is a TD-set of \overline{G} , then again \overline{G} is a TI-graph and the result holds. Hence, we assume that S is not a TD-set of \overline{G} . Since x is adjacent to every vertex in \overline{G} except vertex a and since $n \geq 5$, the only possible vertex that is isolated in the subgraph $\overline{G}[S]$ of \overline{G} induced by the set S is the vertex a. But then $\{a, z\}$ is an ID-set of G. Let $W = V \setminus \{a, b, x, z\}$. By our earlier observations, every vertex in W is adjacent in G to both the vertex aand the vertex b. If there is an edge in G[W], then let I_W be an ID-set of G[W]. In this case, $I_W \cup \{x, z\}$ is an ID-set of G and $V \setminus (I_W \cup \{x, z\})$ is a TD-set of G, and so G is a TI-graph. If there is no an edge in G[W], then $V \setminus \{a, b\}$ is a clique in \overline{G} . In this case, $\{a, a'\}$ is an ID-set of \overline{G} and $V \setminus \{a, a'\}$ is a TD-set of \overline{G} . Hence, \overline{G} is a TI-graph and the result holds. (\square)

By Claim 6, we may assume that $y \neq b$, for otherwise the desired result follows. Let b' be a neighbor of b in \overline{G} different from a and x. By assumption, $y \neq b'$. We note that y is adjacent to x in \overline{G} . However, y may or may not be adjacent to a in \overline{G} . The vertex b' is not adjacent in G to the vertex b. Since $\{a, b\}$ is an ID-set of G, vertex b' is therefore adjacent to vertex a. Furthermore, vertex y dominates $V \setminus \{a, x\}$ in G. Thus, $\{x, y\}$ is an ID-set of G, and $V \setminus \{x, y\}$ is a dominating set of G.

If $V \setminus \{x, y\}$ is a TD-set of G, then G is a TI-graph and the result holds. Thus, assume that there exists a vertex $z \in V \setminus \{x, y\}$ such that $N_G(z) \subseteq \{x, y\}$. Since $\{a, b\} \subset V \setminus \{x, y\}$, every vertex in $V \setminus \{a, b\}$ has a neighbor in $\{a, b\}$, and a is adjacent to b', we infer that z = b and $N_G(b) = \{y\}$. Hence, in the graph G, the vertex a dominates $V \setminus \{b, y\}$, the vertex y dominates $V \setminus \{a, x\}$, and possibly a is adjacent to y.

Let $R = \{a, b, x, y\}$ and let $G_R = G - R$. Let I be an ID-set of G_R . If a is adjacent to y in G or if $V \setminus (I \cup R) \neq \emptyset$, then $I \cup \{b, x\}$ is an ID-set of G and $V \setminus (I \cup \{b, x\})$ is a TD-set of G. If a is not adjacent to y in G and $V \setminus (I \cup R) = \emptyset$, then $V \setminus R$ is an independent set of vertices in G, and so $\overline{G}[V \setminus R]$ is a clique. From the structure of the graph \overline{G} , we infer that $\{y, b'\}$ is an *i*-set of \overline{G} and $V \setminus \{y, b'\}$ is a TD-set of \overline{G} . Hence, \overline{G} is a TI-graph. This completes the proof of Theorem 3.1. \Box Since the trivial graph K_1 and the cycle C_5 are the only self-complementary graphs in \mathcal{A} , the following result is an immediate consequence of Theorem 3.1.

Corollary 3.1 Every nontrivial, self-complementary graph different from the 5-cycle is a TI-graph.

4 Complementary prisms

Let G be a graph and \overline{G} its complement. For every vertex $v \in V(G)$, we denote $\overline{v} \in V(\overline{G})$ as its corresponding vertex, and for a set $X \subseteq V(G)$, let \overline{X} denote the corresponding set of vertices in $V(\overline{G})$. A variation of the prism, called a complementary prism, was introduced in [13] as follows, and is studied, for example, in [2, 3, 5, 14] and elsewhere.

For a graph G with vertex set $V(G) = \{v_1, \ldots, v_n\}$ and edge set E(G), the complementary prism of G is the graph, denoted by $G\overline{G}$, with vertex set $V(G\overline{G}) = \{v_1, \ldots, v_n\} \cup \{\overline{v}_1, \ldots, \overline{v}_n\}$ and edge set $E(G\overline{G}) = E(G) \cup E(\overline{G}) \cup \{v_1\overline{v}_1, \ldots, v_n\overline{v}_n\}$. Thus, $G\overline{G}$ is constructed from $G \cup \overline{G}$ by adding a perfect matching between the vertices of G and the corresponding vertices of \overline{G} .

For example, if G is the 5-cycle given by $v_1v_2v_3v_4v_5v_1$, then the complementary prism $G\overline{G}$ is the Petersen graph P(5,2) illustrated in Figure 1. We observe that the shaded vertices in Figure 1 form an independent set in G and the white vertices form a TD-set in G. Moreover, these two sets partition the set V(G), thereby forming a TDID-partition of G. Thus, the complementary prism $C_5\overline{C}_5$ of a 5-cycle is the Petersen graph, which is a TI-graph.

Figure 1: The complementary prism $C_5\overline{C}_5$ of a 5-cycle C_5

Since by Theorem 3.1, if $G \notin A$, then G or \overline{G} is a TI-graph, it seems logical to next consider for which graphs G is the complementary prism $G\overline{G}$ a TI-graph. Let G_1 be the complementary prism of the path $v_1v_2v_3$, and let G_2 be the complementary prism of the 4-cycle $v_1v_2v_3v_4v_1$. The graphs G_1 and G_2 are illustrated in Figure 2(a) and 2(b), respectively. We shall show that with the exception of these two complementary prisms, G_1 and G_2 , every complementary prism of a nontrivial graph is a TI-graph. We show firstly that neither G_1 nor G_2 is a TI-graph.

Figure 2: The complementary prisms G_1 and G_2

Proposition 4.1 The complementary prisms G_1 and G_2 shown in Figure 2 are not TI-graphs.

Proof. We consider firstly the complementary prism G_1 of the path P_3 given by $v_1v_2v_3$ as shown in Figure 2(a). Suppose, to the contrary, that G_1 contains a TDID-partition $\{I, T\}$ where I is an ID-set of G_1 and T is a TD-set of G_1 . In order to totally dominate the vertex \overline{v}_2 , the TD-set T contains the vertex v_2 . Thus, in order to dominate the vertex \overline{v}_2 , the ID-set I contains the vertex \overline{v}_2 . In order to totally dominate the vertex v_2 , at least one of v_1 and v_3 belongs to the set T. By symmetry, we may assume that $v_1 \in T$. It follows that $\overline{v}_1 \in I$ in order for the ID-set I to dominate the vertex v_1 . Since I is an independent set, this in turn implies that $\overline{v}_3 \in T$. In order to totally dominate the vertex \overline{v}_3 , we infer that $v_3 \in T$. However, v_3 is not dominated by I, a contradiction. Hence, G_1 is not a TI-graph.

Next we consider the complementary prism G_2 of the 4-cycle C_4 given by $v_1v_2v_3v_4v_1$ as shown in Figure 2(b). Suppose, to the contrary, that G_2 contains a TDID-partition $\{I, T\}$ where I is an ID-set of G_2 and T is a TD-set of G_2 . Let $X = \{v_1, v_2, v_3, v_4\}$ and let $\overline{X} = \{\overline{v}_1, \overline{v}_2, \overline{v}_3, \overline{v}_4\}$, and so $V(G_2) = X \cup \overline{X}$. If $X \subseteq T$, then in order to dominate the vertices in X, we must have $\overline{X} \subseteq I$. However, the resulting set I is then not an independent set, a contradiction. Hence, at least one vertex of X does not belong to the set T. By symmetry, and renaming vertices if necessary, we may assume that $v_1 \notin T$, and so $v_1 \in I$. Thus, $N(v_1) = \{\overline{v}_1, v_2, v_4\} \subseteq T$. In order to totally dominate the vertex \overline{v}_1 , we infer that $\overline{v}_3 \in T$. It follows that $v_3 \in I$ in order for the ID-set I to dominate the vertex \overline{v}_3 . This in turn implies that \overline{v}_2 and \overline{v}_4 belong to the set T in order for T to totally dominate v_2 and v_4 , respectively. But now the ID-set I dominates neither \overline{v}_2 nor \overline{v}_4 , a contradiction. Hence, G_2 is not a TI-graph.

We proceed further with the following property of TI-graphs.

Lemma 4.1 If G is a TI-graph and G is not complete, then there exists a TDIDpartition $\{T, I\}$ of G with TD-set T and ID-set I such that $|I| \ge 2$.

Proof. Let G be a TI-graph different from the complete graph. Let $\{T, I\}$ be a TDID-partition of G with TD-set T and ID-set I. If $|I| \ge 2$, then the desired result

is immediate. Hence, we may assume that |I| = 1, and so i(G) = 1. Let $I = \{x\}$, and so the vertex x is a universal vertex of G. Since G is not complete, the set $T = V \setminus \{x\}$ has at least two non-adjacent vertices, say u and v. Let I' be a maximal independent set of G containing the vertices u and v. Since x is adjacent to both u and v, we note that $x \notin I'$. Since T is a TD-set of G, every vertex of G has a neighbor in T, and so $|T \setminus I'| \ge 1$. Hence, I' is an ID-set of G and $T' = V \setminus I'$ is a TD-set of G forming a TDID partition $\{T', I'\}$ such that $|I'| \ge 2$.

We are now in a position to show that the complementary prism of every nontrivial graph is a TI-graph, unless it is one of the two complementary prisms G_1 and G_2 shown in Figure 2.

Theorem 4.1 The complementary prism $G\overline{G}$ of a nontrivial graph G is a TI-graph if and only if $G\overline{G}$ is not one of the two graphs G_1 and G_2 shown in Figure 2.

Proof. Let G be a nontrivial graph. If $G\overline{G}$ is one of the two complementary prisms G_1 and G_2 shown in Figure 2, then, by Proposition 4.1, the complementary prism G is not a TI-graph. Suppose next that $G\overline{G}$ is not one of the two graphs G_1 and G_2 shown in Figure 2. Thus, G has order at least 2 and $G \notin \{P_3, C_4\}$.

Suppose that $G \notin A$. By Theorem 3.1, at least one of G and \overline{G} is a TI-graph. Without loss of generality, we may assume that G is a TI-graph. In particular, G has order at least 3. If G is a complete graph, then the vertices of G form a TD-set of $G\overline{G}$ and the vertices of \overline{G} form an ID-set of $G\overline{G}$, implying that $G\overline{G}$ is a TI-graph. If G is not a complete graph, then by Lemma 4.1, there exists a TDID-partition $\{T, I\}$ of G, where T is a TD-set of G, I is an ID-set of G, and $|I| \geq 2$. We note that \overline{I} induces a complete graph in \overline{G} .

Let \overline{S} be an ID-set of the induced subgraph $\overline{G}[\overline{T}]$. We claim that $I^* = I \cup \overline{S}$ is an ID-set of $G\overline{G}$ and $T^* = V(G\overline{G}) \setminus (I \cup \overline{S})$ is a TD-set of $G\overline{G}$, that is, $G\overline{G}$ is a TI-graph. To see this, we note that I^* is independent, I dominates the vertices of $V(G) \cup \overline{I}$, and \overline{S} dominates the vertices of $\overline{T} = V(\overline{G}) \setminus \overline{I}$. Since T is a TD-set of G, the set T totally dominates the vertices of V(G), and by construction of the complementary prism the set T totally dominates the vertices of \overline{T} . Further since $|\overline{I}| \ge 2$ and \overline{I} is a clique, the vertices of \overline{I} are totally dominated by \overline{I} . Hence, T^* is a TD-set of $G\overline{G}$. Thus, $G\overline{G}$ is a TI-graph, and therefore has order at least 4.

Next assume that $G \in \mathcal{A}$. Since $G\overline{G}$ has order at least 4, the graph G has order at least 2. In particular, $G \neq K_1$. If $G = C_5$, then $G\overline{G}$ is the Petersen graph, which by our earlier observations is a TI-graph. Suppose, therefore, that G or \overline{G} , say G, is a complete bipartite graph $K_{r,s}$ for some $r \in \{1,2\}$ and $r \leq s$. Suppose firstly that r = 1, and so $G = K_{1,s}$ where $s \geq 1$. If $G = K_{1,1}$, then the complementary prism $G\overline{G}$ is a path P_4 , which is a TI-graph. Hence, we may assume that $s \geq 2$. If $G = K_{1,2}$, then $G\overline{G}$ is the complementary prism G_1 shown in Figure 2(a), a contradiction. Hence, $s \geq 3$. Let v_1 be the center of the star and label the leaves of G by $v_2, \ldots v_{s+1}$. Then, $I = \{\overline{v}_1, v_2, \ldots, v_s, \overline{v}_{s+1}\}$ is an ID-set of $G\overline{G}$ and $V(G\overline{G}) \setminus I$ is a TD-set of $G\overline{G}$, implying that $G\overline{G}$ is a TI-graph. Suppose next that r = 2, and so $G = K_{2,s}$ where $s \ge 2$. If $G = K_{2,2} = C_4$, then $G\overline{G}$ is the complementary prism G_2 shown in Figure 2(b), a contradiction. Hence, $s \ge 3$. Let v_1 and v_2 be the vertices in the smaller partite set of G and label the vertices in the other partite set $v_3, v_4, \ldots, v_{s+2}$. Then $I = \{\overline{v}_1, v_3, v_4 \ldots v_{s+1}, \overline{v}_{s+2}\}$ is an ID-set of $G\overline{G}$ and $V(G\overline{G}) \setminus I$ is a TD-set of $G\overline{G}$, implying that $G\overline{G}$ is a TI-graph.

5 Prisms

The Cartesian product $G \square H$ of graphs G and H is the graph whose vertex set is $V(G) \times V(H)$ and two vertices (g_1, h_1) and (g_2, h_2) are adjacent in $G \square H$ if either $g_1 = g_2$ and h_1h_2 is an edge in H, or $h_1 = h_2$ and g_1g_2 is an edge in G. The prism of a graph G is the graph $G \square K_2$. Thus, it is defined by taking two disjoint copies G_1 and G_2 of G, and adding an edge between each pair of corresponding vertices. The resulting added edges form a perfect matching in the prism. We refer to the vertices joined by such a matching edge as partners. If G is a path or a cycle, then we call the prism $G \square K_2$ a path prism and cycle prism, respectively. If every vertex of G is contained in a triangle, then we call the prism $G \square K_2$ a triangle prism.

The relationship between domination parameters in the graph and its prism have been studied extensively. See, for example, [1, 4, 6, 8, 9, 14, 18, 19, 22, 21]. Since the complementary prism is a variant of the prism of a graph G where one takes a copy of G and its complement \overline{G} instead of two copies of G, a natural next step is to consider the problem of determining for which graphs G is the prism $G \square K_2$ a TI-graph. Recall that we showed in Section 4 that the complementary prism of every nontrivial graph is a TI-graph, unless it is one of the two complementary prisms G_1 and G_2 shown in Figure 2. The characterization of prisms that are TI-graphs seems to be a more difficult problem than for complementary prisms. In this section, we characterize the path, cycle, and triangle prisms that are TI-graphs, and provide two infinite families of graphs G for which the prism $G \square K_2$ is not a TI-graph.

5.1 Path prisms

We show in this section that the path prism $P_n \Box K_2$ is a TI-graph for all $n \geq 3$ except for n = 4. We observe that the path prism $P_1 \Box K_2 = K_2$ is not a TI-graph and that $P_2 \Box K_2$ is the 4-cycle, which is not a TI-graph. We show next that the path prism $P_4 \Box K_2$ is not a TI-graph.

Proposition 5.1 The path prism $P_4 \square K_2$ is not a TI-graph.

Proof. Let $G = P_4 \square K_2$ be the path prism shown in Figure 3. Suppose, to the contrary, that G contains a TDID-partition $\{I, T\}$ where I is an ID-set of G and T is a TD-set of G. If neither u_1 nor v_1 belong to the set I, then $\{u_2, v_2\} \subseteq I$ in order for I to dominate u_1 and v_1 , contradicting the independence of the set I. Hence,

 u_1 or v_1 belongs to the set I. By symmetry, we may assume that $u_1 \in I$, and so $\{v_1, u_2\} \subseteq T$. Thus, $v_2 \in T$ in order for T to totally dominate v_1 , implying that $v_3 \in I$ in order for I to dominate v_2 , and so $\{u_3, v_4\} \subseteq T$. Hence, $u_4 \in I$ in order for I to dominate u_4 . But then the vertex v_4 is not totally dominated by the set T. \Box

Figure 3: The path prism $P_4 \Box K_2$

Proposition 5.2 The path prism $P_n \Box K_2$ is a TI-graph for all $n \ge 3$ and $n \ne 4$.

Proof. For $n \ge 3$ and $n \ne 4$, let G be the path prism $P_n \square K_2$. Let G_1 and G_2 be the two disjoint copies of the path P_n in the prism G, where G_1 is the path $u_1u_2 \ldots u_n$ and G_2 is the path $v_1v_2 \ldots v_n$. Further, let the vertices u_i and v_i be partners in the path prism G, and so u_iv_i is an edge in G. We consider three cases. In all three cases, we give a TDID-partition $\{I, T\}$ where I is an ID-set of G and T is a TD-set of G.

Case 1. $n \equiv 0 \pmod{3}$. Thus, n = 3k for some $k \geq 1$. In this case, we let $I = \bigcup_{i=1}^{k} \{u_{3i-2}, v_{3i}\}$ and $T = V(G) \setminus I$. For example, when n = 9 (and k = 3) the set I is given by the shaded vertices in Figure 4.

u_1	u_2	u_3	u_4	u_5	u_6	u_7	u_8	u_9
•	_^_	_^_	-•	_^_	_^_	-	_^_	
v_1	v_2	v_3	v_4	v_5	v_6	v_7	v_8	v_9

Figure 4: A path prism $P_n \square K_2$ where $n \equiv 0 \pmod{3}$

Case 2. $n \equiv 1 \pmod{3}$ and $n \geq 7$. Thus, n = 3k + 1 for some $k \geq 2$. In this case, we let $I = \{u_{n-2}, v_n\} \cup \bigcup_{i=1}^{k-1} \{u_{3i-2}, v_{3i}\}$ and $T = V(G) \setminus I$. For example, when n = 10 (and k = 3) the set I is given by the shaded vertices in Figure 5.

u_1	u_2	u_3	u_4	u_5	u_6	u_7	u_8	u_9	u_{10}
•	- <u>-</u>	<u>-</u>	-•	<u></u>	<u></u>	<u></u>	-•-		
6					_				_
$\tilde{v_1}$	$\tilde{v_2}$	$\bar{v_3}$	$\tilde{v_4}$	v_5	v_6	$\tilde{v_7}$	$\tilde{v_8}$	v_9	v_{10}

Figure 5: A path prism $P_n \square K_2$ where $n \equiv 1 \pmod{3}$ and $n \ge 7$

Case 3. $n \equiv 2 \pmod{3}$ and $n \geq 5$. Thus, n = 3k + 2 for some $k \geq 1$. In this case, we let $I = \{u_n\} \cup \bigcup_{i=1}^k \{u_{3i-2}, v_{3i}\}$ and $T = V(G) \setminus I$. For example, when n = 11 (and k = 3) the set I is given by the shaded vertices in Figure 6.

u_1	u_2	u_3	u_4	u_5	u_6	u_7	u_8	u_9	u_{10}	u_{11}
•			-•		<u> </u>	-•	<u>- </u>	<u></u>	<u> </u>	-•
L	Ţ		L	Ţ		Ţ	Ţ		L	L
0-	_0_					\neg		-		_0
v_1	v_2	v_3	v_4	v_5	v_6	v_7	v_8	v_9	v_{10}	v_{11}

Figure 6: A path prism $P_n \square K_2$ where $n \equiv 2 \pmod{3}$

We deduce from the above three cases that the path prism $G = P_n \Box K_2$ is a TI-graph. \Box

5.2 Cycle prisms

We show that with the exception of the prism $C_5 \square K_2$, the cycle prism $C_n \square K_2$ is a TI-graph for all $n \ge 3$.

Proposition 5.3 The cycle prism $C_5 \square K_2$ is not a TI-graph.

Proof. Let $G = C_5 \square K_2$ be the cycle prism shown in Figure 7. Suppose, to the contrary, that G contains a TDID-partition $\{I, T\}$ where I is an ID-set of G and T is a TD-set of G. We note that G is vertex-transitive. Renaming the vertices if necessary, we may assume that $v_1 \in I$, implying that $N_G(v_1) = \{v_2, v_5, u_1\} \subseteq T$. Suppose that u_2 or u_5 belongs to the set I. By symmetry, we may assume that $u_2 \in I$. In order for the set T to totally dominate the vertices u_1 and v_2 , we infer that $u_5 \in T$ and $v_3 \in T$, respectively. This in turn implies that $u_4 \in I$ in order for the set I to dominate the vertex u_3 and v_4 of u_4 belong to the set T. But then the set I does not dominate the vertex v_3 , a contradiction. Hence, $\{u_2, u_5\} \subset T$. This implies that $\{u_3, u_4\} \subset I$ in order for the set I to dominate the vertices u_2 and u_5 . However, the ID-set I then contains two adjacent vertices, namely u_3 and u_4 , a contradiction.

Figure 7: The prism $C_5 \Box K_2$

Proposition 5.4 The cycle prism $C_n \Box K_2$ is a TI-graph for all $n \ge 3$ and $n \ne 5$.

Proof. For $n \ge 3$ and $n \ne 5$, let G be the cycle prism $C_n \square K_2$. Let G_1 and G_2 be the two disjoint copies of the cycle C_n in the prism G, where G_1 is the cycle

 $u_1u_2...u_nu_1$ and G_2 is the cycle $v_1v_2...v_nv_1$. Further, let the vertices u_i and v_i be partners in the cycle prism G, and so u_iv_i is an edge in G. We consider three cases. In all three cases, we give a TDID-partition $\{I, T\}$ where I is an ID-set of G and T is a TD-set of G.

Case 1. $n \equiv 0 \pmod{3}$. Thus, n = 3k for some $k \geq 1$. In this case, we let $I = \bigcup_{i=1}^{k} \{u_{3i-2}, v_{3i}\}$ and $T = V(G) \setminus I$. For example, when n = 9 (and k = 3) the set I is given by the shaded vertices in Figure 8.

Figure 8: A cycle prism $C_n \square K_2$ where $n \equiv 0 \pmod{3}$

Case 2. $n \equiv 1 \pmod{3}$. Thus, n = 3k + 1 for some $k \geq 1$. In this case, we let $I = \bigcup_{i=1}^{k} \{u_{3i-2}, v_{3i}\}$ and $T = V(G) \setminus I$. For example, when n = 10 (and k = 3) the set I is given by the shaded vertices in Figure 9.

	_	\sim					_	~	
	u_2	u_3	u_4	u_5	u_6	u_7	u_8	<i>u</i> ₉	
$u_1 \bullet$			-			-		$- $ u_1	0
$v_1 \downarrow$		_			_			$ v_1$	0
* I \	$\underbrace{v_2}$	v_3	v_4	v_5	v_6	$\tilde{v_7}$	v_8	v_9	.0

Figure 9: A cycle prism $C_n \square K_2$ where $n \equiv 1 \pmod{3}$

Case 3. $n \equiv 2 \pmod{3}$ and $n \geq 8$. Thus, n = 3k + 2 for some $k \geq 2$. In this case, we let $I = \{u_{n-3}, v_{n-1}\} \cup \bigcup_{i=1}^{k-1} \{u_{3i-2}, v_{3i}\}$ and $T = V(G) \setminus I$. For example, when $n = 11 \pmod{k}$ the set I is given by the shaded vertices in Figure 8.

Figure 10: A cycle prism $C_n \square K_2$ where $n \equiv 2 \pmod{3}$ and $n \ge 8$

We deduce from the above three cases that the graph G is a TI-graph.

5.3 Triangle prisms

Let G be a graph in which every vertex belongs to a triangle. Let I be an ID-set in G and let $T = V(G) \setminus I$. Let v be an arbitrary vertex in T, and let T_v be a triangle that contains the vertex v. The triangle T_v contains at most one vertex from the independent set I, implying that the vertex v has at least one neighbor in T. Thus, the set T totally dominates the set T. Moreover, since I is an ID-set of G, the set T totally dominates the set I, and so T is a TD-set of G. Hence, $\{T, I\}$ is a TDID-partition of G, and so G is a TI-graph. We state this formally as follows.

Observation 5.1 If G is a graph in which every vertex belongs to a triangle, then G is a TI-graph.

As a consequence of Observation 5.1, this yields the following class of graphs G for which the prism $G \square K_2$ is a TI-graph.

Proposition 5.5 If G is a graph in which every vertex belongs to a triangle, then the prism $G \square K_2$ is a TI-graph.

5.4 Prisms that are not TI-graphs

Next we present several classes of graphs G for which the prism $G \square K_2$ is not a TIgraph. For notational convenience in this section, we label the two disjoint copies of G used to construct $G \square K_2$ as G_1 and G_2 , where the vertices of G_1 are labeled with subscript 1 and their partners have corresponding labels with subscript 2. Thus, if v is a vertex of G, then v is labeled v_i in G_i for $i \in \{1, 2\}$ and $v_1v_2 \in E(H)$. The corona $G \circ K_1$ of a graph G is the graph obtained from G by adding for each vertex $v \in V$ a new vertex v' and the edge vv'. We consider next the prism $(G' \circ K_1) \square K_2$ of the corona $G' \circ K_1$ of a graph G'.

Proposition 5.6 If $G = G' \circ K_1$ is the corona of an arbitrary graph G', then the prism $G \square K_2$ is not a TI-graph.

Proof. Let G' be an arbitrary graph, $G = G' \circ K_1$, and $H = G \Box K_2$. Using the notation mentioned in our previous comments, we let G_1 and G_2 be the two disjoint copies of $G = G' \circ K_1$ in the prism H.

Suppose, to the contrary, that H contains a TDID-partition $\{I, T\}$ where I is an ID-set of H and T is a TD-set of H. Let v_1 be an arbitrary vertex that belongs to the graph G' in the copy of G_1 and v_2 its partner in G_2 . Thus, $v_i \in V(G_i)$ for $i \in \{1, 2\}$ and v_1v_2 is a matching edge in the prism H. Let u_i be the neighbor of v_i of degree 1 in the corona graph G_i for $i \in \{1, 2\}$, and so u_1 and u_2 are partners in H and both have degree 2 in H. As an illustration, when G' is the path P_3 given by vxw and the neighbors of v, x, and w of degree 1 in the corona $G' \circ K_1$ are u, y, and z, respectively, then the vertices in the prism H are as labelled in Figure 11.

Figure 11: The prism $(P_3 \circ K_1) \Box K_2$

We now consider a vertex u of degree 1 in the corona $G' \circ K_1$, and let v denote the (unique) neighbor of u in $G' \circ K_1$. Thus, $v_1v_2u_2u_1v_1$ is an induced 4-cycle in the prism H. If neither u_1 nor u_2 belongs to the set I, then in order to dominate the vertices u_1 and u_2 the ID-set I contains both v_1 and v_2 . However, v_1 and v_2 are adjacent vertices, contradicting the fact that I is an independent set. Hence, exactly one of u_1 and u_2 belongs to the set I. By symmetry, we may assume that $u_1 \in I$, and so $N_H(u_1) = \{v_1, u_2\} \subseteq T$. In order to totally dominate the vertex u_2 , the vertex v_2 belongs to the set T. In order to dominate the vertex v_2 , a neighbor of v_2 , say x_2 , belongs to the set I.

Since the partner v_1 of v_2 belongs to the set T, we note that $x_2 \in V(G_2)$ and that its partner x_1 belongs to $V(G_1)$. Let y_i be the neighbor of x_i of degree 1 in the corona graph G_i for $i \in \{1, 2\}$, and so y_1 and y_2 are partners in H and both have degree 2 in H. Moreover, $x_1x_2y_2y_1x_1$ is an induced 4-cycle in the prism H. Since $x_2 \in I$, the neighbors x_1 and y_2 of x_2 belong to the set T. Thus, $N_H(y_1) = \{x_1, y_2\} \subset T$, implying that $y_1 \in I$ in order for the set I to dominate the vertex y_1 . But then $N_H(y_2) = \{x_2, y_1\} \subset I$, and so the set T does not totally dominate the vertex y_2 , a contradiction. Hence, the prism $H = (G' \circ K_1) \Box K_2$ is not a TI-graph. \Box

For $k \geq 3$, let H_k be obtained from a complete graph K_k by adding for each vertex v in the complete graph a 5-cycle C_v and adding an edge from v to exactly one vertex in C_v . The graph H_4 , for example, is illustrated in Figure 12.

Figure 12: The graph H_4

Proposition 5.7 For $k \geq 3$, the prism $H_k \Box K_2$ is not a TI-graph.

Proof. For $k \geq 3$, let $G = H_k$ and H be the prism $G \square K_2$. Using the labelling notation previously described, let G_1 and G_2 be the two disjoint copies of G in the

prism H. Suppose, to the contrary, that H contains a TDID-partition $\{I, T\}$ where I is an ID-set of H and T is a TD-set of H. Let u_1 be an arbitrary vertex in G_1 that belongs to the complete graph K_k in G_1 , and let $Q_1: v_1w_1x_1y_1z_1v_1$ be the 5-cycle added to the vertex u_1 in the complete graph when constructing G_1 , where u_1v_1 is the edge added from u_1 to a vertex of Q_1 in G_1 . Then u_2, v_2, w_2, x_2, y_2 , and z_2 are the partners of the vertices u_1, v_1, w_1, x_1, y_1 , and z_1 , respectively, in the prism H. Thus, the graph F shown in Figure 13 is a subgraph of the prism H. We note that if v is a vertex of F different from u_1 and u_2 , then the degree of v in F is equal to its degree in H.

Figure 13: A subgraph F of the prism $H_k \square K_2$

We proceed further with the following claim.

Claim 7 The set I contains one of u_1 and u_2 .

Proof. We show firstly that the ID-set I contains one of z_1 and z_2 . Suppose, to the contrary, that neither z_1 nor z_2 belongs to the set I. If neither y_1 nor y_2 belongs to the set I, then in order to dominate the vertices y_1 and y_2 , the set Icontains both x_1 and x_2 , contradicting the fact that I is an independent set. Hence, I contains one of y_1 and y_2 . By symmetry, we may assume that $y_1 \in I$, implying that $\{x_1, y_2\} \subseteq T$. In order to dominate the vertex z_2 , we have $v_2 \in I$. Thus, $N_H(v_2) \subseteq T$, implying in particular that $\{v_1, w_2\} \subset T$. Thus, $N_H(w_1) = \{v_1, w_2, x_1\} \subset T$ and $N_H(x_2) = \{w_2, x_1, y_2\} \subset T$. In order to dominate the vertices w_1 and x_2 , the set Icontains both these two vertices. But then $N_H(x_1) = \{w_1, x_2, y_1\} \subset I$, and so the vertex x_1 is not totally dominated by the set T, a contradiction. Hence, the ID-set I contains one of z_1 and z_2 .

Suppose that $z_1 \in I$. Hence, $N_H(z_1) = \{v_1, y_1, z_2\} \subseteq T$. If $y_2 \in I$, then the vertex $x_2 \in T$. Moreover, in this case the set T contains the vertex v_2 in order to totally dominate the vertex z_2 , and the set T contains the vertex x_1 in order to totally dominate the vertex y_1 . This in turn implies that the set I contains the vertex w_1 in order to dominate the vertex x_1 . Thus, $w_2 \in T$. Since $\{v_1, v_2, w_2\} \subset T$, the set I contains the vertex u_2 in order to dominate the vertex v_2 . If $y_2 \notin I$, then the set I contains the vertex x_2 in order to dominate the vertex y_2 . Therefore, the neighbors of x_2 belong to the set T, and so $\{x_1, w_2\} \subset T$. Hence, $N_H(w_1) = \{v_1, w_2, x_1\} \subset T$, and so the set I contains w_1 in order to dominate the vertex w_1 . This in turn implies that the set T contains v_2 in order to dominate the vertex w_2 . Since

 $\{v_1, v_2, w_2\} \subset T$, the set I contains the vertex u_2 in order to dominate the vertex v_2 . Therefore, we have shown that if $z_1 \in I$, then the set I contains the vertex u_2 . By symmetry, if $z_2 \in I$, then the set I contains the vertex u_1 . (D)

We now return to the proof of Proposition 5.7. Let X_i be the clique of size k in G_i , and so the set X_i induces a complete graph K_k in G_i for $i \in \{1, 2\}$. Let u_1 be an arbitrary vertex in the clique X_1 . Then, u_2 is the partner of u_1 , the vertex u_2 belongs to the clique X_2 , and u_1u_2 is an edge of H. By Claim 7, the set I contains one of u_1 and u_2 . This is true for every vertex that belongs to X_1 and its partner that belongs to X_2 . Thus, since $k \geq 3$, the set I contains at least $\lceil k/2 \rceil \geq 2$ vertices that belong the clique K_k in G_1 or the clique K_k in G_2 . Hence, the independent set I contains at least two adjacent vertices, a contradiction. Therefore, for $k \geq 3$ and $G = H_k$, the prism $H = G \Box K_2$ is not a TI-graph. \Box

By Propositions 5.6 and 5.7, there exists an infinite family of connected graphs G with minimum degree $\delta(G) = 1$ and $\delta(G) = 2$, respectively, such that the prism $G \square K_2$ is not a TI-graph.

6 Concluding remarks and open problems

In this paper we characterize the graphs G such that at least one of G and its complement \overline{G} is a TI-graph. As an application of this characterization, we show that the complementary prism of every nontrivial graph is a TI-graph, unless it is one of the two complementary prisms G_1 and G_2 shown in Figure 2. It remains, however, an open problem to characterize the (connected) graphs G for which the prism $G \square K_2$ a TI-graph. Among other results, we show that there are infinitely many graphs G for which the prism $G \square K_2$ is not a TI-graph, and there are infinitely many graphs G for which the prism $G \square K_2$ is a TI-graph.

References

- A. Alhashim, W. J. Desormeaux and T. W. Haynes, Roman domination in complementary prisms, Australas. J. Combin. 68 (2017), 218–228.
- [2] V. Aytaç and Z.N. Berberler, Average independent domination in complementary prisms, Bull. Int. Math. Virtual Inst. 10 (2020), 157–164.
- [3] V. Aytaç and C. Erkal, Independent transversal domination number in complementary prisms, *Honam Math. J.* 43 (2021), 17–25.
- [4] J. Azarija, M. A. Henning and S. Klavžar, (Total) domination in prisms, *Electron. J. Combin.* 24 (2017), #P1.19.
- [5] Z. N. Berberler and M. E. Berberler, Independent strong domination in complementary prisms, *Electron. J. Graph Theory Appl.* 8 (2020), 1–8.

- [6] A. P. Burger, C. M. Mynhardt and W. D. Weakley, On the domination number of prisms of graphs, *Discuss. Math. Graph Theory* 24 (2004), 303–318.
- [7] P. Delgado, W. J. Desormeaux and T. W. Haynes, Partitioning the vertices of a graph into a total dominating set and an independent dominating set, Ars Combin. 144 (2019), 367–379.
- [8] W. J. Desormeaux and M. A. Henning, Paired domination in graphs: A survey and recent results, Utilitas Mathematica 94 (2014), 101–166.
- [9] W. Goddard and M. A. Henning, A note on domination and total domination in prisms, J. Combin. Optim. 35 (2018), 14–20.
- [10] T. W. Haynes, S. T. Hedetniemi and M. A. Henning (Eds), Topics in Domination in Graphs, Series: Developments in Mathematics, Vol. 64, Springer, Cham, 2020. viii + 545 pp.
- [11] T. W. Haynes, S. T. Hedetniemi and M. A. Henning (Eds), Structures of Domination in Graphs, Series: Developments in Mathematics, Vol. 66, Springer, Cham, 2021. viii + 536 pp.
- [12] T. W. Haynes, S. T. Hedetniemi and M. A. Henning, *Domination in Graphs: Core Concepts*, Series: Springer Monographs in Mathematics, Springer, Cham, 2023. xx + 644 pp.
- [13] T. W. Haynes, M. A. Henning, P. J. Slater and L. C. van der Merwe, The complementary product of two graphsr, *Bull. Inst. Comb. Appl.* 51 (2007) 21–30.
- [14] T. W. Haynes, M. A. Henning and L. C. van der Merwe, Domination and total domination in complementary prisms, J. Comb. Optim. 18(1) (2009), 23–37.
- [15] M. A. Henning and J. Southey, A note on graphs with disjoint dominating and total dominating sets, Ars Combin. 89 (2008), 159–162.
- [16] M. A. Henning and J. Southey, A characterization of graphs with disjoint dominating and total dominating sets, *Quaest. Math.* **32** (1) (2009), 119–129.
- [17] M. A. Henning and A. Yeo, *Total domination in graphs*, Series: Springer Monographs in Mathematics, Springer, Cham, New York, 2013. xiv + 178 pp.
- [18] C. M. Mynhardt and M. Schurch, Paired domination in prisms of graphs, Discuss. Math. Graph Theory 31 (2011), 5–23.
- [19] C. M. Mynhardt and Z. Xu, Domination in prisms of graphs: universal fixers, Util. Math. 78 (2009), 185–201.
- [20] O. Ore, *Theory of Graphs*, Amer. Math. Soc. Colloq. Pub., Providence, RI. **38** (1962).
- [21] M. Rosicka, Convex and weakly convex domination in prism graphs, Discuss. Math. Graph Theory 39 (2019), 741–755.
- [22] A. Tepeh, Total domination in generalized prisms and a new domination invariant, Discuss. Math. Graph Theory 41 (2021), 1165–1178.

(Received 1 Aug 2023; revised 22 Feb 2024)