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Abstract

An ordered graph H on n vertices is a graph whose vertices have been
labeled bijectively with {1, . . . , n}. The ordered Ramsey number r<(H) is
the minimum n such that every two-coloring of the edges of the complete
graph Kn contains a monochromatic copy of H such that the vertices
in the copy appear in the same order as in H. Although some bounds
on the ordered Ramsey numbers of certain infinite families of graphs are
known, very little is known about the ordered Ramsey numbers of specific
small graphs compared to how much we know about the usual Ramsey
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numbers for these graphs. In this paper we tackle the problem of proving
non-trivial upper bounds on orderings of graphs on four vertices. We also
extend one of our results to n+1 vertex graphs that consist of a complete
graph on n vertices with a pendant edge to vertex 1. Finally, we use a
SAT solver to compute some numbers exactly.

1 Introduction

For given graphs G and H, the Ramsey number R(G,H) is defined to be the
smallest integer n such that for any red-blue coloring of the edges of the complete
graph on n vertices, Kn, we can find a monochromatic red copy of G or a monochro-
matic blue copy of H. Let R(G) denote R(G,G). When working with complete
graphs, we will write R(m,n) for R(Km, Kn) as usual, and R(n) = R(n, n).

In this paper we will consider ordered Ramsey numbers, which are an analogue
of Ramsey numbers for ordered graphs. The systematic study of ordered Ramsey
numbers began with a 2014 paper by Conlon, Fox, Lee, and Sudakov [3].

An ordered graph H on n vertices is a graph whose vertices have been labeled
bijectively with {1, . . . , n}. We say that an ordered graph G on N vertices contains
an ordered graph H on n vertices if there is a map φ : [n]→ [N ] such that φ(i) < φ(j)
for 1 ≤ i < j ≤ n and such that if (i, j) ∈ E(H), then (φ(i), φ(j)) ∈ E(G). [3] Thus
the containment is order-preserving in the sense that given a copy of H in G the
lowest ordered vertex (by the ordering of G) in the copy must correspond to the
vertex labeled 1 in H and so on. For example, if H is the cycle on four vertices
with labeling {1, 2, 3, 4} where E(H) = {(1, 2), (2, 3), (3, 4), (4, 1)}, then a possible
monochromatic copy of H in some larger graph G could be on vertices {2, 5, 7, 9}
with monochromatic edges {(2, 5), (5, 7), (7, 9), (9, 2)}. Although all vertex labelings
of the complete graph Kn are equivalent, one must still fix an ordering.

Then we can define the ordered Ramsey number, r<(H), of an ordered graph H
to be the smallest integer n such that for any ordering and any two-coloring of Kn we
can find a monochromatic, order-preserving copy of H contained in Kn, where Kn is
considered with fixed (but arbitrary) vertex order. Recall that a coloring by m colors
of the edges E(G) of a graph G is a map c : E(G) → [m]. The first observation
we can make about ordered Ramsey numbers is that for any ordering of a graph
H, we clearly have R(H) ≤ r<(H) where R(H) is the usual Ramsey number of an
unordered H and r<(H) is the ordered Ramsey number. This gives us a trivial lower
bound. Also observe that the trivial upper bound for the ordered Ramsey number of
an ordered graph H on n vertices is the usual Ramsey number of Kn. This follows
from the following lemma, whose truth is easy to see.

Lemma 1.1. An ordered monochromatic complete graph on n vertices necessarily
contains an ordered copy of any ordered graph on n vertices, regardless of its ordering.

This is clear since for any ordered graph on n vertices we can find vertices in Kn

with the ordering we want and we already know all the edges are monochromatic.
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Despite its simplicity, Lemma 1.1 will be useful in many of our proofs.
Conlon et al. proved a number of results for ordered Ramsey numbers of certain

infinite families of graphs [3]. Balko et al. established results for ordered Ramsey
numbers on particular orderings of certain graph families such as paths, stars, and
cycles [1]. Thus we will not investigate these graphs on four vertices in this paper. So
far the only paper focusing on proving ordered Ramsey results for small graphs was
by Chang in [2]. In that paper, Chang proved upper bounds for Ramsey numbers
of 1-orderings for graphs on four vertices. A 1-ordering of a graph H on n vertices
consists of a labeling of just one vertex with some integer from {1, . . . , n}. Then a
copy of H in some ordered complete graph just needs to preserve the ordering of this
given vertex. Here we will focus on complete orderings of graphs on four vertices.

In this paper we will prove upper bounds on the Ramsey numbers for certain
total orderings of graphs on four vertices. Specifically, in Section 2 we will examine
orderings of K2∪K2, in Section 3 we examine orderings of the diamond graph K4−e,
and in Section 4 we examine the 3-pan graph K3 with a pendant edge. In Section
5 we extend our upper bound of the 3-pan graph to the infinite family of complete
graphs with a pendant edge.

Definition 1.2. The complete with 1-pendant ordering of a graph on n vertices con-
sists of a complete subgraph on vertices {2, 3, . . . , n} and an edge between vertex 1
and vertex 2.

Specifically, we will prove the following:

Theorem 1.1. The ordered Ramsey number of the complete with 1-pendant graph
on n+ 1 vertices is R(n) + 2n− 1.

Note that upper bounds on some orderings immediately give the same upper
bound on “symmetric” orderings. By “symmetric” orderings, we mean that if we had
a graph with vertices a, b, c, d labeled 1, 2, 3, 4, then an upper bound on this ordering
of the graph would also apply to the ordering 4, 3, 2, 1 by just “flipping” the argument.
We will not explicitly mention when this symmetry applies to our results, but it is
possible to apply it to a number of our results.

Balko et al. [1] use SAT solvers to determine ordered Ramsey numbers of paths.
See the survey [4] for a nearly exhaustive list of what is known about ordinary Ramsey
numbers.

2 Ordered Ramsey Numbers of K2 ∪K2

The proofs for upper bounds on orderings of K2 ∪K2 will be relatively straight-
forward, but hopefully illustrative of techniques we will use on other graphs. Also,
we will be able to exhibit constructions showing that our lower bounds are tight for
some orderings of K2∪K2, thus completely determining the ordered Ramsey number
for those orderings.
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Figure 1: Ordering A of K2 ∪K2

We will first investigate the ordering of K2 ∪K2 given in Figure 1, which we will
refer to as ordering A.

Proposition 2.1. The ordered Ramsey number of K2 ∪K2 with ordering A is 6.

Proof. We will first show that r<A
(K2∪K2) ≤ 6. Without loss of generality, suppose

the edge between vertices 1 and 2 is red. Then we know that all of the edges between
vertices 3 through 6 must be blue, or else we would have an ordered copy of K2∪K2.
But then we have a complete blue graph on four vertices, and thus by Lemma 1.1
we have a monochromatic copy of K2 ∪K2. So r<A

(K2 ∪K2) ≤ 6.
Now we will demonstrate that we can find a complete graph on 5 vertices with

an edge coloring that does not produce a copy of K2 ∪ K2. Color every edge from
1 to {2, 3, 4, 5} red. Then color the edge from 2 to 3 red. Color every other edge
blue. See Figure 2. We claim that this graph does not have a monochromatic copy
of K2 ∪ K2. There is no red K2 ∪ K2 since every red edge except (2, 3) originates
from 1, and thus to find a copy of K2 ∪K2 with ordering A we would need to find
an edge with a higher lowest vertex than 1, which is only given by (2, 3), but there
is no copy of K2 ∪K2 with (2, 3) either. So there is no red K2 ∪K2.

We can also see that there is no blue K2 ∪ K2. Since every edge from 1 is red,
a monochromatic copy of K2 ∪ K2 would have to be within the subgraph induced
by the vertices {2, 3, 4, 5}. The only possible way to get a blue copy of K2 ∪K2 on
these vertices is if we have a blue (2, 3) and a blue (4, 5), which is not the case. So
r<A

(K2 ∪K2) > 5, which proves our result r<A
(K2 ∪K2) = 6.

Now we will examine the ordering on K2 ∪K2 given in Figure 3, which we will
refer to as ordering B.

Proposition 2.2. The ordered Ramsey number of K2 ∪K2 with ordering B is 5.

Proof. Note that we trivially have that r<B
(K2 ∪ K2) ≥ 5 since the usual Ramsey

number of K2 ∪ K2 is 5 [4], and we noted in the introduction that R(H) ≤ r<(H)
for any ordering of H. So we only need to prove that r<B

(K2 ∪K2) ≤ 5.
Consider a red/blue coloring of the edges of K5, and suppose for contradiction

that the coloring does not contain K2∪K2 in ordering B. Without loss of generality,
suppose the edge (1, 3) is red. This forces the edges (2, 4) and (2, 5) both to be
blue since there is no K2 ∪ K2 in ordering B. And since (2, 5) is blue, the edge
(1, 4) is forced to be red, which then forces the edge (3, 5) to be blue. However, this
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Figure 2: Colored K5 with no monochromatic copy of K2 ∪K2 having ordering A

Figure 3: Ordering B of K2 ∪K2

gives us a blue copy of K2 ∪K2 with ordering B having edges (2, 4) and (3, 5). So
r<B

(K2 ∪K2) ≤ 5, which proves r<B
(K2 ∪K2) = 5.

The last ordering of K2 ∪K2 to consider is given in Figure 4, which we will refer
to as ordering C.

Figure 4: Ordering C of K2 ∪K2

Proposition 2.3. The ordered Ramsey number of K2 ∪K2 with ordering C is 6.

Proof. First we will show that r<C
(K2∪K2) ≤ 6. Without loss of generality, suppose

edge (1, 4) is red. Then this forces (2, 3) to be blue. Then (2, 3) being blue, forces
edges (1, 5) and (1, 6) to be red. Then edge (1, 6) being red forces edges (2, 4) and
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(2, 5) to be blue. But now any coloring of (3, 4) will gives us a monochromatic copy
of K2 ∪ K2. If (3, 4) is red, then it forms a copy with (1, 6), while if (3, 4) is blue,
then it forms a copy with (2, 5). Thus we have that r<C

(K2 ∪K2) ≤ 6.
Now we will show that r<C

(K2 ∪K2) > 5 by exhibiting an ordered K5 with no
copy of K2 ∪K2 having ordering C. See Figure 5.

Figure 5: Colored K5 with no monochromatic copy of K2 ∪K2 having ordering C

3 Ordered Ramsey Numbers of the Diamond Graph

The diamond graph can be considered as K4− e, i.e. the complete graph on four
vertices with an edge removed. The usual Ramsey number for the diamond graph
is 10 [4], so this is the trivial lower bound on the ordered Ramsey number of the
diamond graph for any ordering. Also recall that the trivial upper bound for a graph
on four vertices is R(4) = 18. In [2], Chang obtained upper bounds between 13
and 17 for 1-orderings of K4 − e. He also demonstrated that the lower bound for
ordering A (see Figure 6) of K4− e is at least 12, but was thought to be higher since
his program was able to find 25536 constructions of K4 − e with ordering A on 11
vertices. In Section 6, we will see that the correct number is 15.

We will begin by proving that r<A
(K4 − e) ≤ 17. Our proof will rely on the

fact that R(K3, K4) = 9 [4]. We recall that R(G,H) refers to the minimum integer
n such that for any edge-coloring of the complete graph on n vertices we will get
either a red H or a blue G. So in this case, this means that for any edge coloring
of K9, we will either get a red K3 or a blue K4. Also recall the trivial fact that
R(K4, K3) = R(K3, K4).

Theorem 3.1. The ordered Ramsey number of K4 − e with ordering A is bounded
above by 17.
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Figure 6: Ordering A of K4 − e

Proof. Consider all of the edges from vertex 17 in the complete graph K17. There
are 16 such edges. Assume that x ≥ 9 of them are the same color, which, without
loss of generality, we can assume to be red. Then consider the set X of the x vertices
connected to 17 by a red edge. Since x ≥ 9, the subgraph of K17 induced by these
vertices contains either a red K3 or a blue K4. If there is a blue K4, then we have
a copy of K4 − e with ordering A by Lemma 1.1, so we can assume that we have
a red K3 instead. But then all three vertices in this red triangle also share a red
edge to vertex 17, which implies that we have a red K4. Thus we again would get a
monochromatic copy of K4− e with ordering A. So there cannot be 9 or more edges
of the same color form vertex 17.

Thus we can assume that there are exactly 8 red and 8 blue edges from vertex
17. Let the set of 8 vertices connected to 17 by a red edge be X and let the set of
vertices connected to 17 by a blue edge be Y . Vertex 1 is either in X or Y ; assume,
without loss of generality, that 1 ∈ Y . Then take the set Z = {1}∪X. Then |Z| = 9,
so again we either have a red triangle or a blue K4. We can assume again that there
is no blue K4, so there must be a red K3 in Z. If the vertices of the red K3 are in X,
then we get a red copy of K4 by considering the edges from vertex 17, so we’re done.
Thus vertex 1 must be in the red triangle. Let p, q ∈ X be the other two vertices in
the red triangle. Then we know that vertex 1 has red edges to p and q, and that p
and q have a red edge between each other, and finally that p and q have red edges to
vertex 17 since p, q ∈ X. Thus we get a red copy of K4 − e with ordering A. Thus
we have that r<A

(K4 − e) ≤ 17.

Figure 7: Red copy of K4 − e with p, q ∈ X



W. OVERMAN ET AL. /AUSTRALAS. J. COMBIN. 88 (3) (2024), 266–281 273

Now we will consider the ordering of the diamond graph given by Figure 8, which
we will refer to as ordering B.

Figure 8: Ordering B of K4 − e

Theorem 3.2. The ordered Ramsey number of K4 − e with ordering B is bounded
above by 15.

Proof. Consider the complete graph Kn where n is yet to be determined. Without
loss of generality, assume that the edge (1, 2) is colored red. Now we will define four
sets that partition the remaining vertices {3, 4, . . . , n}. Let RR be the set of vertices
that have a red edge from 1 and a red edge from 2. Let BB be the set of vertices
that have a blue edge from 1 and a blue edge from 2. Let RB be the set of vertices
that have a red edge from 1 and a blue edge from 2. Finally, let BR be the set of
vertices that have a blue edge from 1 and a red edge from 2. Note that these four
sets form a partition of all vertices {3, 4, . . . , n}. Now assume that we do not have a
monochromatic copy of K4 − e with ordering B.

Clearly we have that |RR| ≤ 1 since otherwise we would get a copy of K4 − e
with ordering B since all the vertices in this set are necessarily greater than 1 or 2,
so if 1 and 2 both had red edges to more than other vertex we would get a copy.

Now consider RB. We claim that |RB| ≤ 3. To see this, assume that |RB| = 4
and note that the vertices in RB must have some total ordering. Without loss of
generality, order them 3, 4, 5, 6. Now we know that out of the edges (3, 4), (3, 5), (3, 6)
at least two of them must be the same color. Let these two edges of the same color
be (3, x) and (3, y) with x < y. Then regardless of which color these two edges
are, we get a monochromatic copy of K4 − e with ordering B since if they are red,
then the vertices {1, 3, x, y} form a red copy, while if they are blue, then the vertices
{2, 3, x, y} form a blue copy (see Figures 9 and 10). Thus we have that |RB| ≤ 3.
And a completely analogous argument shows that |BR| ≤ 3.

So finally we need to consider BB. We claim that |BB| ≤ 5. To see this, assume
|BB| = 6. The vertices in BB are totally ordered, so without loss of generality,
number them 3, 4, 5, 6, 7, 8. Note that of the edges (3, 4), (3, 5), (3, 6), (3, 7), (3, 8)
only one of them can be blue since if we had two blue edges (3, x) and (3, y), then
we would get get a copy of K4 − e with ordering B on vertices {1, 3, x, y}.

First we assume that one vertex from {4, 5, 6, 7, 8} does have a blue edge from 3.
Let it be vertex x. Then consider the subgraph on the vertices Q = {4, 5, 6, 7, 8}\{x}.
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Let y be the lowest ordered vertex in Q. Then we know that y has an edge to each
of the other three vertices in Q and thus at least two of these edges are the same
color. If there are two blue edges, call them (y, y′) and (y, y′′), then we get a copy
of K4 − e with ordering B on vertices {1, y, y′, y′′} since y < y′ and y < y′′. If there
are two red edges, call them (y, y′) and (y, y′′), then we get a copy on the vertices
{3, y, y′, y′′} where we recall that 3 has red edges to every vertex except x, which is
not in Q. So if there is a blue edge then we see that we get a copy of K4 − e with
ordering B if |BB| ≤ 5.

Now consider the case in which 3 has red edges to all of {4, 5, 6, 7, 8}. Then we
can clearly see that we can use the same argument as the case in which we do have
a blue edge since we still have at least four vertices to which 3 has a red edge. In
fact we can just “forget” vertex 8. Then we can see that vertex 4 either has two red
or two blue edges to {5, 6, 7}, so we will get a monochromatic copy of K4 − e with
ordering B either using vertex 1 if it’s it is a blue copy or vertex 3 if it’s a red copy.
So we have that |BB| ≤ 5.

Thus we have that in order to avoid a monochromatic copy of K4 − e with
ordering B we need n to be less than or equal to 2 + |RR|+ |RB|+ |BR|+ |BB| ≤
2 + 1 + 3 + 3 + 5 = 14. Any vertex we add to the graph will have to go in one of RR,
BB, RB, or BR, which would thus give us a monochromatic K4 − e with ordering
B. So r<B

(K4 − e) ≤ 15.

We will see in Section 6 that 12 is the correct ordered Ramsey number.

Figure 9: Red copy of K4 − e with ordering B

Figure 10: Blue copy of K4 − e with ordering B
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The last ordering of the diamond graph we will consider is the one given in
Figure 11, which we will refer to as ordering C.

Figure 11: Ordering C of K4 − e

In order to establish an upper bound on this ordering, we will first need two
lemmas concerning the ordered graph on three vertices with edges E = {(1, 2), (2, 3)}
i.e. the ordered path on 3 vertices. Denote this graph P<

3 .
The following two lemmas follow from Lemma 18 in [1], but are given short proofs

here for completeness.

Lemma 3.3. Any edge coloring of the ordered complete graph on 5 vertices either
contains a red copy of P<

3 or a blue copy of K3, i.e. r<(P<
3 , K3) ≤ 5.

Proof. Consider K5 and consider the subgraph on vertices {1, 2, 3}. Then we know
there must be some red edge, call it e1 = (x1, x2). Now consider the subgraph on
{x2, 4, 5}, then there must also be some red edge on this subgraph. But we know
that this edge cannot involve vertex x2, or else we would get a red copy of P<

3 . Thus
we must have that (4, 5) is red. Then this implies that (1, 4), (2, 4), (3, 4) must all
be blue. But then this implies that (1, 2) must be red or else we’d get a blue K3 on
{1, 2, 4} and also implies that (2, 3) must be red or we’d get a blue K3 on {2, 3, 4}.
But then we have that (1, 2) and (2, 3) are both red, so we get a red copy of P<

3 .
Thus r<(P<

3 , K3) ≤ 5.

Lemma 3.4. Any edge-coloring of the ordered complete graph on 7 vertices either
contains a red P<

3 or a blue K4, i.e. r(P<
3 , K4) ≤ 7.

Proof. Consider the complete ordered graph of K7. Consider vertex 4. Vertex 4 must
have a blue edge connected to each vertex in the set {1, 2, 3} or {5, 6, 7} or else we
would get a red copy of P<

3 . Without loss of generality, assume vertex 4 has blue
edges to the set {1, 2, 3}. Now, among the edges (1, 2), (1, 3) and (2, 3) at least one
edge has to be red in order to avoid a blue copy of K4. There must also be a blue
edge among the edges (1, 2), (1, 3) and (2, 3) in order to avoid a red copy of P<

3 .
Assume the set {x1, x2, x3} represents the set of vertices {1, 2, 3} in some order. Let
the edge (x1, x2) with x1 < x2 be red. Let the edge (x2, x3) be blue. Now the vertex
x2 must have blue edges to each vertex in the set {5, 6, 7} in order to avoid a red
copy of P<

3 . Now, among the edges (5, 6), (5, 7) and (6, 7), one must be red in order
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to avoid a blue copy of K4. Assume the set {y1, y2, y3} represents the set {5, 6, 7}
in some order. Let the edge (y1, y2) be red with y1 < y2. Now, each vertex in the
set {5, 6, 7} must have at least one red edge to the blue triangle (x2, x3, 4) in order
to avoid a blue copy of K4. Thus, creating a red copy of P<

3 from a vertex in the
triangle (x2, x3, 4) and the edge (y1, y2). Therefore, r(P<

3 , K4) ≤ 7.

Theorem 3.5. The ordered Ramsey number of K4 − e with ordering C is bounded
above by 14.

Proof. Consider K14. Consider the edges from vertex 14. Let B be the set of vertices
to which 14 has blue edges, and let R be the set of vertices to which 14 has red edges.
Clearly either R or B has size greater than or equal to 7. Assume, without loss of
generality, that |R| ≥ 7. Then since |R| ≥ 7 we know by Lemma 3.4 that R either
has a red P<

3 or a blue K4. If we have a blue K4, then we’re done. But then if we
have a red P<

3 , we get a red copy of K4− e with ordering C since 14 is connected to
all three vertices in the copy of P<

3 by a red edge.

We will see in Section 6 that 14 is indeed the correct Ramsey number.

4 Ordered Ramsey Numbers of the 3-Pan Graph

All of the orderings of the 3-pan graph that we will consider will have a pendant
edge from the triangle on vertices {2, 3, 4} to vertex 1. We will consider the orderings
we get from attaching vertex 1 to all three possible vertices of the triangle. Note
that the usual Ramsey number of the 3-pan is 7, so that is our trivial lower bound.
First we will investigate the ordering in which vertex 1 is attached to vertex 4, which
we will refer to as ordering A (see Figure 12).

Figure 12: Ordering A of the 3-pan

Theorem 4.1. The ordered Ramsey number of the 3-pan with ordering A is bounded
above by 10.

Proof. Consider K10. Vertex 10 must have at least 5 edges that are red or 5 edges
that are blue to the other 9 vertices. Assume, without loss of generality, that there
are 5 red edges. Let R be the set of ≥ 5 vertices with red edges to vertex 10. Since
all of the vertices of K10 are totally ordered, the vertices in R are totally ordered.
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Remove the |R|−4 lowest vertices from R so that we are left with the four vertices in
R with the highest ordering. Now if there is any red edge e = (x1, x2) with x1 < x2
amongst these four vertices, then we get a red triangle on {x1, x2, 10}, and since 10
has a red edge to at least one other vertex with ordering less than both x1 and x2,
we get a red copy of the 3-pan with ordering A. But if we don’t have a red edge
amongst the four highest vertices in R, then we get a blue K4, so by Lemma 1.1 we
get a blue copy of the 3-pan with ordering A. Thus r<A

(3-pan) ≤ 10.

Next we will consider the ordering we get by attaching vertex 1 to vertex 3. We
will refer to this as ordering B of the 3-pan (see Figure 13).

Figure 13: Ordering B of the 3-pan

Theorem 4.2. The ordered Ramsey number of the 3-pan with ordering B is bounded
above by 14.

Proof. ConsiderK14. Now just consider the subgraph on vertices {9, 10, 11, 12, 13, 14}.
We know that any complete graph on 6 vertices contains a monochromatic triangle
[4], so assume there is a red triangle {x, y, z} with x < y < z in this subgraph. Then
in order to avoid a red copy of the 3-pan with ordering B, we must have that vertex
y has a blue edge to all of the vertices {1, 2, 3, 4, 5, 6, 7, 8}.

Now consider the subgraph on the vertices {3, 4, 5, 6, 7, 8}. Again we know that
this subgraph must have a monochromatic triangle. If it were a blue monochromatic
triangle, then we would get a blue copy of K4 with the triangle and vertex y. So we
must have a red triangle {a, b, c, } with a < b < c on these vertices. Now in order to
avoid a red copy of the 3-pan with ordering B, we know that vertex b has blue edges
to vertices 1 and 2. But now we can take the subgraph on vertices {1, 2, b, y} and see
that we get a blue copy of the 3-pan with ordering B. Thus r<B

(3-pan) ≤ 14.

Now we will consider the ordering of the 3-pan in which vertex 2 is attached to
vertex 1, which we will refer to as ordering C of the 3-pan (see Figure 14).

The ordered Ramsey number of the 3-pan with ordering C is covered by a special
case of Theorem 5.4 below.



W. OVERMAN ET AL. /AUSTRALAS. J. COMBIN. 88 (3) (2024), 266–281 278

Figure 14: Ordering C of the 3-pan

5 Ordered Ramsey Number of Kn with a Pendant Edge

Finally in this section we will be able to extend our proof of the upper bound
on ordering C of the 3-pan to the infinite family of graphs with a copy of Kn−1 on
the vertices {2, 3, . . . , n} and with an edge between vertices 1 and 2. We make the
following definition.

Definition 5.1. The complete with 1-pendant ordering of a graph on n vertices con-
sists of a complete subgraph on vertices {2, 3, . . . , n} and an edge between vertex 1
and vertex 2.

For example, the complete with 1-pendant graph on 6 vertices is shown below in
Figure 15.

Figure 15: Complete with 1-pendant graph on 6 vertices

Proposition 5.2. Let K1
n be the complete with 1-pendant graph on n + 1 vertices.

Then we have that r<(K1
m, K

1
n) ≤ R(m,n)+m+n−1 where R(m,n) is the standard

Ramsey number for the complete graph on m vertices versus the complete graph on
n vertices.

Proof. Start with 1+R(m,n) vertices. Then we have a set V = {2, 3, . . . , 1+R(m,n)}
which contains either a Km or Kn. Remove the lowest ordered vertex, and replace
it with the vertex 2 + R(m,n). If we continue this process until we have added
(m+n−2) vertices, then we have (m+n−1) copies of either Km or Kn. Specifically,
we have n red copies of Km or m blue copies of Kn. Suppose we have n red copies
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of Km. Then all of the copies have a unique lowest vertex. Now, we know that each
copy’s lowest vertex must have a blue edge to all other lower ordered vertices or else
we would get a red copy of K1

m on m + 1 vertices. But then if we arrange these
n lowest vertices along with vertex 1 in decreasing order, vn, vn−1, . . . , v2, v1, 1, we
know that each vertex has to have blue edges to all vertices after it, so we get a blue
Kn+1, which inherently contains a K1

n. Thus, by Lemma 1.1, we get a blue copy of
the complete with 1-pendant graph on n+ 1 vertices. Now instead suppose we have
m blue copies of Kn. This proof follows the same idea for when we have n copies of
Km. Therefore, r<(K1

m, K
1
n) ≤ R(m,n) +m+ n− 1.

This bound is actually tight, which can be demonstrated by a construction that
we found with David Conlon.

Proposition 5.3. There exists an edge coloring of the complete graph on R(m,n) +
m + n − 2 vertices that does not contain a monochromatic copy of K1

m in the first
color nor of K1

n in the second color.

Proof. Arbitrarily order the R(m,n) + m + n − 2 vertices in the complete graph
G = KR(m,n)+m+n−2. Take the highest ordered R(m,n) − 1 vertices of G. Then we
know there is some way to color the edges among these vertices so that we do not
get a red copy of a Km or a blue copy of a Kn. Color the edges this way. Call this
subgraph of the highest ordered R(m,n)− 1 vertices Z. Now take the n− 1 vertices
before Z in the ordering of G. Color all the edges among these vertices blue so that
we get a blue Kn−1. Call this subgraph Y . Now take the next m− 1 vertices before
Y in the ordering of G. Color all the edges among these vertices red so that we
get a red Km−1. Call this subgraph X. Then the only vertex of G that is not in
Z, Y, or X is vertex 1. Now color all the edges between Z and X blue. Color all
the edges between Y and X blue. Color all the edges between X to vertex 1 red.
Color the edges between Z and Y red. Color the edges between Z to vertex 1 red.
Finally, color the edges between Y to vertex 1 blue. See Figure 16 below. Recall
that 1 < X < Y < Z where by < we mean that all the vertices in one set have
order less than all the vertices in the other set. We can see that this construction
guarantees that whenever we get a red copy of Km, there are no red edges from the
lowest vertex of this Km to a lower vertex in G. Similarly, whenever we get a blue
copy of Kn, there are no blue edges from this Kn to a lower vertex in G. Thus, there
is no red copy of a K1

m and no blue copy of a K1
n on m+ n+ 1 vertices.

Theorem 5.4. We have r<(K1
m, K

1
n) = R(m,n) +m+ n− 1.

Proof. The proof follows immediately from combining Propositions 5.2 and 5.3.

6 SAT Solver Results

We use the SAT solver Minisat to determine the ordered Ramsey numbers for
all orderings of K4 − e, including the off-diagonal cases. Balko et al. have a similar
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1

Z R(m,n)− 1

Y n− 1

X m− 1

Figure 16: Edge colorings between the sets X, Y , Z, and 1

SAT formulation [1]. We introduce for each edge ij a boolean variable xi,j. We
interpret assigning xi,j to TRUE as coloring ij red, and interpret assigning xi,j to
FALSE as coloring ij blue. Then we naturally express the condition “KN has no
monochromatic ordered K4 − e” as a boolean formula in conjunctive normal form
(CNF), which is to say, a conjunction of disjunctions (an “AND of ORs”).

For example, the following CNF forbids, in each color, a monochromatic K4 − e
with the missing edge being between the lowest two vertices:

Φ0,1 =
∧

0≤i<j<k<`<N

(xi,k ∨xi,` ∨xj,k ∨xj,` ∨xk,`)∧ (¬xi,k ∨¬xi,` ∨¬xj,k ∨¬xj,` ∨¬xk,`)

(Here, we index using (0, . . . , n− 1) due to Python conventions.)
The formula Φ above is satisfiable for N ≤ 11 and unsatisfiable for N ≥ 12.

Satisfying assignments correspond to colorings without any monochromatic ordered
K4 − e. Hence the ordered Ramsey number is 12.

1-2 1-3 1-4 2-3 2-4 3-4
1-2 12 14 14 13 14 13
1-3 14 15 14 15 14
1-4 15 14 15 14
2-3 13 14 13
2-4 14 14
3-4 12

Table 1: Table of r<(K4 − e,K4 − e), with missing edge indicated
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7 Summary

In this paper we were able to completely determine the ordered Ramsey numbers
for every ordering of K2 ∪ K2, for every ordering of K4 − e, and for the complete
graph with 1-pendant on any number of vertices (relative to the classical Ramsey
number). The latter result is particularly interesting considering it is often difficult
to prove exact results using Ramsey numbers that are not exactly known themselves,
i.e. the fact that the ordered Ramsey number depends on R(n).

An idea for future work would be to try to determine why certain orderings of a
graph give different ordered Ramsey numbers than others; the work in [1] on paths
suggests that the more “monotonic” the ordering, the larger the Ramsey number will
be.
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