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Institute of Mathematics, University of Debrecen
H–4002 Debrecen P.O.Box 400

Hungary
arnoczki.timea@science.unideb.hu gnyul@science.unideb.hu

Abstract

The restricted r-Stirling number
{
n
k

}≤2

r
, also known as an r-Bessel num-

ber, counts the partitions of an (n+r)-element set into k+r blocks, where
r distinguished elements have to belong to distinct blocks with the restric-
tion that each block contains at most two elements (0 ≤ k ≤ n, r ≥ 0).
In this paper, we give a combinatorial investigation of these numbers and
derive new identities. We also prove their log-concavity and unimodality
properties through the study of restricted r-Bell polynomials.

1 Introduction

Stirling numbers of the first kind
[
n
k

]
and Stirling numbers of the second kind

{
n
k

}
(0 ≤ k ≤ n) first appeared in James Stirling’s Methodus Differentialis [23] as the
coefficients in the polynomial expressions

xn =
n∑

k=0

[
n

k

]
xk, xn =

n∑
k=0

{
n

k

}
xk (n ≥ 0)

between rising, falling factorials and ordinary powers, where the nth rising and falling
factorial of x are defined by the products

xn =

n−1∏
j=0

(x+ j), xn =

n−1∏
j=0

(x− j) (n ≥ 0),

respectively. These numbers have well-known combinatorial meanings, namely,
[
n
k

]
counts the permutations of the elements 1, . . . , n which are the product of k disjoint
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cycles, while
{
n
k

}
is the number of partitions of the elements 1, . . . , n into k nonempty

subsets called blocks. If n = 0, as a degenerate case, we have only the empty
permutation or partition with 0 cycles or blocks.

Carlitz [2], Broder [1] and Merris [16] independently introduced the widely studied
r-generalization of Stirling numbers. For 0 ≤ k ≤ n and r ≥ 0, a permutation or
partition of the elements 1, . . . , n + r is called an r-permutation or r-partition if
n + 1, . . . , n + r belong to distinct cycles or blocks. These last r elements will be
referred to as distinguished elements, and the cycles or blocks containing them as
distinguished cycles or distinguished blocks. Then the r-Stirling number of the first

kind
[
n
k

]
r
counts the r-permutations of the elements 1, . . . , n + r which have k + r

disjoint cycles in their cycle decomposition, while the r-Stirling number of the second

kind
{
n
k

}
r
is the number of r-partitions of the elements 1, . . . , n+ r into k+ r blocks.

(In other words, we have r distinguished and k non-distinguished cycles or blocks.)
The r-Stirling numbers of both kinds also have equivalent characterizations by the
polynomial identities

(x+ r)n =
n∑

k=0

[
n

k

]
r

xk, (x+ r)n =
n∑

k=0

{
n

k

}
r

xk (n ≥ 0).

For further aspects of r-Stirling numbers, see [7, 11, 19, 20].

Bessel polynomials were introduced by Krall and Frink [13] as the polynomial so-
lutions of certain second-order differential equations (see also [6]). Choi and Smith [4]
found a combinatorial meaning of the reparametrized coefficients of Bessel polynomi-
als and named them Bessel numbers. Since this interpretation has a close connection
with Stirling numbers, Bessel numbers are also called restricted Stirling numbers.

The restricted Stirling number of the second kind
{
n
k

}≤2

gives the number of

partitions of the elements 1, . . . , n into k blocks such that the cardinality of each block
is at most 2 (0 ≤ k ≤ n). We note that partitioning elements into blocks containing
at most two elements is essentially the same as arranging them into disjoint cycles
of length at most 2. For this reason, we do not define restricted Stirling numbers of
the first kind separately and simply omit the term “of the second kind” in the rest
of the paper.

Cheon, Jung and Shapiro [3] combined the combinatorial definitions of the above
two variants of Stirling numbers. Namely, the restricted r-Stirling number or r-Bessel

number
{
n
k

}≤2

r
counts the r-partitions of the elements 1, . . . , n+ r into k + r blocks

with the restriction that each block contains at most two elements (0 ≤ k ≤ n,
r ≥ 0). It is clear that these numbers give back restricted Stirling numbers if r = 0.

In Section 2, we contribute to the topic of restricted r-Stirling numbers with
recurrences, polynomial identities, an explicit formula and some connections with
r-Stirling and the so-called r-Whitney numbers. In Section 3, we study the real-
rootedness of restricted r-Bell polynomials, which implies log-concavity and uni-
modality properties of the sequence of restricted r-Stirling numbers with a fixed
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upper parameter. Our proofs are mainly based on purely combinatorial ideas.

2 Restricted r-Stirling numbers

It follows from the definition of restricted r-Stirling numbers that
{
n
k

}≤2

r
= 0 if

0 ≤ k ≤ n, r ≥ 0 and n > 2k + r. Otherwise, in case of n ≤ 2k + r, there exists
at least one required r-partition, which contains 2k + r − n one-element and n − k
two-element blocks.

It is also easy to obtain the special values
{
n
0

}≤2

r
= rn and

{
n
n

}≤2

r
= 1 (n, r ≥ 0).

Various recurrences were derived for restricted r-Stirling numbers by combinato-
rial arguments in [10, 12], but in those expressions restricted (r−1)-Stirling numbers
appear as well. Now, we present a recurrence relation which contains only restricted
r-Stirling numbers. (We mention that this can be found in [9] for r = 0.)

Theorem 2.1. If 1 ≤ k ≤ n and r ≥ 0, then

{
n+ 1

k

}≤2

r

=

{
n

k − 1

}≤2

r

+ (2k + r − n)

{
n

k

}≤2

r

.

Proof. We enumerate the r-partitions of the elements 1, . . . , n + 1 + r into k + r
blocks, where each block contains one or two elements.

If the element n+ 1 stands alone in a singleton, then we obviously have
{

n
k−1

}≤2

r
possibilities. If it is in a two-element block, then the other n + r elements can be

r-partitioned into k + r blocks containing at most two elements in
{
n
k

}≤2

r
ways. As

we have seen, this restricted r-Stirling number is equal to 0 if n > 2k+r. Otherwise,
in case of n ≤ 2k + r, the element n + 1 can be inserted into any of the 2k + r − n
one-element blocks.

We can also prove a vertical recurrence for restricted r-Stirling numbers.

Theorem 2.2. If 0 ≤ k ≤ n and r ≥ 0, then

{
n+ 1

k + 1

}≤2

r

=
n∑

j=k

(2k + r + 1− j)n−j

{
j

k

}≤2

r

.

Proof. We may suppose that n ≤ 2k + r + 1, because otherwise both sides of the
equality are equal to 0. We are interested in the number of r-partitions of the
elements 1, . . . , n + 1 + r into k + 1 + r blocks, where each block contains at most
two elements.

Denote by n + 1− j the smallest number among the maxima of the blocks (j =
k, . . . , n). First, we put this element into a block. Then the j non-distinguished and
r distinguished elements greater than n + 1 − j are all in the other k + r blocks,
and each of these blocks contains at least one of them. Therefore, they can be
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r-partitioned into k+ r blocks having cardinality at most 2 in
{
j
k

}≤2

r
ways. (We note

that
{
j
k

}≤2

r
= 0 if j = n = 2k+r+1.) At present, we have 2k+ r+1− j one-element

blocks, hence the n− j elements smaller than n + 1 − j can be placed into them in
(2k + r + 1− j)n−j ways.

To state the next theorem, we need to define generalized rising and falling facto-
rials with difference m as

(x|m)n =
n−1∏
j=0

(x+mj), (x|m)n =
n−1∏
j=0

(x−mj) (m ≥ 1, n ≥ 0).

The first of the following polynomial identities shows that restricted r-Stirling
numbers are the transition coefficients between shifted ordinary falling factorials and
falling factorials with difference 2.

Theorem 2.3. If n, r ≥ 0, then

(x+ r)n =

n∑
k=0

{
n

k

}≤2

r

(x|2)k,

(x− r)n =
n∑

k=0

(−1)n−k

{
n

k

}≤2

r

(x|2)k.

Proof. The second equality follows from the first one by substituting −x.

To prove the first identity, we enumerate the r-partitions of the elements 1, . . . ,
n + r into blocks containing one or two elements, where the largest element of each
non-distinguished block is coloured twice: the primary colour is chosen from two
colours, while the secondary colour is chosen from c colours (c ≥ n) so that the
secondary colours of distinct elements are different.

If we have k non-distinguished blocks (k = 0, . . . , n), then the number of these

coloured r-partitions is clearly
{
n
k

}≤2

r
2kck =

{
n
k

}≤2

r
(2c|2)k, hence their total number

is
n∑

k=0

{
n
k

}≤2

r
(2c|2)k.

Alternatively, we put the distinguished elements into distinct blocks first, then we
place the non-distinguished elements in decreasing order and colour them if necessary.
Suppose that j non-distinguished elements are already done (j = 0, . . . , n − 1).
Denote by t and 2s the number of elements among them which were placed into
non-distinguished blocks and two-element non-distinguished blocks, respectively. It
means that t − 2s elements stand in non-distinguished singletons, and j − t non-
distinguished elements are in distinguished blocks up to this point.

Then the next element n − j can be placed into any of the other r − (j − t)
distinguished blocks, into one of the non-distinguished singletons, or it can open a
new block. Because of the decreasing order, this element has to be coloured only in
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the latter case, but t − s of the c secondary colours were previously used. Conse-
quently, we have r − (j − t) + t − 2s + 2(c − (t − s)) = 2c + r − j possibilities to
place and colour the element n− j, hence the total number of coloured r-partitions

is
n−1∏
j=0

(2c+ r − j) = (2c+ r)n.

A simple combinatorial argument gives the explicit formula

{
n

k

}≤2

r

=

min{n−k,r}∑
j=0

(
r

j

)
n2n−2k−j 1

2n−k−j(n− k − j)!

for restricted r-Stirling numbers (0 ≤ k ≤ n, r ≥ 0), this is equivalent to the
expression in [3].

Yang and Qiao [24] found another explicit formula for restricted Stirling numbers
which is similar to the usual one for classical Stirling numbers of the second kind.
We generalize it and offer a different proof by using the inclusion–exclusion principle.

Theorem 2.4. If 0 ≤ k ≤ n and r ≥ 0, then

{
n

k

}≤2

r

=
1

2kk!

k∑
j=0

(−1)j
(
k

j

)
(2(k − j) + r)n.

Proof. Let A = {1, . . . , n + r} with distinguished elements n + 1, . . . , n + r and B
be a (k + r)-element set. We consider the coloured surjective functions A → B with
the following properties:

• every element of B is the image of at most two elements of A,

• distinguished elements of A have different images,

• every element of B which is not the image of a distinguished element is coloured
with one of two colours.

The collection of the preimages of the elements of B forms an r-partition of the
elements of A into k+r blocks containing at most two elements. After the assignment
of these preimages to the elements of B and the colouring, we find that the number

of our coloured surjective functions is 2k(k + r)!
{
n
k

}≤2

r
.

Let X be the set of coloured functions A → B with the above three properties,
and denote by Yi the set of coloured functions in X for which the ith element of B
does not appear as an image (i = 1, . . . , k + r).

To determine the cardinality of X, we begin with choosing the images of the
distinguished elements, which can be done in (k + r)r ways. Suppose that the first
l non-distinguished elements already have their images (l = 0, . . . , n − 1). Denote
by t the number of elements among them whose images differ from the images of
the distinguished elements, and assume that there are 2s elements among these t
elements which have pairwise the same image. Then the image of the next element
l + 1 can be an element of B which is
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• the image of a distinguished element, but it is not the image of a previous
non-distinguished element. The number of such elements in B is r − (l − t).

• the image of exactly one previous non-distinguished element, but it is not the
image of a distinguished element. The number of such elements in B is t− 2s,
and we note that they are already coloured.

• not the image of any element yet. The number of such elements in B is k −
(t− s), and the chosen element has to be coloured with one of the two colours.

These yield r − (l − t) + t− 2s+ 2(k − (t− s)) = 2k + r − l possibilities altogether.
Therefore, |X| = (k + r)r(2k + r)n.

Since the r distinguished elements have different images, the intersection of more
than k sets of type Yi is empty. Or else if 1 ≤ j ≤ k, then similar arguments give that
the cardinality of the intersection of j sets of type Yi is (k+r−j)r(2(k−j)+r)n. Then,
by the inclusion–exclusion principle, the number of coloured surjective functions with
the above three properties is

|X \ (Y1 ∪ · · · ∪ Yk+r)| =
k∑

j=0

(−1)j
(
k + r

j

)
(k + r − j)r(2(k − j) + r)n,

from which the formula stated in the theorem follows after some simplification.

Recently, Stenlund [22] studied polynomials whose coefficients are products of
Stirling numbers of the first and second kind. It turns out that a special evaluation of
these polynomials gives signed restricted Stirling numbers, this fact already appeared
in [15, 24]. We generalize this result and present a proof simply based on polynomial
identities of the combinatorial numbers in question.

For 0 ≤ k ≤ n and r, s ≥ 0, introduce the polynomial

pn,k,r,s(x) =
n∑

j=k

[
n

j

]
r

{
j

k

}
s

xj−k.

Clearly, we have

pn,k,r,s(0) =

[
n

k

]
r

.

Moreover, theorems in [1, 2] and [19] state that

pn,k,r,s(−1) =

(
n

k

)
(r − s)n−k,

and

pn,k,r,s(1) =

⌊
n

k

⌋
r+s
2

is an r+s
2
-Lah number if r, s have the same parity.

We show that the result of substituting −2 in place of the indeterminate of a
polynomial of type pn,k,r,s(x) is a signed restricted (2s− r)-Stirling number.
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Theorem 2.5. If 0 ≤ k ≤ n and 0 ≤ r ≤ 2s, then

pn,k,r,s(−2) = (−1)n−k

{
n

k

}≤2

2s−r

.

Proof. On the one hand, Theorem 2.3 gives

(x− (2s− r))n =

n∑
k=0

(−1)n−k

{
n

k

}≤2

2s−r

(x|2)k.

On the other hand, we apply the polynomial identities of r-Stirling numbers of the
first kind and s-Stirling numbers of the second kind to have

((x− 2s) + r)n =

n∑
j=0

[
n

j

]
r

(x− 2s)j =

n∑
j=0

[
n

j

]
r

2j
(x
2
− s

)j

=
n∑

j=0

[
n

j

]
r

2j
j∑

k=0

(−1)j−k

{
j

k

}
s

(x
2

)k

=

n∑
k=0

n∑
j=k

[
n

j

]
r

{
j

k

}
s

(−2)j−k(x|2)k.

By comparing these two expressions, we obtain

n∑
j=k

[
n

j

]
r

{
j

k

}
s

(−2)j−k = (−1)n−k

{
n

k

}≤2

2s−r

.

The appearance of falling and rising factorials with difference 2 in Theorem 2.3
suggests some possible connection between restricted r-Stirling numbers and
r-Whitney numbers. We only need r-Whitney numbers of the second kind which
were introduced by Mező [17] through polynomial identities, however, they can be
found earlier in [5] under a different name. We recall the combinatorial interpreta-
tion of these numbers from [8] with a small modification: An r-partition is called a
Whitney coloured r-partition with m colours if

• the largest elements of the blocks are uncoloured,

• elements in distinguished blocks are uncoloured,

• each remaining element is coloured with one of the m colours.

Then, for 0 ≤ k ≤ n, m ≥ 1 and r ≥ 0, the r-Whitney number of the second kind
Wm,r(n, k) counts the Whitney coloured r-partitions of the elements 1, . . . , n+ r into
k + r blocks with m colours.
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Jung, Mező and Ramı́rez [10] found that certain combinations of Stirling or
r-Stirling numbers of the second kind with restricted r-Stirling numbers give
r-Whitney or (2r)-Whitney numbers of the second kind with two colours, respec-
tively. In the next theorem, we generalize this result and prove it in a purely combi-
natorial manner.

Theorem 2.6. If 0 ≤ k ≤ n and r, s ≥ 0, then

n∑
j=k

{
n

j

}
r

{
j

k

}≤2

s

= W2,r+s(n, k).

Proof. The number of Whitney coloured (r + s)-partitions of the elements 1, . . . ,
n+ r+ s into k+ r+ s blocks with two colours such that the largest elements of the
non-distinguished blocks are additionally coloured with one of the same two colours
is 2kW2,r+s(n, k).

Considering such an extended Whitney coloured (r+s)-partition with two colours,
we can construct subblocks as follows:

• From a distinguished block containing one of the elements n+r+1, . . . , n+r+s,
we obtain a subblock by deleting the distinguished element (if the result of the
deletion is the empty set, then it is not handled as a subblock).

• A distinguished block containing one of the elements n + 1, . . . , n + r is a
subblock.

• A non-distinguished block whose elements are of the same colour is a subblock.

• A non-distinguished block which contains elements of both colours is split into
two subblocks according to the colours.

It is clear that the collection of subblocks forms an r-partition of the elements
1, . . . , n+ r, the number of subblocks is at least k + r and cannot exceed n + r.

Now, we count the extended Whitney coloured (r+s)-partitions with two colours
described at the beginning of the proof through the subblocks. First, we r-partition
the elements 1, . . . , n+r into j+r subblocks (j = k, . . . , n). The subblocks containing
one of the elements n+1, . . . , n+ r are original distinguished blocks. Thereafter, we
s-partition the other j subblocks and the distinguished elements n+r+1, . . . , n+r+s
into k+ s blocks such that a subblock is allowed to share its block with at most one
other subblock or a distinguished element.

• A block which contains only a single distinguished element or consists of a
distinguished element and a subblock gives a distinguished block in the original
sense.

• If a block contains only one subblock, then this subblock is an original block,
and its elements are uniformly coloured with one of the two colours.
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• If a block consists of two subblocks, then their union is an original block, while
we can decide about the colours of the elements by subblocks in two ways.

Therefore, the number of the required extended Whitney coloured (r+ s)-partitions

with two colours is 2k
n∑

j=k

{
n
j

}
r

{
j
k

}≤2

s
.

3 Restricted r-Bell polynomials

The coefficients of the well-known Bell polynomials are Stirling numbers of the second
kind with a fixed upper parameter. Similarly, we can define the nth restricted r-Bell
polynomial as

B≤2
n,r(x) =

n∑
k=0

{
n

k

}≤2

r

xk

for n, r ≥ 0. These polynomials were introduced by Jung, Mező and Ramı́rez [10],
but they already appeared much earlier in a paper of Miksa, Moser and Wyman [18]
in case of r = 0.

The recurrence of restricted r-Stirling numbers implies the following first-order
recurrence relation for restricted r-Bell polynomials.

Theorem 3.1. If n, r ≥ 0, then

B≤2
n+1,r(x) = (x+ r − n)B≤2

n,r(x) + 2x(B≤2
n,r(x))

′.

Proof. The statement can be easily verified for n = 0. If n ≥ 1, then Theorem 2.1
gives

B≤2
n+1,r(x) =

n+1∑
k=0

{
n+ 1

k

}≤2

r

xk =

n∑
k=1

{
n + 1

k

}≤2

r

xk + rn+1 + xn+1

=

n∑
k=1

{
n

k − 1

}≤2

r

xk +

n∑
k=1

(2k + r − n)

{
n

k

}≤2

r

xk + rn+1 + xn+1

=

n−1∑
k=0

{
n

k

}≤2

r

xk+1 + 2

n∑
k=1

k

{
n

k

}≤2

r

xk + (r − n)

n∑
k=1

{
n

k

}≤2

r

xk

+rn+1 + xn+1

= x
n∑

k=0

{
n

k

}≤2

r

xk + 2x
n∑

k=1

k

{
n

k

}≤2

r

xk−1 + (r − n)
n∑

k=0

{
n

k

}≤2

r

xk

= (x+ r − n)B≤2
n,r(x) + 2x(B≤2

n,r(x))
′.

Jung, Mező and Ramı́rez [10] studied the roots of restricted r-Bell polynomials.
They proved that all roots of the polynomial B≤2

n,0(x) are non-positive real numbers
(n ≥ 1). They also formulated the conjecture that the same holds in general, for
arbitrary r ≥ 0, which we confirm in the next theorem by using graph theory.
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Theorem 3.2. If n ≥ 1 and r ≥ 0, then all roots of the polynomial B≤2
n,r(x) are real

and non-positive.

Proof. It is easy to observe that the definition of restricted r-Stirling numbers can
be translated into the language of graph theory (see [3], also [9] for r = 0). Consider
a complete (n+1)-partite graph which has n one-element and one r-element partite

sets. In this graph, the number of (n − k)-element matchings is equal to
{
n
k

}≤2

r
if

0 ≤ k ≤ n.

It is known that all roots of the matching generating polynomial of a loopless
graph are real and negative (see, e.g., [14]). Since the reciprocal polynomial of B≤2

n,r(x)
is the matching generating polynomial of the above complete multipartite graph, the
roots of B≤2

n,r(x) are the reciprocals of the roots of the matching generating polynomial
possibly together with 0, consequently they are all real and non-positive.

Remark. We note that the approach to restricted r-Stirling numbers in the proof
shows an interesting similarity to the graph theoretic interpretation of r-Lah numbers
in [20].

Log-concavity and unimodality of the sequence of restricted r-Stirling numbers
with a fixed upper parameter are immediate consequences of the previous result
together with Newton’s theorem (see, e.g., [21]). For r = 0, these properties can
already be found in [4, 9, 10].

Corollary 3.3. If n ≥ 1 and r ≥ 0, then the sequence

({
n
k

}≤2

r

)n

k=0

is log-concave

and unimodal.

We can easily derive the multiplicity of 0 as a root of restricted r-Bell polynomials
from the basic properties of restricted r-Stirling numbers. We conjecture a stronger
assertion about the negative roots, namely we expect that they are all simple.

Conjecture 3.4. Let n ≥ 1 and r ≥ 0. If n ≤ r, then all roots of the polynomial
B≤2

n,r(x) are negative and simple. If n > r and

• n ≡ r (mod 2), then 0 has multiplicity n−r
2
, the other roots of the polynomial

B≤2
n,r(x) are negative and simple,

• n �≡ r (mod 2), then 0 has multiplicity n−r+1
2

, the other roots of the polynomial
B≤2

n,r(x) are negative and simple.

We prove a partial result concerning this conjecture.

Theorem 3.5. Let n ≥ 1, r ≥ 0 and n ≡ r (mod 2). If the assertion in the
conjecture holds for the polynomial B≤2

n,r(x), then it also holds for the polynomial

B≤2
n+1,r(x).
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Proof. The key observation we need is the identity

(
e

1
2
xx

r−n
2 B≤2

n,r(x)
)′

=
1

2
e

1
2
xx

r−n
2

−1B≤2
n+1,r(x) (x ∈ R),

which follows from Theorem 3.1.

If n < r and the polynomial B≤2
n,r(x) has n negative simple roots, then

e
1
2
xx

r−n
2 B≤2

n,r(x) has n + 1 zeros, one of them is 0, the others are negative. Fur-

thermore, we have lim
x→−∞

e
1
2
xx

r−n
2 B≤2

n,r(x) = 0. Then Rolle’s mean value theorem

gives that
(
e

1
2
xx

r−n
2 B≤2

n,r(x)
)′

has n + 1 negative zeros, which are the roots of the

polynomial B≤2
n+1,r(x) in view of the above identity.

If n = r and the polynomial B≤2
n,r(x) has n negative simple roots, then we can

similarly show that the polynomial B≤2
n+1,r(x) has n distinct negative roots, while 0

is an additional simple root.

Finally, if n > r and the polynomial B≤2
n,r(x) has

n+r
2

negative simple roots beside

0 as a root of multiplicity n−r
2
, then x

r−n
2 B≤2

n,r(x) is a polynomial with the same n+r
2

negative simple roots. It follows again from Rolle’s theorem that
(
e

1
2
xx

r−n
2 B≤2

n,r(x)
)′

has n+r
2

negative zeros. By the identity at the beginning of the proof, all of them are

roots of the polynomial B≤2
n+1,r(x), which has 0 as an additional root of multiplicity

n−r
2

+ 1.
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