Large non-trivial t-intersecting families of signed sets

Tian Yao*
School of Mathematical Sciences
Henan Institute of Science and Technology
Xinxiang 453003, China
yaotian@mail.bnu.edu.cn

Benjian Lv Kaishun Wang ${ }^{\dagger}$
Laboratory of Mathematics and Complex Systems (Ministry of Education) School of Mathematical Sciences Beijing Normal University, Beijing 100875, China
bjlv@bnu.edu.cn wangks@bnu.edu.cn

Abstract

For positive integers n, r, k with $n \geqslant r$ and $k \geqslant 2$, a set $\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right.$, $\left.\ldots,\left(x_{r}, y_{r}\right)\right\}$ is called a k-signed r-set on $[n]$ if x_{1}, \ldots, x_{r} are distinct elements of $[n]$ and $y_{1}, \ldots, y_{r} \in[k]$. We say that a t-intersecting family consisting of k-signed r-sets on [n] is trivial if each member of this family contains a fixed k-signed t-set. In this paper, we determine the structure of large maximal non-trivial t-intersecting families of k-signed r-sets. In particular, we characterize the non-trivial t-intersecting families with maximum size for $t \geqslant 2$, extending a Hilton-Milner-type result for signed sets given by Borg.

1 Introduction

Let n, r and t be positive integers with $n \geqslant r \geqslant t$. For an n-set X, let 2^{X} and $\binom{X}{r}$ denote the family of subsets and the set of r-subsets of X, respectively. A family $\mathcal{F} \subset 2^{X}$ is called t-intersecting if $\left|F \cap F^{\prime}\right| \geqslant t$ for every $F, F^{\prime} \in \mathcal{F}$. Moreover, we say \mathcal{F} is trivial if the members of \mathcal{F} contain a fixed t-subset of X.

The famous Erdős-Ko-Rado Theorem [13, 15, 24] states that the largest t-intersecting subfamilies of $\binom{X}{r}$ are trivial if $n>(t+1)(r-t+1)$. In [15], Frankl

[^0]conjectured the structure of the maximum-sized t-intersecting subfamilies of $\binom{X}{r}$ for all n, r and t. Frankl's conjecture was partially settled by Frankl and Füredi [18], and was completely confirmed by Ahlswede and Khachatrian [2].

The maximum-sized non-trivial t-intersecting subfamilies of $\binom{X}{r}$ have been characterized. Hilton and Milner [21] gave the first result for the structure of such families when $t=1$, which was also proved by Frankl and Füredi [17] via the shifting technique. In [16], Frankl proved the corresponding result for all t and sufficiently large n. The complete result was given by Ahlswede and Khachatrian [1]. Extending this further, Han and Kohayakawa [20] described the structure of the second largest maximal non-trivial 1 -intersecting familes with $n>2 r \geqslant 6$. Kostochka and Mubayi [22] determined the structure of 1-intersecting families with sizes quite a bit smaller than $\binom{n-1}{r-1}$ for large n. Recently, Cao et al. [11] gave the structure of large maximal non-trivial t-intersecting families for all t and large n.

The t-intersection problem has been studied for some other mathematical objects, for example, signed sets. Write $[n]=\{1,2, \ldots, n\}$. For $k \geqslant 2$, each element of

$$
\mathcal{L}_{n, r, k}:=\left\{\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{r}, y_{r}\right)\right\}:\left\{x_{1}, \ldots, x_{r}\right\} \in\binom{[n]}{r}, y_{1}, \ldots, y_{r} \in[k]\right\}
$$

is called a k-signed r-set on $[n]$. When $r=n$ and $k=2$, the family $\mathcal{L}_{n, n, 2}$ is considered as $2^{[n]}$. Notice that the family $\binom{[n]}{r}$ can be viewed as the set of all " 1 -signed r-sets" on $[n]$. Signed sets generalize the classical sets and so the t-intersection problem for this setting has attracted much attention.

A t-intersecting subfamily of $\mathcal{L}_{n, r, k}$ is said to be trivial if all its members contain a fixed k-signed t-sets and non-trivial otherwise. There are a lot of Erdős-Ko-Rado results for $\mathcal{L}_{n, r, k}$, see $[3,4,5,19,23]$ for $r=n$ and $[5,6,7,8,12,14]$ for $r<n$. In general, the Erdős-Ko-Rado theorem for $\mathcal{L}_{n, r, k}$ can be stated as follows.

Theorem 1.1. Let n, r, k and t be positive integers with $n \geqslant r \geqslant t$ and $k \geqslant 2$. If n or k is sufficiently large, then each maximum-sized t-intersecting subfamily of $\mathcal{L}_{n, r, k}$ is trivial.

We remark here that the t-intersection problem of signed sets does not focus solely on $\mathcal{L}_{n, r, k}$, and refer readers to [10] for an Erdős-Ko-Rado result about a family which is more general than $\mathcal{L}_{n, r, k}$.

In this paper, we study the structure of maximal non-trivial t-intersecting subfamilies of $\mathcal{L}_{n, r, k}$. To present our main results, we introduce two constructions of non-trivial t-intersecting subfamilies of $\mathcal{L}_{n, r, k}$. For each $d \in[n]$, write $M_{d}=$ $\{(1,1),(2,1), \ldots,(d, 1)\}$.

Construction 1. Suppose that n, r, k, ℓ and t are positive integers with $2 \leqslant k, t+1 \leqslant$ $r \leqslant n$ and $t+2 \leqslant \ell \leqslant \min \{r+1, n\}$. Let $\mathcal{H}_{1}(n, r, k, \ell, t)$ be the set of all elements F of $\mathcal{L}_{n, r, k}$ such that

- $M_{t} \subset F$ and $\left|F \cap M_{\ell}\right| \geqslant t+1$, or
- $M_{t} \not \subset F$ and $\left|F \cap M_{\ell}\right|=\ell-1$.

Construction 2. Suppose that n, r, k, c and t are positive integers with $2 \leqslant k, t+2 \leqslant$ $r \leqslant n$ and $r+2 \leqslant c \leqslant \min \{2 r-t, n\}$. Let $\mathcal{H}_{2}(n, r, k, c, t)$ be the set of all elements F of $\mathcal{L}_{n, r, k}$ such that

- $M_{t} \subset F$ and $\left|F \cap M_{r}\right| \geqslant t+1$, or
- $F \cap M_{r}=M_{t}$ and $M_{c} \backslash M_{r} \subset F$, or
- $M_{t} \not \subset F,\left|F \cap M_{r}\right|=r-1$ and $\left|F \cap\left(M_{c} \backslash M_{r}\right)\right|=1$.

Indeed, the sizes of these families are difficult to compute and the formulas are quite messy, but in most cases we do not need exact values. For each $d \in[n]$, write

$$
\begin{align*}
f(n, r, k, d, t) & =(d-t)\binom{n-t-1}{r-t-1} k^{r-t-1}-\binom{d-t}{2}\binom{n-t-2}{r-t-2} k^{r-t-2} \tag{1}\\
g(n, r, t) & =\frac{(r-t+3)(r-t-1)}{n-t-1} \cdot \max \left\{\binom{t+2}{2}, \frac{r-t+1}{2}\right\} \tag{2}
\end{align*}
$$

In the proofs of our main results, we will use $f(n, r, k, d, t)$ to give lower bounds of families defined above, and show some inequalities for sizes of non-trivial t intersecting families based on the assumption that $k \geqslant g(n, r, t)$.

In the rest of this paper, for two subfamilies \mathcal{F} and \mathcal{G} of $\mathcal{L}_{n, r, k}$, if there exists a bijection σ from $[n] \times[k]$ to itself such that $\mathcal{G}=\{\sigma(F): F \in \mathcal{F}\}$, then we say \mathcal{F} is isomorphic to \mathcal{G}, and denote this by $\mathcal{F} \cong \mathcal{G}$. One of our main results is stated as follows, describing the structure of maximal non-trivial t-intersecting subfamilies of $\mathcal{L}_{n, r, k}$ with sizes no less than $f(n, r, k, r, t)$.

Theorem 1.2. Let n, r, k and t be positive integers with $n \geqslant t+2, n \geqslant r \geqslant t+1$ and $k \geqslant \max \{2, g(n, r, t)\}$. Suppose that \mathcal{F} is a maximal non-trivial t-intersecting subfamily of $\mathcal{L}_{n, r, k}$. Then $|\mathcal{F}| \geqslant f(n, r, k, r, t)$ if and only if one of the following holds.
(i) $r \geqslant t+2$ and $\mathcal{F} \cong \mathcal{H}_{1}(n, r, k, m, t)$ for some $m \in\{r, \min \{r+1, n\}\}$.
(ii) $n \geqslant r+2 \geqslant t+4$ and $\mathcal{F} \cong \mathcal{H}_{2}(n, r, k, c, t)$ for some $c \in\{r+2, \ldots, \min \{2 r-$ $t, n\}\}$.
(iii) $r \leqslant 2 t+2, r \neq t+2$ and $\mathcal{F} \cong \mathcal{H}_{1}(n, r, k, t+2, t)$.

The size of a largest non-trivial t-intersecting subfamily of $\mathcal{L}_{n, r, k}$ was determined in [5]. In [9], Borg determined the structure of the largest non-trivial 1-intersecting subfamilies of $\mathcal{L}_{n, r, k}$.

Theorem 1.3. ([9]) Let n, r, k and t be positive integers with $n \geqslant 3, n \geqslant r \geqslant 2$, $k \geqslant 2$ and $(r, k) \neq(n, 2)$. If \mathcal{F} is a maximum-sized non-trivial intersecting subfamily of $\mathcal{L}_{n, r, k}$, then one of the following holds.
(i) $\mathcal{F} \cong \mathcal{H}_{1}(n, r, k, \min \{r+1, n\}, 1)$.
(ii) $\mathcal{F} \cong \mathcal{H}_{1}(n, r, k, 3,1)$ when $r=3$ or $r=n=4$.

By comparing the sizes of the families given in Theorem 1.2, we can describe the structure of maximum-sized nontrivial t-intersecting subfamilies of $\mathcal{L}_{n, r, k}$ when k is sufficiently large. Notice that Theorem 1.3 is the result for the case $t=1$. Our second main result focuses on the case $t \geqslant 2$.

Theorem 1.4. Let n, r, k and t be positive integers with $n \geqslant t+2 \geqslant 4, n \geqslant r \geqslant t+1$ and $k \geqslant \max \{2, g(n, r, t)\}$. Suppose that \mathcal{F} is a largest non-trivial t-intersecting subfamily of $\mathcal{L}_{n, r, k}$.
(i) If $\min \{r+1, n\} \leqslant 2 t+2$, then $\mathcal{F} \cong \mathcal{H}_{1}(n, r, k, t+2, t)$.
(ii) If $\min \{r+1, n\}>2 t+2$, then $\mathcal{F} \cong \mathcal{H}_{1}(n, r, k, \min \{r+1, n\}, t)$.

The rest of this paper is organized as follows. In Section 2, we will prove some properties for t-intersecting families with t-covering number $t+1$ in preparation for the proof of our main results. In Sections 3 and 4, we will prove Theorems 1.2 and 1.4, respectively.

$2 t$-intersecting families with t-covering number $t+1$

For a t-intersecting subfamily \mathcal{F} of $\mathcal{L}_{n, r, k}$, a k-signed set T on $[n]$ is said to be a t-cover of \mathcal{F} if $|T \cap F| \geqslant t$ for each $F \in \mathcal{F}$, and the minimum size $\tau_{t}(\mathcal{F})$ of a t-cover of \mathcal{F} is called the t-covering number of \mathcal{F}. Observe that $t \leqslant \tau_{t}(\mathcal{F}) \leqslant r$, and \mathcal{F} is trivial if and only if $\tau_{t}(\mathcal{F})=t$. In this section, we determine some properties of t-intersecting subfamilies of $\mathcal{L}_{n, r, k}$ with t-covering number $t+1$.

For convenience, we write $\mathcal{F}_{X}:=\{F \in \mathcal{F}: X \subset F\}$ where \mathcal{F} is a subset of $\mathcal{L}_{n, r, k}$ and X a k-signed set on $[n]$. We make the following assumption when proving our lemmas in this section and will handle the remaining case, i.e. $\tau_{t}(\mathcal{F}) \geqslant t+2$, in the proof of Theorem 1.2.

Assumption 2.1. Let n, r, k and t be positive integers with $n \geqslant r \geqslant t+1$ and $k \geqslant 2$. Suppose $\mathcal{F} \subset \mathcal{L}_{n, r, k}$ is a maximal t-intersecting family with $\tau_{t}(\mathcal{F})=t+1$. Let \mathcal{T} denote the set of all t-covers of \mathcal{F} with size $t+1$. Set $M=\bigcup_{T \in \mathcal{T}} T$ and $\ell=|M|$.

We first claim that \mathcal{T} is a t-intersecting family with $t \leqslant \tau_{t}(\mathcal{T}) \leqslant t+1$. In fact, for $T \in \mathcal{T}$ and $F \in \mathcal{L}_{n, r, k}$ containing T, we have $F \in \mathcal{F}$ by the maximality of \mathcal{F}. Then for each $T^{\prime} \in \mathcal{T}$, there exists $F^{\prime} \in \mathcal{F}$ such that $T^{\prime} \subset F^{\prime}$ and $T^{\prime} \cap T=F^{\prime} \cap F$, which implies that $\left|T^{\prime} \cap T\right| \geqslant t$, as desired. To describe the structure of some t-intersecting families, we need the following lemma, which shows a relationship between elements of \mathcal{F} and the set M defined in Assumption 2.1.

Lemma 2.2. Let $n, r, k, t, \ell, \mathcal{F}, \mathcal{T}$ and M be as in Assumption 2.1.
(i) If $\tau_{t}(\mathcal{T})=t+1$, then $M \in \mathcal{L}_{n, t+2, k}$ and $|F \cap M| \geqslant t+1$ for each $F \in \mathcal{F}$.
(ii) If $\tau_{t}(\mathcal{T})=t$, then $M \in \mathcal{L}_{n, \ell, k}$ with $t+1 \leqslant \ell \leqslant \min \{r+1, n\}$, and for any t-cover S of \mathcal{T} with size $t,|F \cap M|=\ell-1$ for each $F \in \mathcal{F} \backslash \mathcal{F}_{S}$.

Proof. (i) Let T_{1} and T_{2} be distinct members of \mathcal{T}. We claim that $T_{1} \Delta T_{2} \in \mathcal{L}_{n, 2, k}$. Indeed, since $\left|T_{1} \cap T_{2}\right|=t$ and \mathcal{F} is non-trivially t-intersecting, we have $\left|T_{1} \Delta T_{2}\right|=2$ and there exists a member of $\mathcal{F} \backslash \mathcal{F}_{T_{1} \cap T_{2}}$ containing $T_{1} \Delta T_{2}$, so $T_{1} \Delta T_{2} \in \mathcal{L}_{n, 2, k}$.

Since $\tau_{t}(\mathcal{T})=t+1$, there exists $T_{3} \in \mathcal{T}$ such that $T_{1} \cap T_{2} \not \subset T_{3}$. From $\left|T_{1} \cap T_{3}\right| \geqslant t$ and $\left|T_{2} \cap T_{3}\right| \geqslant t$, we get $T_{1} \Delta T_{2} \subset T_{3}$ and $\left|T_{3} \cap\left(T_{1} \cap T_{2}\right)\right|=t-1$, which imply that $T_{3} \subset T_{1} \cup T_{2}$. For each $T_{4} \in \mathcal{T} \backslash\left\{T_{1}\right\}$ containing $T_{1} \cap T_{2}$, we have $T_{1} \cap T_{3} \not \subset T_{4}$. Similarly, we have $T_{4} \subset T_{1} \cup T_{3} \subset T_{1} \cup T_{2}$. Hence $M \subset T_{1} \cup T_{2} \subset M$. Together with $T_{1} \Delta T_{2} \in \mathcal{L}_{n, 2, k}$, we get $M=T_{1} \cup T_{2} \in \mathcal{L}_{n, t+2, k}$. For each $F \in \mathcal{F}$, we have $|F \cap M| \geqslant t$. If $|F \cap M|=t$, then $F \cap M$ is contained in each member of \mathcal{T}, but this contradicts $\tau_{t}(\mathcal{T})=t+1$. Therefore, $|F \cap M| \geqslant t+1$, as desired.
(ii) By the claim in (i), it is routine to check that $M \in \mathcal{L}_{n, \ell, k}$. Let S be a t-cover of \mathcal{T}. For each $F \in \mathcal{F} \backslash \mathcal{F}_{S}$ and $T \in \mathcal{T}$, we have $|F \cap T|=t$, from which we get $r+1 \leqslant|S \cup F| \leqslant|T \cup F|=r+1$. Then $S \cup F=T \cup F$, which implies that $|M \cup F|=|S \cup F|=r+1$. Hence $|F \cap M|=\ell-1$ and $\ell \leqslant r+1$. Together with $M \in \mathcal{L}_{n, \ell, k}$ and $\mathcal{T} \neq \emptyset$, we obtain $t+1 \leqslant \ell \leqslant \min \{r+1, n\}$, as required.

For a k-signed set $Q=\left\{\left(s_{1}, t_{1}\right), \ldots,\left(s_{q}, t_{q}\right)\right\}$ on $[n]$ with $s_{1} \leqslant \ldots \leqslant s_{q}$, consider the permutation $\pi_{0}=\left(q s_{q}\right)\left(q-1 s_{q-1}\right) \cdots\left(1 s_{1}\right)$, and for each $x \in[n]$, let π_{x} be a permutation on $[k]$ with $\pi_{x}=\left(1 t_{i}\right)$ if $x=s_{i}$ for some $i \in[q]$, and $\pi_{x}=(1)$ otherwise. We get a bijection π from $[n] \times[k]$ to itself with $\pi(x, y)=\left(\pi_{0}(x), \pi_{x}(y)\right)$ for each $(x, y) \in[n] \times[k]$. Observe that $\pi(Q)=M_{q}$, and $\pi\left(\mathcal{L}_{n, s, k}\right)=\mathcal{L}_{n, s, k}$ for each $s \in[n]$. It is routine to check that there exists a bijection σ from $[n] \times[k]$ to itself such that $\sigma(\mathcal{F})$ is a t-intersecting subfamily of $\mathcal{L}_{n, r, k}$ with t-covering number $t+1$, $M_{\ell}=\bigcup_{T \in \mathcal{T}^{\prime}} T$, and M_{t} is a t-cover of \mathcal{T}^{\prime} if $\tau_{t}(\mathcal{T})=t$, where \mathcal{T}^{\prime} is the set of all t-covers of $\sigma(\mathcal{F})$ with size $t+1$. Let \mathcal{G} denote the family $\sigma(\mathcal{F})$. In the following two lemmas, based on Lemma 2.2, we characterize some special t-intersecting families.
Lemma 2.3. Let $n, r, k, t, \ell, \mathcal{F}, \mathcal{T}$ and M be as in Assumption 2.1. Suppose that $|F \cap M| \geqslant t+1$ for each $F \in \mathcal{F}$.
(i) If $\tau_{t}(\mathcal{T})=t+1$, then $\mathcal{F} \cong \mathcal{H}_{1}(n, r, k, t+2, t)$.
(ii) If $\tau_{t}(\mathcal{T})=t$, then $\mathcal{F} \cong \mathcal{H}_{1}(n, r, k, \ell, t)$ and $\ell \in\{t+3, \ldots, \min \{r+1, n\}\}$.

Proof. (i) If $\tau_{t}(\mathcal{T})=t+1$, then $M \in \mathcal{L}_{n, t+2, k}$ by Lemma 2.2 (i). By the assumption that $\mathcal{F} \cong \mathcal{G}$ and $|F \cap M| \geqslant t+1$ for each $F \in \mathcal{F}$, we have $\left|G \cap M_{t+2}\right| \geqslant t+1$ for each $G \in \mathcal{G}$. Then $\mathcal{G} \subset \mathcal{H}_{1}(n, r, k, t+2, t)$. Since $\mathcal{H}_{1}(n, r, k, t+2, t)$ is t-intersecting and \mathcal{G} is maximal, we have $\mathcal{F} \cong \mathcal{G}=\mathcal{H}_{1}(n, r, k, t+2, t)$.
(ii) Since \mathcal{F} is non-trivially t-intersecting, by Lemma 2.2 (ii), we have $t+2 \leqslant$ $\ell \leqslant \min \{r+1, n\}$. Notice that each $(t+1)$-subset of M_{ℓ} containing M_{t} is a t cover of \mathcal{G}. Then $\left\{G \in \mathcal{L}_{n, r, k}: M_{t} \subsetneq G \cap M_{\ell}\right\} \subset \mathcal{G}$. By Lemma 2.2 (ii), we have
$\left|G \cap M_{\ell}\right|=\ell-1$ for each $G \in \mathcal{G} \backslash \mathcal{G}_{M_{t}}$. Hence $\mathcal{G} \subset \mathcal{H}_{1}(n, r, k, \ell, t)$. Since \mathcal{G} is maximal and $\mathcal{H}_{1}(n, r, k, \ell, t)$ is t-intersecting, we have $\mathcal{F} \cong \mathcal{G}=\mathcal{H}_{1}(n, r, k, \ell, t)$. Notice that $\tau_{t}(\mathcal{T})=t+1$ if $\ell=t+2$. Then $\ell \geqslant t+3$, as desired.

Lemma 2.4. Let $n, r, k, t, \ell, \mathcal{F}, \mathcal{T}$ and M be as in Assumption 2.1. Suppose that there exists $F_{0} \in \mathcal{F}$ such that $\left|F_{0} \cap M\right|=t$. Then $t \leqslant r-2$ and $\ell<\min \{r+1, n\}$. Moreover, if $\ell=\min \{r+1, n\}-1$, then $r \leqslant n-2$ and $\mathcal{F} \cong \mathcal{H}_{2}(n, r, k, c, t)$ for some $c \in\{r+2, \ldots, \min \{2 r-t, n\}\}$.

Proof. By Lemma 2.2 (i), we have $\tau_{t}(\mathcal{T})=t$. If $r=t+1$, then $\mathcal{T}=\mathcal{F}$, which implies that $\tau_{t}(\mathcal{T})=t+1$, a contradiction. Hence $r \geqslant t+2$. Observe that $F_{0} \cap M$ is a t-cover of \mathcal{T}. Let $F \in \mathcal{F} \backslash \mathcal{F}_{F_{0} \cap M}$. If $\ell=\min \{r+1, n\}$, then by Lemma 2.2 (ii), we have $\left|F \cap F_{0}\right|=\left|F \cap\left(F_{0} \cap M\right)\right|<t$, which is impossible. Therefore, $\ell<\min \{r+1, n\}$.

Now suppose that $\ell=\min \{r+1, n\}-1$. Since $\mathcal{F} \cong \mathcal{G}$, there exists $G_{0} \in \mathcal{G}$ such that $G_{0} \cap M_{\ell}=M_{t}$. Let $G \in \mathcal{G} \backslash \mathcal{G}_{M_{t}}$. If $r \geqslant n-1$, then $\ell=n-1$. By Lemma 2.2 (ii), we have $\left|G_{0} \cap G \cap([n-1] \times[k])\right|=t-1$, which implies that $\left(n, x_{0}\right) \in G_{0} \cap G$ for some $x_{0} \in[k]$. Then $M_{t} \cup\left\{\left(n, x_{0}\right)\right\}$ is a t-cover of \mathcal{G}, which is impossible since $\ell<n$ and each member of \mathcal{T}^{\prime} is contained in M_{ℓ}. Hence $r \leqslant n-2$ and $\ell=r$.

By $\left|G_{0} \cap G\right| \geqslant t$ and Lemma 2.2 (ii), we obtain $G \backslash([r] \times[k]) \in\binom{G_{0}}{1}$. Let

$$
E=\left\{(i, j): i \geqslant r+1,(i, j) \in G \text { for some } G \in \mathcal{G} \backslash \mathcal{G}_{M_{t}}\right\}
$$

Observe that E is a non-empty subset of G_{0} and $E \cap M_{r}=\emptyset$. We have $1 \leqslant|E| \leqslant$ $\min \{r-t, n-r\}$. If $E=\left\{\left(e_{1}, e_{2}\right)\right\}$ for some $e_{1} \geqslant r+1$ and $e_{2} \in[k]$, then $\left(e_{1}, e_{2}\right)$ is contained in each member of $\mathcal{G} \backslash \mathcal{G}_{M_{t}}$, which implies that $M_{t} \cup\left\{\left(e_{1}, e_{2}\right)\right\} \in \mathcal{T}^{\prime}$, a contradiction. Therefore $|E| \geqslant 2$. Since M_{t} is a t-cover of \mathcal{T}^{\prime}, then each $(t+1)$ subset of M_{r} containing M_{t} is a member of \mathcal{T}^{\prime}, which implies that $\left\{H \in \mathcal{L}_{n, r, k}: M_{t} \subsetneq\right.$ $\left.H \cap M_{r}\right\} \subset \mathcal{G}$. For each $G_{0}^{\prime} \in \mathcal{G}_{M_{t}}$ with $\left|G_{0}^{\prime} \cap M_{r}\right|=t$, observe that $G \backslash([r] \times[k]) \subset G_{0}^{\prime}$. Then we have $E \subset G_{0}^{\prime}$. For each $G^{\prime} \in \mathcal{G} \backslash \mathcal{G}_{M_{t}}$, we have $\left|G^{\prime} \cap M_{r}\right|=r-1$ and $G^{\prime} \cap E \neq \emptyset$. Together with $2 \leqslant|E| \leqslant \min \{r-t, n-r\}$, it is routine to check that \mathcal{G} is isomorphic to a subset of $\mathcal{H}_{2}(n, r, k, c, t)$ where $r+2 \leqslant c \leqslant \min \{2 r-t, n\}$. Since that \mathcal{G} is maximal and $\mathcal{H}_{2}(n, r, k, c, t)$ is t-intersecting, we have $\mathcal{F} \cong \mathcal{G} \cong \mathcal{H}_{2}(n, r, k, c, t)$, as desired.

Now we prove upper bounds for sizes of families under Assumption 2.1 with $\tau_{t}(\mathcal{T})=t$. We begin with a frequently used lemma.

Lemma 2.5. Let n, r, k, t and u be positive integers with $n \geqslant r \geqslant u+1$. Suppose $\mathcal{F} \subset \mathcal{L}_{n, r, k}$ is a t-intersecting family and $U \in \mathcal{L}_{n, u, k}$. If $|U \cap F|=s<t$ for some $F \in \mathcal{F}$, then there exists $R \in \mathcal{L}_{n, u+t-s, k}$ such that $U \subseteq R$ and $\left|\mathcal{F}_{U}\right| \leqslant\binom{ r-s}{t-s}\left|\mathcal{F}_{R}\right|$.

Proof. W.l.o.g., assume that $\mathcal{F}_{U} \neq \emptyset$. Let \mathcal{R} denote the set of $R \in \mathcal{L}_{n, u+t-s, k}$ such that $U \subset R \subset F \cup U$. For $G \in \mathcal{F}_{U}$, from $|G \cap F| \geqslant t$ and $|F \cap U|=s<t$, we obtain $|G \cap(F \cup U)| \geqslant u+t-s$, which implies that $\mathcal{R} \neq \emptyset$ and $\mathcal{F}_{U}=\bigcup_{R \in \mathcal{R}} \mathcal{F}_{R}$.

Since $|F \cup U|=u+r-s$, we have $|\mathcal{R}| \leqslant\binom{ r-s}{t-s}$. Then the desired result holds by $\left|\mathcal{F}_{U}\right| \leqslant \sum_{R \in \mathcal{R}}\left|\mathcal{F}_{R}\right|$.

Lemma 2.6. Let $n, r, k, t, \ell, \mathcal{F}, \mathcal{T}$ and M be as in Assumption 2.1 with $|\mathcal{T}|=1$. Then

$$
|\mathcal{F}| \leqslant\binom{ n-t-1}{r-t-1} k^{r-t-1}+(t+1)(r-t)^{2}\binom{n-t-2}{r-t-2} k^{r-t-2}
$$

Proof. Suppose that T_{0} is the unique element of \mathcal{T}. We have

$$
\begin{equation*}
\mathcal{F}=\mathcal{F}_{T_{0}} \cup\left(\bigcup_{W \in\binom{T_{0}}{t}} \mathcal{F}_{W} \backslash \mathcal{F}_{T_{0}}\right) . \tag{3}
\end{equation*}
$$

For each $W \in\binom{T_{0}}{t}$, there exists $F_{1} \in \mathcal{F} \backslash \mathcal{F}_{T_{0}}$ such that $\left|W \cap F_{1}\right|<t$. Since $\left|F_{1} \cap T_{0}\right|=t$ and $\left|T_{0}\right|=t+1$, we have $\left|F_{1} \cap W\right|=t-1$. Let $H_{1}=F_{1} \cup W$. It is routine to check that $\left|H_{1}\right|=r+1$ and $T_{0} \subset H_{1}$. For each $F_{1}^{\prime} \in \mathcal{F}_{W} \backslash \mathcal{F}_{T_{0}}$, we have $\left|F_{1}^{\prime} \cap H_{1}\right| \geqslant t+1$ by $\left|F_{1} \cap F_{1}^{\prime}\right| \geqslant t$. Then

$$
\begin{equation*}
\mathcal{F}_{W} \backslash \mathcal{F}_{T_{0}}=\bigcup_{I \in \mathcal{L}_{n, t+1, k} \backslash\left\{T_{0}\right\}, W \subset I \subset H_{1}} \mathcal{F}_{I} \backslash \mathcal{F}_{T_{0}} \tag{4}
\end{equation*}
$$

Suppose $I \in \mathcal{L}_{n, t+1, k} \backslash\left\{T_{0}\right\}$ with $W \subset I \subset H_{1}$. Since $I \notin \mathcal{T}$, there exists $F_{1}^{\prime \prime} \in \mathcal{F}$ such that $t-1 \leqslant\left|F_{1}^{\prime \prime} \cap W\right| \leqslant\left|F_{1}^{\prime \prime} \cap I\right| \leqslant t-1$. Observe that $I \cup T_{0} \in \mathcal{L}_{n, t+2, k}$. Since \mathcal{F} is maximal and T_{0} is a t-cover of \mathcal{F}, each element of $\mathcal{L}_{n, r, k}$ containing T_{0} is a member of \mathcal{F}, which implies that $\left|\mathcal{F}_{I \cup T_{\mathcal{O}}}\right|=\binom{n-t-2}{r-t-2} k^{r-t-2}$. By Lemma 2.5 and $\left|F_{1}^{\prime} \cap I\right|=t-1$, we have $\left|\mathcal{F}_{I}\right| \leqslant(r-t+1)\left|\mathcal{F}_{R}\right|$ for some $R \in \mathcal{L}_{n, t+2, k}$. Together with $\left|\mathcal{F}_{R}\right| \leqslant\binom{ n-t-2}{r-t-2} k^{r-t-2}$, this produces $\left|\mathcal{F}_{I}\right| \leqslant(r-t+1)\binom{n-t-2}{r-t-2} k^{r-t-2}$. Then

$$
\begin{equation*}
\left|\mathcal{F}_{I} \backslash \mathcal{F}_{T_{0}}\right|=\left|\mathcal{F}_{I}\right|-\left|\mathcal{F}_{I \cup T_{0}}\right| \leqslant(r-t)\binom{n-t-2}{r-t-2} k^{r-t-2} . \tag{5}
\end{equation*}
$$

Notice that $\left|\mathcal{F}_{T_{0}}\right|=\binom{n-t-1}{r-t-1} k^{r-t-1}$ and the number of $I \in \mathcal{L}_{n, t+1, k} \backslash\left\{T_{0}\right\}$ with $W \subset$ $I \subset H_{1}$ is at most $r-t$. Together with (3), (4) and (5), we get the desired bound of $|\mathcal{F}|$.

Lemma 2.7. Let $n, r, k, t, \ell, \mathcal{F}, \mathcal{T}$ and M be as in Assumption 2.1 with $|\mathcal{T}| \geqslant 2$ and $\tau_{t}(\mathcal{T})=t$.
(i) If $\ell=t+2$, then

$$
|\mathcal{F}| \leqslant 2\binom{n-t-1}{r-t-1} k^{r-t-1}+(r-1)(r-t+1)\binom{n-t-2}{r-t-2} k^{r-t-2}
$$

(ii) If $\ell \geqslant t+3$, then

$$
|\mathcal{F}| \leqslant(\ell-t)\binom{n-t-1}{r-t-1} k^{r-t-1}+((r-\ell+1)(r-t+1)+t)\binom{n-t-2}{r-t-2} k^{r-t-2}
$$

Proof. Suppose that S is a t-cover of \mathcal{T} with size t.
We first prove an upper bound for $\left|\mathcal{F}_{S}\right|$. Let $F_{2} \in \mathcal{F} \backslash \mathcal{F}_{S}$ and $H_{2}=S \cup F_{2}$. It follows from Lemma 2.2 (ii) that $M \subset H_{2}$ and $\left|H_{2}\right|=r+1$. For each $F_{2}^{\prime} \in \mathcal{F}_{S}$, if $F_{2} \cap M=S$, then from $\left|F_{2} \cap F_{2}^{\prime}\right| \geqslant t$ we get $\left|F_{2}^{\prime} \cap H_{2}\right| \geqslant t+1$. Write

$$
\mathcal{A}=\left\{A \in \mathcal{L}_{n, t+1, k}: S \subset A \subset H_{2}, A \not \subset M\right\}, \quad \mathcal{B}=\left\{B \in \mathcal{L}_{n, t+1, k}: S \subset B \subset M\right\} .
$$

Observe that each member of \mathcal{F}_{S} contains at least one element of $\mathcal{A} \cup \mathcal{B}$. For each $A \in \mathcal{A}$, since $A \notin \mathcal{T}$, there exists $F_{2}^{\prime \prime} \in \mathcal{F}$ such that $t-1 \leqslant\left|F_{2}^{\prime \prime} \cap S\right| \leqslant\left|F_{2}^{\prime \prime} \cap A\right| \leqslant$ $t-1$. Then by Lemma 2.5, we have $\left|\mathcal{F}_{A}\right| \leqslant(r-t+1)\binom{n-t-2}{r-t-2} k^{r-t-2}$. Notice that $|\mathcal{A}| \leqslant r-\ell+1,|\mathcal{B}|=\ell-t$ and $\left|\mathcal{F}_{B}\right| \leqslant\binom{ n-t-1}{r-t-1} k^{r-t-1}$ for each $B \in \mathcal{B}$. Then we obtain

$$
\begin{equation*}
\left|\mathcal{F}_{S}\right| \leqslant(\ell-t)\binom{n-t-1}{r-t-1} k^{r-t-1}+(r-\ell+1)(r-t+1)\binom{n-t-2}{r-t-2} k^{r-t-2} \tag{6}
\end{equation*}
$$

Let $\mathcal{C}=\left\{C \in \mathcal{L}_{n, \ell-1, k}: S \not \subset C \subset M\right\}$. We have $|\mathcal{C}|=t$ and $\mathcal{F} \backslash \mathcal{F}_{S} \subset \bigcup_{C \in \mathcal{C}} \mathcal{F}_{C}$.
(i) Suppose $\ell=t+2$. For each $C \in \mathcal{C}$, since $C \notin \mathcal{T}$, there exists $F_{3} \in \mathcal{F}$ such that $\left|F_{3} \cap C\right| \leqslant t-1$. Together with $\left|F_{3} \cap M\right| \geqslant t$, we have $\left|F_{3} \cap C\right|=t-1$. By Lemma 2.2 (ii), Lemma 2.5 and $|\mathcal{C}|=t$, we have

$$
\left|\mathcal{F} \backslash \mathcal{F}_{S}\right| \leqslant \sum_{C \in \mathcal{C}}\left|\mathcal{F}_{C}\right| \leqslant t(r-t+1)\binom{n-t-2}{r-t-2} k^{r-t-2}
$$

Together with (6), this produces the desired result.
(ii) Suppose $\ell \geqslant t+3$. Observe that $\left|\mathcal{F}_{C}\right| \leqslant\binom{ n-\ell+1}{r-\ell+1} k^{r-\ell+1}$ for each $C \in \mathcal{C}$. By Lemma 2.2 (ii), $\ell \geqslant t+3$ and $|\mathcal{C}|=t$, we have

$$
\left|\mathcal{F} \backslash \mathcal{F}_{S}\right| \leqslant \sum_{C \in \mathcal{C}}\left|\mathcal{F}_{C}\right| \leqslant t\binom{n-\ell+1}{r-\ell+1} k^{r-\ell+1} \leqslant t\binom{n-t-2}{r-t-2} k^{r-t-2}
$$

Together with (6), this produces the desired bound on $|\mathcal{F}|$.

3 Proof of Theorem 1.2

Let n, r, k and t be positive integers with $n \geqslant t+2, n \geqslant r \geqslant t+1$ and $k \geqslant$ $\max \{2, g(n, r, t)\}$. Suppose that \mathcal{F} is a maximal non-trivial t-intersecting subfamily of $\mathcal{L}_{n, r, k}$. If $r=t+1$, then $\tau_{t}(\mathcal{F})=t+1$ and \mathcal{F} is the set of its t-covers with size $t+1$. It follows from Lemmas 2.2 (i) and 2.3 (i) that $\mathcal{F} \cong \mathcal{H}_{1}(n, t+1, k, t+2, t)$ and $|\mathcal{F}|=t+2>1=f(n, t+1, k, t+1, t)$. In the following, we may assume that $r \geqslant t+2$. Write

$$
\varphi(n, r, k, t)=\frac{f(n, r, k, r, t)-|\mathcal{F}|}{\binom{n-t-2}{r-t-2} k^{r-t-2}}
$$

It is sufficient to show that $\varphi(n, r, k, t)<0$ if one of (i), (ii) and (iii) in Theorem 1.2 holds, and $\varphi(n, r, k, t)>0$ otherwise.

Case 1. $\tau_{t}(\mathcal{F})=t+1$.
In this case, let \mathcal{T} be the set of all t-covers of \mathcal{F} with size $t+1$ and $\ell=\left|\bigcup_{T \in \mathcal{T}} T\right|$. Recall from Section 2 that $t \leqslant \tau_{t}(\mathcal{T}) \leqslant t+1$, and $t+1 \leqslant \ell \leqslant \min \{r+1, n\}$ by Lemma 2.2.

Case 1.1. $\tau_{t}(\mathcal{T})=t$.
In this case, (iii) does not hold since the corresponding \mathcal{T} for $\mathcal{H}_{1}(n, r, k, t+2, t)$ has t-covering number $t+1$. Therefore, in this case, we need to show that $\varphi(n, r, k, t)<0$ when (i) or (ii) holds and $\varphi(n, r, k, t)>0$ when neither (i) nor (ii) holds.

Case 1.1.1. (i) or (ii) holds.
We may assume that $\mathcal{F}=\mathcal{H}_{1}(n, r, k, m, t)$ for some $m \in\{r, \min \{r+1, n\}\}$, or $n \geqslant r+2 \geqslant t+4$ and $\mathcal{F}=\mathcal{H}_{2}(n, r, k, c, t)$ for some $c \in\{r+2, \ldots, \min \{2 r-t, n\}\}$. Note that $\ell \geqslant r$.

Let a be an integer with $a \geqslant t+1$. For each $b \in\{t+1, \ldots, a\}$, set

$$
\mathcal{N}_{b}\left(M_{a}, M_{t}\right)=\left\{F \in \mathcal{L}_{n, r, k}: M_{t} \subset F,\left|F \cap M_{a}\right|=b\right\}
$$

We claim that

$$
\begin{equation*}
f(n, r, k, a, t)=\sum_{i=1}^{a-t} \frac{3 i-i^{2}}{2} \cdot\left|\mathcal{N}_{t+i}\left(M_{a}, M_{t}\right)\right| . \tag{7}
\end{equation*}
$$

For each $b \in\{t+1, \ldots, a\}$, let $\mathcal{M}_{b}\left(M_{a}, M_{t}\right)$ denote that set of all $(I, F) \in \mathcal{L}_{n, b, k} \times$ $\mathcal{L}_{n, r, k}$ with $M_{t} \subset I \subset M_{a}$ and $I \subset F$. By double counting $\left|\mathcal{M}_{t+1}\left(M_{a}, M_{t}\right)\right|$ and $\left|\mathcal{M}_{t+2}\left(M_{a}, M_{t}\right)\right|$, we obtain

$$
\begin{gathered}
\sum_{i=1}^{a-t} i\left|\mathcal{N}_{t+i}\left(M_{a}, M_{t}\right)\right|=(a-t)\binom{n-t-1}{r-t-1} k^{r-t-1} \\
\sum_{i=2}^{a-t}\binom{i}{2}\left|\mathcal{N}_{t+i}\left(M_{a}, M_{t}\right)\right|=\binom{a-t}{2}\binom{n-t-2}{r-t-2} k^{r-t-2},
\end{gathered}
$$

which imply that (7) holds. If $t+2 \leqslant a \leqslant \ell$, then we have

$$
\begin{align*}
f(n, r, k, a, t) & \leqslant\left|\mathcal{N}_{t+1}\left(M_{a}, M_{t}\right)\right|+\left|\mathcal{N}_{t+2}\left(M_{a}, M_{t}\right)\right| \tag{8}\\
& \leqslant\left|\mathcal{N}_{t+1}\left(M_{\ell}, M_{t}\right)\right|+\left|\mathcal{N}_{t+2}\left(M_{\ell}, M_{t}\right)\right|<|\mathcal{F}|
\end{align*}
$$

by (7). Then $\varphi(n, r, k, t)<0$, as desired.

Case 1.1.2. Neither (i) nor (ii) holds.

In this case, we have $\ell<r$. Indeed, if $\left|F \cap \bigcup_{T \in \mathcal{T}} T\right| \geqslant t+1$ for each $F \in \mathcal{F}$, then by Lemma 2.3 (ii) and the assumption that (i) does not hold, we get $\ell<\min \{r+1, n\} \leqslant$
$r+1$ and $\ell \neq r$, which produce $\ell<r$. On the other hand, if $\left|F_{0} \cap \bigcup_{T \in \mathcal{T}} T\right|=t$ for some $F_{0} \in \mathcal{F}$, then by Lemma 2.4 and the assumption that (ii) does not hold, we have $\ell<\min \{r+1, n\}-1 \leqslant r$.

If $\ell=t+1$, then from (1), Lemma 2.6 and $(n-t-1) k \geqslant\binom{ t+2}{2}(r-t)^{2}$, we obtain $\varphi(n, r, k, t) \geqslant(n-t-1) k-\binom{r-t}{2}-(t+1)(r-t)^{2} \geqslant \frac{\left(t^{2}+t-1\right)(r-t)^{2}}{2}>0$.

If $\ell=t+2$, then, since $\ell<r, r-t \geqslant 3$. From (1), (2), Lemma 2.7 (i) and $k \geqslant g(n, r, t)$, we obtain

$$
\begin{aligned}
\varphi(n, r, k, t) & \geqslant \frac{(r-t-2)(n-t-1) k}{r-t-1}-\binom{r-t}{2}-(r-1)(r-t+1) \\
& \geqslant(r-t-2)(r-t+3)\left(\binom{t+2}{2}-\frac{3(r-t)^{2}+(2 t-1)(r-t)+2(t-1)}{2(r-t-2)(r-t+3)}\right) \\
& \geqslant(r-t-2)(r-t+3)\left(\binom{t+2}{2}-\frac{4 t+11}{6}\right) \\
& >0 .
\end{aligned}
$$

If $\ell \geqslant t+3$, then, since $\ell<r, r-t \geqslant 4$. Notice that

$$
\begin{align*}
g(n, r, t) & \geqslant\left(\alpha\binom{t+2}{2}+(1-\alpha) \cdot \frac{r-t+1}{2}\right) \cdot \frac{(r-t+3)(r-t-1)}{n-t-1} \\
& \geqslant\left(t+\left(1-\frac{1}{3(r-t+3)}\right) \cdot \frac{(r-t+1)(r-t+3)}{2}\right) \cdot \frac{r-t-1}{n-t-1} \tag{9}\\
& =\left(t+\frac{3(r-t)^{2}+11(r-t)+8}{6}\right) \cdot \frac{r-t-1}{n-t-1},
\end{align*}
$$

where α is a real number such that $\binom{t+2}{2}(r-t+3) \alpha=t$. Together with (1), (2), Lemma 2.7 (ii), $k \geqslant g(n, r, t)$ and $r-\ell \geqslant 1$, we get

$$
\begin{aligned}
\varphi(n, r, k, t) & \geqslant \frac{(r-\ell)(n-t-1) k}{r-t-1}-\binom{r-t}{2}-(r-\ell+1)(r-t+1)-t \\
& \geqslant(r-\ell)\left(\frac{(n-t-1) k}{r-t-1}-\binom{r-t}{2}-2(r-t+1)-t\right) \\
& \geqslant \frac{3(r-t)^{2}+11(r-t)+8}{6}-\binom{r-t}{2}-2(r-t+1) \\
& >0,
\end{aligned}
$$

as desired.
Case 1.2. $\tau_{t}(\mathcal{T})=t+1$.
In this case, by Lemmas 2.2 (i) and 2.3 (i), we have $\mathcal{F} \cong \mathcal{H}_{1}(n, r, k, t+2, t)$. Then (ii) does not hold. Next we show that $\varphi(n, r, k, t)<0$ if either (i) holds with
$r \leqslant 2 t+2$ or (iii) holds, and $\varphi(n, r, k, t)>0$ otherwise. Observe that

$$
\begin{equation*}
\left|\mathcal{H}_{1}(n, r, k, t+2, t)\right|=(t+2)\binom{n-t-1}{r-t-1} k^{r-t-1}-(t+1)\binom{n-t-2}{r-t-2} k^{r-t-2} \tag{10}
\end{equation*}
$$

and it follows from (1) that

$$
\begin{equation*}
\varphi(n, r, k, t)=\frac{(r-2 t-2)(n-t-1) k}{r-t-1}-\binom{r-t}{2}+(t+1) . \tag{11}
\end{equation*}
$$

Suppose that either (i) holds with $r \leqslant 2 t+2$ or (iii) holds. Then $r \leqslant 2 t+2$. If $r=2 t+2$, then by (11), we have

$$
\varphi(n, r, k, t)=-\binom{t+2}{2}+(t+1)=-\binom{t+1}{2}<0
$$

If $r<2 t+2$, then by (2), (11) and $k \geqslant g(n, r, t)$, we get
$\varphi(n, r, k, t) \leqslant-\frac{(n-t-1) k}{r-t-1}-\binom{r-t}{2}+(t+1) \leqslant-\binom{t+2}{2}(r-t+3)+(t+1)<0$, as desired.

Now suppose that we neither have (i) with $r \leqslant 2 t+2$ nor have (iii). Then $r>2 t+2$. From (2), (11) and $k \geqslant g(n, r, t)$, we obtain
$\varphi(n, r, k, t) \geqslant \frac{(n-t-1) k}{r-t-1}-\binom{r-t}{2}+(t+1) \geqslant \frac{(r-t+3)(r-t+1)}{2}-\binom{r-t}{2}>0$,
as required.
Case 2. $\tau_{t}(\mathcal{F}) \geqslant t+2$.
Observe that none of (i), (ii) and (iii) holds. To show $\varphi(n, r, k, t)>0$, we first prove an upper bound on $|\mathcal{F}|$.

Claim 1. $|\mathcal{F}| \leqslant(r-t+1)^{2}\binom{t+2}{2}\binom{n-t-2}{r-t-2} k^{r-t-2}$.
Proof of Claim 1. Suppose $\tau_{t}(\mathcal{F})=z$ and Z is a t-cover of \mathcal{F} with size z. For $Y_{0} \in\binom{Z}{t}$, without loss of generality, assume that $\mathcal{F}_{Y_{0}} \neq \emptyset$. Since Y_{0} is not a t-cover of \mathcal{F}, there exists $X_{0} \in \mathcal{F}$ such that $\left|X_{0} \cap Y_{0}\right|<t$. By Lemma 2.5, there exists $Y_{1} \in \mathcal{L}_{n, 2 t-\left|X_{0} \cap Y_{0}\right|, k}$ containing Y_{0} such that

$$
\left|\mathcal{F}_{Y_{0}}\right| \leqslant\binom{ r-\left|X_{0} \cap Y_{0}\right|}{t-\left|X_{0} \cap Y_{0}\right|}\left|\mathcal{F}_{Y_{1}}\right| \leqslant(r-t+1)^{t-\left|X_{0} \cap Y_{0}\right|}\left|\mathcal{F}_{Y_{1}}\right| .
$$

Note that $\mathcal{F}_{Y_{1}} \neq \emptyset$ by $\left|\mathcal{F}_{Y_{0}}\right|>0$. Similarly, we deduce that there exist k-signed sets $Y_{0}, Y_{1}, \ldots, Y_{w}$ on $[n]$ such that $Y_{0} \subset \cdots \subset Y_{w}$ with $\left|Y_{w-1}\right|<z,\left|Y_{w}\right| \geqslant z$ and

$$
\left|\mathcal{F}_{Y_{i}}\right| \leqslant(r-t+1)^{\left|Y_{i+1}\right|-\left|Y_{i}\right|}\left|\mathcal{F}_{Y_{i+1}}\right|
$$

for each $i=0, \ldots, w-1$. Therefore

$$
\left|\mathcal{F}_{Y_{0}}\right| \leqslant(r-t+1)^{\left|Y_{w}\right|-t}\left|\mathcal{F}_{Y_{w}}\right| \leqslant(r-t+1)^{\left|Y_{w}\right|-t}\binom{n-\left|Y_{w}\right|}{r-\left|Y_{w}\right|} k^{r-\left|Y_{w}\right|} .
$$

Together with $k \geqslant g(n, r, t)$, we obtain

$$
\frac{\left|\mathcal{F}_{Y_{0}}\right|}{(r-t+1)^{z-t}\binom{n-z}{r-z} k^{r-z}} \leqslant \prod_{i=z}^{\left|Y_{w}\right|-1} \frac{(r-t+1)(r-i)}{(n-i) k} \leqslant\left(\frac{2}{r-t+3}\right)^{\left|Y_{w}\right|-z} \leqslant 1 .
$$

Notice that $\mathcal{F}=\bigcup_{Y \in\binom{Z}{t}} \mathcal{F}_{Y}$. Then

$$
|\mathcal{F}| \leqslant(r-t+1)^{z-t}\binom{z}{t}\binom{n-z}{r-z} k^{r-z}
$$

For each $y \in\{t+2, \ldots, r\}$, write

$$
\psi(y)=(r-t+1)^{y-t}\binom{y}{t}\binom{n-y}{r-y} k^{r-y}
$$

If $y \leqslant r-1$, then by $y \geqslant t+2, k \geqslant g(n, r, t)$ and (2), we have

$$
\begin{aligned}
\frac{\psi(y+1)}{\psi(y)} & =\frac{y+1}{y+1-t} \cdot \frac{(r-t+1)(r-y)}{(n-y) k} \\
& \leqslant \frac{t+3}{3} \cdot \frac{r-t-1}{n-t-1} \cdot \frac{(r-t+1)(n-t-1)}{\binom{t+2}{2}(r-t+3)(r-t-1)} \leqslant 1 .
\end{aligned}
$$

Then from $z \geqslant t+2$, we get $|\mathcal{F}| \leqslant \psi(t+2)$, as desired.

Observe that

$$
\begin{aligned}
g(n, r, t) & \geqslant\left((1-\beta)\binom{t+2}{2}+\beta \cdot \frac{r-t+1}{2}\right) \cdot \frac{(r-t+3)(r-t-1)}{n-t-1} \\
& =\left(\frac{(r-t)^{2}+3(r-t)+4}{r-t+1}\binom{t+2}{2}+\frac{1}{r-t}\binom{r-t}{2}\right) \cdot \frac{r-t-1}{n-t-1},
\end{aligned}
$$

where β is a real number such that $(r-t+3)(r-t+1) \beta=r-t-1$. Together with (1), (2), $r \geqslant t+2, k \geqslant g(n, r, t)$ and Claim 1, we have

$$
\begin{aligned}
\varphi(n, r, k, t) & \geqslant \frac{(r-t)(n-t-1) k}{r-t-1}-\binom{r-t}{2}-\binom{t+2}{2}(r-t+1)^{2} \\
& \geqslant\binom{ t+2}{2}\left(\frac{(r-t)^{3}+3(r-t)^{2}+4(r-t)}{r-t+1}-(r-t+1)^{2}\right) \\
& =\frac{r-t-1}{r-t+1}\binom{t+2}{2} \\
& >0
\end{aligned}
$$

This finishes the proof of Theorem 1.2.

4 Proof of Theorem 1.4

Let n, r, k and t be positive integers with $n \geqslant t+2 \geqslant 4, n \geqslant r \geqslant t+1$ and $k \geqslant \max \{2, g(n, r, t)\}$. Suppose that \mathcal{F} is a maximum-sized non-trivial t-intersecting subfamily of $\mathcal{L}_{n, r, k}$. If $r=t+1$, then by Theorem 1.2 , we have $\mathcal{F} \cong \mathcal{H}_{1}(n, r, k, t+2, t)$. In the following, we assume that $r \geqslant t+2$. Write $p=\min \{r+1, n\}$.

Claim 2. \mathcal{F} is isomorphic to $\mathcal{H}_{1}(n, r, k, p, t)$ or $\mathcal{H}_{1}(n, r, k, t+2, t)$.
Proof of Claim 2. Suppose for contradiction that neither $\mathcal{H}_{1}(n, r, k, p, t)$ nor $\mathcal{H}_{1}(n, r$, $k, t+2, t)$ is isomorphic to \mathcal{F}. Let \mathcal{T} be the set of all t-covers of \mathcal{F} with size $\tau_{t}(\mathcal{F})$ and $\ell=\left|\bigcup_{T \in \mathcal{T}} T\right|$. By Theorem 1.2 and Lemmas 2.2 (i), 2.3, 2.4, we have $\tau_{t}(\mathcal{F})=t+1$, $\tau_{t}(\mathcal{T})=t$ and $\ell=r \neq p$. Therefore $n>r, p=r+1$ and $|\mathcal{T}| \geqslant 2$.

If $r=t+2$, then by (1), (2), $k \geqslant g(n, r, t)$ and Lemma 2.7 (i), we get
$\frac{f(n, r, k, p, t)-|\mathcal{F}|}{\binom{n-t-2}{r-t-2} k^{r-t-2}} \geqslant \frac{(n-t-1) k}{r-t-1}-\binom{r-t+1}{2}-3(r-1) \geqslant 5\binom{t+2}{2}-3(t+2)>0$.
If $r \geqslant t+3$, then by (1), (2), (9), $k \geqslant g(n, r, t)$ and Lemma 2.7 (ii), we have

$$
\begin{aligned}
\frac{f(n, r, k, p, t)-|\mathcal{F}|}{\binom{n-t-2}{r-t-2} k^{r-t-2}} & \geqslant \frac{(n-t-1) k}{r-t-1}-\binom{r-t+1}{2}-(r-t+1)-t \\
& \geqslant \frac{3(r-t)^{2}+11(r-t)+8}{6}-\binom{r-t+1}{2}-(r-t+1) \\
& >0
\end{aligned}
$$

Together with (8), we get $|\mathcal{F}|<f(n, r, k, p, t) \leqslant\left|\mathcal{H}_{1}(n, r, k, p, t)\right|$, a contradiction to the assumption that \mathcal{F} is maximum-sized.

If $n=t+2$, then it follows from Claim 2 that $\mathcal{F} \cong \mathcal{H}_{1}(n, r, k, t+2, t)$. In the following we may assume that $n \geqslant t+3$. Write

$$
\mu(n, r, k, t)=\frac{\left|\mathcal{H}_{1}(n, r, k, t+2, t)\right|-\left|\mathcal{H}_{1}(n, r, k, p, t)\right|}{\binom{n-t-2}{r-t-2} k^{r-t-2}} .
$$

By Claim 2, it suffices to show that $\mu(n, r, k, t)<0$ if $p>2 t+2$, and $\mu(n, r, k, t)>0$ if $p \leqslant 2 t+2$. We divide the remaining proof into three cases.

Case 1. $p>2 t+2$.
Since $k \geqslant g(n, r, t)$ and $\left|\mathcal{H}_{1}(n, r, k, p, t)\right|>f(n, r, k, p, t)$, by (1), (2) and (10), we have

$$
\mu(n, r, k, t)<-\frac{(n-t-1) k}{r-t-1}+\binom{p-t}{2}-(t+1) \leqslant-\frac{3(r-t+1)}{2}-(t+1)<0
$$

as desired.
Case 2. $p<2 t+2$.
By the construction of $\mathcal{H}_{1}(n, r, k, p, t)$, it is routine to verify that

$$
\left|\mathcal{H}_{1}(n, r, k, p, t)\right| \leqslant(p-t)\binom{n-t-1}{r-t-1} k^{r-t-1}+t(k-1) .
$$

Therefore, if $r \geqslant t+3$, then by (2), (10), $t \geqslant 2$ and $k \geqslant g(n, r, t)$, we have

$$
\mu(n, r, k, t) \geqslant \frac{(n-t-1) k}{r-t-1}-(t+1)-t \geqslant\binom{ t+2}{2}(r-t+3)-(2 t+1)>0
$$

If $r=t+2$, then $p=t+3$ by $n \geqslant t+3$, and

$$
\left|\mathcal{H}_{1}(n, t+2, k, t+3, t)\right|=3(n-t-1) k+t-3 .
$$

Together with (10), $n \geqslant t+3$ and $t, k \geqslant 2$, we obtain

$$
\mu(n, t+2, k, t)=(t-1)((n-t-1) k-2)>0,
$$

as required.
Case 3. $p=2 t+2$.
In this case, we have $r \geqslant p-1>t+2$. By the construction of $\mathcal{H}_{1}(n, r, k, p, t)$, we have

$$
\left|\mathcal{H}_{1}(n, r, k, p, t)\right| \leqslant \sum_{i=1}^{p-t}\left|\mathcal{N}_{t+i}\left(M_{p}, M_{t}\right)\right|+t(k-1) .
$$

Together with (7) and $\left|\mathcal{N}_{t+i}\left(M_{p}, M_{t}\right)\right| \leqslant\binom{ t+2}{i}\binom{n-t-i}{r-t-i} k^{r-t-i}$ for each $i \in\{3, \ldots, p-t\}$, we get

$$
\begin{aligned}
\left|\mathcal{H}_{1}(n, r, k, p, t)\right|-f(n, r, k, p, t) & \leqslant \sum_{i=3}^{p-t}\binom{i-1}{2}\left|\mathcal{N}_{t+i}\left(M_{p}, M_{t}\right)\right|+t(k-1) \\
& \leqslant \sum_{i=3}^{p-t}\binom{i-1}{2}\binom{t+2}{i}\binom{n-t-i}{r-t-i} k^{r-t-i}+t(k-1) .
\end{aligned}
$$

For each $i \in\{3, \ldots, p-t\}$, write

$$
\lambda(i)=\binom{i-1}{2}\binom{t+2}{i}\binom{n-t-i}{r-t-i} k^{r-t-i} .
$$

If $i \leqslant p-t-1$, then by $(2), t \geqslant 2, i \geqslant 3$ and $k \geqslant g(n, r, t)$, we have

$$
\frac{\lambda(i+1)}{\lambda(i)}=\frac{i(t+2-i)}{(i-2)(i+1)} \cdot \frac{r-t-i}{(n-t-i) k} \leqslant \frac{3(t-1)}{4(t+1)(t+2)} \leqslant \frac{1}{4} .
$$

Then

$$
\begin{aligned}
\left|\mathcal{H}_{1}(n, r, k, p, t)\right|-f(n, r, k, p, t) & \leqslant \lambda(3) \cdot \sum_{j=0}^{\infty} \frac{1}{4^{j}}+t(k-1) \\
& =\frac{4}{3}\binom{t+2}{3}\binom{n-t-3}{r-t-3} k^{r-t-3}+t(k-1) .
\end{aligned}
$$

Together with (2), $t \geqslant 2, k \geqslant g(n, r, t)$ and

$$
\left|\mathcal{H}_{1}(n, r, k, t+2, t)\right|-f(n, r, k, p, t)=\binom{t+1}{2}\binom{n-t-2}{r-t-2} k^{r-t-2}
$$

we get

$$
\begin{aligned}
\mu(n, r, k, t) & \geqslant\binom{ t+1}{2}-t-\frac{4(r-t-2)}{3(n-t-2) k}\binom{t+2}{3} \\
& \geqslant\binom{ t}{2}-\frac{8}{3(t+1)(t+2)(r-t+3)} \cdot \frac{(t+2)(t+1) t}{6} \\
& \geqslant\left(\frac{t-1}{2}-\frac{4}{9}\right) t \\
& >0 .
\end{aligned}
$$

This finishes the proof of Theorem 1.4.
Remark. In Theorem 1.4, we assume $t \geqslant 2$. We can also get the corresponding result for $t=1$ using the same method. It should be noted that, when $t=1$, comparing the sizes of $\mathcal{H}_{1}(n, r, k, \min \{r+1, n\}, 1)$ and $\mathcal{H}_{1}(n, r, k, 3,1)$ is a little more complicated because these two families may have the same size.

Acknowledgements

B. Lv is supported by National Natural Science Foundation of China (12071039, 12131011); K. Wang is supported by the National Key R\&D Program of China (No. 2020YFA0712900) and National Natural Science Foundation of China (12071039, 12131011).

References

[1] R. Ahlswede and L. H. Khachatrian, The complete nontrivial-intersection theorem for systems of finite sets, J. Combin. Theory Ser. A 76 (1996), 121-138.
[2] R. Ahlswede and L. H. Khachatrian, The complete intersection theorem for systems of finite sets, i European J. Combin. 18 (1997), 125-136.
[3] R. Ahlswede and L. H. Khachatrian, The diametric theorem in Hamming spaceoptimal anticodes, Adv. Appl. Math. 20 (4) (1998), 429-449.
[4] C. Berge, Nombres de coloration de l'hypergraphe h-parti complet, in: Hypergraph Seminar (Columbus, Ohio 1972), Lec. Notes in Math. vol. 411, Springer, Berlin, 1974, 13-20.
[5] C. Bey and K. Engel, Old and new results for the weighted t-intersection problem via AK-methods, in: Numbers, Information and Complexity, (Eds.: I. Althöfer, N. Cai, G. Dueck, L.H. Khachatrian, M. Pinsker, A. Sárközy, I. Wegener and Z. Zhang), Kluwer Academic Publishers, Dordrecht, 2000, pp. 45-74.
[6] B. Bollobás and I. Leader, An Erdős-Ko-Rado theorem for signed sets, Comput. Math. Appl. 34 (1997), 9-13.
[7] P. Borg, Intersecting systems of signed sets, Electron. J. Combin. 14 (2007), \#R41.
[8] P. Borg, On t-intersecting families of signed sets and permutations, Discrete Math. 309 (2009), 3310-3317.
[9] P. Borg, A Hilton-Milner-type theorem and an intersection conjecture for signed sets, Discrete Math. 313 (2013), 1805-1815.
[10] P. Borg, The maximum product of weights of cross-intersecting families, J. London Math. Soc. 94 (2016), 993-1018.
[11] M. Cao, B. Lv and K. Wang, The structure of large non-trivial t-intersecting families for finite sets, European J. Combin. 97 (2021), 103373.
[12] M. Deza and P. Frankl, Erdős-Ko-Rado theorem-22 years later, SIAM J. Algebraic Discrete Methods 4 (1983), 419-431.
[13] P. Erdős, C. Ko and R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser. (2) 12 (1961), 313-320.
[14] P. L. Erdős, U. Faigle and W. Kern, A group-theoretic setting for some intersecting Sperner families, Combin. Probab. Comput. 1 (1992), 323-334.
[15] P. Frankl, The Erdős-Ko-Rado theorem is true for $n=c k t$, in: Combinatorics, vol. I, Proc. Fifth Hungarian Colloq., Keszthely, 1976, in: Colloq. Math. Soc. János Bolyai, vol. 18, North-Holland, 1978, pp. 365-375.
[16] P. Frankl, On intersecting families of finite sets, J. Combin. Theory Ser. A 24 (1978), 146-161.
[17] P. Frankl and Z. Füredi, Nontrivial intersecting families, J. Combin. Theory Ser. A 41 (1986), 150-153.
[18] P. Frankl and Z. Füredi, Beyond the Erdős-Ko-Rado theorem, J. Combin. Theory Ser. A 56 (1991), 182-194.
[19] P. Frankl and N. Tokushige, The Erdős-Ko-Rado theorem for integer sequences, Combinatorica 19 (1999), 55-63.
[20] J. Han and Y. Kohayakawa, The maximum size of a non-trivial intersecting uniform family that is not a subfamily of the Hilton-Milner family, Proc. Amer. Math. Soc. 145 (1) (2017), 73-87.
[21] A. Hilton and E. Milner, Some intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser. (2) 18 (1967), 369-384.
[22] A. Kostochka and D. Mubayi, The structure of large intersecting families, Proc. Amer. Math. Soc. 145 (6) (2017), 2311-2321.
[23] M. L. Livingston, An ordered version of the Erdős-Ko-Rado theorem, J. Combin. Theory Ser. A 26 (1979), 162-165.
[24] R. M. Wilson, The exact bound in the Erdős-Ko-Rado theorem, Combinatorica 4 (1984), 247-257.

[^0]: * Also at address of other two authors.
 \dagger Corresponding author.

