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Abstract

For positive integers n, r, k with n � r and k � 2, a set {(x1, y1), (x2, y2),
. . . , (xr, yr)} is called a k-signed r-set on [n] if x1, . . . , xr are distinct
elements of [n] and y1, . . . , yr ∈ [k]. We say that a t-intersecting fam-
ily consisting of k-signed r-sets on [n] is trivial if each member of this
family contains a fixed k-signed t-set. In this paper, we determine the
structure of large maximal non-trivial t-intersecting families of k-signed
r-sets. In particular, we characterize the non-trivial t-intersecting fami-
lies with maximum size for t � 2, extending a Hilton-Milner-type result
for signed sets given by Borg.

1 Introduction

Let n, r and t be positive integers with n � r � t. For an n-set X, let 2X and
(
X
r

)
denote the family of subsets and the set of r-subsets of X , respectively. A family
F ⊂ 2X is called t-intersecting if |F ∩F ′| � t for every F, F ′ ∈ F . Moreover, we say
F is trivial if the members of F contain a fixed t-subset of X.

The famous Erdős-Ko-Rado Theorem [13, 15, 24] states that the largest t-inter-
secting subfamilies of

(
X
r

)
are trivial if n > (t + 1)(r − t + 1). In [15], Frankl

∗ Also at address of other two authors.
† Corresponding author.

ISSN: 2202-3518 c©The author(s). Released under the CC BY-ND 4.0 International License



T. YAO ET AL. /AUSTRALAS. J. COMBIN. 89 (1) (2024), 32–48 33

conjectured the structure of the maximum-sized t-intersecting subfamilies of
(
X
r

)
for

all n, r and t. Frankl’s conjecture was partially settled by Frankl and Füredi [18],
and was completely confirmed by Ahlswede and Khachatrian [2].

The maximum-sized non-trivial t-intersecting subfamilies of
(
X
r

)
have been char-

acterized. Hilton and Milner [21] gave the first result for the structure of such families
when t = 1, which was also proved by Frankl and Füredi [17] via the shifting tech-
nique. In [16], Frankl proved the corresponding result for all t and sufficiently large
n. The complete result was given by Ahlswede and Khachatrian [1]. Extending
this further, Han and Kohayakawa [20] described the structure of the second largest
maximal non-trivial 1-intersecting familes with n > 2r � 6. Kostochka and Mubayi
[22] determined the structure of 1-intersecting families with sizes quite a bit smaller
than

(
n−1
r−1

)
for large n. Recently, Cao et al. [11] gave the structure of large maximal

non-trivial t-intersecting families for all t and large n.

The t-intersection problem has been studied for some other mathematical objects,
for example, signed sets. Write [n] = {1, 2, . . . , n}. For k � 2, each element of

Ln,r,k :=

{
{(x1, y1), . . . , (xr, yr)} : {x1, . . . , xr} ∈

(
[n]

r

)
, y1, . . . , yr ∈ [k]

}

is called a k-signed r-set on [n]. When r = n and k = 2, the family Ln,n,2 is considered

as 2[n]. Notice that the family
(
[n]
r

)
can be viewed as the set of all “1-signed r-sets”

on [n]. Signed sets generalize the classical sets and so the t-intersection problem for
this setting has attracted much attention.

A t-intersecting subfamily of Ln,r,k is said to be trivial if all its members contain
a fixed k-signed t-sets and non-trivial otherwise. There are a lot of Erdős-Ko-Rado
results for Ln,r,k, see [3, 4, 5, 19, 23] for r = n and [5, 6, 7, 8, 12, 14] for r < n. In
general, the Erdős-Ko-Rado theorem for Ln,r,k can be stated as follows.

Theorem 1.1. Let n, r, k and t be positive integers with n � r � t and k � 2. If n
or k is sufficiently large, then each maximum-sized t-intersecting subfamily of Ln,r,k

is trivial.

We remark here that the t-intersection problem of signed sets does not focus
solely on Ln,r,k, and refer readers to [10] for an Erdős-Ko-Rado result about a family
which is more general than Ln,r,k.

In this paper, we study the structure of maximal non-trivial t-intersecting sub-
families of Ln,r,k. To present our main results, we introduce two constructions
of non-trivial t-intersecting subfamilies of Ln,r,k. For each d ∈ [n], write Md =
{(1, 1), (2, 1), . . . , (d, 1)}.

Construction 1. Suppose that n, r, k, � and t are positive integers with 2 � k, t+1 �
r � n and t+ 2 � � � min{r+ 1, n}. Let H1(n, r, k, �, t) be the set of all elements F
of Ln,r,k such that

• Mt ⊂ F and |F ∩M�| � t+ 1, or
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• Mt �⊂ F and |F ∩M�| = �− 1.

Construction 2. Suppose that n, r, k, c and t are positive integers with 2 � k, t+2 �
r � n and r + 2 � c � min{2r − t, n}. Let H2(n, r, k, c, t) be the set of all elements
F of Ln,r,k such that

• Mt ⊂ F and |F ∩Mr| � t+ 1, or

• F ∩Mr =Mt and Mc \Mr ⊂ F , or

• Mt �⊂ F , |F ∩Mr| = r − 1 and |F ∩ (Mc \Mr)| = 1.

Indeed, the sizes of these families are difficult to compute and the formulas are
quite messy, but in most cases we do not need exact values. For each d ∈ [n], write

f(n, r, k, d, t) = (d− t)

(
n− t− 1

r − t− 1

)
kr−t−1 −

(
d− t

2

)(
n− t− 2

r − t− 2

)
kr−t−2, (1)

g(n, r, t) =
(r − t + 3)(r − t− 1)

n− t− 1
·max

{(
t + 2

2

)
,
r − t+ 1

2

}
. (2)

In the proofs of our main results, we will use f(n, r, k, d, t) to give lower bounds
of families defined above, and show some inequalities for sizes of non-trivial t-
intersecting families based on the assumption that k � g(n, r, t).

In the rest of this paper, for two subfamilies F and G of Ln,r,k, if there exists a
bijection σ from [n] × [k] to itself such that G = {σ(F ) : F ∈ F}, then we say F is
isomorphic to G, and denote this by F ∼= G. One of our main results is stated as
follows, describing the structure of maximal non-trivial t-intersecting subfamilies of
Ln,r,k with sizes no less than f(n, r, k, r, t).

Theorem 1.2. Let n, r, k and t be positive integers with n � t + 2, n � r � t + 1
and k � max{2, g(n, r, t)}. Suppose that F is a maximal non-trivial t-intersecting
subfamily of Ln,r,k. Then |F| � f(n, r, k, r, t) if and only if one of the following holds.

(i) r � t+ 2 and F ∼= H1(n, r, k,m, t) for some m ∈ {r,min{r + 1, n}}.

(ii) n � r + 2 � t + 4 and F ∼= H2(n, r, k, c, t) for some c ∈ {r + 2, . . . ,min{2r −
t, n}}.

(iii) r � 2t+ 2, r �= t + 2 and F ∼= H1(n, r, k, t+ 2, t).

The size of a largest non-trivial t-intersecting subfamily of Ln,r,k was determined
in [5]. In [9], Borg determined the structure of the largest non-trivial 1-intersecting
subfamilies of Ln,r,k.

Theorem 1.3. ([9]) Let n, r, k and t be positive integers with n � 3, n � r � 2,
k � 2 and (r, k) �= (n, 2). If F is a maximum-sized non-trivial intersecting subfamily
of Ln,r,k, then one of the following holds.
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(i) F ∼= H1(n, r, k,min{r + 1, n}, 1).

(ii) F ∼= H1(n, r, k, 3, 1) when r = 3 or r = n = 4.

By comparing the sizes of the families given in Theorem 1.2, we can describe the
structure of maximum-sized nontrivial t-intersecting subfamilies of Ln,r,k when k is
sufficiently large. Notice that Theorem 1.3 is the result for the case t = 1. Our
second main result focuses on the case t � 2.

Theorem 1.4. Let n, r, k and t be positive integers with n � t+2 � 4, n � r � t+1
and k � max{2, g(n, r, t)}. Suppose that F is a largest non-trivial t-intersecting
subfamily of Ln,r,k.

(i) If min{r + 1, n} � 2t+ 2, then F ∼= H1(n, r, k, t+ 2, t).

(ii) If min{r + 1, n} > 2t+ 2, then F ∼= H1(n, r, k,min{r + 1, n}, t).

The rest of this paper is organized as follows. In Section 2, we will prove some
properties for t-intersecting families with t-covering number t+ 1 in preparation for
the proof of our main results. In Sections 3 and 4, we will prove Theorems 1.2 and
1.4, respectively.

2 t-intersecting families with t-covering number t+ 1

For a t-intersecting subfamily F of Ln,r,k, a k-signed set T on [n] is said to be a
t-cover of F if |T ∩ F | � t for each F ∈ F , and the minimum size τt(F) of a t-cover
of F is called the t-covering number of F . Observe that t � τt(F) � r, and F is
trivial if and only if τt(F) = t. In this section, we determine some properties of
t-intersecting subfamilies of Ln,r,k with t-covering number t+ 1.

For convenience, we write FX := {F ∈ F : X ⊂ F} where F is a subset of Ln,r,k

and X a k-signed set on [n]. We make the following assumption when proving our
lemmas in this section and will handle the remaining case, i.e. τt(F) � t+ 2, in the
proof of Theorem 1.2.

Assumption 2.1. Let n, r, k and t be positive integers with n � r � t + 1 and
k � 2. Suppose F ⊂ Ln,r,k is a maximal t-intersecting family with τt(F) = t+1. Let
T denote the set of all t-covers of F with size t+ 1. Set M =

⋃
T∈T

T and � = |M |.

We first claim that T is a t-intersecting family with t � τt(T ) � t+1. In fact, for
T ∈ T and F ∈ Ln,r,k containing T , we have F ∈ F by the maximality of F . Then
for each T ′ ∈ T , there exists F ′ ∈ F such that T ′ ⊂ F ′ and T ′ ∩ T = F ′ ∩ F , which
implies that |T ′∩T | � t, as desired. To describe the structure of some t-intersecting
families, we need the following lemma, which shows a relationship between elements
of F and the set M defined in Assumption 2.1.

Lemma 2.2. Let n, r, k, t, �,F , T and M be as in Assumption 2.1.
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(i) If τt(T ) = t + 1, then M ∈ Ln,t+2,k and |F ∩M | � t+ 1 for each F ∈ F .

(ii) If τt(T ) = t, then M ∈ Ln,�,k with t + 1 � � � min{r + 1, n}, and for any
t-cover S of T with size t, |F ∩M | = �− 1 for each F ∈ F \ FS.

Proof. (i) Let T1 and T2 be distinct members of T . We claim that T1ΔT2 ∈ Ln,2,k.
Indeed, since |T1 ∩ T2| = t and F is non-trivially t-intersecting, we have |T1ΔT2| = 2
and there exists a member of F \ FT1∩T2 containing T1ΔT2, so T1ΔT2 ∈ Ln,2,k.

Since τt(T ) = t+1, there exists T3 ∈ T such that T1∩T2 �⊂ T3. From |T1∩T3| � t
and |T2 ∩ T3| � t, we get T1ΔT2 ⊂ T3 and |T3 ∩ (T1 ∩ T2)| = t− 1, which imply that
T3 ⊂ T1 ∪ T2. For each T4 ∈ T \ {T1} containing T1 ∩ T2, we have T1 ∩ T3 �⊂ T4.
Similarly, we have T4 ⊂ T1 ∪ T3 ⊂ T1 ∪ T2. Hence M ⊂ T1 ∪ T2 ⊂M . Together with
T1ΔT2 ∈ Ln,2,k, we getM = T1∪T2 ∈ Ln,t+2,k. For each F ∈ F , we have |F ∩M | � t.
If |F ∩M | = t, then F ∩M is contained in each member of T , but this contradicts
τt(T ) = t+ 1. Therefore, |F ∩M | � t+ 1, as desired.

(ii) By the claim in (i), it is routine to check that M ∈ Ln,�,k. Let S be a t-cover
of T . For each F ∈ F \ FS and T ∈ T , we have |F ∩ T | = t, from which we get
r + 1 � |S ∪ F | � |T ∪ F | = r + 1. Then S ∪ F = T ∪ F , which implies that
|M ∪ F | = |S ∪ F | = r + 1. Hence |F ∩M | = � − 1 and � � r + 1. Together with
M ∈ Ln,�,k and T �= ∅, we obtain t+ 1 � � � min{r + 1, n}, as required. �

For a k-signed set Q = {(s1, t1), . . . , (sq, tq)} on [n] with s1 � . . . � sq, consider
the permutation π0 = (q sq)(q − 1 sq−1) · · · (1 s1), and for each x ∈ [n], let πx be
a permutation on [k] with πx = (1 ti) if x = si for some i ∈ [q], and πx = (1)
otherwise. We get a bijection π from [n] × [k] to itself with π(x, y) = (π0(x), πx(y))
for each (x, y) ∈ [n] × [k]. Observe that π(Q) = Mq, and π(Ln,s,k) = Ln,s,k for each
s ∈ [n]. It is routine to check that there exists a bijection σ from [n] × [k] to itself
such that σ(F) is a t-intersecting subfamily of Ln,r,k with t-covering number t + 1,
M� =

⋃
T∈T ′ T , and Mt is a t-cover of T ′ if τt(T ) = t, where T ′ is the set of all

t-covers of σ(F) with size t+ 1. Let G denote the family σ(F). In the following two
lemmas, based on Lemma 2.2, we characterize some special t-intersecting families.

Lemma 2.3. Let n, r, k, t, �,F , T and M be as in Assumption 2.1. Suppose that
|F ∩M | � t+ 1 for each F ∈ F .

(i) If τt(T ) = t + 1, then F ∼= H1(n, r, k, t+ 2, t).

(ii) If τt(T ) = t, then F ∼= H1(n, r, k, �, t) and � ∈ {t+ 3, . . . ,min{r + 1, n}}.

Proof. (i) If τt(T ) = t+1, then M ∈ Ln,t+2,k by Lemma 2.2 (i). By the assumption
that F ∼= G and |F ∩M | � t + 1 for each F ∈ F , we have |G ∩Mt+2| � t + 1 for
each G ∈ G. Then G ⊂ H1(n, r, k, t+ 2, t). Since H1(n, r, k, t + 2, t) is t-intersecting
and G is maximal, we have F ∼= G = H1(n, r, k, t+ 2, t).

(ii) Since F is non-trivially t-intersecting, by Lemma 2.2 (ii), we have t + 2 �
� � min{r + 1, n}. Notice that each (t + 1)-subset of M� containing Mt is a t-
cover of G. Then {G ∈ Ln,r,k : Mt � G ∩M�} ⊂ G. By Lemma 2.2 (ii), we have
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|G∩M�| = �−1 for each G ∈ G\GMt . Hence G ⊂ H1(n, r, k, �, t). Since G is maximal
and H1(n, r, k, �, t) is t-intersecting, we have F ∼= G = H1(n, r, k, �, t). Notice that
τt(T ) = t+ 1 if � = t + 2. Then � � t + 3, as desired. �

Lemma 2.4. Let n, r, k, t, �,F , T and M be as in Assumption 2.1. Suppose that
there exists F0 ∈ F such that |F0 ∩M | = t. Then t � r − 2 and � < min{r + 1, n}.
Moreover, if � = min{r+1, n}− 1, then r � n− 2 and F ∼= H2(n, r, k, c, t) for some
c ∈ {r + 2, . . . ,min{2r − t, n}}.

Proof. By Lemma 2.2 (i), we have τt(T ) = t. If r = t+1, then T = F , which implies
that τt(T ) = t+1, a contradiction. Hence r � t+2. Observe that F0∩M is a t-cover
of T . Let F ∈ F \ FF0∩M . If � = min{r + 1, n}, then by Lemma 2.2 (ii), we have
|F ∩ F0| = |F ∩ (F0 ∩M)| < t, which is impossible. Therefore, � < min{r + 1, n}.

Now suppose that � = min{r + 1, n} − 1. Since F ∼= G, there exists G0 ∈ G such
that G0 ∩M� = Mt. Let G ∈ G \ GMt . If r � n− 1, then � = n− 1. By Lemma 2.2
(ii), we have |G0 ∩ G ∩ ([n− 1]× [k])| = t − 1, which implies that (n, x0) ∈ G0 ∩G
for some x0 ∈ [k]. Then Mt ∪ {(n, x0)} is a t-cover of G, which is impossible since
� < n and each member of T ′ is contained in M�. Hence r � n− 2 and � = r.

By |G0 ∩G| � t and Lemma 2.2 (ii), we obtain G \ ([r]× [k]) ∈
(
G0

1

)
. Let

E = {(i, j) : i � r + 1, (i, j) ∈ G for some G ∈ G \ GMt}.

Observe that E is a non-empty subset of G0 and E ∩Mr = ∅. We have 1 � |E| �
min{r − t, n − r}. If E = {(e1, e2)} for some e1 � r + 1 and e2 ∈ [k], then (e1, e2)
is contained in each member of G \ GMt , which implies that Mt ∪ {(e1, e2)} ∈ T ′,
a contradiction. Therefore |E| � 2. Since Mt is a t-cover of T ′, then each (t + 1)-
subset ofMr containingMt is a member of T ′, which implies that {H ∈ Ln,r,k :Mt �

H∩Mr} ⊂ G. For each G′
0 ∈ GMt with |G′

0∩Mr| = t, observe that G\([r]×[k]) ⊂ G′
0.

Then we have E ⊂ G′
0. For eachG

′ ∈ G\GMt , we have |G′∩Mr| = r−1 andG′∩E �= ∅.
Together with 2 � |E| � min{r− t, n−r}, it is routine to check that G is isomorphic
to a subset of H2(n, r, k, c, t) where r + 2 � c � min{2r − t, n}. Since that G is
maximal and H2(n, r, k, c, t) is t-intersecting, we have F ∼= G ∼= H2(n, r, k, c, t), as
desired. �

Now we prove upper bounds for sizes of families under Assumption 2.1 with
τt(T ) = t. We begin with a frequently used lemma.

Lemma 2.5. Let n, r, k, t and u be positive integers with n � r � u + 1. Suppose
F ⊂ Ln,r,k is a t-intersecting family and U ∈ Ln,u,k. If |U ∩ F | = s < t for some
F ∈ F , then there exists R ∈ Ln,u+t−s,k such that U ⊆ R and |FU | �

(
r−s
t−s

)
|FR|.

Proof. W.l.o.g., assume that FU �= ∅. Let R denote the set of R ∈ Ln,u+t−s,k such
that U ⊂ R ⊂ F ∪ U . For G ∈ FU , from |G ∩ F | � t and |F ∩ U | = s < t, we
obtain |G ∩ (F ∪ U)| � u + t − s, which implies that R �= ∅ and FU =

⋃
R∈R FR.
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Since |F ∪ U | = u + r − s, we have |R| �
(
r−s
t−s

)
. Then the desired result holds by

|FU | �
∑

R∈R |FR|. �

Lemma 2.6. Let n, r, k, t, �,F , T and M be as in Assumption 2.1 with |T | = 1.
Then

|F| �
(
n− t− 1

r − t− 1

)
kr−t−1 + (t + 1)(r − t)2

(
n− t− 2

r − t− 2

)
kr−t−2.

Proof. Suppose that T0 is the unique element of T . We have

F = FT0 ∪

⎛
⎜⎝ ⋃

W∈(T0t )

FW \ FT0

⎞
⎟⎠ . (3)

For eachW ∈
(
T0

t

)
, there exists F1 ∈ F\FT0 such that |W∩F1| < t. Since |F1∩T0| = t

and |T0| = t+ 1, we have |F1 ∩W | = t− 1. Let H1 = F1 ∪W . It is routine to check
that |H1| = r + 1 and T0 ⊂ H1. For each F

′
1 ∈ FW \ FT0, we have |F ′

1 ∩H1| � t + 1
by |F1 ∩ F ′

1| � t. Then

FW \ FT0 =
⋃

I∈Ln,t+1,k\{T0}, W⊂I⊂H1

FI \ FT0. (4)

Suppose I ∈ Ln,t+1,k \ {T0} with W ⊂ I ⊂ H1. Since I �∈ T , there exists F ′′
1 ∈ F

such that t − 1 � |F ′′
1 ∩ W | � |F ′′

1 ∩ I| � t − 1. Observe that I ∪ T0 ∈ Ln,t+2,k.
Since F is maximal and T0 is a t-cover of F , each element of Ln,r,k containing T0
is a member of F , which implies that |FI∪T0| =

(
n−t−2
r−t−2

)
kr−t−2. By Lemma 2.5 and

|F ′
1 ∩ I| = t− 1, we have |FI | � (r− t+1)|FR| for some R ∈ Ln,t+2,k. Together with

|FR| �
(
n−t−2
r−t−2

)
kr−t−2, this produces |FI | � (r − t+ 1)

(
n−t−2
r−t−2

)
kr−t−2. Then

|FI \ FT0| = |FI | − |FI∪T0| � (r − t)

(
n− t− 2

r − t− 2

)
kr−t−2. (5)

Notice that |FT0| =
(
n−t−1
r−t−1

)
kr−t−1 and the number of I ∈ Ln,t+1,k \ {T0} with W ⊂

I ⊂ H1 is at most r− t. Together with (3), (4) and (5), we get the desired bound of
|F|. �

Lemma 2.7. Let n, r, k, t, �,F , T and M be as in Assumption 2.1 with |T | � 2 and
τt(T ) = t.

(i) If � = t+ 2, then

|F| � 2

(
n−t− 1

r−t−1

)
kr−t−1 + (r − 1)(r − t+ 1)

(
n−t−2

r−t−2

)
kr−t−2.

(ii) If � � t + 3, then

|F| � (�− t)

(
n−t−1

r−t−1

)
kr−t−1 + ((r − �+ 1)(r − t+ 1) + t)

(
n−t−2

r−t−2

)
kr−t−2.
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Proof. Suppose that S is a t-cover of T with size t.

We first prove an upper bound for |FS|. Let F2 ∈ F \ FS and H2 = S ∪ F2. It
follows from Lemma 2.2 (ii) that M ⊂ H2 and |H2| = r + 1. For each F ′

2 ∈ FS, if
F2 ∩M = S, then from |F2 ∩ F ′

2| � t we get |F ′
2 ∩H2| � t + 1. Write

A = {A ∈ Ln,t+1,k : S ⊂ A ⊂ H2, A �⊂ M} , B = {B ∈ Ln,t+1,k : S ⊂ B ⊂ M} .

Observe that each member of FS contains at least one element of A ∪ B. For each
A ∈ A, since A �∈ T , there exists F ′′

2 ∈ F such that t − 1 � |F ′′
2 ∩ S| � |F ′′

2 ∩ A| �
t − 1. Then by Lemma 2.5, we have |FA| � (r − t + 1)

(
n−t−2
r−t−2

)
kr−t−2. Notice that

|A| � r − � + 1, |B| = � − t and |FB| �
(
n−t−1
r−t−1

)
kr−t−1 for each B ∈ B. Then we

obtain

|FS| � (�− t)

(
n− t− 1

r − t− 1

)
kr−t−1 + (r − �+ 1)(r − t+ 1)

(
n− t− 2

r − t− 2

)
kr−t−2. (6)

Let C = {C ∈ Ln,�−1,k : S �⊂ C ⊂M}. We have |C| = t and F \ FS ⊂
⋃

C∈C FC.

(i) Suppose � = t + 2. For each C ∈ C, since C �∈ T , there exists F3 ∈ F such
that |F3 ∩ C| � t − 1. Together with |F3 ∩M | � t, we have |F3 ∩ C| = t − 1. By
Lemma 2.2 (ii), Lemma 2.5 and |C| = t, we have

|F \ FS| �
∑
C∈C

|FC | � t(r − t+ 1)

(
n− t− 2

r − t− 2

)
kr−t−2.

Together with (6), this produces the desired result.

(ii) Suppose � � t + 3. Observe that |FC| �
(
n−�+1
r−�+1

)
kr−�+1 for each C ∈ C. By

Lemma 2.2 (ii), � � t + 3 and |C| = t, we have

|F \ FS| �
∑
C∈C

|FC | � t

(
n− �+ 1

r − �+ 1

)
kr−�+1 � t

(
n− t− 2

r − t− 2

)
kr−t−2.

Together with (6), this produces the desired bound on |F|. �

3 Proof of Theorem 1.2

Let n, r, k and t be positive integers with n � t + 2, n � r � t + 1 and k �
max{2, g(n, r, t)}. Suppose that F is a maximal non-trivial t-intersecting subfamily
of Ln,r,k. If r = t + 1, then τt(F) = t + 1 and F is the set of its t-covers with size
t + 1. It follows from Lemmas 2.2 (i) and 2.3 (i) that F ∼= H1(n, t + 1, k, t + 2, t)
and |F| = t + 2 > 1 = f(n, t + 1, k, t + 1, t). In the following, we may assume that
r � t+ 2. Write

ϕ(n, r, k, t) =
f(n, r, k, r, t)− |F|(

n−t−2
r−t−2

)
kr−t−2

.
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It is sufficient to show that ϕ(n, r, k, t) < 0 if one of (i), (ii) and (iii) in Theorem 1.2
holds, and ϕ(n, r, k, t) > 0 otherwise.

Case 1. τt(F) = t + 1.

In this case, let T be the set of all t-covers of F with size t+1 and � = |
⋃

T∈T T |.
Recall from Section 2 that t � τt(T ) � t + 1, and t + 1 � � � min{r + 1, n} by
Lemma 2.2.

Case 1.1. τt(T ) = t.

In this case, (iii) does not hold since the corresponding T forH1(n, r, k, t+2, t) has
t-covering number t+1. Therefore, in this case, we need to show that ϕ(n, r, k, t) < 0
when (i) or (ii) holds and ϕ(n, r, k, t) > 0 when neither (i) nor (ii) holds.

Case 1.1.1. (i) or (ii) holds.

We may assume that F = H1(n, r, k,m, t) for some m ∈ {r,min{r + 1, n}}, or
n � r + 2 � t + 4 and F = H2(n, r, k, c, t) for some c ∈ {r + 2, . . . ,min{2r − t, n}}.
Note that � � r.

Let a be an integer with a � t + 1. For each b ∈ {t+ 1, . . . , a}, set

Nb(Ma,Mt) = {F ∈ Ln,r,k :Mt ⊂ F, |F ∩Ma| = b}.

We claim that

f(n, r, k, a, t) =

a−t∑
i=1

3i− i2

2
· |Nt+i(Ma,Mt)|. (7)

For each b ∈ {t + 1, . . . , a}, let Mb(Ma,Mt) denote that set of all (I, F ) ∈ Ln,b,k ×
Ln,r,k with Mt ⊂ I ⊂ Ma and I ⊂ F . By double counting |Mt+1(Ma,Mt)| and
|Mt+2(Ma,Mt)|, we obtain

a−t∑
i=1

i|Nt+i(Ma,Mt)| = (a− t)

(
n− t− 1

r − t− 1

)
kr−t−1,

a−t∑
i=2

(
i

2

)
|Nt+i(Ma,Mt)| =

(
a− t

2

)(
n− t− 2

r − t− 2

)
kr−t−2,

which imply that (7) holds. If t + 2 � a � �, then we have

f(n, r, k, a, t) � |Nt+1(Ma,Mt)|+ |Nt+2(Ma,Mt)|
� |Nt+1(M�,Mt)|+ |Nt+2(M�,Mt)| < |F|

(8)

by (7). Then ϕ(n, r, k, t) < 0, as desired.

Case 1.1.2. Neither (i) nor (ii) holds.

In this case, we have � < r. Indeed, if |F∩
⋃

T∈T T | � t+1 for each F ∈ F , then by
Lemma 2.3 (ii) and the assumption that (i) does not hold, we get � < min{r+1, n} �
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r + 1 and � �= r, which produce � < r. On the other hand, if |F0 ∩
⋃

T∈T T | = t for
some F0 ∈ F , then by Lemma 2.4 and the assumption that (ii) does not hold, we
have � < min{r + 1, n} − 1 � r.

If � = t+1, then from (1), Lemma 2.6 and (n− t−1)k �
(
t+2
2

)
(r− t)2, we obtain

ϕ(n, r, k, t) � (n− t− 1)k −
(
r − t

2

)
− (t+ 1)(r − t)2 � (t2 + t− 1)(r − t)2

2
> 0.

If � = t + 2, then, since � < r, r − t � 3. From (1), (2), Lemma 2.7 (i) and
k � g(n, r, t), we obtain

ϕ(n, r, k, t) � (r − t− 2)(n− t− 1)k

r − t− 1
−

(
r − t

2

)
− (r − 1)(r − t + 1)

� (r − t− 2)(r − t+ 3)

((
t+2

2

)
− 3(r−t)2 + (2t−1)(r−t) + 2(t−1)

2(r − t− 2)(r − t+ 3)

)

� (r − t− 2)(r − t+ 3)

((
t+2

2

)
− 4t+11

6

)

> 0.

If � � t+ 3, then, since � < r, r − t � 4. Notice that

g(n, r, t) �
(
α

(
t+ 2

2

)
+ (1− α) · r − t+ 1

2

)
· (r − t + 3)(r − t− 1)

n− t− 1

�
(
t+

(
1− 1

3(r − t+ 3)

)
· (r − t+ 1)(r − t+ 3)

2

)
· r − t− 1

n− t− 1

=

(
t+

3(r − t)2 + 11(r − t) + 8

6

)
· r − t− 1

n− t− 1
,

(9)

where α is a real number such that
(
t+2
2

)
(r − t + 3)α = t. Together with (1), (2),

Lemma 2.7 (ii), k � g(n, r, t) and r − � � 1, we get

ϕ(n, r, k, t) � (r − �)(n− t− 1)k

r − t− 1
−

(
r − t

2

)
− (r − �+ 1) (r − t+ 1)− t

� (r − �)

(
(n− t− 1)k

r − t− 1
−

(
r − t

2

)
− 2(r − t+ 1)− t

)

� 3(r − t)2 + 11(r − t) + 8

6
−

(
r − t

2

)
− 2(r − t+ 1)

> 0,

as desired.

Case 1.2. τt(T ) = t + 1.

In this case, by Lemmas 2.2 (i) and 2.3 (i), we have F ∼= H1(n, r, k, t + 2, t).
Then (ii) does not hold. Next we show that ϕ(n, r, k, t) < 0 if either (i) holds with
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r � 2t+ 2 or (iii) holds, and ϕ(n, r, k, t) > 0 otherwise. Observe that

|H1(n, r, k, t+ 2, t)| = (t+ 2)

(
n− t− 1

r − t− 1

)
kr−t−1 − (t+ 1)

(
n− t− 2

r − t− 2

)
kr−t−2, (10)

and it follows from (1) that

ϕ(n, r, k, t) =
(r − 2t− 2)(n− t− 1)k

r − t− 1
−
(
r − t

2

)
+ (t+ 1). (11)

Suppose that either (i) holds with r � 2t + 2 or (iii) holds. Then r � 2t + 2. If
r = 2t+ 2, then by (11), we have

ϕ(n, r, k, t) = −
(
t + 2

2

)
+ (t+ 1) = −

(
t+ 1

2

)
< 0.

If r < 2t+ 2, then by (2), (11) and k � g(n, r, t), we get

ϕ(n, r, k, t) � −(n− t− 1)k

r − t− 1
−
(
r − t

2

)
+(t+1) � −

(
t+ 2

2

)
(r− t+3)+(t+1) < 0,

as desired.

Now suppose that we neither have (i) with r � 2t + 2 nor have (iii). Then
r > 2t+ 2. From (2), (11) and k � g(n, r, t), we obtain

ϕ(n, r, k, t) � (n− t− 1)k

r − t− 1
−
(
r − t

2

)
+(t+1) � (r − t+ 3)(r − t+ 1)

2
−
(
r − t

2

)
> 0,

as required.

Case 2. τt(F) � t+ 2.

Observe that none of (i), (ii) and (iii) holds. To show ϕ(n, r, k, t) > 0, we first
prove an upper bound on |F|.

Claim 1. |F| � (r − t+ 1)2
(
t+2
2

)(
n−t−2
r−t−2

)
kr−t−2.

Proof of Claim 1. Suppose τt(F) = z and Z is a t-cover of F with size z. For
Y0 ∈

(
Z
t

)
, without loss of generality, assume that FY0 �= ∅. Since Y0 is not a t-cover

of F , there exists X0 ∈ F such that |X0 ∩ Y0| < t. By Lemma 2.5, there exists
Y1 ∈ Ln,2t−|X0∩Y0|,k containing Y0 such that

|FY0| �
(
r − |X0 ∩ Y0|
t− |X0 ∩ Y0|

)
|FY1| � (r − t+ 1)t−|X0∩Y0||FY1|.

Note that FY1 �= ∅ by |FY0| > 0. Similarly, we deduce that there exist k-signed sets
Y0, Y1, . . . , Yw on [n] such that Y0 ⊂ · · · ⊂ Yw with |Yw−1| < z, |Yw| � z and

|FYi
| � (r − t+ 1)|Yi+1|−|Yi||FYi+1

|
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for each i = 0, . . . , w − 1. Therefore

|FY0| � (r − t + 1)|Yw|−t|FYw | � (r − t + 1)|Yw|−t

(
n− |Yw|
r − |Yw|

)
kr−|Yw|.

Together with k � g(n, r, t), we obtain

|FY0|
(r − t + 1)z−t

(
n−z
r−z

)
kr−z

�
|Yw|−1∏
i=z

(r − t+ 1)(r − i)

(n− i)k
�

(
2

r − t+ 3

)|Yw|−z

� 1.

Notice that F =
⋃

Y ∈(Zt)
FY . Then

|F| � (r − t+ 1)z−t

(
z

t

)(
n− z

r − z

)
kr−z.

For each y ∈ {t+ 2, . . . , r}, write

ψ(y) = (r − t+ 1)y−t

(
y

t

)(
n− y

r − y

)
kr−y.

If y � r − 1, then by y � t + 2, k � g(n, r, t) and (2), we have

ψ(y + 1)

ψ(y)
=

y + 1

y + 1− t
· (r − t + 1)(r − y)

(n− y)k

� t + 3

3
· r − t− 1

n− t− 1
· (r − t+ 1)(n− t− 1)(

t+2
2

)
(r − t + 3)(r − t− 1)

� 1.

Then from z � t+ 2, we get |F| � ψ(t+ 2), as desired. �

Observe that

g(n, r, t) �
(
(1− β)

(
t + 2

2

)
+ β · r − t+ 1

2

)
· (r − t+ 3)(r − t− 1)

n− t− 1

=

(
(r − t)2 + 3(r − t) + 4

r − t+ 1

(
t+ 2

2

)
+

1

r − t

(
r − t

2

))
· r − t− 1

n− t− 1
,

where β is a real number such that (r− t+3)(r− t+1)β = r− t− 1. Together with
(1), (2), r � t + 2, k � g(n, r, t) and Claim 1, we have

ϕ(n, r, k, t) � (r − t)(n− t− 1)k

r − t− 1
−

(
r − t

2

)
−
(
t+ 2

2

)
(r − t + 1)2

�
(
t+ 2

2

)(
(r − t)3 + 3(r − t)2 + 4(r − t)

r − t+ 1
− (r − t + 1)2

)

=
r − t− 1

r − t+ 1

(
t+ 2

2

)

> 0.

This finishes the proof of Theorem 1.2. �
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4 Proof of Theorem 1.4

Let n, r, k and t be positive integers with n � t + 2 � 4, n � r � t + 1 and
k � max{2, g(n, r, t)}. Suppose that F is a maximum-sized non-trivial t-intersecting
subfamily of Ln,r,k. If r = t+1, then by Theorem 1.2, we have F ∼= H1(n, r, k, t+2, t).
In the following, we assume that r � t+ 2. Write p = min{r + 1, n}.

Claim 2. F is isomorphic to H1(n, r, k, p, t) or H1(n, r, k, t+ 2, t).

Proof of Claim 2. Suppose for contradiction that neither H1(n, r, k, p, t) nor H1(n, r,
k, t+2, t) is isomorphic to F . Let T be the set of all t-covers of F with size τt(F) and
� = |

⋃
T∈T T |. By Theorem 1.2 and Lemmas 2.2 (i), 2.3, 2.4, we have τt(F) = t+ 1,

τt(T ) = t and � = r �= p. Therefore n > r, p = r + 1 and |T | � 2.

If r = t + 2, then by (1), (2), k � g(n, r, t) and Lemma 2.7 (i), we get

f(n, r, k, p, t)− |F|(
n−t−2
r−t−2

)
kr−t−2

� (n− t− 1)k

r − t− 1
−
(
r − t + 1

2

)
−3(r−1) � 5

(
t+ 2

2

)
−3(t+2) > 0.

If r � t + 3, then by (1), (2), (9), k � g(n, r, t) and Lemma 2.7 (ii), we have

f(n, r, k, p, t)− |F|(
n−t−2
r−t−2

)
kr−t−2

� (n− t− 1)k

r − t− 1
−

(
r − t + 1

2

)
− (r − t+ 1)− t

� 3(r − t)2 + 11(r − t) + 8

6
−

(
r − t+ 1

2

)
− (r − t + 1)

> 0.

Together with (8), we get |F| < f(n, r, k, p, t) � |H1(n, r, k, p, t)|, a contradiction to
the assumption that F is maximum-sized. �

If n = t + 2, then it follows from Claim 2 that F ∼= H1(n, r, k, t + 2, t). In the
following we may assume that n � t+ 3. Write

μ(n, r, k, t) =
|H1(n, r, k, t+ 2, t)| − |H1(n, r, k, p, t)|(

n−t−2
r−t−2

)
kr−t−2

.

By Claim 2, it suffices to show that μ(n, r, k, t) < 0 if p > 2t+2, and μ(n, r, k, t) > 0
if p � 2t+ 2. We divide the remaining proof into three cases.

Case 1. p > 2t+ 2.

Since k � g(n, r, t) and |H1(n, r, k, p, t)| > f(n, r, k, p, t), by (1), (2) and (10), we
have

μ(n, r, k, t) < −(n− t− 1)k

r − t− 1
+

(
p− t

2

)
− (t+ 1) � −3(r − t + 1)

2
− (t+ 1) < 0,
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as desired.

Case 2. p < 2t+ 2.

By the construction of H1(n, r, k, p, t), it is routine to verify that

|H1(n, r, k, p, t)| � (p− t)

(
n− t− 1

r − t− 1

)
kr−t−1 + t(k − 1).

Therefore, if r � t + 3, then by (2), (10), t � 2 and k � g(n, r, t), we have

μ(n, r, k, t) � (n− t− 1)k

r − t− 1
− (t+ 1)− t �

(
t+ 2

2

)
(r − t+ 3)− (2t+ 1) > 0.

If r = t+ 2, then p = t+ 3 by n � t + 3, and

|H1(n, t+ 2, k, t+ 3, t)| = 3(n− t− 1)k + t− 3.

Together with (10), n � t+ 3 and t, k � 2, we obtain

μ(n, t+ 2, k, t) = (t− 1)((n− t− 1)k − 2) > 0,

as required.

Case 3. p = 2t+ 2.

In this case, we have r � p − 1 > t + 2. By the construction of H1(n, r, k, p, t),
we have

|H1(n, r, k, p, t)| �
p−t∑
i=1

|Nt+i(Mp,Mt)|+ t(k − 1).

Together with (7) and |Nt+i(Mp,Mt)| �
(
t+2
i

)(
n−t−i
r−t−i

)
kr−t−i for each i ∈ {3, . . . , p−t},

we get

|H1(n, r, k, p, t)| − f(n, r, k, p, t) �
p−t∑
i=3

(
i− 1

2

)
|Nt+i(Mp,Mt)|+ t(k − 1)

�
p−t∑
i=3

(
i− 1

2

)(
t+2

i

)(
n−t−i
r−t−i

)
kr−t−i + t(k−1).

For each i ∈ {3, . . . , p− t}, write

λ(i) =

(
i− 1

2

)(
t+ 2

i

)(
n− t− i

r − t− i

)
kr−t−i.

If i � p− t− 1, then by (2), t � 2, i � 3 and k � g(n, r, t), we have

λ(i+ 1)

λ(i)
=

i(t+ 2− i)

(i− 2)(i+ 1)
· r − t− i

(n− t− i)k
� 3(t− 1)

4(t+ 1)(t+ 2)
� 1

4
.
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Then

|H1(n, r, k, p, t)| − f(n, r, k, p, t) � λ(3) ·
∞∑
j=0

1

4j
+ t(k − 1)

=
4

3

(
t + 2

3

)(
n− t− 3

r − t− 3

)
kr−t−3 + t(k − 1).

Together with (2), t � 2, k � g(n, r, t) and

|H1(n, r, k, t+ 2, t)| − f(n, r, k, p, t) =

(
t+ 1

2

)(
n− t− 2

r − t− 2

)
kr−t−2,

we get

μ(n, r, k, t) �
(
t+ 1

2

)
− t− 4(r − t− 2)

3(n− t− 2)k

(
t+ 2

3

)

�
(
t

2

)
− 8

3(t + 1)(t+ 2)(r − t+ 3)
· (t+ 2)(t+ 1)t

6

�
(
t− 1

2
− 4

9

)
t

> 0.

This finishes the proof of Theorem 1.4. �

Remark. In Theorem 1.4, we assume t � 2. We can also get the corresponding
result for t = 1 using the same method. It should be noted that, when t = 1,
comparing the sizes of H1(n, r, k,min{r+1, n}, 1) and H1(n, r, k, 3, 1) is a little more
complicated because these two families may have the same size.
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