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Abstract

For extremal graphs of girth at least 5, radius plays an important role
in their structure, proofs of bounds on their sizes, and exact values of
their sizes. All graphs in F , the extremal graphs with girth at least 5,
have radius 2 or 3 for orders greater than or equal to 5. However, not all
radius 2 and 3 extremal graphs with girth at least 5, F2 ∪ F3, are in F .
We prove that all graphs in F2, for v ≥ 5, have girth 5 and diameter 2 or
3, and all graphs in F3, for v ≥ 9, have girth 5 and diameter 3 or 4. We
determine the exact sizes, or narrow bounds on the sizes, of the graphs
in F2 and F3 for all orders up to 53. We enumerate, or set constructive
lower bounds on the number of, the non-isomorphic graphs in F2 and F3

for these orders.

1 Introduction

The graphs under consideration are simple and undirected. We use these common
terms and notation. The order and size of graph G are v(G) and e(G). The degree
of vertex x is d(x). The minimum and maximum degrees of all vertices in G are
δ(G) and ∆(G), and d̄(G) is the average degree over all vertices in G. The induced
subgraph on set X, where X ⊂ V (G), is 〈X〉. The path and cycle on k vertices
are Pk and Ck, and the girth of G is g(G). The eccentricity of vertex x, ecc(x), is
the maximum distance from x to any other vertex in G, and r(G), the radius of
G, is the minimum eccentricity over all x ∈ V (G). The center of G, cent(G), is
the set of vertices having minimal eccentricity; that is, x ∈ cent(G) if and only if
ecc(x) = r(G).

In 1975 Erdős [8] described the problem of determining, for a given order v, f(v)
the maximum number of edges in a graph of girth at least 5. This is an example
of a type of extremal graph problem called the forbidden subgraph problem. Given
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a set of graphs, Γ, determine the graphs ex(v; Γ) which have order v, maximal size,
and do not have any subgraphs isomorphic to a graph in Γ. For convenience, in this
paper we apply the term extremal specifically to graphs of girth at least 5, that is,
graphs in ex(v; {C3, C4}).

Extremal graphs with a minimum girth, and theoretical results on them, have
been applied to problems in information theory, including error correction capability
of parity-check codes [6], and in coding theory and cryptography [18]. Applications to
the analysis of local majorities and coalitions have implications for distributed com-
puting and voter polling [17]. And, in economics, applications include comparative
analysis of the benefits of social welfare functions [12].

In this paper we study extremal radius constrained graphs with girth at least 5.
There are two motivations for this. First, in the study of extremal graphs with
minimum girth, radius plays a part in proofs of exact values, as we illustrate in
Section 3. This merits further study of the structure of graphs for a given radius.
Second, minimum girth extremal graphs represent a balance between connectivity
and density that makes them potentially useful for the design of networks. The radius
constrained graphs provide alternative designs with similar trade-offs, and radius is
a useful measure for the distribution of resources in a network.

Since Erdős posed the problem of extremal graphs, theoretical bounds on f(v)
have been derived [1, 5, 10], and exact values for v up to 53 have been determined
[2, 4, 7, 10, 11]. The non-isomorphic extremal graphs have been enumerated up to
order 52 [2, 10, 11], and, using heuristic search and analytic methods, lower bounds
for f(v) have been found for 54 ≤ v ≤ 200 [2, 11, 15].

Two-level trees play an important role in the structure of extremal graphs. We
use the notation initiated in [10, 11] to describe these trees. A star, Sm[n1,n2,...,nm], is
a tree with a degree m vertex at the root, the m children of the root, and child i,
1 ≤ i ≤ m, having ni children. An (m,n)-star, Sm,n, is a special case of a star where
every child of the root has n children. An augmented star is a star plus vertices
external to it. It is denoted as a star with the number of external vertices appended.
For example, Sm[n1,n2,...,nm]k or Sm,n,k are stars augmented with k vertices that are
external to the star. Note that if an augmented star S spans G, there can be an
augmented star T that also spans G, where S and T are non-isomorphic. A branch
of a star S consists of a child of the root of S, and the leaves in S adjacent to that
child. A k-branch of S has k leaves in S.

The presence of these stars in extremal graphs is the basis for many of the cited
results. The results often depend on whether or not there are stars that span extremal
graphs of a given order. When there is a star that spans an extremal graph G, then
the radius of G is 2. If G has no spanning star, then the radius is at least 3, and
only augmented stars span G. These are the observations that motivate the study of
radius r extremal graphs. Graph G is a radius r extremal graph if r(G) = r, g(G) ≥ 5,
and e(G) is maximal.

We use the following notation to describe extremal and radius r extremal graphs.
The size of an extremal graph of order v is f(v). The set of all extremal graphs is F ,
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and Fv is the set of graphs in F of order v. The number of extremal graphs of order
v, |Fv|, is denoted F (v). The size of a radius r extremal graph of order v is fr(v).
For some orders v and radii r, fr(v) < f(v). For example, as shown in Section 3,
f3(7) < f(7); the additional constraint on the radius limits the graph size. The set of
radius r extremal graphs of order v is F rv . The number of radius r extremal graphs
of order v, |F rv |, is Fr(v).

In the next section we present results on the structure of graphs in F2 and F3.
Section 3 provides exact values or narrow bounds on the values of f2(v), f3(v),F2

v ,
and F3

v for v ≤ 53. And in the conclusion we offer conjectures and directions for
future work.

2 Theoretical results

We observe that all extremal graphs are connected. This is seen by noting that, if a
graph has more than one connected component, a pair of them can be bridged with
an additional edge that does not create a cycle, and therefore the original graph
cannot be extremal.

We now prove that all extremal graphs, large enough to have a cycle, have radius
2 or 3. This is the simple observation that led to this study.

Proposition 2.1 Let v ≥ 5. Then for every G ∈ Fv, 2 ≤ r(G) ≤ 3.

Proof. If r(G) < 2 and v ≥ 5, then, since G is connected, it is a vertex x with
v − 1 neighbors, and no edges between neighbors of x. Thus, e = v − 1. Since
g(Cv) = e(Cv) = v, G is not extremal.

If r(G) > 3, then x ∈ cent(G) is at least distance 4 from some vertex y. Since
g(G ∪ {(x, y)}) ≥ 5, G is not extremal. Therefore 2 ≤ r(G) ≤ 3, and examples with
both radius 2 and radius 3 are known to be in F .

The authors of [10] proved bounds on the diameter of extremal graphs. We restate
their proposition and proof here, with the addition that the bounds apply to radius
2 extremal graphs as well, even when f2(v) < f(v).

Proposition 2.2 If G ∈ Fv ∪ F2
v , then

1. the diameter of G is at most 3;

2. if d(x) = δ(G) = 1, then the graph G− {x} has diameter at most 2.

Proof. For x and y in V (G), at least distance 4 apart, let V (H) = V (G) and E(H) =
E(G) ∪ {(x, y)}. Since g(H) ≥ 5 and e(H) = e(G) + 1, G is neither extremal nor
radius 2 extremal, thus proving part 1.

For part 2, let pendant vertex x be adjacent to x′, and let y and z be two vertices
in V (G) − {x} where y and z are at least distance 3 apart. Let V (H) = V (G) and
E(H) = (E(G) − {(x, x′)}) ∪ {(x, y), (x, z)}. Again, since g(H) ≥ 5 and e(H) =
e(G) + 1, G is neither extremal nor radius 2 extremal, thus proving part 2.
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The constructions in Proposition 2.2 potentially reduce the radius of a graph,
and therefore the proposition does not hold for radius 3 extremal graphs. Many of
the known graphs in F3

v , where f3(v) < f(v), have diameter 4. This is the upper
bound on the diameter of a graph in F3

v , as stated in Proposition 2.3.

Proposition 2.3 If G ∈ F3
v then the diameter of G is at most 4.

Proof. If x and y in V (G) are at least distance 5 apart, then let V (H) = V (G)
and E(H) = E(G) ∪ {(x, y)}. Since adding an edge does not increase the radius,
r(H) ≤ 3, and the girth of H is still at least 5. Also, r(H) ≥ 3 since, if r(H) = 2,
there is vertex c ∈ cent(H) where ecc(c) > 2 in G, and ecc(c) = 2 in H. But this
would contradict that x and y are at least distance 5 apart in G. This is true whether
such a vertex c is external to the path (x, . . . , y) in G, illustrated as an example in
Figure 1A, or a vertex in the path, illustrated as an example in Figure 1B. The
dashed edge (x, y) is added to construct H. The other dashed edges, and dashed
vertex, are examples of what would be present in G to allow the radius of H to
become 2 by the addition of (x, y). Thus, g(H) ≥ 5, r(H) = 3, and v(H) = v(G)+1,
which contradicts that G ∈ F3

v . Therefore, the diameter of any graph in F3 is at
most 4.

Figure 1: For Proposition 2.3 showing if G ∈ F3, its diameter is at most 4

The authors of [10] observed that the minimum degree of any extremal graph
G, of order v, must be at least the difference between f(v) and f(v − 1); otherwise,
removing a vertex of the minimum degree from G would create a graph with girth at
least 5 and order v−1 where e > f(v−1). They stated this formally in the following
proposition.

Proposition 2.4 For any graph with girth at least 5 and v > 1, δ ≥ e− f(v − 1).

This was generalized in [11] to a lower bound on the number of edges that can
be incident on any set of k vertices in a graph with girth at least 5.

Proposition 2.5 For any k vertices, x1, x2, . . . , xk in V (G), where g(G) ≥ 5,

k∑
i=1

d(xi)− |E(〈x1, x2, . . . , xk〉)| ≥ e− f(v − k).

We note that the inequalities in Propositions 2.4 and 2.5 do not necessarily hold
when the right sides of the equations are restricted to radius r graphs. For graph
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G, with girth at least 5 and radius equal to 3, it is not necessarily the case that
δ ≥ e − f3(v − 1). For example, f3(16) = 28, f3(15) = 25, and there is a graph
G ∈ F3

16 with δ = 2. In that case, δ(G) < e(G) − f3(v − 1). This is possible
because f3(16) = f(16), but f3(15) = f(15)− 1. Similarly, for radius 2, f2(20) = 41,
f2(19) = 37, and there exists G ∈ F2

20 with δ = 3.

The authors of [10] describe the presence of stars, rooted depth 2 trees, embedded
in extremal graphs. We note that v(Sm,n) = mn + m + 1. Since all extremal and
radius r extremal graphs are connected, every vertex is the root of a tree that spans
the graph. It follows that any vertex in an extremal graph, with degree ∆, is the
root of a tree where the other vertices in the tree have degree at least δ. Therefore
we have this simple proposition. It was described in [10] for extremal graphs. Here
we apply it to radius 2 and radius 3 extremal graphs as well.

Proposition 2.6 For G ∈ F2
v ∪ F3

v , where v ≥ 5,

1. graph G contains star S∆,δ−1;

2. if G ∈ F2
v then v ≥ ∆δ + 1;

3. if G ∈ F3
v then v ≥ ∆δ + 2.

The bound on the number of vertices in a radius 3 extremal graph is one higher
since, if r(G) = 3, G must have at least one vertex external to any embedded star.

In determining δ and ∆, it is useful to observe that the average degree of the
vertices in a graph bounds δ from above and ∆ from below.

Proposition 2.7 For any graph, δ ≤ 2e/v ≤ ∆.

Since F is defined without regard to the radius of its graphs and, by Proposition
2.1, every extremal graph of order at least 5 has radius 2 or 3, we have the following
proposition.

Proposition 2.8 For v ≥ 6, f(v) = max(f2(v), f3(v)).

We note that f2(v) is undefined for v < 4 since there are no radius 2 extremal
graphs for such small orders. Similarly, f3(v) is undefined for v < 6. We also note
that, for various orders v, f2(v) = f3(v) = f(v), f2(v) < f(v), or f3(v) < f(v). For
example:

1. f2(11) = f3(11) = f(11) = 16;

2. f2(19) = 37 and f3(19) = f(19) = 38;

3. f3(9) = 11 and f2(9) = f(9) = 12.

This leads us to investigate whether there are v and r, r > 3, where fr(v) > f3(v) or
fr(v) > f2(v). Theorem 2.9 states that this is not the case. Note that fr(v) is not
defined for v < 2r.
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Theorem 2.9 For v ≥ 2r,

1. fr(v) < f2(v) if r ≥ 4;

2. f4(v) ≤ f3(v);

3. fr(v) < f3(v) if r ≥ 5.

Proof. If G is radius r extremal, and r > 3, then for x ∈ cent(G), there exists
y ∈ V (G) such that dist(x, y) = r. Let G′ = G ∪ {(x, y)}. The additional edge does
not create a cycle shorter than C5, and further, v(G′) = v(G), e(G′) = e(G) + 1, and
2 ≤ r(G′) ≤ r(G).

An application of the construction either produces graph G′ with r(G′) < r, or
reduces the number of vertices that are distance r from a center vertex. Repeat the
construction recursively until r(G′) = 2. It is the case that v(G′) = v(G), e(G′) >
e(G), g(G′) ≥ 5, and r(G′) = 2, thus proving part 1.

To prove part 2, consider a path (x, x1, x2, x3, x4) in G where x ∈ cent(G), and
dist(x, x4) = 4. We can reduce the number of vertices that are distance 4 from x by
adding edge (x, x4) and removing edge (x3, x4). That is, let G′ = G ∪ {(x, x4)} −
{(x3, x4)}. The new graph G′ has the same order and size as G and still has girth of
at least 5. If r(G′) = 2, that would contradict that r(G) = 4, so 3 ≤ r(G′) ≤ 4. The
construction has reduced by at least one the number of vertices that are distance
4 from x. Repeat the construction recursively on G′, with the same vertex x, until
the eccentricity of x in G′ is 3. Since v(G′) = v(G), e(G′) = e(G), g(G′) ≥ 5, and
r(G′) = 3, part 2 is proven.

To prove part 3, apply the first construction recursively until 3 ≤ r(G′) ≤ 4. If
r(G′) = 4 apply the second construction recursively until r(G′) = 3. It is the case
that v(G′) = v(G), e(G′) > e(G), g(G′) ≥ 5, and r(G′) = 3, thus proving part 3.

We note that in generating and examining radius r extremal graphs for orders up
to 53, we have not discovered a graph G where g(G) ≥ 5, r(G) = 4, and e(G) = f3(v).
We conjecture that f4(v) < f3(v) for v ≥ 8.

It is obvious that f(v) > f(v − 1) by observing that a pendant vertex can be
added to G in Fv−1. Similarly, f2(v) > f2(v− 1) and f3(v) > f3(v− 1), if a pendant
vertex is added adjacent to a vertex in cent(G) for G in F2 or F3. However, it is
not as obvious that f3(v) > f(v − 1) for all v since f3(v) < f2(v) for some values
of v. To prove that this is the case, we must show that f3(v) > f2(v − 1) where
f2(v − 1) = f(v − 1). If f2(v − 1) < f(v − 1), it follows from Proposition 2.8 that
f3(v − 1) = f(v − 1) and therefore f3(v) > f3(v − 1) > f2(v − 1).

Theorem 2.10 For v ≥ 6, f3(v) > f(v − 1).

Proof. It only remains to be proven that f3(v) > f2(v − 1) where f2(v − 1) =
f(v − 1). The authors of [11] demonstrated that for all extremal graphs G, with
v ≥ 7, g(G) = 5. This, and by inspection of the graphs in Figure 5, establishes that
if G ∈ F2

v , f2(v) = f(v), and v ≥ 5, then G contains a C5.
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Let (y, z) be any edge in a C5 in G, where G ∈ F2
v−1 ∩Fv−1 and v ≥ 6. Consider

graph H, as illustrated in Figure 2, where V (H) = V (G)∪{x}, and E(H) = E(G)∪
{(x, y), (x, z)}−{(y, z)}. Graph H is such that v(H) = v(G)+1 and e(H) = e(G)+1.
No cycle has contracted by the construction, so g(H) ≥ 5.

For any vertex c, in the center of G, but not in the C5 used in the construction,
c was adjacent to at most one vertex in the C5. Otherwise, the girth of G was less
than 5. Therefore, c is distance 3 from at least one vertex in the constructed C6.
Similarly, for any center c that was in the C5 in G, it is now distance 3 from one
vertex in the constructed C6. Thus, r(H) = 3 and f3(v) ≥ f2(v−1)+1, and therefore
f3(v) > f(v − 1).

Figure 2: Construct an order v radius 3 {C3, C4}-free graph from a graph in F2
v−1

The authors of [11] proved that for all extremal graphs G, with v ≥ 7, g(G) = 5.
This was a corollary of the stronger result that, for x, a vertex in extremal graph G
with v ≥ 5,

1. if d(x) = 2, then G has a 5-cycle or 6-cycle that contains x;

2. if d(x) ≥ 3, then G has a 5-cycle that contains x.

Where Fv and F2
v have been determined, all degree 2 vertices are in a C5, with

the exceptions of v ∈ {6, 11, 51}. These orders are one more than the orders of the
Moore graphs, and f(v) = f(v−1)+1. This is relevant to the presence of such degree
2 vertices, as shown in the following theorem which strengthens the result from [11].
This theorem uses the same construction from Theorem 2.10, but in reverse.

Theorem 2.11

1. For all G ∈ Fv ∪F2
v , where v ≥ 5 and v /∈ {6, 11, 51, and possibly 3251}, every

x ∈ V (G) is in a C5 in G.

2. For all G ∈ Fv ∪ F2
v , where v ∈ {6, 11, 51, and possibly 3251}, and for every

x ∈ V (G),

(a) if d(x) = 2, then x is in a C5 or C6 in G;

(b) if d(x) ≥ 3, then x is in a C5 in G.
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Proof. From [10], G does not contain a pendant vertex unless v(G) ∈ {6, 11, 51, and
possibly 3251}.

The authors of [11] provided a construction showing that if graphG with g(G) ≥ 5
contained vertex x, of degree at least 3, that was not in a C5, H can be constructed
where v(H) = v(G), g(H) ≥ 5, and e(H) = e(G) + 1, thus proving that G is not
extremal. The construction does not rely on G being extremal. Thus the proof holds
as well for G ∈ F2

v where f2(v) < f(v). Thus, for G ∈ Fv ∪ F2
v , every x ∈ V (G),

where d(x) ≥ 3, is in a C5. The construction potentially reduces the radius, and
therefore does not necessarily apply to graphs in F3

v .

The construction in [11] also proved that if x ∈ V (G) and d(x) = 2, then x is in
either a C5 or C6 in G. Assume that the smallest cycle containing x is C6. Then x
is adjacent to vertices y and z as in graph G in Figure 3. Let V (H) = V (G) − {x}
and E(H) = E(G) ∪ {(y, z)}, as also shown in Figure 3.

Since g(G) = 5, and the smallest cycle containing x in G is C6, g(H) = 5. Also,
since G ∈ Fv ∪ F2

v , v(H) = v(G)− 1, and e(H) = e(G)− 1, then H ∈ Fv−1 ∪ F2
v−1.

Graph H, plus a pendant vertex, is also in Fv ∪ F2
v , which, from [10], proves that

H is a Moore graph. Thus, if the smallest cycle containing a degree 2 vertex in G is
C6, then v(G) ∈ {6, 11, 51, and possibly 3251}. Otherwise, any degree 2 vertex in G
is in a C5.

Figure 3: Construct a Moore graph by removing a degree 2 vertex in a 6-cycle

Lazebnik and Wang [13] used a construction to prove the general result that,
if n ≥ 3, G ∈ ex(v; {C3, C4, . . . , Cn}), and ∆(G) ≥ n, then g(G) = n + 1. We
demonstrate that it applies to the case where G ∈ F3, even when f3(v) < f(v). And
further, every vertex in G with degree at least 4 is in a 5-cycle. Our result relies on
any vertex having at most one pendant neighbor.

Lemma 2.12 For G ∈ F3, and x ∈ V (G), x has at most one pendant neighbor.

Proof. Suppose r(G) = 3 and assume x ∈ V (G) has at least two pendant neighbors,
x1 and x2. If we let H = G− {x2}, then v(H) = v(G)− 1 and e(H) = e(G)− 1. By
Theorem 2.10, H ∈ Fv−1.

By Proposition 2.2, H − {x1} is a Moore graph. Therefore the eccentricity of x
is 2 in both G and H. Since x1 and x2 are both adjacent to x in G, r(G) = 2. This
contradicts that x ∈ V (G), where G ∈ F3, can have two pendant neighbors.

We note that graph 7a in Figure 6 is the only known graph in F3 with a pendant
vertex. We conjecture that all radius 3 extremal graphs, with v ≥ 8, have δ ≥ 2.
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Theorem 2.13 If G ∈ F3 and x ∈ V (G), then if d(x) ≥ 4, x is in a C5 in G.

Proof. Assume that the smallest cycle in G containing x, with d(x) ≥ 4, is Ck where
k > 5. Vertex x is the root of star S where x has d(x) children labeled x1, x2, . . . , xd(x).
The leaves of branch bi, 1 ≤ i ≤ d(xi), of S include N(xi)− {x}. If x has a pendant
neighbor, let it be x3. By Lemma 2.12, x has at most one pendant neighbor.

All remaining vertices in V (G) are external to S. The case where d(x) = 4 is
illustrated as graph G in Figure 4. Since x is not in a Ck, k ≤ 5, there are no edges
in E(G) incident only on leaves of S. Each edge in E(G)−E(S) is incident only on
a pair of vertices external to S, or incident on a leaf of S and a vertex external to S.

Let H be constructed such that V (H) = V (G) and

E(H) = E(G) ∪ {(x2, x3), (x3, x4), . . . , (xd(x), x1)} − {(x, x3), (x, x4), . . . , (x, xd(x))}.

In the example in Figure 4, where d(x) = 4, the deleted edges are shown as dashed
lines in graph G, and the added edges are shown as dashed lines in graph H. Since
x is not in a C5 in G, the added edges in H will not complete a C3 nor a C4, and
therefore g(H) ≥ 5. Note that v(H) = v(G) and

e(H) = e(G) + (d(x)− 1)− (d(x)− 2) = e(G) + 1.

Since every vertex x in H has eccentricity greater than 2, then r(H) ≥ 3. This is
verified by observing that each of these distances is greater than 2:

1. dist(x, y), where y is any vertex external to the star;

2. dist(x1, y), where y is any leaf in bi, 2 ≤ i < d(x);

3. dist(x2, y), where y is any leaf in bi, i = 1 or 4 ≤ i ≤ d(x);

4. dist(xi, y), where 3 ≤ i < d(x) and y is any leaf in b1;

5. dist(xd(x), y), where y is any leaf in b2.

If r(H) = 3, then G /∈ F3, and x must be in a C5 in G. If r(H) > 3, then
by Theorem 2.9 H ′ can be constructed from H such that v(H ′) = v(G), e(H ′) >
e(G), g(H ′) ≥ 5, and r(H ′) = 3. Again, contradicting that x is not in a C5 in G.

For all known graphsG ∈ F3, with only two exceptions, if x ∈ V (G) and d(x) = 3,
x is in a C5 in G. The two exceptions are graphs 7a and 8b in Figure 6. We conjecture
that for all G ∈ F3

v where v ≥ 9, if d(x) = 3, then x is in a C5 in G.

Corollary 2.14 For v ≥ 9, if G ∈ F3
v , then g(G) = 5.

Proof. For 9 ≤ v ≤ 12, it is true by direct inspection of the graphs. For 13 ≤ v ≤ 53,
from Table 1, ∆ ≥ dd̄e = d2f3(v)/ve ≥ 4, and by Theorem 2.13, g(G) = 5.

For v > 53, it remains to be shown that if G ∈ F3
v , then ∆ ≥ 4. Construct

G, with v > 53 and e ≥ 2v, by selecting a set of graphs, {G1, G2, . . . , Gn}, Gi ∈
F3
v , 19 ≤ v ≤ 53, such that

∑n
i=1 v(Gi) − (n − 1) = v. Overlap the set of graphs

at a single shared vertex x where, from each graph Gi, some xi ∈ cent(Gi) is to be
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Figure 4: Example for Theorem 2.13 with d(x) = 4

the shared vertex in V (G). The eccentricity of x is 3, and therefore the radius of
G is 3. Also, the girth of G is 5. Since e(G) ≥ 2v(G) then d̄(G) ≥ 4. Therefore,
f3(v) ≥ e(G) ≥ 2v, v > 53, thus proving the corollary.

As an example, construct G, with v(G) = 58 and e(G) = 120, by having three
copies of a graph G20 ∈ F3

20 share a single vertex x ∈ cent(G20). The average degree
in G is greater than 4, and the radius of G is 3.

3 Values and bounds for f2(v), F2(v), f3(v), and F3(v)

We illustrate the radius 2 and radius 3 extremal graphs, up to order 10, in Figures 5
and 6. For these small orders the radius 2 extremal graphs are also extremal. Only
the order 6 radius 3 extremal graph is also extremal. There are no radius 2 extremal
graphs for orders less than 4, nor radius 3 extremal graphs for orders less than 6.

Figure 5: Radius 2 extremal graphs of orders 4 through 10

Table 1 lists values and bounds for f2(v), f3(v), F2(v), and F3(v). The values
where fr(v) = f(v) were determined by simple algorithmic examination of the known
extremal graphs obtained from Afzaly and McKay [3]. Their collection also includes
graphs that establish constructive lower bounds for several orders larger than 53
which they generated with heuristic methods [2]. We include some of these values in
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the table. All known graphs in F2
v ∪ F3

v , v ≤ 52, are available at [9].

Establishing the values for fr(v), where fr(v) = f(v) − 1, it was sufficient to
observe that there were no graphs in Fv with radius r, and then to generate by
computer radius r graphs with e = f(v)− 1. In some cases we could not find exact
values for fr(v), but do provide computational lower bounds and analytical upper
bounds.

The computational methods combine hill climbing with backtracking. The hill
climbing algorithm starts with v isolated vertices, and then randomly selects non-
edges to be added. If the proposed edge does not complete a short cycle (a C3 or C4)
the edge is added to the graph; this constitutes an uphill step. If the edge completes
a single short cycle, then the edge is added and another edge from the short cycle is
removed to break the cycle; this constitutes a sideways step. If the edge completes
more than one short cycle, it is rejected as it would be a downhill step.

The hill climbing algorithm was both fast and effective for finding extremal graphs
and radius 2 extremal graphs up to order 50. However, it was less effective on its
own for radius 3 graphs for orders greater than about 45. For those graphs, improved
results were obtained by following hill climbing with removing k edges, and using
backtracking to add more than k edges, while maintaining radius 3 and girth 5.

For enumerating elements of F rv when fr(v) < f(v), it is necessary to identify
isomorphs. The method we used for determining isomorphism is typical of that
described by McKay and Piperno [14], which relies on canonically labeling each graph
G. The tractability of the method depends on refining a partition of the vertices of
G in order to reduce the number of permutations to test during the labeling; each
vertex in G only needs to be mapped onto each of the other vertices in its own block
in a partition. A finer partition requires fewer permutations to test for generating
the canonical labeling. We used the partitioning method described in [11]. Each
vertex x in V (G) is colored with the number of 5-cycles in G that contain x. This
generally produced a finer partition than coloring x with its degree index.

The coloring also provides a graph invariant, the C5-sequence of a graph. The
C5-sequence, A(G), is [a0, a1, . . . , a(v

5)
], where ai is the number of vertices in V (G)

that are in i 5-cycles in G. Since most of the terms are zero, we only write the
non-zero elements of the sequence, annotating them with their index. For example,
one of the graphs in F2

12 has the C5-sequence [1:2, 6:7, 7:3] indicating two vertices are
in a single 5-cycle, seven are in six 5-cycles, and three are in seven 5-cycles. For most
orders, v ≤ 53, this is a perfect invariant, distinguishing all non-isomorphic graphs
in F2

v ∪ F3
v .

We provide analytic proofs for f3(v) and F3(v), 7 ≤ v ≤ 10, both to provide
insight into the structure of such graphs, and also to illustrate the proof methods
that are based on the radius 2 stars that motivated this research. Also provided are
proofs of values for fr(v) where fr(v) < f(v)− 1, and for Fr(v) where fr(v) < f(v).

Non-bold values in the table were derived by simple examination of graphs known
to be in F . The non-bold values for fr(v) are equal to f(v), and the sum of the non-
bold values of Fr(v) are the values of F (v), with the exception of v = 4 for which
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there is a radius 1 graph in F4.

The bold values and bounds are for orders where fr(v) < f(v), and were derived
by analytic and computational methods. For orders greater than 20, where fr(v) <
f(v), we do not know if we have generated all of the non-isomorphic radius r extremal
graphs, and therefore only state lower bounds for Fr(V ). Where the exact value of
fr(v) is not known, the value of Fr(v) is shaded to indicate that it is the number
of graphs found with the size equal to the known lower bound on fr(v). In some of
those cases we were able to narrow the bounds.

Case f3(7) = 7 and F3(7) = 2

Proof. The single graph G ∈ F7 has radius 2. Therefore f3(7) < 8.

If there exists G ∈ F3
7 , such that e = 7, G will contain a cycle. If g = 5 then

G contains C5, and the remaining two vertices will be pendant from vertices in the
cycle, or they will form a P2 pendant from a vertex in the cycle. In either case, such
a graph will have radius 2.

If g = 6, then G is C6 with an additional vertex pendant from a vertex in the
cycle. This graph is 7a in Figure 6. If g = 7, G is C7; this graph is 7b in Figure 6.

Figure 6: Radius 3 extremal graphs of orders 6 through 10
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v 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
f2(v) 3 5 6 8 10 12 15 16 18 21 23 26 28 31 34
f3(v) 6 7 9 11 13 16 18 20 23 25 28 31 34
F2(v) 1 1 1 1 1 1 1 2 4 1 3 1 13 9 7
F3(v) 1 2 2 2 4 1 3 6 1 21 9 5 8

v 19 20 21 22 23 24 25 26 27 28
f2(v) 37 41 44 47 50 54 57 61 64 68
f3(v) 38 40 43 46 49 53 57 60 65 68
F2(v) 10 1 3 3 7 1 5 2 ≥ 9 3
F3(v) 1 7 ≥ 7 ≥ 29 ≥ 194 ≥ 14 1 ≥ 48 1 1

v 29 30 31 32 33 34 35 36 37 38
f2(v) 72 76 80 85 87 90 94 99 104 109
f3(v) 71 75 79 83-84 87 90 95 99 104 109
F2(v) 1 1 2 1 11 144 ≥ 187 20 4 1
F3(v) ≥ 5 ≥ 4 ≥ 1 ≥ 1 1 93 5 16 3 1

v 39 40 41 42 43 44 45
f2(v) 113 118 124 129 134 139 145
f3(v) 114 120 123 128 132-133 137-138 142-143
F2(v) ≥ 22 ≥ 12 1 1 1 2 1
F3(v) 1 1 ≥ 1 ≥ 1 ≥ 2 ≥ 1 ≥ 2

v 46 47 48 49 50 51 52
f2(v) 150 156 162 168 175 176 178
f3(v) 147-149 152-155 158-160 163-166 170-172 176 178
F2(v) 2 1 1 1 1 4 121
F3(v) ≥ 2 ≥ 7 ≥ 1 ≥ 16 ≥ 1 3 27

v 53 54 55 56 57 58
f2(v) 181 ≥ 185 ≥ 189 ≥ 193 ≥ 197 ≥ 202
f3(v) 181 ≥ 184 ≥ 188 ≥ 192 ≥ 197 ≥ 200
F2(v) ≥ 2647 ≥ 13 ≥ 5 ≥ 11 ≥ 3 ≥ 1
F3(v) ≥ 41 ≥ 25 ≥ 14 ≥ 35 ≥ 1 ≥ 23

Table 1: Values and bounds for f2(v), f3(v), F2(v), and F3(v)
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Case f3(8) = 9 and F3(8) = 2

Proof. For the single graph in F8, e = 10 and r = 2, and thus f3(8) < 10. If
f3(8) = 9, G ∈ F8 contains a cycle, and g ≥ 5. The proof derives the elements of F8

by assuming girths 5 through 8. However, first we establish that δ(G) > 1. That is,
there can be no pendant vertices in G.

If G ∈ F3
8 , and δ = 1, then G is the unique graph G7 in F7, shown in Figure 7,

plus a pendant vertex adjacent to a leaf in the (3, 1)-star embedded in G7. However,
the center in G7 labeled c would be at most distance 2 from any such pendant vertex,
and r(G) = 2. Thus, δ(G) 6= 1.

Figure 7: G7, the unique graph in F7, with vertex c in its center

If G ∈ F3
8 and g = 5, then G has three vertices, x1, x2, and x3, and four edges in

addition to a C5. If xi, 1 ≤ i ≤ 3, is adjacent to two vertices in the C5, then g < 5.
Thus, each xi is incident on at most one vertex in the C5. Since G does not have any
pendant vertices, the vertices xi form P3, with the end vertices of the P3 adjacent to
a distance 2 pair of vertices in the C5. This is graph 8a in Figure 6.

If G ∈ F3
8 and g = 6, then G has two vertices, x1 and x2, and three edges in

addition to a C6. If xi, 1 ≤ i ≤ 2, is adjacent to two vertices in the C6, then g < 6.
Thus, each xi is incident on at most one vertex in the C6. Since G does not have any
pendant vertices, the vertices xi form P2, with the end vertices of the P2 adjacent to
a distance 3 pair of vertices in the C6. This is graph 8b in Figure 6.

If G ∈ F3
8 and g = 7, then G has one vertex adjacent to a pair of vertices that

are distance 3 apart in C7, which implies that g < 7. And if g = 8, then G is C8 plus
an additional edge incident on a pair of vertices in the C8, which implies g < 8.

Case f3(9) = 11 and F3(9) = 2

Proof. For the single graph G ∈ F9, e = 12 and r = 2. Thus, f3(9) < 12. Graphs 9a
and 9b in Figure 6 show that f3(9) = 11.

If G ∈ F3
9 , then by Propositions 2.6 and 2.7, 1 ≤ δ ≤ 2. If δ = 1, then, since

f3(9) = f(8) + 1, G = G8, the unique graph in F8, plus pendant vertex x. However,
r(G8) = 2, and all vertices in G8 are either in the center, or adjacent to a center.
Figure 8 shows G8 with the vertices in the center shaded. Therefore, regardless of
which vertex in G is adjacent to x, x will be at most distance 2 from some center
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c in the G8. And the eccentricity of c will also be 2 in G. Therefore, δ = 2. Since
δ = 2, then by Propositions 2.6 and 2.7, ∆ = 3.

Figure 8: G8, the unique graph in F8, with center vertices shaded

Given δ = 2 and ∆ = 3, the degree sequence for G is [2:5, 3:4], and there must be
an adjacent pair of degree 3 vertices. Therefore, G contains star S = S3[2,1,1]1. Since
v(S) = 8, e(S) = 7, and r = 3, the remaining four edges must be incident only on
leaves of S and x, external to S, and having either degree 2 or 3.

If d(x) = 2, x is either adjacent to the leaves in the 1-branches, or else to one leaf
in a 1-branch and one leaf in the 2-branch. First assume that x is adjacent to a leaf
in a 1-branch and to a leaf in the 2-branch. This is illustrated as graph A in Figure
9. The two remaining edges must be added from the set {(a, c), (a, d), (b, c), (c, d)}.
There are three cases resulting from the six pairs of edges that can be added.

1. If {(a, c), (a, d)}, {(a, d), (b, c)}, or {(a, d), (c, d)} is added, then r(G) = 2.

2. If {(a, c), (b, c)} or {(b, c), (c, d)} is added, then g(G) = 4.

3. If {(a, c), (c, d)} is added, then g(G) = 5 and r(G) = 3. This is graph 9a in
Figure 6.

The edges that complete an element of F9 are shown as dashed lines.

Figure 9: Construction of graphs in F3
9

Now, let x be adjacent to the leaves in the 1-branches. To satisfy the degree
sequence, each of the the remaining two edges must be incident on a leaf in a 1-
branch and a leaf in the 2-branch. The radius is 3. This is graph B in Figure 9, and
9b in Figure 6. Graphs A and B in Figure 9 are nonisomorphic; A has an adjacent
pair of degree 2 vertices, b and x, and B does not have such a pair.
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If d(x) = 3, x must be adjacent to each of the leaves in the 1-branches in S, and
to one of the leaves in the 2-branch in S. The remaining edge, shown as a dashed
line in graph C in Figure 9, must be incident on the other leaf in the 2-branch and
on either of the leaves in a 1-branch. Graph C is isomorphic to graph A in the figure.
That can be seen by mapping (x, y, z) in C to (d, r, c) in A.

Case f3(10) = 13

Proof. The unique graph in F10 is the Petersen graph, with e = 15 and r = 2.
Therefore, f3(10) < 15.

Assume there exists G with v = 10, e = 14, g ≥ 5, and r = 3. By Propositions
2.6 and 2.7, 1 ≤ δ ≤ 2 and 3 ≤ ∆ ≤ 4. If x ∈ V has degree 1, then, since f(9) = 12,
G is the unique graph G9 ∈ F9 with the addition of pendant vertex x. However, as
Figure 10A shows, every vertex in G9, which has radius 2, is either in the center of
the graph, (the shaded vertices in the figure), or adjacent to a vertex in the center.
Thus, if δ(G) = 1, then r(G) = 2. Therefore, δ(G) = 2.

Figure 10: G9, the unique graph in F9, with center vertices shaded and with a 10th

vertex, y

Now we consider the case where ∆ = 4. Since r(G) = 3, G must contain S = S4,1

plus one vertex, x, external to S. Since e(S) = 8, then the induced subgraph on the
four leaves of S plus x must have six edges. However, f(5) = 5. Therefore, ∆ 6= 4.

If ∆ = 3 then the degree sequence of G is [2:2, 3:8]. This implies that at least
ten of the 14 edges in G are incident only on the eight degree 3 vertices in G. Since
f(8) = 10, and there is a unique graph G8 ∈ F8, G is G8 plus two vertices, x and y,
and four edges, each with at least one endpoint in {x, y}. Since G8 has four degree
2 vertices, and all of those vertices have degree 3 in G, then d(x) = d(y) = 2, and x
and y are not adjacent. Since f(9) = f(8) + 2, the subgraph in G induced by the G8

+ x is G9, the unique graph in F9. Given the degree sequence for G, the remaining
vertex, y, must be incident on two degree 2 vertices in the G9 star, and those vertices
must be leaves. Figure 10B shows y adjacent to those vertices. Though the resulting
graph has girth 5, it has radius 2, as indicated by the shaded center vertices that are
distance 2 from y. Thus, ∆(G) 6= 3, and f3(10) < 14. The graphs 10a through 10d
show that f3(10) = 13.
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Case F3(10) = 4

Proof. We have established above, that if G ∈ F3
10, δ > 1. By Proposition 2.7, δ < 3.

Therefore, δ = 2. And, by Proposition 2.6, 3 ≤ ∆ ≤ 4.

If ∆ = 4, and given δ = 2, then G contains the star S4,1,1 Let the leaves
of S be {a, b, c, d} and the external vertex be labeled x. Since e(S) = 8, then
e(〈x, a, b, c, d〉) = 5. The unique graph with v = e = 5 and g ≥ 5 is C5. The resulting
graph is 10a in Figure 6.

If ∆ = 3, then the degree sequence for G must be [2:4, 3:6], and there must be a
minimum of 13−(2·4) = 5 edges in the induced subgraph on the six vertices of degree
3 in G. Additionally, if a degree 3 vertex, x, were adjacent to three degree 3 vertices,
x would be at the root of a (3, 2)-star, S. Since S would span G, then r(G) would
be 2. Thus, no degree 3 vertex is adjacent to three degree 3 vertices. Therefore,
G contains S = S3[2,2,1]1. Exhaustive search from S produced three non-isomorphic
graphs with ∆ = 3. These are graphs 10b, 10c, and 10d in Figure 6.

Case F3(13) = 6

Proof. Since the unique graph in F13 has radius 2, f3(13) < 21. From generated
graphs, f3(13) = 20. By Propositions 2.4 and 2.7, 2 ≤ δ ≤ 3.

If δ = 3, then by Proposition 2.7, ∆ ≥ 4. However, by Proposition 2.6, ∆ < 4.
Therefore, δ = 2. And since f3(13) = f(12) + 2, we constructed the elements of
F3

13 by adding a degree 2 vertex to each element of F12. That search yielded six
non-isomorphic graphs with girth at least 5 and radius 3.

Case F3(15) = 21

Proof. Since the unique graph in F15 has radius 2, f3(15) < 26. From generated
graphs, f3(15) = 25. By Propositions 2.4 and 2.7, 2 ≤ δ ≤ 3.

Since f3(15) = f(14) + 2, we constructed all G ∈ F3
15 where δ(G) = 2 by adding

a degree 2 vertex, in all possible ways, to each element of F14 such that g(G) ≥ 5
and r(G) = 3. This yielded nine non-isomorphic graphs in F3

15.

If δ = 3, then by Propositions 2.6 and 2.7, ∆ = 4. Therefore, either S4[2,2,2,2]2

or S4[3,2,2,2]1 spans G. To reduce the search space for the edges amongst the leaves
and external vertices, symmetries can be broken by fixing edges. In particular, since
δ = 3, there are four cases for fixing three edges incident on an external vertex x:

1. G contains S4[2,2,2,2]2, and x is adjacent to one leaf in each of three branches;

2. G contains S4[2,2,2,2]2, and x is adjacent to the other external vertex and to one
leaf in each of two branches;

3. G contains S4[3,2,2,2]1, and x is adjacent to a leaf in the 3-branch, and to a leaf
in each of two 2-branches;
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4. G contains S4[3,2,2,2]1, and x is adjacent to a leaf in each 2-branch.

These four cases yielded 12 non-isomorphic graphs with δ = 3 in F3
15. In addition to

the nine graphs with δ = 2, F3(15) = 21.

Case F2(19) = 10

Proof. Since the Robertson graph is the unique graph in F19 [10], with 38 edges and
radius 3, and we constructed radius 2 girth 5 graphs with e = 37, then f2(19) = 37.

IfG ∈ F2
19, then by Propositions 2.4 and 2.7, δ = 3. Since f2(19) = f(18)+3 = 37,

we constructed all G ∈ F2
19 by exhaustively adding a degree 3 vertex to each graph

in F18 such that g(G) ≥ 5 and r(G) = 2. The search yielded ten non-isomorphic
graphs in F2

19.

Case F3(20) = 7

Proof. Since the unique graph in F20 has radius 2, f3(20) < 41. From generated
graphs, f3(20) = 40. By Propositions 2.4 and 2.7, for G ∈ F3

20, 2 ≤ δ ≤ 4.

If δ = 4, then by Proposition 2.6, ∆ = 4. That is, G is 4-regular. The two non-
isomorphic girth 5 4-regular graphs on 20 vertices were identified by Meringer [16].

Since f3(20) = f(18) + 6, if δ = 3, and V (G) has at least two vertices with degree
3, then G contains as a subgraph some graph in F18. And if δ(G) = 3, and V (G) has
exactly one vertex x with degree 3, then since d̄(G) = 4, the degree sequence for G
is [3:1, 4:18, 5:1]. Thus, x must be adjacent to at least one vertex y ∈ V (G), where
d(y) = 4. Since v(G − (x, y)) = 18, and e(G − (x, y)) = f3(20) − 6 = f(18), then
if V (G) contains exactly one degree 3 vertex, G again contains as a subgraph some
graph in F18.

If δ = 2, then, since f3(20) = f(19) + 2, G contains the unique graph G19 ∈ F19.
However, since G19 is 4-regular, and f(19) = f(18) + 4, G19 contains as a subgraph
some graph in F18. Therefore, if V (G) contains a vertex of degree 2, G contains as
a subgraph some graph in F18.

Every graph G ∈ F3
20, where δ(G) < 4, contains an element of F18 as a subgraph,

and therefore we constructed all such graphs by exhaustively adding edges to each
graph in F18 augmented with two isolated vertices. The search yielded five non-
isomorphic graphs. Together with the two graphs that are 4-regular, F3(20) = 7.

Case f2(40) = 118

For v ≤ 53, f2(40) is the unique case where f2(v) < f(v)−1. In the other cases where
f2(v) < f(v), we found by heuristic search graphs with e = f(v)− 1 and r = 2. For
the case of v = 40 and r = 2, search only produced graphs with e = f(40)−2 = 118.
We prove that f2(40) = 118.



D.K. GARNICK/AUSTRALAS. J. COMBIN. 89 (1) (2024), 1–23 19

Proof. The unique graph in F40 has e = 120 and r = 3. Therefore f2(40) < 120, and
heuristic search constructed graphs with e = 118, g ≥ 5, and r = 2.

Since f(39) = 114, then if G ∈ F2
40 and e = 119, by Propositions 2.4 and 2.7,

δ = 5. If x ∈ V (G) and d(x) = 5, then G − x is the unique graph G39 ∈ F39.
However, exhaustive search fails to add five edges to G39 plus an isolated vertex
while maintaining girth 5 and radius 2. Therefore, δ 6= 5 and f2(40) = 118.

Case 142 ≤ f3(45) ≤ 143

Proof. Since the unique graph in F45 has e = 145 and r = 2, and we constructed
graphs with v = 45, e = 142, g = 5 and r = 3, then 142 ≤ f3(45) ≤ 144. We now
lower the upper bound to 143.

If f3(45) = 144, then for G ∈ F3
45, by Propositions 2.4 and 2.7, 5 ≤ δ(G) ≤ 6. If

δ = 5, and given e(G) = f(44) + 5, G can be generated by adding a degree 5 vertex,
x, to either of the two graphs, G44a and G44b, in F44. However, a computer analysis
shows that the radius of G44a is 2, and that every vertex in it is either in the center,
or is a neighbor of a center vertex. Thus, adding vertex x would construct a graph
that also has radius 2. The same holds true for G44b. Therefore, δ 6= 5.

If δ = 6, then by Propositions 2.6 and 2.7, ∆ = 7. The degree sequence for G is
[6:7, 7:38]. Thus, even if all vertices of degree 6 are adjacent only to vertices of degree
7, the induced subgraph, H, on the degree 7 vertices has at least 144 − 6 · 7 = 102
edges. Since d̄(H) = (2 · 102)/38 ≈ 5.3,∆(H) ≥ 6. Therefore, there is at least
one vertex, x ∈ V (H) where d(x) = 7 in G, and N(x) contains at least six vertices
of degree 7 in G. Thus, G contains S = S7[6,6,6,6,6,6,5]. But, v(S) = 49 > v(G).
Therefore, δ 6= 6 and f3(45) 6= 144.

Case 158 ≤ f3(48) ≤ 160

Proof. Since the unique graph in F48 has e = 162 and r = 2, and we constructed a
graph with v = 48, e = 158, g = 5, and r = 3, then 158 ≤ f3(48) ≤ 161. We lower
the upper bound to 160.

If f3(48) = 161, then by Propositions 2.4 and 2.7, if G ∈ F3
48, then 5 ≤ δ ≤ 6.

Since f(47) + 5 = 161, if δ(G) = 5, then G contains the unique subgraph G47 ∈ F47

plus additional vertex x adjacent to five vertices in the embedded subgraph. However,
for all y ∈ V (G47), y ∈ cent(G47) ∪ N(cent(G47)). Therefore, x is at most distance
2 from some z ∈ cent(G47), and z has eccentricity of 2 in G. This implies that
r(G) = 2, thus contradicting δ(G) = 5.

If δ = 6, then by Propositions 2.6 and 2.7, ∆ = 7. The degree sequence for G is
[6:14, 7:34]. There must be at least 77 edges in the subgraph consisting of degree 7
vertices. That is, if H = 〈{x ∈ V (G) : d(x) = 7}〉, then e(H) ≥ (34·7−14·6)/2 = 77.
Therefore, d̄(H) ≥ (77 · 2)/34 ≈ 4.5. This implies there is at least one vertex
x ∈ V (G) where d(x) = 7 in G and x has at least five neighbors in G of degree
7. Therefore, with x as the root of star S that spans G, S = S7[6,6,6,6,6,5,5]1. Since
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v(S) = 49 > v(G), δ(G) 6= 6 and f3(48) 6= 161.

Case 163 ≤ f3(49) ≤ 166

Proof. Since the unique graph in F49 has e = 168 and r = 2, and we constructed
graphs with v = 49, e = 163, g = 5, and r = 3, then 163 ≤ f3(50) ≤ 167. We lower
the upper bound to 166.

If f3(49) = 167, then for G ∈ F3
49, by Propositions 2.4 and 2.7, 5 ≤ δ(G) ≤ 6.

If δ = 5, and given e(G) = f(48) + 5, G can be generated by adding a degree
5 vertex, x, to the unique graph, G48, in F48. However, for all y ∈ V (G48), y ∈
cent(G) ∪N(cent(G)). Vertex x will be at most distance 2 from a center in G, and
r(G) = 2. Therefore, δ 6= 5.

If δ = 6, then by Propositions 2.6 and 2.7, ∆ = 7. The degree sequence for G is
[6:9, 7:40]. Thus, even if all vertices of degree 6 are adjacent only to vertices of degree
7, the induced subgraph, H, on the degree 7 vertices has at least 167 − 6 · 9 = 113
edges. Since d̄(H) = (2 · 113)/40 = 5.65,∆(H) ≥ 6. Therefore, there is at least one
vertex, x ∈ V (H) where d(x) = 7 in G, and N(x) in G contains at least six vertices
of degree 7. Thus, G contains S = S7[6,6,6,6,6,6,5]. However, v(S) = 49, and since
r(G) = 3, G must have at least one additional vertex external to S. Therefore, δ 6= 6
and f3(49) 6= 167.

Case 170 ≤ f3(50) ≤ 172

Proof. Since the Hoffman-Singleton graph, the Moore graph on 50 vertices, is the
unique graph in F50, having e = 175 and r = 2, and we constructed a graph with
v = 50, e = 170, g = 5, and r = 3, then 170 ≤ f3(50) ≤ 174. We lower the upper
bound to 172. However, first we prove that f3(50) 6= 174. This is a necessary step
since it is possible that for order v there may not be a girth 5 radius 3 graph of size
e, but there is one of size e+ 1.

If f3(50) = 174, then for G ∈ F3
50, by Propositions 2.4 and 2.7, δ(G) = 6. Since

e(G) = f(49) + 6, G can be generated by adding a degree 6 vertex, x, to the unique
graph, G49, in F49. However, for all y ∈ V (G49), y ∈ cent(G)∪N(cent(G)). Vertex x
will be at most distance 2 from a center in G, and r(G) = 2. Therefore, f3(50) < 174.

We now lower the upper bound to 172. If G has r = 3 and e = 173, then by
Propositions 2.4 and 2.7, 5 ≤ δ ≤ 6.

If δ = 5 then, since 173 = f(49) + 5, G contains as a subgraph the unique graph
G49 ∈ F49. However, for every x ∈ V (G49), x ∈ cent(G49) ∪ N(cent(G49)). Thus
there is a center in G49 with eccentricity 2 in G. Therefore, δ(G) 6= 5.

If δ = 6, then by Propositions 2.6 and 2.7, 7 ≤ ∆ ≤ 8. If ∆ = 8, then G
contains S = S8,5,1. Let V (H) be the leaves of S plus the vertex external to S. Thus,
v(H) = 41 and e(H) = 173− e(S) = 173− 48 = 125. However, e(H) > f(41) = 124.
Therefore, ∆(G) 6= 8.

If δ = 6 and ∆ = 7, then the degree sequence for G is [6:4, 7:46]. Therefore, there
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must be at least 173− 4 · 6 = 149 edges in the induced subgraph H on the set of 46
degree 7 vertices in G, and d̄(H) = 2 · 149/46 ≈ 6.5. Therefore, ∆(H) ≥ 7, and at
least one degree 7 vertex in G has seven degree 7 neighbors. Therefore G contains
S = S7,6. But since v(S) = 50, S spans G, and r(G) = 2. Therefore, δ(G) 6= 6 and
f3(50) 6= 173.

4 Conclusion

Because of the important role radius plays in the structure and analysis of girth 5
extremal graphs, we proved results on graphs constrained to radius 2 or to radius 3.
We determined that, for G ∈ F ∪ F2 and v ≥ 5,

1. the diameter of G is 2 or 3;

2. strengthening a result from [11], every x ∈ V (G) is in a C5 in G with the
exception of degree 1 and 2 vertices when v ∈ {6, 11, 51, and possibly 3251}.
For those cases, if d(x) = 2, x is in a C5 or C6 in G.

For G ∈ F3 −F ,

1. the diameter of G is 3 or 4;

2. every x ∈ V (G), where d(x) ≥ 4, is in a 5-cycle in G;

3. for v ≥ 9, the girth of G is 5.

Since graph 7a in Figure 6 is the only known graph in F3 with a pendant vertex,
we conjecture the following.

Conjecture 4.1 For v ≥ 8, if G ∈ F3
v , then δ(G) ≥ 2.

Also, since graphs 7a and 8b in Figure 6 are the only known graphs in F3 with
a degree 3 vertex not in a C5, we state another conjecture.

Conjecture 4.2 For v ≥ 9, if G ∈ F3
v and d(x) = 3, then x is in a C5 in G.

We proved that f3(v) > f2(v−1). Though there are orders for which f2(v) > f3(v)
and for which f2(v) < f3(v), we proved that

1. fr(v) < f2(v) if r ≥ 4;

2. f4(v) ≤ f3(v);

3. fr(v) < f3(v) if r ≥ 5.

Since we have not found graphs with radius 4 that prove f4(v) = f3(v) for any order,
we offer the following conjecture.

Conjecture 4.3 For v ≥ 8, f4(v) < f3(v) .
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Using analytic and computational methods, we determined exact values or narrow
bounds for f2(v) and f3(v) for v ≤ 53. Where f2(v) and f3(v) are known, we
determined exact values or constructive lower bounds on F2(v) and F3(v). The
graphs are available for download [9].

In addition to determining f2(v), f3(v), F2
v , and F3

v for more orders v, a future
direction for this work is to study the radius constrained extremal graphs for girths
greater than 5.
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