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Abstract

We classify the connection between t-cores and self-conjugate t-cores to
sums of squares. To do so, we provide explicit maps between t-core
partitions and self-conjugate t-core partitions of a positive integer n to
representations of certain numbers as sums of squares. For example, the
self-conjugate 4-core partition λ = (4, 1, 1, 1) corresponds uniquely to
the solution 61 = 62 + 52. As a corollary, we completely classify the
relationship between t-cores and Hurwitz class numbers.

Using these tools, we see how certain sets of representations as sums of
squares naturally decompose into families of t-cores. Finally, we construct
an explicit map on partitions to explain the equality 2 sc7(8n + 1) =
c4(7n+ 2) previously studied by Bringmann, Kane, and the first author.

1 Introduction

Partitions are some of the most well-studied objects in number theory and combi-
natorics, with a storied history over the last century. A partition λ of n ∈ N is a
non-increasing sequence λ := (λ1, λ2, . . . , λs) of non-negative integers λj such that
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∑
1≤j≤s λj = n. Each partition λ can be represented as a Ferrers–Young diagram,

which is the s-rowed diagram

• • · · · • λ1 dots
• • · · · • λ2 dots
·
·
• · · · • λs dots.

Each cell in this diagram comes equipped with a so-called hook length, which can be
described as follows. Label the diagram as if it were a matrix, and let λ′k denote the
number of dots in column k. Then the hook length of the cell (j, k) is given by

h(j, k) := λj + λ′k − k − j + 1.

If no hook length in any cell of a partition λ is divisible by t, then λ is called a
t-core partition. We also have the notion of conjugation of a Ferrers–Young diagram,
where one switches rows and columns. If the partition λ remains the same under
conjugation, it is called self-conjugate.

Example 1.1. The partition λ = (3, 2, 1) of 6 has the Ferrers–Young diagram

• • •
• •
•

and has hook lengths h(1, 1) = 5, h(1, 2) = 3, h(1, 3) = 1, h(2, 1) = 3, h(2, 2) = 1,
and h(3, 1) = 1. Therefore, λ is a t-core partition for all t �∈ {1, 3, 5}. Furthermore,
switching rows and columns leaves λ unaltered, and so λ is self-conjugate.

While seemingly more complicated objects than ordinary partitions, t-core par-
titions satisfy beautiful relations both within number theory and to other subfields
of mathematics. For example, we see below that 4-cores and self-conjugate 7-cores
are inherently linked to class numbers, and recall that the theory of t-core partitions
encodes the modular representation theory of symmetric groups Sn and An (see e.g.
[9, 6, 5]). Moreover, in an influential paper [7], Garvan, Kim, and Stanton used
t-core partitions to investigate the famous Ramanujan congruences for the partition
function p(n), combinatorially proving the special cases given by

p(5n+ 4) ≡ 0 (mod 5) , p(7n+ 5) ≡ 0 (mod 7) , p(11n+ 6) ≡ 0 (mod 11) .

They also proved further Ramanujan-type congruences using their newly-found
cranks; for example in [7, Theorem 6] they gave a crank which provides a com-
binatorial explanation for the congruence p(25n+24) ≡ 0 (mod 25). For t, n ∈ N we
let ct(n) denote the number of t-core partitions of n, along with sct(n) the number
of self-conjugate t-core partitions of n. We also let the set of t-cores of n be denoted
by Ct(n), and the set of self-conjugate t-cores be SCt(n). In [10, Theorem 1.1], Han
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relates the set of t-core partitions for odd t to representations of certain numbers
as sums of t squares. Han’s result builds on [7], where Garvan, Kim, and Stanton
showed that

∑
n≥1

ct(n)q
n =

∑
n∈Zt

n·1=0

q
t
2
|n|2+b·n (1.1)

for b = [0, 1, . . . , t − 1]. Garvan, Kim, and Stanton also showed that [7, equation
(7.4)] ∑

n≥1

sct(n)q
n =

∑
n∈Z� t

2 �

qt|n|
2+c·n, (1.2)

where

c :=

{
[1, 3, . . . , t− 1] if t is even,

[2, 4, . . . , t− 1] if t is odd.

Their proofs relied on constructing an explicit bijection by way of extended t-residue
diagrams (defined in Section 2.1). With equations (1.1) and (1.2) in hand, a simple
argument via completing the square on the right-hand side yields that for fixed t
there is a bijection between t-cores and self-conjugate t-cores and certain sets of
sums of squares. Han proved that for odd t there is a combinatorial connection to
representations of certain numbers as sums of squares. To prove this, he showed a
bijection between certain normalizations of the H-set of a partition and a sum of
squares (see [10] for details).

We obtain an explicit combinatorial explanation for all t by considering abaci
and the N -codings of Garvan, Kim, and Stanton [7], and thus we relate every t-core
to a particular sum of squares in the following theorem. Furthermore, we provide
related results for all self-conjugate t-cores. Note that t-cores and sums of squares
have been previously studied in the literature in e.g. [2, 3, 7, 13, 14].

We call the set of partitions with fixed number of parts s modulo t a family of
partitions. The equivalence relation ∼BKM on sets of sums of squares is defined to
be permutations and sign changes of variables xj . Recall from e.g. [5, Proposition
3] that when t is odd there are no self-conjugate partitions with s ≡ t+1

2
(mod t)

(this fact is noted more directly in the remarks on page 13 of [3] and is a simple
consequence of the Ferrers–Young diagram of the partition).

Theorem 1.2. Let t ≥ 3. Then there is an explicit bijection between each of the t
families of partitions in Ct(n) and a set of solutions, including congruence conditions

and a condition on the sum of the variables, to 2tn+ t(t−1)(2t−1)
6

+3(t− 1)2 as a sum
of t squares. In particular, the set of solutions is

{x ∈ Z
t : 2tn+

t(t− 1)(2t − 1)

6
+ 3(t− 1)2 =

t−1∑
j=0

x2j ,

xj ≡ ±j (mod t) for 0 ≤ j ≤ t− 2 and xt−1 ≡ t− 2 (mod t)}/ ∼BKM .
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Theorem 1.3. Let t ≥ 3 be odd. Then there is an explicit bijection between each of
the t−1 families of partitions in SCt(n) and a set of solutions, including congruence

conditions, to tn+ t(t2−1)
24

as a sum of t−1
2

squares. In particular, the set of solutions
is

{x ∈ Z
t−1
2 : tn+

t(t2 − 1)

24
=

t−3
2∑
j=0

x2j , xj ≡ ±(j + 1) (mod t)}/ ∼BKM .

Theorem 1.4. Let t ≥ 3 be even. Then there is an explicit bijection between each
of the t families of partitions in SCt(n) and a set of solutions, including congruence

conditions, to 4tn + t(t2−1)
6

as a sum of t
2
squares. In particular, the set of solutions

is

{x ∈ Z
t
2 : 4tn+

t(t2 − 1)

6
=

t
2
−1∑
j=0

x2j , xj ≡ ±(2j + 1) (mod 2t)}/ ∼BKM .

The above theorems are proved using the methods of Bringmann, Kane and the
first author [3, Section 4], and Ono and Sze [14]. However, there is also a natural
way to write related results in the language of Han’s work [10]. Although the results
are similar to the previous theorems, we will present them independently in order to
illuminate the deep connection between the results in [14, 3] and [10].

Theorem 1.5. There is an explicit bijection between Ct(n) and certain representa-

tions of 8tn+ t(t2−1)
3

as a sum of t squares, namely{
(w0, . . . , wt−1) ∈ Z

t :

t−1∑
k=0

wk = 0,

t−1∑
k=0

w2
k = 8tn+

t(t2 − 1)

3
, wk ≡ 2k + 1− t (mod 2t)

}
.

Analogous to Han’s work, this map will have a simple definition using the N -
coding of Garvan, Kim, and Stanton [7]. Using what is known about the N -coding
of self-conjugate t-cores, Theorem 1.5 will allow us to derive a description of self-
conjugate t-cores as representations of a number into 	 t

2

 squares instead.

Theorem 1.6. There is an explicit bijection between SCt(n) and certain represen-

tations of 4tn+ t(t2−1)
6

as a sum of 	 t
2

 squares, namely⎧⎨

⎩(w0, . . . , w� t
2
�−1) ∈ Z

� t
2
� :

� t
2
�−1∑
k=0

w2
k = 4tn+

t(t2 − 1)

6
, wk ≡ 2k + 1− t (mod 2t)

⎫⎬
⎭ .

Aside from these general theorems, we highlight certain cases of sums of squares
and their relationships to other objects. As a corollary of Theorem 1.4, we complete
the picture of self-conjugate t-cores and their relationship to class numbers. Com-
bining this with [14, 3] completely classifies the correspondence between t-cores and
Hurwitz class numbers. To see this, note that the generating functions for 4-cores and
self-conjugate 6- and 7-cores are the only ones that are modular of weight 3

2
(see [7]),

agreeing with the weight of the generating function of Hurwitz class numbers [15].
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Corollary 1.7. There is an explicit map φ taking self-conjugate 6-cores of n to
binary quadratic forms of discriminant −96n− 140. This map does not produce full
Hurwitz class numbers.

This naturally leads to the following question.

Question. Are there partition-theoretic objects that the “missing” quadratic forms
arise from in the case of t = 6?

In the case of t = 9 consider the set

S9 := {x ∈ Z
4 : 9n+ 30 = x20 + x21 + x22 + x23,x ≡ (±1,±2,±3,±4) (mod 9)}.

Then [1, Theorem 10] and Theorem 1.3 imply that

sc9(n) =
27

16
|S9| =⎧⎪⎨

⎪⎩
σ(3n+ 10) + a3n+10(36a)− a3n+10(54a)− a3n+10(108a) if n ≡ 1, 3 (mod 4) ,

σ(3n+ 10) + a3n+10(36a)− 3a3n+10(54a)− a3n+10(108a) if n ≡ 0 (mod 4) ,

σ(k) + a3n+10(36a)− 3a3n+10(54a)− a3n+10(108a) if n ≡ 2 (mod 4) ,

with σ the usual sum of divisors, and where k is odd and is defined by 3n+10 = 2ek
where e ∈ N0 is maximal such that 2e | (3n + 10). We use Cremona notation for
elliptic curves. Here, the an(E) are the coefficients appearing in the Dirichlet series
for the L-function of the elliptic curve E. The curve 36a is y2 = x3 + 1, the curve
54a is y2 + xy = x3 − x2 + 12x+ 8, and the curve 108a is y2 = x3 + 4.

In the course of the paper, we also see that under our maps certain sets of solutions
as representations as sums of squares naturally decompose into two sets of partitions.
The following example follows immediately from Corollary 4.3.

Example 1.8. There is a bijection between C4(1) ∪ SC7(89) and

{(x, y, z) ∈ Z
3 : x2 + y2 + z2 = 637}/ ∼BKM .

It is clear that c4(1) = 1 since there is a singular partition of 1, so sc7(89) = 3 by
directly counting the number of solutions to the ternary quadratic equation. Let
H(|D|) be the Hurwitz class number that counts the number of equivalence classes
of positive definite integral binary quadratic forms of discriminant −D, and H7(|D|)
the class number that counts the number of equivalence classes of 7-primitive positive
definite integral binary quadratic forms of discriminant −D. Then using [3] we have

1

2
H(52) +

1

4
H7(2548) =

1

48

∣∣∣{(x, y, z) ∈ Z
3 : x2 + y2 + z2 = 637}

∣∣∣,
implying that H7(2548) = 12 and H(52) = 2.

Such considerations also yield inequalities of sets of partitions. Example 4.2 shows
that sc6(7n) ≤ sc7(24n+3), naturally leading to the following question, for example.
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Question. Is there a way to explicitly realize this inequality as an injection of self-
conjugate 6-cores of 7n into self-conjugate 7-cores of 24n+ 3?

Finally, we obtain an explicit map on abaci of partitions to combinatorially prove
the equality

c4(7n+ 2) = 2 sc7(8n+ 1) (1.3)

for n �≡ 4 (mod 7) and 56n + 21 square-free, which was shown via class numbers
in [3].

Theorem 1.9. When n �≡ 4 (mod 7), there is an explicit 2-to-1 map ϕ from abaci
of 4-cores of 7n+2 to abaci of self-conjugate 7-cores to 8n+1. The map is invariant
under conjugation of the 4-core.

While the map will be proved to be 2-to-1 by rewriting maps previously found
by Bringmann, Kane, and the first author [3] and Ono and Sze in [14], the definition
of the map only requires the abacus of the 4-core. Curiously, the numbers that arise
in the definition of this map are directly related to hook lengths of the respective
t-cores. The reasoning behind this will become clearer in the definition of the map
of Theorem 1.5.

Outline

In Section 2 we gather preliminary results needed for the rest of the paper. In
Section 3 we prove our main theorems of the bijections between families of t-cores
and sums of squares, and provide examples. Section 4 is dedicated to investigating
the decomposition of certain sets of sums of squares into t-cores. Finally, in Section 5
we describe the explicit map between C4(7n+ 2) and SC7(8n+ 1).

2 Preliminaries

2.1 Abaci and N-codings

We next describe the t-abacus associated to a partition λ. Recall that λ = (λ1, . . . λs)
with non-negative integers λj such that

∑
1≤j≤s λj = n. This consists of s beads on t

rods constructed in the following way (for more background see [12, 14]). For every
1 ≤ j ≤ s define structure numbers by

Bj := λj − j + s.

For each Bj there are unique integers (rj, cj) such that

Bj = t(rj − 1) + cj,

and 0 ≤ cj < t−1. The abacus for the partition λ is then formed by placing one bead
for each Bj in row rj and column cj. Using this construction, James and Kerber [11,
Chapter 2] showed the following.
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Theorem 2.1. Let A be an abacus for a partition λ, and let mj denote the number
of beads in column j. Then λ is a t-core partition if and only if the mj beads in
column j are the beads in positions (1, j), (2, j), . . . , (mj, j).

This means that the abacus for a t-core partition may be represented by
(a1, a2, . . . , at) with aj ∈ N. Furthermore, a direct generalisation of a result of Ono
and Sze [14] yields that Ct(n) is in one-to-one correspondence with all abaci of the
shape (0, a1, . . . , at−1).

Example 2.2. To demonstrate this for clarity for the reader, we borrow the example
of 4-cores from [14, page 8]. Each 4-core may be represented by a 4-tuple, which after
applying [14, Lemma 1] repeatedly can be written in the form (0, a1, a2, a3). For an
abacus of this shape, the bead in the upper-left hand corner naturally corresponds
to the smallest part in the partition. In this case, it is clearly 1, 2 or 3 as these are
the only possible values represented by beads in the position (1, 1), (1, 2) or (1, 3).
Then, as Ono and Sze note, it is clear that there is a unique abacus of this shape for
each 4-core.

The extended t-residue diagram associated to a t-core partition λ is constructed
as follows (see [7, page 3]). Label a cell in the j-th row and k-th column of the
Ferrers–Young diagram of λ by k− j (mod t). We also label the cells in column 0 in
the same way. A cell is called exposed if it is at the end of a row. The region r of the
extended t-residue diagram of λ is the set of cells (j, k) satisfying t(r−1) ≤ k−j < tr.
Then we define nj to be the maximum region of λ which contains an exposed cell
labeled j. As noted in [7], this is well-defined since column 0 contains infinitely
many exposed cells. Using extended t-residue diagrams, the authors of [7] showed
the following result.

Lemma 2.3 (Bijection 2 of [7]). Let Ct(n) be the set of t-core partitions of n. There
is a bijection Ct(n) → {N := [n0, . . . , nt−1] : nj ∈ Z, n0 + · · ·+ nt−1 = 0} such that

|λ| = t|N |2
2

+B ·N, B := [0, 1, . . . , t− 1].

When computing the norm and dot-product, we consider N,B as elements in Z
t.

Example 2.4. As a brief example of this bijection, consider the set C2(n). Then we
obtain a bijection between

C2(n) → {n0, n1 ∈ Z : n0 = −n1}

such that the partition λ has size

|λ| = n2
0 + n2

1 + n1.

Following Han [10], we call the list [n0, . . . , nt−1] the N-coding associated to λ.
We will utilize the fact that if λ has N -coding [n0, . . . , nt−1], then its conjugate has
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N -coding [−nt−1, . . . ,−n0] (see the proof of Bijection 2 in [7]). This means that a
well-known alternative characterization of self-conjugate t-cores is that they satisfy
the equation nk = −nt−k−1 for 0 ≤ k ≤ t− 1.

In previous work by Ono and Sze [14] and by Bringmann, Kane, and the first au-
thor [3], explicit bijections from t-cores and self-conjugate t-cores were given. Before
we state these maps, we define

KOS(n) := {(x, y, z) ∈ Z
3 : x2 + y2 + z2 = n}/ ∼OS and

KBKM(n) := {(x, y, z) ∈ Z
3 : x2 + y2 + z2 = n}/ ∼BKM ,

where two triples are equivalent under ∼OS if they are equal up to reordering the
terms and up to two simultaneous sign changes and where two triples are equiva-
lent under ∼BKM if they are equal up to reordering the terms and any number of
sign changes. For example, (x, y, z) �∼OS (−x, y, z) if x �= 0, while (x, y, z) ∼BKM

(−x, y, z).
We now recall that Ono and Sze define the partitions I(g, C,D), II(g, C,D), and

III(g, C,D) to be the partitions with abaci (0, g, C+g,D+g), (0, D+g+1, g, D+g),
and (0, C+g+1, D+g+1, g) respectively for g, C,D ≥ 0. This describes all possible
abaci of 4-cores, so the bijection ψ : C4(n) → KOS(8n+5) can be defined by Table 1.

Type of Partition Shape of Abaci
I(g, C,D) (2C − 2D − 2g − 1, 2C − 2D + 2g, 2C + 2D + 2g + 2)
II(g, C,D) (2C + 2D + 2g + 3, 2C − 2D + 2g, 2C − 2D − 2g − 2)
III(g, C,D) (2C − 2D + 2g + 1, 2C + 2D + 2g + 4, 2C − 2D − 2g − 2)

Table 1: The different types of abaci for 4-cores.

Similarly, Bringmann, Kane, and the first author classify self-conjugate 7-cores
and give a bijection ρ : SC7(n) → KBKM(7n + 14). There are six natural families
which appear depending on the residue class modulo r of the number of parts in the
partition, and the results are given in the following table.

Type of Partition Shape of Abaci Element of KBKM (7n+ 14)
I (0, a, b, r, 2r − b, 2r − a, 2r) (7r + 3, 7r + 2− 7a, 7r + 1−7b)
II (0, 2r + 1, a, b, r, 2r − b, 2r − a) (7r + 4, 7r + 2− 7a, 7r + 1−7b)
III (0, a, 2r + 1− a, 2r + 1, b, r, 2r − b) (7r + 5, 7r + 4− 7a, 7r + 1−7b)
IV (0, a, b, 2r+ 1− b, 2r + 1− a, 2r + 1, r) (7r + 6, 7r + 5− 7a, 7r + 4−7b)
V (0, r+1, 2r+2, a, b, 2r+1−b, 2r+1−a) (7r + 8, 7r + 5− 7a, 7r + 4−7b)
VI (0, a, r + 1, 2r + 2− a, 2r + 2, 2r + 1− b) (7r + 9, 7r + 8− 7a, 7r + 4−7b)

Table 2: The different types of abaci for self-conjugate 7-cores and their image under ρ.
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We also make extensive use of the following result, which is [3, Proposition 4.3],
which allows us to move between the list N and the abacus of the partition.

Proposition 2.5. Let N = [n0, . . . , nt−1] be the list associated to the extended t-
residue diagram of a t-core partition Λ. Let � + s = α�t + β� with 0 ≤ β� ≤ t − 1.
Then N also uniquely represents the abacus (. . . , nt−1 + αt−1, n0 + α0, n1 + α1, . . . ),
where n� + α� occurs in position β� of the abacus.

Example 2.6. As a small example of Proposition 2.5, we borrow the example of
[3]. Let t = 4 and construct the abacus and 4-residue diagram for the partition
Λ = (3, 2, 1). We begin with the abacus, computing the structure numbers B1 = 5,
B2 = 3, and B3 = 1. Then diagrammatically the abacus is

0 1 2 3

1 B3 B2

2 B1

The extended 4-residue diagram of the partition is

0 1 2 3

1 3 •0 •1 •2

2 2 •3 •0

3 1 •2

Then the exposed cells in this diagram are (1, 3), (2, 2), and (3, 1). One may obtain
the elements of the list as n0 = n2 = 1 and n1 = n3 = −1 (where the final two values
arise from exposed cells in column 0). Taking this list, an application of Proposition
2.5 yields the abacus (0, 2, 0, 1), which is precisely the one obtained diagramatically
above.

3 Sums of squares

3.1 Generic t-cores

In this section we begin by proving Theorem 1.2.

Proof of Theorem 1.2. Begin by considering the first family of partitions. That is,
let s = tr. The abacus of a t-core partition λ is given by

(0, a1, . . . , at−1),
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where
∑

j aj = tr, and by Proposition 2.5, the shape of the N -coding associated to
λ is

[−r, a1 − r, a2 − r, . . . , at−1 − r].

Using that the sum of the elements in the N -coding vanishes by Lemma 2.3, we
rewrite at−1 = tr −∑t−2

j=1 aj. Lemma 2.3 relates the size of the partition and the
N -coding by

n =
t

2

⎛
⎝(t− 1)r2 +

t−2∑
j=1

a2j − 2ajr +

(
(t− 1)r −

t−2∑
j=1

aj

)2
⎞
⎠

+
t−2∑
j=1

j(aj − r) + (t− 1)

(
(t− 1)r −

t−2∑
j=1

aj

)
.

It is not difficult to see that we thus have

2tn =
t−2∑
j=1

(tr − taj + (t− 1− j))2 + (tr + 2(t− 1))2 − 3(t− 1)2

+

(
(t− 1)tr − t

t−2∑
j=1

aj

)2

−
t−1∑
j=1

j2.

Identifying the final term as t
6
(t−1)(2t−1), we therefore obtain that the partition

λ is a t-core only if 2tn+ t
6
(t− 1)(2t− 1)+3(t− 1)2 =

∑t−1
j=0 x

2
j with xj ≡ j (mod t)

for 0 ≤ j ≤ t − 2 after reordering elements, and xt−1 ≡ t − 2 (mod t). A similar
calculation holds for other choices of s (mod t). Noting that under sign changes of
xj and relabelling of variables we still obtain a representation as a sum of squares,
we obtain the statement of the theorem.

We now prove the related result in Theorem 1.5. The map will be similar to the
map of Theorem 1.2. However, this map is inspired by generalizing the work of Han
[10], while the previous result is a generalization of the work of Ono and Sze [14] and
Bringmann, Kane, and the first author [3].

Proof of Theorem 1.5. If Wt(n) is the subset of Zt defined in the theorem, we may
define

α : Ct(n) →Wt(n)

[nk]
t−1
k=0 → (2tnk + 2k + 1− t)t−1

k=0 =: (wk)
t−1
k=0, (3.1)

where [nk]
t−1
k=0 is the N -coding of the t-core. We must show that the map is well-

defined and bijective. In fact, we will show that the conditions of the N -coding are
equivalent to the conditions in the set Wt(n), proving the bijection. First, because∑t−1

k=0(2k + 1) = t2, it is clear that
∑t−1

k=0 nk = 0 is equivalent to
∑t−1

k=0wk = 0. The
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congruence condition wk ≡ 2k + 1 − t (mod 2t) holds by definition. Finally, we
evaluate

t−1∑
k=0

w2
k =

t−1∑
k=0

(2tnk + 2k + 1− t)2.

By expanding the product and using simple sum identities, it is easy to write this as

8t

(
t

2

t−1∑
k=0

n2
k +

t−1∑
k=0

knk

)
+
t3 − t

3
+ (4t− 4t2)

t−1∑
k=0

nk. (3.2)

With the properties of an N -coding given in Lemma 2.3, we see that (3.2) becomes

8tn+ t(t2−1)
3

as desired. Conversely, given that
∑t−1

k=0w
2
k = 8tn+ t(t2−1)

3
and

∑t−1
k=0 nk =∑t−1

k=0wk = 0, (3.2) shows

t

2

t−1∑
k=0

n2
k +

t−1∑
k=0

knk = n,

i.e. that the N -coding comes from a t-core of n, proving the bijection.

3.2 Generic self-conjugate t-cores

It is clear that there are exactly t−1 (respectively, t) families of self-conjugate t-cores
when t is odd (respectively, even), a fact that may easily be seen by considering the
Ferrers–Young diagrams of such partitions. With the same techniques as used in the
proof of Theorem 1.2, we obtain the following proof of Theorem 1.3.

Proof of Theorem 1.3. Start with the case that s = tr (recall that s =
∑

j aj). Then
by Proposition 2.5, the N -coding associated to a partition in SCt(n) has the shape

[−r, a1 − r, a2 − r, . . . , a t−3
2

− r, 0, r − a t−3
2
, . . . , r − a1, r].

Using Lemma 2.3, we see that

n = t

⎛
⎝r2(t− 1

2

)
+

t−3
2∑
j=1

a2j − 2ajr

⎞
⎠+

t−3
2∑
j=1

(t− 1− 2j)(r − aj) + (t− 1)r.

In turn, this leads to

tn =

(
tr +

t− 1

2

)2

+

t−3
2∑
j=1

(
tr +

t− 1− 2j

2
− taj

)2

−
t−3
2∑
j=0

(
t− 1− 2j

2

)2

.

Thus identifying the final sum as t
24
(t2 − 1) we obtain a one-to-one correspondence

between this subset of SCt(n) and representations of tn+ t
24
(t2 − 1) as a sum of t−1

2

squares x2j (0 ≤ j ≤ t−3
2
) with each xj congruent to

t−1−2j
2

(mod t).
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It remains to check the remaining cases of s (mod t), for which we prove one
more case—the rest follow a clear pattern. Next assume that s ≡ 1 (mod t). Then
the N -coding has the shape

[r + 1, a2 − r, . . . , a t−1
2

− r, 0, r − a t−1
2
, . . . , r − a2,−r − 1].

Then Lemma 2.3 implies that

n = t

⎛
⎝t−1

2
r2+2r+1+

t−1
2∑
j=2

a2j − 2ajr

⎞
⎠+

t−1
2∑
j=2

(r−aj)(t−2j+1) + (t−1)(−r−1).

Therefore we see that tn is equal to

t−1
2∑
j=2

(
tr +

t+ 1− 2j

2
− taj

)2

+

(
tr +

t+ 1

2

)2

+ t2 − t(t− 1)

−
(
t+ 1

2

)2

−
t−1
2∑
j=2

(
t + 1− 2j

2

)2

,

which is easily seen to imply that λ is a t-core partition only if tn+ t
24
(t2−1) is a sum

of t−1
2

squares x2j , where each xj ≡ t−1−2j
2

(mod t) apart from x0 ≡ t+1
2

(mod t).
The other calculations are similar. To see the reverse, for a fixed representation
(x0, . . . , xt−1) satisfying the given congruence conditions, it is simple to show that it
must occur from exactly one of the families arising from the iteration of s (mod t)
using the restrictions on r, aj arising from the fact that they represent an abacus
(compare [3, Proposition 4.7]).

Proof of Theorem 1.4. The proof for even t is similar to that for odd t and so we
only provide the first case. Assume that s = tr. Then by Proposition 2.5, the first
family of partitions has associated N -coding

[−r, a1 − r, . . . , a t
2
−1 − r, r − a t

2
−1, . . . , r − a1, r].

Using Lemma 2.3, we obtain

n = t

⎛
⎝ t

2
r2 +

t
2
−1∑
j=1

a2j − 2ajr

⎞
⎠+

t
2
−1∑
j=1

(r − aj)(t− 1− 2j) + (t− 1)r.

It is easy to see that

4tn = (2tr + t− 1)2 +

t
2
−1∑
j=1

(2tr + (t− 1− 2j)− 2taj)
2 −

t
2
−1∑
j=1

(t− 1− 2j)2 − (t− 1)2.

Identifying the final two terms as t
6
(t2 − 1) we obtain the claim for this case, where

each xj with 0 ≤ j ≤ t
2
is equivalent to t− 1− 2j (mod 2t). The other calculations

are again similar. Seeing the reverse is similar to the odd t case above.
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We now wish to prove our other result for the connection between self-conjugate
t-cores and representations as sums of squares, namely Theorem 1.6.

Proof of Theorem 1.6. As noted below Lemma 2.3, a partition is self-conjugate if
and only if nk = −nt−1−k for all 0 ≤ k ≤ t. The bijection (3.1) defines wk =
2tnk + 2k + 1 − t, so wt−1−k = 2tnt−1−k + t − 1 − 2k. Hence, nk = −nt−1−k is
equivalent to wk = −wt−1−k. The result then follows from Theorem 1.5.

3.3 Examples

An explicit example of Theorem 1.3 is given by [3, Proposition 4.7] for t = 7. Here
we describe one simple and one more involved example of Theorem 1.4 in the cases
of t = 4, 6. In the latter case we can relate the output to certain quadratic forms in
class groups.

3.3.1 Self-conjugate 4-cores

By [1, Theorem 7], we have

sc4(n) =
1

8
�{(x, y) ∈ Z

2 : x2 + y2 = 8n+ 5}. (3.3)

This also has a combinatorial interpretation as follows. Utilizing Proposition 2.5,
we can determine that the there are four possible shapes of the N -coding of self-
conjugate 4-cores.

Type of Partition Shape of Associated N -coding

I [−r, a− r, r − a, r]

II [r + 1, a− r, r − a,−r − 1]

III [r + 1− a, r + 1,−r − 1, a− r − 1]

IV [a− r,−r − 1, r + 1, r − a]

Table 3: The different types of associated N -coding for self-conjugate 4-core partitions.

By Lemma 2.3, the size of each type of partition can be related directly to the
quantities r and a, yielding the following proposition.

Proposition 3.1. Let n ∈ N and a, r ∈ N0 be given.

(1) The Type I partition with parameters a and r is a partition of n if and only if

8n + 5 = (8r + 2− 4a)2 + (4a+ 1)2.
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(2) The Type II partition with parameters a and r is a partition of n if and only if

8n + 5 = (8r + 3− 4a)2 + (4a+ 2)2.

(3) The Type III partition with parameters a and r is a partition of n if and only if

8n + 5 = (8r + 6− 4a)2 + (4a+ 1)2.

(4) The Type IV partition with parameters a and r is a partition of n if and only if

8n + 5 = (8r + 6− 4a)2 + (4a+ 3)2.

We will omit the proof due to its similarity to the proof below for self-conjugate 6-
cores and because this result can also be found using Proposition 3 and Proposition 1
of [14].

Example 3.2. As an example, consider the partition λ = (4, 1, 1, 1) ∈ SC4(7).
Computing the structure numbers yields B1 = 7, B2 = 3, B3 = 2, B4 = 1. Thus
λ corresponds to the abacus (0, 1, 1, 2), which in turn corresponds to the N -coding
[−1, 0, 0, 1]. We can identify this as a type I partition with r = 1 and a = 1. We
then find that λ corresponds to the solution

61 = 62 + 52.

3.3.2 Self-conjugate 6-cores and Corollary 1.7

Here we completely describe the families of self-conjugate 6-cores before using Gauss’
map to obtain binary quadratic forms of a certain discriminant.

Lemma 3.3. Assume that A = (0, a, b, c, d, e) is an abacus for a self-conjugate 6-core
partition and recall that s = a + b+ c+ d+ e. Let r ∈ N0.

(1) Assume that s = 6r. Then e = 2r, a+ d = 2r, b+ c = 2r.

(2) Assume that s = 6r + 1. Then a = 2r + 1, b+ e = 2r, c+ d = 2r.

(3) Assume that s = 6r + 2. Then a + b = 2r + 1, c = 2r + 1, d+ e = 2r.

(4) Assume that s = 6r + 3. Then b+ c = 2r + 1, a + d = 2r + 1, e = 2r + 1.

(5) Assume that s = 6r + 4. Then c+ d = 2r + 1, b+ e = 2r + 1, a = 2r + 2.

(6) Assume that s = 6r + 5. Then d+ e = 2r + 1, a+ b = 2r + 2, c = 2r + 2.

Proof. We prove (1). By Proposition 2.5, we see that A corresponds to the N -coding
[−r, a − r, b − r, c − r, d − r, e − r]. Using [3, Lemma 4.4] and the fact that s = 6r,
the conditions are easy to determine. The other cases follow in the same way.
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Lemma 3.3 shows that the abaci of self-conjugate 6-core partitions naturally
fall into one of the distinct families given in Table 4, enumerated with parameters
a, b, r ∈ N0.

Type of Partition Shape of Abaci

I (0, a, b, 2r − b, 2r − a, 2r)

II (0, 2r + 1, a, b, 2r − b, 2r − a)

III (0, a, 2r + 1− a, 2r + 1, b, 2r − b)

IV (0, a, b, 2r + 1− b, 2r + 1− a, 2r + 1)

V (0, 2r + 2, a, b, 2r + 1− b, 2r + 1− a)

VI (0, a, 2r + 2− a, 2r + 2, b, 2r + 1− b)

Table 4: The different types of abaci for self-conjugate 6-core partitions.

We relate the families of partitions to quadratic forms, with the relationship
shown in the following proposition. For brevity, we write only triples without ±
signs - it is clear that changing the sign on any entry preserves the result.

Proposition 3.4. Let n ∈ N and a, b, r ∈ N0 be given.

(1) The Type I partition with parameters a, b, and r is a partition of n if and only if

24n+ 35 = (12r + 3− 12a)2 + (12r + 1− 12b)2 + (12r + 5)2.

(2) The Type II partition with parameters a, b, and r is a partition of n if and only if

24n+ 35 = (12r + 3− 12a)2 + (12r + 1− 12b)2 + (12r + 7)2.

(3) The Type III partition with parameters a, b, and r is a partition of n if and
only if

24n+ 35 = (12r + 1− 12b)2 + (12r + 7− 12a)2 + (12r + 9)2.

(4) The Type IV partition with parameters a, b, and r is a partition of n if and
only if

24n+ 35 = (12r + 9− 12a)2 + (12r + 7− 12b)2 + (12r + 11)2.

(5) The Type V partition with parameters a, b, and r is a partition of n if and only if

24n+ 35 = (12r + 9− 12a)2 + (12r + 7− 12b)2 + (12r + 13)2.

(6) The Type VI partition with parameters a, b, and r is a partition of n if and
only if

24n+ 35 = (12r + 13− 12a)2 + (12r + 5− 12b)2 + (12r + 15)2.
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Proof. We give the proof of (1) only, as the other cases follow similarly. Consider a
Type I partition λ with parameters a, b, and r. Using Proposition 2.5 along with
the definition of the Type of partition, λ is associated to the N -coding [−r, a− r, b−
r, r − b, r − a, r]. By Lemma 2.3, we therefore have

n = |λ| = 6
(
r2 + (a− r)2 + (b− r)2

)
+ (a− r) + 2(b− r) + 3(r− b) + 4(r− a) + 5r.

Basic manipulation then gives us that

24n+ 35 =144
(
r2 + (a−r)2 + (b−r)2

)
+ 24 (a−r+2(b−r) + 3(r−b) + 4(r−a) + 5r)+35

=144a2 − 288ar + 144b2 − 288br + 432r2 − 72a− 24b+ 216r + 35.

The right-hand side can then be rewritten as

(12r + 3− 12a)2 + (12r + 1− 12b)2 + (12r + 5)2,

giving the claim. The other cases follow in exactly the same way, using the associated
N -coding in Table 5.

Type of Partition Shape of Associated N -coding

I [−r, a− r, b− r, r − b, r − a, r]

II [r + 1, a− r, b− r, r − b, r − a,−r − 1]

III [r + 1− a, r + 1, b− r, r − b,−r − 1, a− r − 1]

IV [r + 1− b, r + 1− a, r + 1,−r − 1, a− r − 1, b− r − 1]

V [r + 1− b, r + 1− a,−r − 1, r + 1, a− r − 1, b− r − 1]

VI [b− r,−r − 1, a− r − 1, r + 1− a, r + 1, r − b]

Table 5: The different types of associated N -coding for self-conjugate 6-core parti-
tions.

Altogether, this proves the following theorem.

Theorem 3.5. There is a one-to-one correspondence between SC6(n) and the set

S6 := {(x, y, z) ∈ Z
3 : x2 + y2 + z2 = 24n+ 35, (x, y, z) ≡ (±1,±3,±5) (mod 12)}.

Note that if x2 + y2 + z2 = 24n+ 35 then all of x, y, z must be odd: if 2 | x then
we would have y2 + z2 ≡ 3 (mod 4) which is impossible. However, there may be
triples that are not equivalent to one of the form (±1,±3,±5) (mod 7) as we will
elaborate on below.
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In the same way as [3] obtained for self-conjugate 7-cores, by Gauss [8, article
278], for each representation of 24n + 35 as the sum of three squares there corre-
sponds a primitive binary quadratic form of discriminant −96n − 140. This cor-
respondence is invariant under a pair of simultaneous sign changes on the triple
(x, y, z). Explicitly, the correspondence is given by the following. For (x, y, z) ∈ S6

let (m0, m1, m2, n0, n1, n2) be an integral solution to

x = m1n2 −m2n1, y = m2n0 −m0n2 z = m0n1 −m1n0,

where a solution is guaranteed by Gauss [8, article 279]. Then

(m0u+ n0v)
2 + (m1u+ n1v)

2 + (m2u+ n2v)
2 (3.4)

is a form in CL(−96n − 140). A single sign change produces the inverse to the
quadratic form to (3.4), and so under ∼ we identify inverses of quadratic forms. In
particular, inverse quadratic forms represent the same integers and so already lie in
the same genus.

Further, this map is independent of (m0, m1, m2, n0, n1, n2). Similar to [14, 3], we
find a map φ taking self-conjugate 6-cores λ to binary quadratic forms of discriminant
−96n− 140 given by

φ : λ→ A→ N → (x, y, z) → (m0, m1, m2, n0, n1, n2) → binary quadratic form.

Although we find an explicit map to binary quadratic forms in the class group,
here we cannot obtain class numbers because the set of solutions in Theorem 3.5 is
not complete, contrary to the self-conjugate 7-core case studied in [3].

A natural question to pose is: are there partitions that explain the remaining
solutions for 24n + 35 = x2 + y2 + z2? For example, we have the solution triple
(5, 5, 3) for n = 1, which does not arise from a self-conjugate 6-core, or for n = 4 the
triple (1, 3, 11). In each of these cases, it is also clear that these triples cannot arise
from 4-cores or self-conjugate 7-cores either (see Table 1 and Table 2). Lemma 4.3
below gives an example of two different t-core sets filling out the entire solution set
to a sum of three squares.

4 Sets of solutions

4.1 Generic SC2t and SC2t+1

Here we show that on certain progressions SC2t and SC2t+1 are intricately related.

Lemma 4.1. We have that

SC2t((2t+ 1)n), SC2t+1

(
8tn+

t(t− 1)

2

)

are governed by representations of 8t(2t+ 1)n + t
3
(4t2 − 1) as a sum of t squares.
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Proof. Theorem 1.4 implies that SC2t((2t + 1)n) is governed precisely by represen-

tations of the stated number. Theorem 1.3 implies that SC2t+1

(
8tn+ t(t−1)

2

)
is also

governed by such representations after manipulation.

Example 4.2. For example, sc7 and sc6 are connected on the progressions sc6(7n)
and sc7(24n+ 3), where each is governed by the equation x2 + y2 + z2 = 168n+ 35.
Here, the set SC7(24n + 3) covers the whole set of solutions (there are none where
7 divides x, y, or z), and furthermore each of x, y, z must be odd by reducing the
equation modulo 4. Hence we immediately see that the image of SC6(7n) is a subset
of the image of SC7(24n+ 3). Since each map is a bijection, we thus have

sc6(7n) ≤ sc7(24n+ 3).

4.2 C4 and SC7

Here we consider the connections and relationship between 4-cores and self-conjugate
7-cores. In this special case, note that C4 also has a representation as a sum of three
squares.

Corollary 4.3. There is a bijection between

{(x, y, z) ∈ Z
3 : x2 + y2 + z2 = 392n+ 245}/ ∼BKM

and the set 1
2
C4(n) ∪ SC7(56n+ 33), where by 1

2
C4(n) we mean half of the elements

in C4(n).

Proof. We have from [3, Corollary 4.8] that SC7(56n+ 33) corresponds to

{(x, y, z) ∈ Z
3 : x2 + y2 + z2 = 392n+ 245, x, y, z �≡ 0 (mod 7)}/ ∼BKM .

We see that the “missing” elements are those with one variable divisible by 7. A
simple exercise reducing the equation modulo 7 shows that these are in fact solutions
to

{(x, y, z) ∈ Z
3 : x2 + y2 + z2 = 8n+ 5}/ ∼BKM .

By [14, Proposition 2] this set exactly corresponds to 1
2
C4(n).

5 A map between C4(7n+ 2) and SC7(8n+ 1)

We wish to give a combinatorial interpretation to the equation

c4(7n+ 2) = 2 sc7(8n+ 1)

for n �≡ 4 (mod 7). To do so, we define a map ϕ : C4(7n+2) → SC7(8n+1). Given
a 4-core λ � 7n+ 2 with abacus (0, a1, a2, a3), we let bj = 4aj + j for j = 1, 2, 3 and



J. MALES AND Z. TRIPP /AUSTRALAS. J. COMBIN. 88 (2) (2024), 221–243 239

reorder the indices {1, 2, 3} =: {j1, j2, j3} so that bj1 < bj2 < bj3 . We then consider
the numbers

C :=

{
bj2 , bj3 , bj2 − bj1 , bj3 − bj1 ,

bj2 + bj3 − bj1
2

, bj2 + bj3 − bj1

}
.

It will be shown in the course of the proof of Theorem 5.1 below that the elements
of C are distinct and non-zero modulo 7, so we will denote the unique element of C
that is congruent to i (mod 7) by ci for i = 1, . . . , 6. With this notation in mind, we
define

ϕ(0, a1, a2, a3) :=
(
0,
⌊c1
7

⌋
,
⌊c2
7

⌋
,
⌊c3
7

⌋
,
⌊c4
7

⌋
,
⌊c5
7

⌋
,
⌊c6
7

⌋)
. (5.1)

Theorem 5.1. For n �≡ 4 (mod 7), the map ϕ gives a two-to-one map from C4(7n+
2) to SC7(8n+ 1).

Remark. The bi used to define ϕ are, up to an additive constant, hook lengths of
the 4-core. It is not difficult to check from the definition of the abacus that bi is the
largest structure number congruent to i (mod 4) plus four (or simply equal to i if
no such structure number exists). Similarly, the ci are also essentially hook lengths
of the 7-core, being equal to the largest structure number congruent to i (mod 7)
plus seven. This is not a coincidence. The maps of [14, 3] could be re-written in
terms of the map α of Theorem 1.5, and the numbers wk := 2(tnk+k)− (t−1) used
to define α are essentially just shifts of these structure numbers. While we could
rewrite everything in terms of α to prove Theorem 5.1, we do not find it illuminating
to do so.

To prove this, we will realize ϕ as the composition

C4(7n+ 2)
ψ−→ KOS(56n+ 21)

p−→ KBKM(56n+ 21)
ρ−1−−→ SC7(8n+ 1), (5.2)

where ρ and ψ are defined in Table 2 and Table 1 respectively and where p simply
maps a triple to itself. It is easy to check that this is well-defined under the given
equivalences ∼OS and ∼BKM . Identifying ϕ as the composition (5.2) will be sufficient
to prove Theorem 5.1 because ψ and ρ are known to be bijections (see [14, Proposition
2] and [3, Corollary 4.8]), while the definitions of KOS(n) and KBKM(n) allow us
to see that p is a 2-to-1 map. Hence, the rest of the section will be computing the
image of (0, a1, a2, a3) under ρ

−1 ◦ p ◦ ψ.
While we already have a definition for the map ψ given in Table 1, we wish to

write the map in terms of the numbers a1, a2, and a3 instead. This conveniently will
not require us breaking the definition into multiple parts.

Lemma 5.2.

ψ(0, a1, a2, a3) =

(
−b1 + b2 − b3

2
,
b1 + b3 − b2

2
,
b2 + b3 − b1

2

)
∈ KOS(8n + 5). (5.3)
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Proof. We will only show this for type I partitions since the proof is similar in other
cases. These are the partitions for which a1 = g, a2 = C + g, and a3 = D + g for
g, C,D ≥ 0. Writing ψ(0, a1, a2, a3) = (x, y, z), Table 1 tells us that (by possibly
reordering terms)

x+ y = 4(C + g) + 2 = 4a2 + 2,

y − z = 4(D + g) + 3 = 4a3 + 3,

x− z = 4g + 1 = 4a1 + 1.

Solving the linear system of equations from here, we find that

(x, y, z) = (2(a1 + a2 − a3), 2(a2 + a3 − a1) + 2, 2(a2 − a1 − a3)− 1) .

Replacing ai by
bi−i
4
, reordering the terms, and making two sign changes, we obtain

(5.3).

We have now found ψ(0, a1, a2, a3), and we already know that p(x, y, z) = (x, y, z).
Thus, we only need to compute ρ−1.

Lemma 5.3. For (x, y, z) ∈ KBKM(7n+14), suppose without loss of generality that
the coordinates are reordered so that x is the largest, and such that si ≡ i (mod 7).
Then

ρ−1(x, y, z) =
(
0,
⌊s1
7

⌋
,
⌊s2
7

⌋
,
⌊s3
7

⌋
,
⌊s4
7

⌋
,
⌊s5
7

⌋
,
⌊s6
7

⌋)
. (5.4)

Proof. We only prove this for type I self-conjugate 7-cores since the proof is analogous
in the other cases. Let λ be such a partition so that its abacus is of the form

(0, a, b, r, 2r − b, 2r − a, 2r) (5.5)

for a, b, r ∈ N0. Recall from Table 2 that (x, y, z) = ρ(λ) = (7r+3, 7r+2−7a, 7r+1−
7b). At this stage, we cannot immediately conclude that the elements of the triples
are equal due to the equivalence relation ∼BKM . However, notice that 0 ≤ a, b,≤ 2r
in order for the entries of the abacus to be non-negative, so 7r+3 must be the largest
element of the triple ρ(λ). In other words, by our assumption on x, we conclude that
x = 7r + 3. By rearranging the remaining terms and changing signs, we may also
say that y = 7r + 2 − 7a and z = 7r + 1 − 7b. We may solve for r, a, and b to find
that

r =
x− 3

7
, a =

x− y − 1

7
, b =

x− z − 2

7
.

Plugging this into (5.5) yields(
0,
x− y − 1

7
,
x− z − 2

7
,
x− 3

7
,
x+ z − 4

7
,
x+ y − 5

7
,
2x− 6

7

)
.

Using the fact that each entry must be an integer proves (5.4).
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To complete the proof of the theorem, notice that if (x, y, z) = p ◦ ψ(0, a1, a2, a3)
with x = max(|x|, |y|, |z|), then x must be equal to

bj2+bj3−bj1
2

by the choice of indices
j1, j2, j3 and by (5.3). By direct computation, we then see {x, 2x, x± y, x± z} = C.
Hence, by (5.4), the image of (x, y, z) under ρ−1 becomes (5.1), finishing the proof
of Theorem 5.1.

While the above map is explicit, it is not immediately clear which two 4-cores
have the same image. However, it turns out that there is a simple answer: the
map ϕ is invariant under conjugation. To see this, we use Proposition 3 of [14].
We will only focus on the first case, which tells us that for D ≥ C, I(g, C,D) and
I(D − C,C, C + g) are conjugate pairs. Notice that by Table 1, I(g, C,D) maps to

(2C − 2D − 2g − 1, 2C − 2D + 2g, 2C + 2D + 2g + 2),

while I(D − C,C, C + g) maps to

(2C − 2D − 2g − 1,−(2C − 2D + 2g), 2C + 2D + 2g + 2).

By the definition of ∼BKM , these are the same under p ◦ ψ and hence under ϕ =
ρ−1 ◦ p ◦ ψ. It is easy to see that the remaining cases in Proposition 3 of [14] also
map to the same value, proving the invariance of ϕ under conjugation.

While ϕ may be invariant under conjugation, the existence of self-conjugate 4-
cores implies that this may not explain the fact that ϕ is 2-to-1. We illustrate
that this is where our condition n �≡ 4 (mod 7) is essential. As we alluded to
following Proposition 3.1, Proposition 3 and Proposition 1 of [14] illustrate that self-
conjugate 4-cores are exactly the 4-cores whose image under ψ has an element that
is 0, i.e. they are the elements that map to 8n+5 being represented as a sum of two
squares. However, in the definition of ϕ, this would mean that we are considering
8(7n+ 2) + 5 = 56n+ 21 as a sum of two squares, and since 56n+ 21 is divisible by
7, it is easy to check that 56n + 21 = x2 + y2 implies that 7|x, y. Writing x = 7x′

and y = 7y′, this in turn implies that n − 4 ≡ 8n + 3 ≡ 0 (mod 7). Thus, if
n �≡ 4 (mod 7), sc4(7n+2) = 0, so the preimage of an element of SC7(8n+1) must
equal a pair of conjugate elements of C4(7n+ 2).

6 An application to partitions with distinct odd parts

In a recent paper [4] the authors investigated the hook lengths of partitions and
gave new formulae for them in terms of the size of parts in certain partitions into
distinct odd parts under a given correspondence. In particular, they give a necessary
and sufficient condition in terms of these parts for the original partition to be self-
conjugate (see [4, Corollary 1.5]). We pose as a question whether it is possible to
combine the results presented here with those in [4] (in particular, Corollary 1.5
there) to determine new results on sums of squares and their relation to partitions
into distinct odd parts, and thereby hook lengths of self-conjugate partitions.
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