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Abstract

We classify connected spanning convex subgraphs of C2
n, the square of the

n-vertex cycle. We then show that every spanning tree of C2
n is contained

in a unique nontrivial connected spanning convex subgraph of C2
n. As a

result, we obtain a purely combinatorial derivation of the formula for the
number of spanning trees of C2

n.

1 Introduction

It is well known that the number t(G) of spanning trees of a connected graph G
can be computed using the matrix-tree theorem (see e.g., [2, Section 13.2]). More
precisely, t(G) is the product of nonzero eigenvalues of the Laplacian of G, divided
by the number of vertices of G. For families of graphs whose Laplacian eigenvalues
can be computed, this method is very useful in computing t(G), except that the
results sometimes need to be simplified since eigenvalues may not be rational integers.
Extensive work has been done to simplify the formula for t(G) for circulant graphs
(see [5, 6, 8]). For example, the derivation of the number t(C2

n) of spanning trees
of C2

n, the square the n-vertex cycle, using the matrix-tree theorem was done first
by Baron et al. [1]. Kleitman and Golden [3] used a different approach to compute
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t(C2
n). Namely, they used topological properties of a planar embedding of C2

n to
derive a formula for t(C2

n) when n is even, and mentioned that a similar method can
be used to derive the same formula for odd n, without giving details. If n is even, C2

n

is isomorphic to the rose window graph Rn/2(1, 1) [7]. The graph C2
n is also denoted

by Cn(1, 2) [6] and C1,2
n [8].

In this paper, we transform the topological argument given by Kleitman and
Golden [3] to a purely combinatorial one, using the theory of graph homotopy [4].
This allows us to give a uniform proof of the formula for t(C2

n) independent of the
parity of n. The key idea in our proof is the fact that every spanning tree of C2

n

is contained in a unique nontrivial connected spanning convex subgraph. Although
this fact appeared implicitly in [3] when n is even, the classification of connected
convex subgraphs of C2

n is new.

The organization of this paper is as follows. In Section 2, we fix notation for
the square of a cycle as a circulant graph, and give some properties of the Fibonacci
sequence. We give a classification of connected spanning convex subgraphs of C2

n in
Section 3. In Section 4, we show that the set of the spanning trees of C2

n coincides
with the disjoint union of the set of the spanning trees of strip graphs with tails
Sn,k,j, defined in Section 2. As a consequence, we deduce a combinatorial proof of
the formula for t(C2

n) which does not depend on the parity of n.

2 Preliminaries

Definition 2.1. A graph that is connected and has no closed paths is called a tree.
For a graph G, we say that G′ satisfying

E(G′) ⊆ E(G), V (G) = V (G′)

is a spanning subgraph of G. If a spanning subgraph G′ in a connected graph G is a
tree, then G′ is called a spanning tree of the graph G.

Definition 2.2. Let n be an integer with n ≥ 5. The square of the n-vertex cycle,
or the square cycle for short, denoted C2

n, is defined by V (C2
n) = Zn = Z/nZ,

E(C2
n) = {{vi, vj} | vi, vj ∈ V (C2

n), i, j ∈ Z, i− j = 1, 2}, where vi = i+ nZ ∈ Zn.

Let n be an integer with n ≥ 5. Then, E(C2
n) = {ei | i ∈ Z} ∪ {fi | i ∈ Z}, where

we define frame ei and window fi as follows.

ei = {vi, vi+1}, fi = {vi, vi+2} (i ∈ Z).

We denote by W(n) and F(n) the set of frames and windows, respectively as follows.

W(n) = {fi | 0 ≤ i ≤ n− 1},
F(n) = {ei | 1 ≤ i ≤ n}.

By a triangle of C2
n we mean a set

Ti = {ei, ei+1, fi} (i ∈ Z).
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Then,

E(C2
n) =

n−1⋃
i=0

Ti.

Definition 2.3. Given i (i ∈ Z), if a subgraph G of C2
n satisfies |Ti ∩ E(G)| ≤ 1 or

Ti ⊆ E(G), then G is said to be convex with respect to the triangle Ti. A subgraph
G of C2

n is said to be convex if G is convex with respected to Ti for all i (i ∈ Z).

Definition 2.4. The graph Sk defined by V (Sk) = {1, 2, . . . , k}, E(Sk) = {{i, j} |
i, j ∈ V (Sk), 1 ≤ |i− j| ≤ 2} is called a strip graph.

The sequence of numbers Fn defined by the recurrence relation F0 = 0, F1 =
1, Fn+2 = Fn+1 + Fn (n = 0, 1, 2, . . . ) is called the Fibonacci sequence. The following
two lemmas are due to Kleitman and Golden [3].

Lemma 2.5. For n ≥ 2, t(Sn) = F2n−2.

Lemma 2.6. For n ≥ 2,

F 2
n =

{∑(n−2)/2
k=0 F4k+2 if n is even,

1 +
∑(n−1)/2

k=1 F4k if n is odd.

The following substructures appeared implicitly in [3]. In fact, an escape route
is the set of edges crossed by a path from the interior to the outside region, in the
planar drawing of C2

n (see [3, Fig. 4]). The removal of an escape route gives a strip
graph with tails (see [3, Fig. 5]).

Definition 2.7. Let n ≥ 5. For integers j and k with 0 ≤ k ≤ 	n−2
2

, we define the

graph Sn,k,j as follows:

V (Sn,k,j) = V (C2
n),

E(Sn,k,j) = E(C2
n) \ ES(n, k, j), (j, k ∈ Z, 0 ≤ k ≤ 	n− 2

2

),

where

ES(n, k, j) = {fj , fj+2k+1} ∪ {ej+1, . . . , ej+2k+1} (j, k ∈ Z, 0 ≤ k ≤ 	n− 2

2

).

The graph Sn,k,j is called a strip graph with tails, and ES(n, k, j) is called the escape
route.

The graphs Sn,k,j are connected spanning convex subgraphs of C2
n. Clearly, C2

n

and (Zn,W(n)) for n odd are also connected spanning subgraphs of C2
n, and we call

these subgraphs trivial connected spanning subgraphs.

For a graph G, let TG be the set of all spanning trees of G. Then t(G) = |TG|.
Since Sn,k,j can be obtained from the strip graph Sn−2k by attaching two tails of
length k, the following lemma holds.

Lemma 2.8. For j, k ∈ Z, 0 ≤ k ≤ 	n−2
2

, t(Sn,k,j) = t(Sn−2k).
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3 Spanning convex subgraphs

In this section, we prove our first main result which gives a classification of connected
spanning convex subgraphs of C2

n.

Lemma 3.1. Let G be a connected spanning convex subgraph of C2
n. If k and p are

integers with 0 ≤ p < n and

{ek−1, fk, fk+2, . . . , fk+2p−2, ek+2p} ⊆ E(G),

then {ek, ek+1, . . . , ek+2p−1} ⊆ E(G).

Proof. We prove the assertion by induction on p. If p = 0, then it is trivial. Therefore,
we may assume that p ≥ 1.

Suppose that there exists an integer i with 0 ≤ i ≤ 2p−1 such that ek+i ∈ E(G).
If i is even, then since G is convex with respected to Tk+i, ek+i+1 ∈ E(G). Therefore,
we can apply the induction to {ek−1, fk, fk+2, . . . , fk+i−2, ek+i} and {ek+i+1, fk+i+2,
fk+i+4, . . . , fk+2p−2, ek+2p}. Similarly, if i is odd, then we can apply the induction.

It remains to derive a contradiction by assuming

ek, ek+1, . . . , ek+2p−1 /∈ E(G). (1)

Since G is convex with respect to Tk−1,

fk−1 /∈ E(G). (2)

Similarly, since G is convex with respect to Tk+2p−1

fk+2p−1 /∈ E(G). (3)

From (1), (2), and (3), we see that the set {vk+1, vk+3, . . . , vk+2p−1} is separated from
its complement in the connected spanning subgraph G. This is a contradiction.

Lemma 3.2. Let G be a nontrivial connected spanning convex subgraph of C2
n. If

E(G) contains no frame, then n is odd, and G = Sn,n−1
2

,j for some integer j with
0 ≤ j ≤ n− 1.

Proof. By the assumption, E(G) consists only of windows. Since G is connected, n
is odd. Since G is nontrivial, |E(G)| ≤ n− 1. Since G is connected, |E(G)| ≥ n− 1.
Therefore, |E(G)| = n − 1. Then there exists j such that E(G) = W(n) \ {fj} =
E(Sn,n−1

2
,j). This proves G = Sn,n−1

2
,j.

Lemma 3.3. Let G be a nontrivial connected spanning convex subgraph of C2
n. If

E(G) contains a frame, then G = Sn,k,j for some integers j, k with 0 ≤ j ≤ n − 1,
0 ≤ k ≤ �n−2

2
�.
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Proof. If F(n) ⊂ E(G), then it is easy to see that G = C2
n, contradicting the

assumption that G is nontrivial. Since F(n) ∩ E(G) �= ∅, there exists i, l with 0 ≤
i ≤ n−1, 1 ≤ l ≤ n−1 satisfying {ei, ei+1, . . . , ei+l−1} ⊆ E(G) and ei−1, ei+l /∈ E(G).
Without loss of generality, we may assume that i = 0. In this case, we have

{e0, e1, . . . , el−1} ⊆ E(G), (4)

e−1 /∈ E(G), (5)

el /∈ E(G). (6)

Since G is convex with respected to Tj (0 ≤ j ≤ l − 2), (4) implies

f0, f1, . . . , fl−2 ∈ E(G). (7)

Since G is convex with respected to T−1, (4) and (5) imply

f−1 /∈ E(G). (8)

Since G is convex with respect to Tl−1, (4) and (6) imply

fl−1 /∈ E(G). (9)

Let s and t be the largest non-negative integers such that

f−2, f−4, . . . , f−2s ∈ E(G), (10)

and
fl, fl+2, . . . , fl+2t−2 ∈ E(G), (11)

respectively. Then, f−2s−2 /∈ E(G) and fl+2t /∈ E(G).

We show that

el, el+1, . . . , el+2t /∈ E(G) and t <
n− l

2
, (12)

e−1, e−2, . . . , e−2s−1 /∈ E(G) and s <
n− l

2
. (13)

Assume that there exists an integer m with 0 ≤ m ≤ 2t and that el+m ∈ E(G).
We may choose minimal such m. By (6), we have m > 0. If m is odd, then
by (11) and by the convexity of G, Tl+m−1 ⊆ E(G). Therefore, el+m−1 ∈ E(G).
This contradicts the minimality of m. If m is even, then by (4) and (11), we have
{el−1, fl, fl+2, . . . , fl+m−1, el+m} ⊆ E(G). Then, by Lemma 3.1, we have el+m−1 ∈
E(G), again contradicting the minimality of m. Therefore, (12) holds. Similarly, we
can prove (13).

Let K = {v−2s, v−2s+2, . . . , v0, v1, . . . , vl, vl+2, . . . , vl+2t}. If K �= Zn, then by (8),
(9), (12) and (13), G is disconnected. This is a contradiction. Therefore, K = Zn,
and in particular, s+ l+1+ t = |K| = n. From (12) and (13), s = t = n−l−1

2
. Then,

from (10), (11) and (12), we have

{fl+1, fl+3, . . . , fn−2} ⊆ E(G),

{fl, fl+2, . . . , fn−3} ⊆ E(G),

el, el+1, . . . , en−1 /∈ E(G),
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respectively. Together with (4), (7), (8) and (9), these imply E(G) = E(Sn,n−l−1
2

,l−1).

This proves G = Sn,n−l−1
2

,l−1.

Theorem 3.4. Let G be a nontrivial connected spanning convex subgraph of C2
n.

Then there exists integers j, k with 0 ≤ j ≤ n − 1, 0 ≤ k ≤ 	n−2
2

 such that

G = Sn,k,j.

Proof. This is immediate from Lemmas 3.2 and 3.3.

4 Enumerating spanning trees of the square cycles

In this section, we prove our second main result which states that every spanning
tree of C2

n is contained in a unique connected spanning convex subgraph. As a
consequence, we obtain an alternative proof of the formula for the number of spanning
trees of C2

n. Our method is a combinatorial formulation of the topological proof given
in [3]. The tool we use is the theory of graph homotopy. We refer the reader to [4]
for the precise definition of the homotopy group. Roughly speaking, the homotopy
group π(G, v0) of the graph G with respect to a vertex v0 is the group formed by
equivalence classes of circuits through v0. It contains the subgroup π(G, v0, 3) which
is “generated” by triangles. It is clear that π(G, v0) = π(G, v0, 3) if G is a tree, strip
graph, or strip graph with tails, while π(G, v0) �= π(G, v0, 3) if G is a cycle of length
at least 4 or G = C2

n with n ≥ 7.

Theorem 4.1. Let n be an integer with n ≥ 5. For every spanning tree G of C2
n,

there exists a unique nontrivial connected spanning convex subgraph H of C2
n such

that E(G) ⊆ E(H). Each such graph H has a form Sn,k,j for 0 ≤ k ≤ 	n−2
2

,

0 ≤ j ≤ n− 1. More precisely,

TC2
n
=

�n−2
2

�⋃
k=0

n−1⋃
j=0

TSn,k,j
(disjoint). (14)

Proof. Since the assertion can be verified directly for n = 5 and 6, we assume n ≥ 7.
According to Lewis [4], for a graph G we can define its homotopy group π(G, v0)
and the normal subgroup π(G, v0, 3) of π(G, v0) generated by the triangles. Clearly
π(G, v0) is the trivial group for the spanning tree G of C2

n, so in particular π(G, v0) =
π(G, v0, 3) holds. For a spanning tree G of C2

n which is not convex with respect to
some triangle Ti, π(G

′, v0) = π(G′, v0, 3) also holds for the graph G′ obtained from
G by adding the unique missing edge of Ti. This process can be iterated until
we reach a convex subgraph containing G. The resulting graph H is a connected
spanning convex subgraph H of C2

n, and hence it is one of the graphs classified
in Theorem 3.4, or one of the trivial connected spanning convex subgraph. Since
π(H, v0) = π(H, v0, 3) holds only for nontrivial connected spanning convex subgraph
H , there exist j, k with 0 ≤ j ≤ n− 1, 0 ≤ k ≤ 	n−2

2

 such that E(G) ⊆ E(Sn,k,j).

It remains to show that the union in (14) is disjoint. Suppose E(G) ⊆ E(Sn,k′,j′)
for some j′, k′ with 0 ≤ k′ ≤ 	n−2

2

, 0 ≤ j′ ≤ n−1. Then the subgraph with edge set
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E(Sn,k,j)∩E(Sn,k′,j′) is a nontrivial connected spanning convex subgraph of C2
n, and

hence coincides with Sn,k′,j′ for some j′′, k′′ with 0 ≤ k′′ ≤ 	n−2
2

, 0 ≤ j′′ ≤ n − 1.

This implies E(Sn,k′′,j′′) ⊆ E(Sn,k,j) which is possible only when (j, k) = (j′′, k′′).
Then we have (j, k) = (j′, k′). Therefore, the union in (14) is disjoint.

Corollary 4.2 (Kleitman and Golden [3]).

t(C2
n) = nF 2

n .

Proof.

t(C2
n) =

�n−2
2

�∑
k=0

n−1∑
j=0

t(Sn,k,j) (by Theorem 4.1)

= n

�n−2
2

�∑
k=0

t(Sn−2k) (by Lemma 2.8)

=

{
n
∑(n−2)/2

k=0 t(S2k+2) if n is even,

n+ n
∑(n−1)/2

k=1 t(S2k+1) if n is odd

=

{
n
∑(n−2)/2

k=0 F4k+2 if n is even,

n(1 +
∑(n−1)/2

k=1 F4k) if n is odd
(by Lemma 2.5)

= nF 2
n (by Lemma 2.6).

Remark. We have verified by computer that the assertion of Theorem 4.1 holds
for the graphs C3

10 and C3
11 (see [8] for a definition), if we modify the definition

of trivial connected spanning subgraphs to be the ones whose homotopy group is
nontrivial. There are exactly 63 and 96 nontrivial connected convex subgraphs up
to automorphism of C3

10 and C3
11, respectively, and every spanning tree is contained

in a unique nontrivial connected convex subgraph.
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