Partitioning the vertices of a graph or its complement into a total dominating set and an independent dominating set

Michael A. Henning*
Department of Mathematics and Applied Mathematics
University of Johannesburg
Auckland Park, 2006 South Africa
mahenning@uj.ac.za

Abstract

A graph G whose vertex set can be partitioned into a total dominating set and an independent dominating set is called a TI-graph. There exist infinite families of graphs that are not TI-graphs. We show that, with a few exceptions, every graph or its complement is a TI-graph. From this result, it follows that with the exception of the cycle on five vertices, every nontrivial, self-complementary graph is a TI-graph. We also characterize the complementary prisms which are TI-graphs and explore such partitions in prisms.

1 Introduction

We study graphs whose vertex set can be partitioned into a total dominating set and an independent dominating set. We begin with some basic definitions. Let G be a graph with vertex set $V=V(G)$, edge set $E=E(G)$, and order $n=|V|$. Let \bar{G} denote the complement of G. The open neighborhood $N_{G}(v)$ of a vertex $v \in V$ is the

[^0]set of vertices adjacent to v, and its closed neighborhood is $N_{G}[v]=N_{G}(v) \cup\{v\}$. The open neighborhood of a set $S \subseteq V$ is $N_{G}(S)=\bigcup_{v \in S} N_{G}(v)$, while the closed neighborhood of a set $S \subseteq V$ is the set $N_{G}[S]=\bigcup_{v \in S} N_{G}[v]$. Two vertices are neighbors if they are adjacent. The degree of a vertex v is $\operatorname{deg}_{G}(v)=\left|N_{G}(v)\right|$. The minimum and maximum degrees of a vertex in a graph G are denoted $\delta(G)$ and $\Delta(G)$, respectively. An isolated vertex in G is a vertex of degree 0 in G. An isolate-free graph is a graph which contains no isolated vertex. A trivial graph is the graph of order 1, and a nontrivial graph has order at least 2. A self-complementary graph is a graph which is isomorphic to its complement. If G is clear from the context, then we will use $N(v), N[v], N[S], N(S)$ and $\operatorname{deg}(v)$ in place of $N_{G}(v), N_{G}[v], N_{G}[S], N_{G}(S)$ and $\operatorname{deg}_{G}(v)$, respectively.

The subgraph of G induced by a set $S \subseteq V$ is denoted by $G[S]$. A set S is a dominating set of a graph G if $N[S]=V$, that is, every vertex in $V \backslash S$ is adjacent to at least one vertex in S. The minimum cardinality of a dominating set in a graph G is the domination number of G and is denoted by $\gamma(G)$. A universal vertex in a graph G of order n, also called a dominating vertex in the literature, is a vertex v adjacent to every other vertex of G, and so $\operatorname{deg}(v)=n-1$. A dominating set S is a total dominating set, abbreviated TD-set, of an isolate-free graph G if $G[S]$ has no isolated vertices, that is, $N(S)=V$. If X and Y are sets of vertices in G, where possibly $X=Y$, then the set X totally dominates the set Y if every vertex in Y has a neighbor in X. A dominating set S is an independent dominating set, abbreviated ID-set, of G if S is an independent set in G, that is, $G[S]$ consists of isolated vertices. The independent domination number $i(G)$ is the minimum cardinality of a ID-set of G and an ID-set of cardinality $i(G)$ is called an i-set of G. For other graph theory terminology not defined herein, the reader is referred to [12], and for other recent books on domination in graphs, we refer the reader to $[10,11,17]$.

2 Motivation and known results

The following classic 1962 result by Ore showed that for any isolate-free graph, its vertex set can be partitioned into two dominating sets.

Theorem 2.1 ([20]) If G is an isolate-free graph and S is a minimal dominating set of G, then $V \backslash S$ is a dominating set.

A natural question is which graphs can be partitioned into two types of dominating sets. Let C_{n} denote the cycle on n vertices. Note that the cycle C_{5} cannot be partitioned into a dominating set and a TD-set. Graphs having such a partition were studied in $[15,16]$. Henning and Southey [15] established the following sufficient condition for graphs whose vertex set can be partitioned into a dominating set and a TD-set. An F-component of a graph G is a component of G that is isomorphic to F.

Theorem 2.2 ([15]) If G is a graph with $\delta(G) \geq 2$ and no C_{5}-component, then the vertices of G can be partitioned into a dominating set and a total dominating set.

In 2019 Delgado, Desormeaux, and Haynes [7] studied graphs whose vertex set can be partitioned into a TD-set and an ID-set, which is the problem we consider in this paper. We refer to such a partition of the vertices of a graph G as a TDIDpartition of G. If G has a TDID-partition, then we say that G is a TI-graph. We remark that if a graph G is a TI-graph, then every TD-set of G contains at least two vertices from every component of G and every ID-set of G contains at least one vertex from every component of G, implying that every component of G has order at least 3. In particular, if G is connected, then G has order at least 3. Not all graphs are TI-graphs as can be easily seen with the cycle C_{5} and the path P_{5}. The paths and cycles having a TDID-partition were determined in [7].

Proposition 2.1 ([7]) The following hold.
(a) A cycle C_{n} is a TI-graph if and only if $n \equiv 0(\bmod 3)$.
(b) A nontrivial path P_{n} is a TI-graph if and only if $n \equiv 1(\bmod 3)$.

A constructive characterization of TI-trees is given in [7], as well as a characterization of the TI-graphs of diameter 2.

Proposition 2.2 ([7]) A graph G of diameter 2 is a TI-graph if and only if G has a maximal independent set that is not the open neighborhood of some vertex.

Several sufficient conditions for a graph to be a TI-graph were also given in [7].
Theorem 2.3 ([7]) Let G be a graph of order n and minimum degree $\delta(G)$, and let \bar{G} be the complement of G. If any of the following conditions holds, then G is a TI-graph:
(a) $\delta(G)>\frac{1}{2} n$.
(b) $\gamma(\bar{G}) \geq 3$.
(c) G is claw-free and $\delta(G) \geq 3$.
(d) $i(G)<\delta(G)$.

In general, characterizing TI-graphs seems to be a challenging problem. Delgado et al. [7] claimed that with the exception of a few graphs, every graph or its complement is a TI-graph. Unfortunately, their result is missing a case and thus is incorrect. One main aim of this paper is to correct this and to characterize the graphs G for which at least one of G or \bar{G} is a TI-graph. Other goals are to characterize the complementary prisms which are TI-graphs and investigate TDID-partitions in prisms.

3 Graphs and their complements

In this section we characterize the graphs G such that at least one of G and its complement \bar{G} is a TI-graph. We show that unless a graph G or its complement \bar{G} is in a given family of graphs, then G or \bar{G} has a TDID-partition.

Definition 3.1 Let \mathcal{A} be the family that consist of the following graphs:

- the trivial graph K_{1},
- the cycle C_{5},
- the complete bipartite graphs $K_{r, s}$ for $r \in\{1,2\}$ and $r \leq s$, and
- the disjoint union $K_{r} \cup K_{s}$ for $r \in\{1,2\}$ and $r \leq s$.

We first show that no graph in the family \mathcal{A} is a TI-graph.
Proposition 3.1 If $G \in \mathcal{A}$, then neither G nor its complement \bar{G} is a TI-graph.

Proof. Let $G \in \mathcal{A}$. By our earlier observations, every TI-graph has order at least 3. Thus, if $G=K_{1}$, then G is not a TI-graph. If $G=C_{5}$, then every TDset in G contains at least three consecutive vertices of the cycle, and therefore its vertex set cannot be partitioned into a TD-set and an ID-set. Since the 5 -cycle is self-complementary, we have $G \cong \bar{G}=C_{5}$ and therefore infer that \bar{G} has no TDIDpartition. Further, since the only ID-set of a bipartite graph $K_{r, s}$, for $1 \leq r \leq s$, is one of its partite sets and the remaining partite set is not a TD-set, the graph $K_{r, s}$ is not a TI-graph. Moreover the complement of $K_{r, s}$ is the graph $K_{r} \cup K_{s}$. As observed earlier, every component of a TI-graph has order at least 3 . Hence if $r \in\{1,2\}$, then $K_{r} \cup K_{s}$ has a component of order at most 2, and is therefore not a TI-graph.

We next present a characterization of the graphs G such that at least one of G and its complement \bar{G} is a TI-graph.

Theorem 3.1 At least one of a graph G and its complement \bar{G} is a TI-graph if and only if $G \notin \mathcal{A}$.

Proof. By Proposition 3.1, if $G \in \mathcal{A}$, then neither G nor \bar{G} is a TI-graph. Thus, it remains to show that if $G \notin \mathcal{A}$, then G or \bar{G} is a TI-graph. Assume that G is a graph of order n and $G \notin \mathcal{A}$. Thus, $\bar{G} \notin \mathcal{A}$ since K_{1} and C_{5} are self-complementary, and $K_{r, s}$ and $K_{r} \cup K_{s}$ are complements. Since $G \notin \mathcal{A}$ and $\bar{G} \notin \mathcal{A}$, it follows that G has order $n \geq 3$. We proceed by a series of claims.

Claim 1 If G has a complete component, then G or \bar{G} is a TI-graph.
Proof. Assume that G has a complete component $F \cong K_{k}$ for some $k \geq 1$. If G is the complete graph, that is, $G=F$, then since $n \geq 3$, the sets $I=\{x\}$ for any
vertex x of G and $T=V(G) \backslash I$ form a TDID－partition of G ．Thus，G is a TI－graph． Hence，we may assume that G is not complete．

Let X be the set of vertices in the complete component F ，and so $F=G[X]$ ．Let $Y=V(G) \backslash X$ ．Since G is not a complete graph，the set $Y \neq \emptyset$ ．In the complement \bar{G} ，we note that X is an independent set and $[X, Y]$ is full，that is，every vertex in X is adjacent to every vertex Y in \bar{G} ．Since $\bar{G} \notin \mathcal{A}$ ，we have that $\bar{G} \neq K_{r, s}$ for $r \leq s$ and $r \in\{1,2\}$ ．Hence，either \bar{G} is the graph $K_{r, s}$ for $3 \leq r \leq s$ ，or the subgraph $\bar{G}[Y]$ of \bar{G} induced by the set Y has at least one edge．If $\bar{G}=K_{r, s}$ for $3 \leq r \leq s$ ， then $G=K_{r} \cup K_{s}$ for $3 \leq r \leq s$ and G is a TI－graph．

Thus，we may assume that the subgraph $\bar{G}[Y]$ has at least one edge．Let I be a maximal independent set of $\bar{G}[Y]$ ，and let $T=V(\bar{G}) \backslash I$ ．Note that $I \subset Y,|I|<|Y|$ ， and so $|T| \geq 2$ ．By our previous observations，every vertex in $V(\bar{G}) \backslash X$ is adjacent to a vertex in X in \bar{G} ．Hence， $\bar{G}[T]$ is isolate－free．Since every superset of a dominating set is a dominating set，and since $X \subset T$ ，we therefore infer that T is a TD－set of \bar{G} ．Thus，T and I is a partition of the vertex set of \bar{G} into a TD－set and an ID－set， respectively．Hence， \bar{G} is a TI－graph．（口）

By Claim 1，we may assume that G has no complete component，for otherwise the result holds．In particular，we may assume that G has no isolated vertex，that is，$\delta(G) \geq 1$ ．Similarly，$\delta(\bar{G}) \geq 1$ ．Since neither G nor \bar{G} has an isolated vertex， it follows that $n \geq 4$ ．Further，since G has no isolated vertex，the graph \bar{G} has no universal vertex and so $i(\bar{G}) \geq \gamma(\bar{G}) \geq 2$ ．Similarly，$i(G) \geq \gamma(G) \geq 2$ ．

Claim 2 If $i(\bar{G}) \geq 3$ ，then G is a TI－graph．
Proof．Assume that $i(\bar{G}) \geq 3$ ．Consider the graph G ，and let I be any i－set of G ． Since $\delta(G) \geq 1$ ，every vertex in I has a neighbor in $V \backslash I$ ，that is，$V \backslash I$ is a dominating set of G ．Suppose that $V \backslash I$ is not a TD－set of G ．In this case，there exists a vertex $v \in V \backslash I$ such that v is an isolated vertex in $G[V \backslash I]$ ，that is，$N_{G}(v) \subseteq I$ ．But then the set $\{u, v\}$ ，where $u \in N_{G}(v) \cap I$ ，is an ID－set of \bar{G} ，and so，$i(\bar{G}) \leq|\{u, v\}|=2$ ， contradicting our supposition that $i(\bar{G}) \geq 3$ ．Hence，$V \backslash I$ is a TD－set of G ，and so $V \backslash I$ and I is a partition of the vertex set of G into a TD－set and an ID－set， respectively．Thus，G is a TI－graph．（ロ）

By Claim 2，we may assume that $i(\bar{G}) \leq 2$ ，for otherwise the desired result holds． Thus，Claim 1 implies that $i(\bar{G})=2$ ．Similarly，$i(G)=2$ ．

Claim 3 If $\delta(G) \geq 3$ ，then G is a TI－graph．
Proof．Assume that $\delta(G) \geq 3$ ，and let I be any i－set of G ．Thus，$|I|=i(G)=2$ ． Since $\delta(G) \geq 3$ ，every vertex in G has a neighbor in $V \backslash I$ ，implying that $V \backslash I$ is a TD－set of G ，and so G is a TI－graph．（ロ）

By Claims 1 and 3，we may assume that $\delta(G) \in\{1,2\}$ and $\delta(\bar{G}) \in\{1,2\}$ ，for otherwise the result holds．Let $\{a, b\}$ be an i－set of G ．Since $\delta(G) \geq 1$ ，the set
$V \backslash\{a, b\}$ is a dominating set of G. If $G^{\prime}=G-\{a, b\}$ is an isolate-free graph, then $V \backslash\{a, b\}$ is a TD-set of G, and so G is a TI-graph. Thus, we may assume further that there exists a vertex $x \in V \backslash\{a, b\}$ such that $N_{G}(x) \subseteq\{a, b\}$. We use this terminology as we continue proving three more claims.

Claim 4 If $\delta(G)=\delta(\bar{G})=2$, then G or \bar{G} is a TI-graph.
Proof. Assume that $\delta(G)=\delta(\bar{G})=2$. Since $\delta(G)=2$ and $N_{G}(x) \subseteq\{a, b\}$, we have $N_{G}(x)=\{a, b\}$. Each of $\{a, x\}$ and $\{b, x\}$ is therefore an ID-set in the graph \bar{G}. If $V \backslash\{a, x\}$ or $V \backslash\{b, x\}$ is a TD-set of \bar{G}, then \bar{G} is a TI-graph and the result holds. Hence, we may assume that there is a vertex $w \in V \backslash\{a, x\}$ such that $N_{\bar{G}}(w) \subseteq\{a, x\}$ and a vertex $y \in V \backslash\{b, x\}$ such that $N_{\bar{G}}(y) \subseteq\{b, x\}$. Since $\delta(G)=\delta(\bar{G})=2$, it follows that $N_{\bar{G}}(w)=\{a, x\}$ and $N_{\bar{G}}(y)=\{b, x\}$, and so $w \neq y$. Thus, abyxwa is an induced 5 -cycle in \bar{G}.

If $n=5$, then $\bar{G}=G=C_{5} \in \mathcal{A}$, a contradiction. Thus, $n \geq 6$. Since the vertex w is adjacent in G to every vertex except for the vertices a and x, and since the vertex a is adjacent in G to x, the set $I=\{a, w\}$ is an ID-set of G. Analogously, the set $\{b, y\}$ is an ID-set of G. In particular, $\{b, y\}$ is a dominating set of G. Let $T=V(G) \backslash I$. Since every superset of a dominating set is a dominating set and since $\{b, y\} \subset T$, the set T is a dominating set of G. Moreover, since the vertex y is adjacent in G to every vertex except for the vertices b and x, and since the vertex b is adjacent in G to x, the subgraph of G induced by the set T is isolate-free. Hence, the set T is a TD-set of G. Therefore, T and I is a partition of the vertex set of G into a TD-set and an ID-set, respectively. Thus, G is a TI-graph. (ロ)

By Claim 4, we may assume that $\delta(G)=1$ or $\delta(\bar{G})=1$. Without loss of generality, assume that $\delta(G)=1$ and $\delta(\bar{G}) \in\{1,2\}$.

Claim 5 If $N_{G}(x)=\{a, b\}$, then G or \bar{G} is a TI-graph.
Proof. Let $N_{G}(x)=\{a, b\}$. Since $\delta(G)=1$, there exist a vertex $w \in V \backslash\{x\}$ such that $\operatorname{deg}_{G}(w)=1$. First suppose that $w=a$. Then since $\{a, b\}$ is an ID-set of G, the vertex b dominates $V \backslash\{a\}$. Recall by our earlier assumptions that $n \geq 4$, and so $V \backslash\{a, b, x\} \neq \emptyset$. Let $G_{b}=G-\{a, b, x\}$ and let I_{b} be an ID-set of G_{b}. In particular, we note that $b \notin I_{b}$. The set $I_{b} \cup\{a\}$ is an ID-set of G and $V(G) \backslash\left(I_{b} \cup\{a\}\right)$ is a TD-set of G (that contains both vertices b and x). Thus, G is a TI-graph. Hence, we may assume that $w \neq a$ and similarly, $w \neq b$, for otherwise the result holds. Thus, $\operatorname{deg}_{G}(a) \geq 2$ and $\operatorname{deg}_{G}(b) \geq 2$. Therefore, $w \in V \backslash\{a, b, x\}$ and since $\{a, b\}$ is an ID-set, the neighbor of w is either a or b, say a. But now $\{a, x\}$ is an ID-set of \bar{G} and $V(\bar{G}) \backslash\{a, x\}$ is a TD-set of \bar{G}. Hence, \bar{G} is a TI-graph. (口)

By Claim 5, we may assume that x is adjacent to exactly one of a and b in G, and so, $\operatorname{deg}_{G}(x)=1$. Without loss of generality, let x be adjacent to a. Since $\delta(G)=1$, vertex b has a neighbor in $V \backslash\{a, b, x\}$. Furthermore, since by Claim 1 the graph G has no complete component, it follows that a has a neighbor in $V \backslash\{a, b, x\}$ and
$\operatorname{deg}_{G}(a) \geq 2$. As before, $\{a, x\}$ is an ID-set of \bar{G} and $V \backslash\{a, x\}$ is a dominating set of \bar{G}. If $V \backslash\{a, x\}$ is a TD-set of \bar{G}, then the result holds. Thus, assume that there is a vertex $y \in V \backslash\{a, x\}$ such that $N_{\bar{G}}(y) \subseteq\{a, x\}$.

Claim 6 If $y=b$, then G or \bar{G} is a TI-graph.
Proof. Suppose that $y=b$. This implies that the vertex b is adjacent in G to every vertex different from a and x, that is, $N_{G}(b)=V \backslash\{a, b, x\}$. By the structure of the graph G, the set $\{b, x\}$ is an ID-set of G and the set $V \backslash\{b, x\}$ is a dominating set of G. If $V \backslash\{b, x\}$ is a TD-set of G, then G is a TI-graph and the result holds. Thus, assume that $V \backslash\{b, x\}$ is not a TD-set of G, that is, there exists a vertex $z \in V \backslash\{b, x\}$ such that $N_{G}(z) \subseteq\{b, x\}$. Since $\operatorname{deg}_{G}(a) \geq 2$ and a is not adjacent to b in G, we note that $a \neq z$, and so $N_{G}(z)=\{b\}$.

Let a^{\prime} be a neighbor of a in G different from x. We note that $a^{\prime} \notin\{b, x, z\}$, implying that G has order at least 5 , that is, $n \geq 5$. The set $\{b, z\}$ is an ID-set of \bar{G} and the set $V \backslash\{b, z\}$ is a dominating set of \bar{G}. Let $S=V \backslash\{b, z\}$. If S is a TD-set of \bar{G}, then again \bar{G} is a TI-graph and the result holds. Hence, we assume that S is not a TD-set of \bar{G}. Since x is adjacent to every vertex in \bar{G} except vertex a and since $n \geq 5$, the only possible vertex that is isolated in the subgraph $\bar{G}[S]$ of \bar{G} induced by the set S is the vertex a. But then $\{a, z\}$ is an ID-set of G. Let $W=V \backslash\{a, b, x, z\}$. By our earlier observations, every vertex in W is adjacent in G to both the vertex a and the vertex b. If there is an edge in $G[W]$, then let I_{W} be an ID-set of $G[W]$. In this case, $I_{W} \cup\{x, z\}$ is an ID-set of G and $V \backslash\left(I_{W} \cup\{x, z\}\right)$ is a TD-set of G, and so G is a TI-graph. If there is no an edge in $G[W]$, then $V \backslash\{a, b\}$ is a clique in \bar{G}. In this case, $\left\{a, a^{\prime}\right\}$ is an ID-set of \bar{G} and $V \backslash\left\{a, a^{\prime}\right\}$ is a TD-set of \bar{G}. Hence, \bar{G} is a TI-graph and the result holds. (■)

By Claim 6, we may assume that $y \neq b$, for otherwise the desired result follows. Let b^{\prime} be a neighbor of b in \bar{G} different from a and x. By assumption, $y \neq b^{\prime}$. We note that y is adjacent to x in \bar{G}. However, y may or may not be adjacent to a in \bar{G}. The vertex b^{\prime} is not adjacent in G to the vertex b. Since $\{a, b\}$ is an ID-set of G, vertex b^{\prime} is therefore adjacent to vertex a. Furthermore, vertex y dominates $V \backslash\{a, x\}$ in G. Thus, $\{x, y\}$ is an ID-set of G, and $V \backslash\{x, y\}$ is a dominating set of G.

If $V \backslash\{x, y\}$ is a TD-set of G, then G is a TI-graph and the result holds. Thus, assume that there exists a vertex $z \in V \backslash\{x, y\}$ such that $N_{G}(z) \subseteq\{x, y\}$. Since $\{a, b\} \subset V \backslash\{x, y\}$, every vertex in $V \backslash\{a, b\}$ has a neighbor in $\{a, b\}$, and a is adjacent to b^{\prime}, we infer that $z=b$ and $N_{G}(b)=\{y\}$. Hence, in the graph G, the vertex a dominates $V \backslash\{b, y\}$, the vertex y dominates $V \backslash\{a, x\}$, and possibly a is adjacent to y.

Let $R=\{a, b, x, y\}$ and let $G_{R}=G-R$. Let I be an ID-set of G_{R}. If a is adjacent to y in G or if $V \backslash(I \cup R) \neq \emptyset$, then $I \cup\{b, x\}$ is an ID-set of G and $V \backslash(I \cup\{b, x\})$ is a TD-set of G. If a is not adjacent to y in G and $V \backslash(I \cup R)=\emptyset$, then $V \backslash R$ is an independent set of vertices in G, and so $\bar{G}[V \backslash R]$ is a clique. From the structure of the graph \bar{G}, we infer that $\left\{y, b^{\prime}\right\}$ is an i-set of \bar{G} and $V \backslash\left\{y, b^{\prime}\right\}$ is a TD-set of \bar{G}. Hence, \bar{G} is a TI-graph. This completes the proof of Theorem 3.1.

Since the trivial graph K_{1} and the cycle C_{5} are the only self-complementary graphs in \mathcal{A}, the following result is an immediate consequence of Theorem 3.1.

Corollary 3.1 Every nontrivial, self-complementary graph different from the 5-cycle is a TI-graph.

4 Complementary prisms

Let G be a graph and \bar{G} its complement. For every vertex $v \in V(G)$, we denote $\bar{v} \in V(\bar{G})$ as its corresponding vertex, and for a set $X \subseteq V(G)$, let \bar{X} denote the corresponding set of vertices in $V(\bar{G})$. A variation of the prism, called a complementary prism, was introduced in [13] as follows, and is studied, for example, in $[2,3,5,14]$ and elsewhere.

For a graph G with vertex set $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$ and edge set $E(G)$, the complementary prism of G is the graph, denoted by $G \bar{G}$, with vertex set $V(G \bar{G})=$ $\left\{v_{1}, \ldots, v_{n}\right\} \cup\left\{\bar{v}_{1}, \ldots, \bar{v}_{n}\right\}$ and edge set $E(G \bar{G})=E(G) \cup E(\bar{G}) \cup\left\{v_{1} \bar{v}_{1}, \ldots, v_{n} \bar{v}_{n}\right\}$. Thus, $G \bar{G}$ is constructed from $G \cup \bar{G}$ by adding a perfect matching between the vertices of G and the corresponding vertices of \bar{G}.

For example, if G is the 5 -cycle given by $v_{1} v_{2} v_{3} v_{4} v_{5} v_{1}$, then the complementary prism $G \bar{G}$ is the Petersen graph $P(5,2)$ illustrated in Figure 1. We observe that the shaded vertices in Figure 1 form an independent set in G and the white vertices form a TD-set in G. Moreover, these two sets partition the set $V(G)$, thereby forming a TDID-partition of G. Thus, the complementary prism $C_{5} \bar{C}_{5}$ of a 5 -cycle is the Petersen graph, which is a TI-graph.

Figure 1: The complementary prism $C_{5} \bar{C}_{5}$ of a 5 -cycle C_{5}

Since by Theorem 3.1, if $G \notin \mathcal{A}$, then G or \bar{G} is a TI-graph, it seems logical to next consider for which graphs G is the complementary prism $G \bar{G}$ a TI-graph. Let G_{1} be the complementary prism of the path $v_{1} v_{2} v_{3}$, and let G_{2} be the complementary prism of the 4 -cycle $v_{1} v_{2} v_{3} v_{4} v_{1}$. The graphs G_{1} and G_{2} are illustrated in Figure 2(a) and $2(\mathrm{~b})$, respectively. We shall show that with the exception of these two complementary prisms, G_{1} and G_{2}, every complementary prism of a nontrivial graph is a TI-graph. We show firstly that neither G_{1} nor G_{2} is a TI-graph.

(a) G_{1}

(b) G_{2}

Figure 2: The complementary prisms G_{1} and G_{2}

Proposition 4.1 The complementary prisms G_{1} and G_{2} shown in Figure 2 are not TI-graphs.

Proof. We consider firstly the complementary prism G_{1} of the path P_{3} given by $v_{1} v_{2} v_{3}$ as shown in Figure 2(a). Suppose, to the contrary, that G_{1} contains a TDIDpartition $\{I, T\}$ where I is an ID-set of G_{1} and T is a TD-set of G_{1}. In order to totally dominate the vertex \bar{v}_{2}, the TD-set T contains the vertex v_{2}. Thus, in order to dominate the vertex \bar{v}_{2}, the ID-set I contains the vertex \bar{v}_{2}. In order to totally dominate the vertex v_{2}, at least one of v_{1} and v_{3} belongs to the set T. By symmetry, we may assume that $v_{1} \in T$. It follows that $\bar{v}_{1} \in I$ in order for the ID-set I to dominate the vertex v_{1}. Since I is an independent set, this in turn implies that $\bar{v}_{3} \in T$. In order to totally dominate the vertex \bar{v}_{3}, we infer that $v_{3} \in T$. However, v_{3} is not dominated by I, a contradiction. Hence, G_{1} is not a TI-graph.

Next we consider the complementary prism G_{2} of the 4 -cycle C_{4} given by $v_{1} v_{2} v_{3} v_{4} v_{1}$ as shown in Figure 2(b). Suppose, to the contrary, that G_{2} contains a TDID-partition $\{I, T\}$ where I is an ID-set of G_{2} and T is a TD-set of G_{2}. Let $X=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ and let $\bar{X}=\left\{\bar{v}_{1}, \bar{v}_{2}, \bar{v}_{3}, \bar{v}_{4}\right\}$, and so $V\left(G_{2}\right)=X \cup \bar{X}$. If $X \subseteq T$, then in order to dominate the vertices in X, we must have $\bar{X} \subseteq I$. However, the resulting set I is then not an independent set, a contradiction. Hence, at least one vertex of X does not belong to the set T. By symmetry, and renaming vertices if necessary, we may assume that $v_{1} \notin T$, and so $v_{1} \in I$. Thus, $N\left(v_{1}\right)=\left\{\bar{v}_{1}, v_{2}, v_{4}\right\} \subseteq T$. In order to totally dominate the vertex \bar{v}_{1}, we infer that $\bar{v}_{3} \in T$. It follows that $v_{3} \in I$ in order for the ID-set I to dominate the vertex \bar{v}_{3}. This in turn implies that \bar{v}_{2} and \bar{v}_{4} belong to the set T in order for T to totally dominate v_{2} and v_{4}, respectively. But now the ID-set I dominates neither \bar{v}_{2} nor \bar{v}_{4}, a contradiction. Hence, G_{2} is not a TI-graph.

We proceed further with the following property of TI-graphs.
Lemma 4.1 If G is a TI-graph and G is not complete, then there exists a TDIDpartition $\{T, I\}$ of G with $T D$-set T and $I D$-set I such that $|I| \geq 2$.

Proof. Let G be a TI-graph different from the complete graph. Let $\{T, I\}$ be a TDID-partition of G with TD-set T and ID-set I. If $|I| \geq 2$, then the desired result
is immediate. Hence, we may assume that $|I|=1$, and so $i(G)=1$. Let $I=\{x\}$, and so the vertex x is a universal vertex of G. Since G is not complete, the set $T=V \backslash\{x\}$ has at least two non-adjacent vertices, say u and v. Let I^{\prime} be a maximal independent set of G containing the vertices u and v. Since x is adjacent to both u and v, we note that $x \notin I^{\prime}$. Since T is a TD-set of G, every vertex of G has a neighbor in T, and so $\left|T \backslash I^{\prime}\right| \geq 1$. Hence, I^{\prime} is an ID-set of G and $T^{\prime}=V \backslash I^{\prime}$ is a TD-set of G forming a TDID partition $\left\{T^{\prime}, I^{\prime}\right\}$ such that $\left|I^{\prime}\right| \geq 2$.

We are now in a position to show that the complementary prism of every nontrivial graph is a TI-graph, unless it is one of the two complementary prisms G_{1} and G_{2} shown in Figure 2.

Theorem 4.1 The complementary prism $G \bar{G}$ of a nontrivial graph G is a TI-graph if and only if $G \bar{G}$ is not one of the two graphs G_{1} and G_{2} shown in Figure 2.

Proof. Let G be a nontrivial graph. If $G \bar{G}$ is one of the two complementary prisms G_{1} and G_{2} shown in Figure 2, then, by Proposition 4.1, the complementary prism G is not a TI-graph. Suppose next that $G \bar{G}$ is not one of the two graphs G_{1} and G_{2} shown in Figure 2. Thus, G has order at least 2 and $G \notin\left\{P_{3}, C_{4}\right\}$.

Suppose that $G \notin \mathcal{A}$. By Theorem 3.1, at least one of G and \bar{G} is a TI-graph. Without loss of generality, we may assume that G is a TI-graph. In particular, G has order at least 3. If G is a complete graph, then the vertices of G form a TD-set of $G \bar{G}$ and the vertices of \bar{G} form an ID-set of $G \bar{G}$, implying that $G \bar{G}$ is a TI-graph. If G is not a complete graph, then by Lemma 4.1, there exists a TDID-partition $\{T, I\}$ of G, where T is a TD-set of G, I is an ID-set of G, and $|I| \geq 2$. We note that \bar{I} induces a complete graph in \bar{G}.

Let \bar{S} be an ID-set of the induced subgraph $\bar{G}[\bar{T}]$. We claim that $I^{*}=I \cup \bar{S}$ is an ID-set of $G \bar{G}$ and $T^{*}=V(G \bar{G}) \backslash(I \cup \bar{S})$ is a TD-set of $G \bar{G}$, that is, $G \bar{G}$ is a TI-graph. To see this, we note that I^{*} is independent, I dominates the vertices of $V(G) \cup \bar{I}$, and \bar{S} dominates the vertices of $\bar{T}=V(\bar{G}) \backslash \bar{I}$. Since T is a TD-set of G, the set T totally dominates the vertices of $V(G)$, and by construction of the complementary prism the set T totally dominates the vertices of \bar{T}. Further since $|\bar{I}| \geq 2$ and \bar{I} is a clique, the vertices of \bar{I} are totally dominated by \bar{I}. Hence, T^{*} is a TD-set of $G \bar{G}$. Thus, $G \bar{G}$ is a TI-graph, and therefore has order at least 4.

Next assume that $G \in \mathcal{A}$. Since $G \bar{G}$ has order at least 4, the graph G has order at least 2. In particular, $G \neq K_{1}$. If $G=C_{5}$, then $G \bar{G}$ is the Petersen graph, which by our earlier observations is a TI-graph. Suppose, therefore, that G or \bar{G}, say G, is a complete bipartite graph $K_{r, s}$ for some $r \in\{1,2\}$ and $r \leq s$. Suppose firstly that $r=1$, and so $G=K_{1, s}$ where $s \geq 1$. If $G=K_{1,1}$, then the complementary prism $G \bar{G}$ is a path P_{4}, which is a TI-graph. Hence, we may assume that $s \geq 2$. If $G=K_{1,2}$, then $G \bar{G}$ is the complementary prism G_{1} shown in Figure 2(a), a contradiction. Hence, $s \geq 3$. Let v_{1} be the center of the star and label the leaves of G by $v_{2}, \ldots v_{s+1}$. Then, $\bar{I}=\left\{\bar{v}_{1}, v_{2}, \ldots, v_{s}, \bar{v}_{s+1}\right\}$ is an ID-set of $G \bar{G}$ and $V(G \bar{G}) \backslash I$ is a TD-set of $G \bar{G}$, implying that $G \bar{G}$ is a TI-graph.

Suppose next that $r=2$, and so $G=K_{2, s}$ where $s \geq 2$. If $G=K_{2,2}=C_{4}$, then $G \bar{G}$ is the complementary prism G_{2} shown in Figure 2(b), a contradiction. Hence, $s \geq 3$. Let v_{1} and v_{2} be the vertices in the smaller partite set of G and label the vertices in the other partite set $v_{3}, v_{4}, \ldots, v_{s+2}$. Then $I=\left\{\bar{v}_{1}, v_{3}, v_{4} \ldots v_{s+1}, \bar{v}_{s+2}\right\}$ is an ID-set of $G \bar{G}$ and $V(G \bar{G}) \backslash I$ is a TD-set of $G \bar{G}$, implying that $G \bar{G}$ is a TI-graph.

5 Prisms

The Cartesian product $G \square H$ of graphs G and H is the graph whose vertex set is $V(G) \times V(H)$ and two vertices $\left(g_{1}, h_{1}\right)$ and $\left(g_{2}, h_{2}\right)$ are adjacent in $G \square H$ if either $g_{1}=g_{2}$ and $h_{1} h_{2}$ is an edge in H, or $h_{1}=h_{2}$ and $g_{1} g_{2}$ is an edge in G. The prism of a graph G is the graph $G \square K_{2}$. Thus, it is defined by taking two disjoint copies G_{1} and G_{2} of G, and adding an edge between each pair of corresponding vertices. The resulting added edges form a perfect matching in the prism. We refer to the vertices joined by such a matching edge as partners. If G is a path or a cycle, then we call the prism $G \square K_{2}$ a path prism and cycle prism, respectively. If every vertex of G is contained in a triangle, then we call the prism $G \square K_{2}$ a triangle prism.

The relationship between domination parameters in the graph and its prism have been studied extensively. See, for example, $[1,4,6,8,9,14,18,19,22,21]$. Since the complementary prism is a variant of the prism of a graph G where one takes a copy of G and its complement \bar{G} instead of two copies of G, a natural next step is to consider the problem of determining for which graphs G is the prism $G \square K_{2}$ a TI-graph. Recall that we showed in Section 4 that the complementary prism of every nontrivial graph is a TI-graph, unless it is one of the two complementary prisms G_{1} and G_{2} shown in Figure 2. The characterization of prisms that are TI-graphs seems to be a more difficult problem than for complementary prisms. In this section, we characterize the path, cycle, and triangle prisms that are TI-graphs, and provide two infinite families of graphs G for which the prism $G \square K_{2}$ is not a TI-graph.

5.1 Path prisms

We show in this section that the path prism $P_{n} \square K_{2}$ is a TI-graph for all $n \geq 3$ except for $n=4$. We observe that the path prism $P_{1} \square K_{2}=K_{2}$ is not a TI-graph and that $P_{2} \square K_{2}$ is the 4 -cycle, which is not a TI-graph. We show next that the path prism $P_{4} \square K_{2}$ is not a TI-graph.

Proposition 5.1 The path prism $P_{4} \square K_{2}$ is not a TI-graph.
Proof. Let $G=P_{4} \square K_{2}$ be the path prism shown in Figure 3. Suppose, to the contrary, that G contains a TDID-partition $\{I, T\}$ where I is an ID-set of G and T is a TD-set of G. If neither u_{1} nor v_{1} belong to the set I, then $\left\{u_{2}, v_{2}\right\} \subseteq I$ in order for I to dominate u_{1} and v_{1}, contradicting the independence of the set I. Hence,
u_{1} or v_{1} belongs to the set I. By symmetry, we may assume that $u_{1} \in I$, and so $\left\{v_{1}, u_{2}\right\} \subseteq T$. Thus, $v_{2} \in T$ in order for T to totally dominate v_{1}, implying that $v_{3} \in I$ in order for I to dominate v_{2}, and so $\left\{u_{3}, v_{4}\right\} \subseteq T$. Hence, $u_{4} \in I$ in order for I to dominate u_{4}. But then the vertex v_{4} is not totally dominated by the set T.

Figure 3: The path prism $P_{4} \square K_{2}$

Proposition 5.2 The path prism $P_{n} \square K_{2}$ is a TI-graph for all $n \geq 3$ and $n \neq 4$.
Proof. For $n \geq 3$ and $n \neq 4$, let G be the path prism $P_{n} \square K_{2}$. Let G_{1} and G_{2} be the two disjoint copies of the path P_{n} in the prism G, where G_{1} is the path $u_{1} u_{2} \ldots u_{n}$ and G_{2} is the path $v_{1} v_{2} \ldots v_{n}$. Further, let the vertices u_{i} and v_{i} be partners in the path prism G, and so $u_{i} v_{i}$ is an edge in G. We consider three cases. In all three cases, we give a TDID-partition $\{I, T\}$ where I is an ID-set of G and T is a TD-set of G.

Case 1. $n \equiv 0(\bmod 3)$. Thus, $n=3 k$ for some $k \geq 1$. In this case, we let $I=\bigcup_{i=1}^{k}\left\{u_{3 i-2}, v_{3 i}\right\}$ and $T=V(G) \backslash I$. For example, when $n=9$ (and $k=3$) the set I is given by the shaded vertices in Figure 4.

Figure 4: A path prism $P_{n} \square K_{2}$ where $n \equiv 0(\bmod 3)$

Case 2. $n \equiv 1(\bmod 3)$ and $n \geq 7$. Thus, $n=3 k+1$ for some $k \geq 2$. In this case, we let $I=\left\{u_{n-2}, v_{n}\right\} \cup \bigcup_{i=1}^{k-1}\left\{u_{3 i-2}, v_{3 i}\right\}$ and $T=V(G) \backslash I$. For example, when $n=10$ (and $k=3)$ the set I is given by the shaded vertices in Figure 5.

Figure 5: A path prism $P_{n} \square K_{2}$ where $n \equiv 1(\bmod 3)$ and $n \geq 7$

Case 3. $n \equiv 2(\bmod 3)$ and $n \geq 5$. Thus, $n=3 k+2$ for some $k \geq 1$. In this case, we let $I=\left\{u_{n}\right\} \cup \bigcup_{i=1}^{k}\left\{u_{3 i-2}, v_{3 i}\right\}$ and $T=V(G) \backslash I$. For example, when $n=11$ (and $k=3$) the set I is given by the shaded vertices in Figure 6.

Figure 6: A path prism $P_{n} \square K_{2}$ where $n \equiv 2(\bmod 3)$

We deduce from the above three cases that the path prism $G=P_{n} \square K_{2}$ is a TI-graph.

5.2 Cycle prisms

We show that with the exception of the prism $C_{5} \square K_{2}$, the cycle prism $C_{n} \square K_{2}$ is a TI-graph for all $n \geq 3$.

Proposition 5.3 The cycle prism $C_{5} \square K_{2}$ is not a TI-graph.
Proof. Let $G=C_{5} \square K_{2}$ be the cycle prism shown in Figure 7. Suppose, to the contrary, that G contains a TDID-partition $\{I, T\}$ where I is an ID-set of G and T is a TD-set of G. We note that G is vertex-transitive. Renaming the vertices if necessary, we may assume that $v_{1} \in I$, implying that $N_{G}\left(v_{1}\right)=\left\{v_{2}, v_{5}, u_{1}\right\} \subseteq T$. Suppose that u_{2} or u_{5} belongs to the set I. By symmetry, we may assume that $u_{2} \in I$. In order for the set T to totally dominate the vertices u_{1} and v_{2}, we infer that $u_{5} \in T$ and $v_{3} \in T$, respectively. This in turn implies that $u_{4} \in I$ in order for the set I to dominate the vertex u_{5}, and therefore the neighbors u_{3} and v_{4} of u_{4} belong to the set T. But then the set I does not dominate the vertex v_{3}, a contradiction. Hence, $\left\{u_{2}, u_{5}\right\} \subset T$. This implies that $\left\{u_{3}, u_{4}\right\} \subset I$ in order for the set I to dominate the vertices u_{2} and u_{5}. However, the ID-set I then contains two adjacent vertices, namely u_{3} and u_{4}, a contradiction.

Figure 7: The prism $C_{5} \square K_{2}$

Proposition 5.4 The cycle prism $C_{n} \square K_{2}$ is a TI-graph for all $n \geq 3$ and $n \neq 5$.
Proof. For $n \geq 3$ and $n \neq 5$, let G be the cycle prism $C_{n} \square K_{2}$. Let G_{1} and G_{2} be the two disjoint copies of the cycle C_{n} in the prism G, where G_{1} is the cycle
$u_{1} u_{2} \ldots u_{n} u_{1}$ and G_{2} is the cycle $v_{1} v_{2} \ldots v_{n} v_{1}$. Further, let the vertices u_{i} and v_{i} be partners in the cycle prism G, and so $u_{i} v_{i}$ is an edge in G. We consider three cases. In all three cases, we give a TDID-partition $\{I, T\}$ where I is an ID-set of G and T is a TD-set of G.

Case 1. $n \equiv 0(\bmod 3)$. Thus, $n=3 k$ for some $k \geq 1$. In this case, we let $I=\bigcup_{i=1}^{k}\left\{u_{3 i-2}, v_{3 i}\right\}$ and $T=V(G) \backslash I$. For example, when $n=9$ (and $k=3$) the set I is given by the shaded vertices in Figure 8.

Figure 8: A cycle prism $C_{n} \square K_{2}$ where $n \equiv 0(\bmod 3)$

Case 2. $n \equiv 1(\bmod 3)$. Thus, $n=3 k+1$ for some $k \geq 1$. In this case, we let $I=\bigcup_{i=1}^{k}\left\{u_{3 i-2}, v_{3 i}\right\}$ and $T=V(G) \backslash I$. For example, when $n=10$ (and $k=3$) the set I is given by the shaded vertices in Figure 9.

Figure 9: A cycle prism $C_{n} \square K_{2}$ where $n \equiv 1(\bmod 3)$

Case 3. $n \equiv 2(\bmod 3)$ and $n \geq 8$. Thus, $n=3 k+2$ for some $k \geq 2$. In this case, we let $I=\left\{u_{n-3}, v_{n-1}\right\} \cup \bigcup_{i=1}^{k-1}\left\{u_{3 i-2}, v_{3 i}\right\}$ and $T=V(G) \backslash I$. For example, when $n=11$ (and $k=3)$ the set I is given by the shaded vertices in Figure 8.

Figure 10: A cycle prism $C_{n} \square K_{2}$ where $n \equiv 2(\bmod 3)$ and $n \geq 8$

We deduce from the above three cases that the graph G is a TI-graph.

5.3 Triangle prisms

Let G be a graph in which every vertex belongs to a triangle. Let I be an ID-set in G and let $T=V(G) \backslash I$. Let v be an arbitrary vertex in T, and let T_{v} be a triangle that contains the vertex v. The triangle T_{v} contains at most one vertex from the independent set I, implying that the vertex v has at least one neighbor in T. Thus, the set T totally dominates the set T. Moreover, since I is an ID-set of G, the set T totally dominates the set I, and so T is a TD-set of G. Hence, $\{T, I\}$ is a TDID-partition of G, and so G is a TI-graph. We state this formally as follows.

Observation 5.1 If G is a graph in which every vertex belongs to a triangle, then G is a TI-graph.

As a consequence of Observation 5.1, this yields the following class of graphs G for which the prism $G \square K_{2}$ is a TI-graph.

Proposition 5.5 If G is a graph in which every vertex belongs to a triangle, then the prism $G \square K_{2}$ is a TI-graph.

5.4 Prisms that are not TI-graphs

Next we present several classes of graphs G for which the prism $G \square K_{2}$ is not a TIgraph. For notational convenience in this section, we label the two disjoint copies of G used to construct $G \square K_{2}$ as G_{1} and G_{2}, where the vertices of G_{1} are labeled with subscript 1 and their partners have corresponding labels with subscript 2. Thus, if v is a vertex of G, then v is labeled v_{i} in G_{i} for $i \in\{1,2\}$ and $v_{1} v_{2} \in E(H)$. The corona $G \circ K_{1}$ of a graph G is the graph obtained from G by adding for each vertex $v \in V$ a new vertex v^{\prime} and the edge $v v^{\prime}$. We consider next the prism $\left(G^{\prime} \circ K_{1}\right) \square K_{2}$ of the corona $G^{\prime} \circ K_{1}$ of a graph G^{\prime}.

Proposition 5.6 If $G=G^{\prime} \circ K_{1}$ is the corona of an arbitrary graph G^{\prime}, then the prism $G \square K_{2}$ is not a TI-graph.

Proof. Let G^{\prime} be an arbitrary graph, $G=G^{\prime} \circ K_{1}$, and $H=G \square K_{2}$. Using the notation mentioned in our previous comments, we let G_{1} and G_{2} be the two disjoint copies of $G=G^{\prime} \circ K_{1}$ in the prism H.

Suppose, to the contrary, that H contains a TDID-partition $\{I, T\}$ where I is an ID-set of H and T is a TD-set of H. Let v_{1} be an arbitrary vertex that belongs to the graph G^{\prime} in the copy of G_{1} and v_{2} its partner in G_{2}. Thus, $v_{i} \in V\left(G_{i}\right)$ for $i \in\{1,2\}$ and $v_{1} v_{2}$ is a matching edge in the prism H. Let u_{i} be the neighbor of v_{i} of degree 1 in the corona graph G_{i} for $i \in\{1,2\}$, and so u_{1} and u_{2} are partners in H and both have degree 2 in H. As an illustration, when G^{\prime} is the path P_{3} given by $v x w$ and the neighbors of v, x, and w of degree 1 in the corona $G^{\prime} \circ K_{1}$ are u, y, and z, respectively, then the vertices in the prism H are as labelled in Figure 11.

Figure 11: The prism $\left(P_{3} \circ K_{1}\right) \square K_{2}$

We now consider a vertex u of degree 1 in the corona $G^{\prime} \circ K_{1}$, and let v denote the (unique) neighbor of u in $G^{\prime} \circ K_{1}$. Thus, $v_{1} v_{2} u_{2} u_{1} v_{1}$ is an induced 4-cycle in the prism H. If neither u_{1} nor u_{2} belongs to the set I, then in order to dominate the vertices u_{1} and u_{2} the ID-set I contains both v_{1} and v_{2}. However, v_{1} and v_{2} are adjacent vertices, contradicting the fact that I is an independent set. Hence, exactly one of u_{1} and u_{2} belongs to the set I. By symmetry, we may assume that $u_{1} \in I$, and so $N_{H}\left(u_{1}\right)=\left\{v_{1}, u_{2}\right\} \subseteq T$. In order to totally dominate the vertex u_{2}, the vertex v_{2} belongs to the set T. In order to dominate the vertex v_{2}, a neighbor of v_{2}, say x_{2}, belongs to the set I.

Since the partner v_{1} of v_{2} belongs to the set T, we note that $x_{2} \in V\left(G_{2}\right)$ and that its partner x_{1} belongs to $V\left(G_{1}\right)$. Let y_{i} be the neighbor of x_{i} of degree 1 in the corona graph G_{i} for $i \in\{1,2\}$, and so y_{1} and y_{2} are partners in H and both have degree 2 in H. Moreover, $x_{1} x_{2} y_{2} y_{1} x_{1}$ is an induced 4 -cycle in the prism H. Since $x_{2} \in I$, the neighbors x_{1} and y_{2} of x_{2} belong to the set T. Thus, $N_{H}\left(y_{1}\right)=\left\{x_{1}, y_{2}\right\} \subset T$, implying that $y_{1} \in I$ in order for the set I to dominate the vertex y_{1}. But then $N_{H}\left(y_{2}\right)=\left\{x_{2}, y_{1}\right\} \subset I$, and so the set T does not totally dominate the vertex y_{2}, a contradiction. Hence, the prism $H=\left(G^{\prime} \circ K_{1}\right) \square K_{2}$ is not a TI-graph.

For $k \geq 3$, let H_{k} be obtained from a complete graph K_{k} by adding for each vertex v in the complete graph a 5 -cycle C_{v} and adding an edge from v to exactly one vertex in C_{v}. The graph H_{4}, for example, is illustrated in Figure 12.

Figure 12: The graph H_{4}

Proposition 5.7 For $k \geq 3$, the prism $H_{k} \square K_{2}$ is not a TI-graph.
Proof. For $k \geq 3$, let $G=H_{k}$ and H be the prism $G \square K_{2}$. Using the labelling notation previously described, let G_{1} and G_{2} be the two disjoint copies of G in the
prism H. Suppose, to the contrary, that H contains a TDID-partition $\{I, T\}$ where I is an ID-set of H and T is a TD-set of H. Let u_{1} be an arbitrary vertex in G_{1} that belongs to the complete graph K_{k} in G_{1}, and let $Q_{1}: v_{1} w_{1} x_{1} y_{1} z_{1} v_{1}$ be the 5 -cycle added to the vertex u_{1} in the complete graph when constructing G_{1}, where $u_{1} v_{1}$ is the edge added from u_{1} to a vertex of Q_{1} in G_{1}. Then $u_{2}, v_{2}, w_{2}, x_{2}, y_{2}$, and z_{2} are the partners of the vertices $u_{1}, v_{1}, w_{1}, x_{1}, y_{1}$, and z_{1}, respectively, in the prism H. Thus, the graph F shown in Figure 13 is a subgraph of the prism H. We note that if v is a vertex of F different from u_{1} and u_{2}, then the degree of v in F is equal to its degree in H.

Figure 13: A subgraph F of the prism $H_{k} \square K_{2}$

We proceed further with the following claim.
Claim 7 The set I contains one of u_{1} and u_{2}.
Proof. We show firstly that the ID-set I contains one of z_{1} and z_{2}. Suppose, to the contrary, that neither z_{1} nor z_{2} belongs to the set I. If neither y_{1} nor y_{2} belongs to the set I, then in order to dominate the vertices y_{1} and y_{2}, the set I contains both x_{1} and x_{2}, contradicting the fact that I is an independent set. Hence, I contains one of y_{1} and y_{2}. By symmetry, we may assume that $y_{1} \in I$, implying that $\left\{x_{1}, y_{2}\right\} \subseteq T$. In order to dominate the vertex z_{2}, we have $v_{2} \in I$. Thus, $N_{H}\left(v_{2}\right) \subseteq T$, implying in particular that $\left\{v_{1}, w_{2}\right\} \subset T$. Thus, $N_{H}\left(w_{1}\right)=\left\{v_{1}, w_{2}, x_{1}\right\} \subset T$ and $N_{H}\left(x_{2}\right)=\left\{w_{2}, x_{1}, y_{2}\right\} \subset T$. In order to dominate the vertices w_{1} and x_{2}, the set I contains both these two vertices. But then $N_{H}\left(x_{1}\right)=\left\{w_{1}, x_{2}, y_{1}\right\} \subset I$, and so the vertex x_{1} is not totally dominated by the set T, a contradiction. Hence, the ID-set I contains one of z_{1} and z_{2}.

Suppose that $z_{1} \in I$. Hence, $N_{H}\left(z_{1}\right)=\left\{v_{1}, y_{1}, z_{2}\right\} \subseteq T$. If $y_{2} \in I$, then the vertex $x_{2} \in T$. Moreover, in this case the set T contains the vertex v_{2} in order to totally dominate the vertex z_{2}, and the set T contains the vertex x_{1} in order to totally dominate the vertex y_{1}. This in turn implies that the set I contains the vertex w_{1} in order to dominate the vertex x_{1}. Thus, $w_{2} \in T$. Since $\left\{v_{1}, v_{2}, w_{2}\right\} \subset T$, the set I contains the vertex u_{2} in order to dominate the vertex v_{2}. If $y_{2} \notin I$, then the set I contains the vertex x_{2} in order to dominate the vertex y_{2}. Therefore, the neighbors of x_{2} belong to the set T, and so $\left\{x_{1}, w_{2}\right\} \subset T$. Hence, $N_{H}\left(w_{1}\right)=\left\{v_{1}, w_{2}, x_{1}\right\} \subset T$, and so the set I contains w_{1} in order to dominate the vertex w_{1}. This in turn implies that the set T contains v_{2} in order to totally dominate the vertex w_{2}. Since
$\left\{v_{1}, v_{2}, w_{2}\right\} \subset T$, the set I contains the vertex u_{2} in order to dominate the vertex v_{2}. Therefore, we have shown that if $z_{1} \in I$, then the set I contains the vertex u_{2}. By symmetry, if $z_{2} \in I$, then the set I contains the vertex u_{1}. (व)

We now return to the proof of Proposition 5.7. Let X_{i} be the clique of size k in G_{i}, and so the set X_{i} induces a complete graph K_{k} in G_{i} for $i \in\{1,2\}$. Let u_{1} be an arbitrary vertex in the clique X_{1}. Then, u_{2} is the partner of u_{1}, the vertex u_{2} belongs to the clique X_{2}, and $u_{1} u_{2}$ is an edge of H. By Claim 7, the set I contains one of u_{1} and u_{2}. This is true for every vertex that belongs to X_{1} and its partner that belongs to X_{2}. Thus, since $k \geq 3$, the set I contains at least $\lceil k / 2\rceil \geq 2$ vertices that belong the clique K_{k} in G_{1} or the clique K_{k} in G_{2}. Hence, the independent set I contains at least two adjacent vertices, a contradiction. Therefore, for $k \geq 3$ and $G=H_{k}$, the prism $H=G \square K_{2}$ is not a TI-graph.

By Propositions 5.6 and 5.7, there exists an infinite family of connected graphs G with minimum degree $\delta(G)=1$ and $\delta(G)=2$, respectively, such that the prism $G \square K_{2}$ is not a TI-graph.

6 Concluding remarks and open problems

In this paper we characterize the graphs G such that at least one of G and its complement \bar{G} is a TI-graph. As an application of this characterization, we show that the complementary prism of every nontrivial graph is a TI-graph, unless it is one of the two complementary prisms G_{1} and G_{2} shown in Figure 2. It remains, however, an open problem to characterize the (connected) graphs G for which the prism $G \square K_{2}$ a TI-graph. Among other results, we show that there are infinitely many graphs G for which the prism $G \square K_{2}$ is not a TI-graph, and there are infinitely many graphs G for which the prism $G \square K_{2}$ is a TI-graph.

References

[1] A. Alhashim, W. J. Desormeaux and T. W. Haynes, Roman domination in complementary prisms, Australas. J. Combin. 68 (2017), 218-228.
[2] V. Aytaç and Z. N. Berberler, Average independent domination in complementary prisms, Bull. Int. Math. Virtual Inst. 10 (2020), 157-164.
[3] V. Aytaç and C. Erkal, Independent transversal domination number in complementary prisms, Honam Math. J. 43 (2021), 17-25.
[4] J. Azarija, M. A. Henning and S. Klavžar, (Total) domination in prisms, Electron. J. Combin. 24 (2017), \#P1.19.
[5] Z. N. Berberler and M. E. Berberler, Independent strong domination in complementary prisms, Electron. J. Graph Theory Appl. 8 (2020), 1-8.
[6] A.P. Burger, C. M. Mynhardt and W.D. Weakley, On the domination number of prisms of graphs, Discuss. Math. Graph Theory 24 (2004), 303-318.
[7] P. Delgado, W. J. Desormeaux and T. W. Haynes, Partitioning the vertices of a graph into a total dominating set and an independent dominating set, Ars Combin. 144 (2019), 367-379.
[8] W. J. Desormeaux and M. A. Henning, Paired domination in graphs: A survey and recent results, Utilitas Mathematica 94 (2014), 101-166.
[9] W. Goddard and M. A. Henning, A note on domination and total domination in prisms, J. Combin. Optim. 35 (2018), 14-20.
[10] T. W. Haynes, S. T. Hedetniemi and M. A. Henning (Eds), Topics in Domination in Graphs, Series: Developments in Mathematics, Vol. 64, Springer, Cham, 2020. viii + 545 pp .
[11] T. W. Haynes, S. T. Hedetniemi and M. A. Henning (Eds), Structures of Domination in Graphs, Series: Developments in Mathematics, Vol. 66, Springer, Cham, 2021. viii +536 pp .
[12] T. W. Haynes, S. T. Hedetniemi and M. A. Henning, Domination in Graphs: Core Concepts, Series: Springer Monographs in Mathematics, Springer, Cham, 2023. xx + 644 pp .
[13] T. W. Haynes, M. A. Henning, P. J. Slater and L. C. van der Merwe, The complementary product of two graphsr, Bull. Inst. Comb. Appl. 51 (2007) 21-30.
[14] T. W. Haynes, M. A. Henning and L. C. van der Merwe, Domination and total domination in complementary prisms, J. Comb. Optim. 18(1) (2009), 23-37.
[15] M. A. Henning and J. Southey, A note on graphs with disjoint dominating and total dominating sets, Ars Combin. 89 (2008), 159-162.
[16] M. A. Henning and J. Southey, A characterization of graphs with disjoint dominating and total dominating sets, Quaest. Math. 32 (1) (2009), 119-129.
[17] M. A. Henning and A. Yeo, Total domination in graphs, Series: Springer Monographs in Mathematics, Springer, Cham, New York, 2013. xiv +178 pp.
[18] C. M. Mynhardt and M. Schurch, Paired domination in prisms of graphs, Discuss. Math. Graph Theory 31 (2011), 5-23.
[19] C. M. Mynhardt and Z. Xu, Domination in prisms of graphs: universal fixers, Util. Math. 78 (2009), 185-201.
[20] O. Ore, Theory of Graphs, Amer. Math. Soc. Colloq. Pub., Providence, RI. 38 (1962).
[21] M. Rosicka, Convex and weakly convex domination in prism graphs, Discuss. Math. Graph Theory 39 (2019), 741-755.
[22] A. Tepeh, Total domination in generalized prisms and a new domination invariant, Discuss. Math. Graph Theory 41 (2021), 1165-1178.

[^0]: * Research supported in part by the University of Johannesburg and the South African National Research Foundation

