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Abstract

A graph G is prism-hamiltonian if the prism over G, the Cartesian prod-
uct of G with the complete graph K2, is hamiltonian. In this article a
characterization of prism-hamiltonian graphs is provided. Kaiser et al.
conjectured that every graph with sufficiently high toughness is prism-
hamiltonian. We prove a special case of this conjecture, namely that
every 1-tough bipartite graph which has no adjacent vertices of degree at
least four is prism-hamiltonian.

1 Introduction

A graph G is hamiltonian if there exists a spanning cycle in G. Hamiltonicity of
graphs is one of the oldest and most intensively studied areas in graph theory. As a
result there are literally thousands of papers on the topic. At the same time there are
famous long-standing conjectures that have attracted the interest of many scholars.
In this paper we focus on an extension of Chvátal’s conjecture.

It is well known that the problem of whether a graph is hamiltonian is NP-
complete. Therefore, it is of high interest at least to show that a graph is “close”
to being hamiltonian. There are several ways to measure distance of a graph from
being hamiltonian. One of them has been provided by Jackson and Wormald [7].
In their infinite hierarchy the graphs closest to hamiltonian are those which have
hamiltonian paths, followed by graphs with hamiltonian prisms. Formally, a graph
G is called prism-hamiltonian if its prism, the Cartesian product of G with the
complete graph K2, is hamiltonian. A typical example when it was first shown that
a graph is close to being hamiltonian is the class of Middle-Levels-Graphs. In 1983
Havel raised a famous conjecture that these graphs are hamiltonian; in 2005, Horak
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et al. [6] proved that they are prism-hamiltonian, and finally, in 2016, Mütze [11]
proved Havel’s conjecture.

In [12] Paulraja gave a characterization of prism-hamiltonian graphs. The char-
acterization is rather complex and uses certain edge colorings of graphs. As one of
two main results of this paper we provide a simpler description of prism-hamiltonian
graphs, Theorem 2.1, which we later apply in the proof of Proposition 2.2.

The notion of toughness of a graph was introduced by Chvátal, who used the
concept to raise one of the central conjectures in the area of hamiltonian graphs. We
focus on an extension of Chvatal’s conjecture to prism-hamiltonian graphs.

The toughness of G, denoted τ(G), is given by

τ(G) = min{|S|/c(S)},

where c(S) denotes number of connected components of G − S and the minimum
runs over all vertex cuts S of G.

Conjecture 1.1 [4] There exists a k ∈ R, such that every graph G with τ(G) > k
is hamiltonian.

It was shown that k ≥ 9/4, as for every ε > 0 there exists a non-hamiltonian
graph with τ(G) = 9/4 − ε. Toughness of graphs in relation to their hamiltonicity
properties is discussed in detail in the survey paper [1].

Kaiser et al. raised an extension of Chvátal’s conjecture:

Conjecture 1.2 [8] There exists a k ∈ R, such that every graph G with τ(G) > k
is prism-hamiltonian.

It was shown that k ≥ 9/8 in the relaxed conjecture, see [8]. More precisely, for
every ε > 0 there exists a non-prism-hamiltonian graph G with τ(G) = 9/8− ε.

In this paper the focus will be restricted to prism-hamiltonicity of bipartite
graphs. Let G be a bipartite graph with bipartition A,B, |A| ≤ |B| of its vertex
set. Then G− A consists of |B| isolated vertices; hence, for the toughness of G, we
get

0 ≤ τ(G) ≤ 1.

Since τ(G) < 1
2

implies τ(G2K2) < 1, it follows that τ(G) ≥ 1
2

is a necessary
condition for a (bipartite) graph G to be prism-hamiltonian. We will prove that in
fact it has to be τ(G) > 1/2.

On a positive note, we believe that the following restriction of Conjecture 1.2 is
true.

Conjecture 1.3 Every 1-tough bipartite graph is prism-hamiltonian.

As a support for the conjecture we will prove the following:

Theorem 1.4 Every 1-tough bipartite graph which has no adjacent vertices of degree
at least 4 is prism-hamiltonian.
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A result of a similar nature has been proved by Paulraja [12], and separately by
Čada et al. [3]. Namely, they proved, in terms of good cacti (see the definition of
a good cactus below), that every 2-connected bipartite graph of maximum degree
at most 3 is prism-hamiltonian. This implies that more than 1/2-tough bipartite
graphs of maximum degree at most 3 are prism-hamiltonian.

A good cactus is a connected graph G such that every block of G is either a K2

or an even cycle such that every vertex is contained in at most two blocks of G. The
theorem below was proved in [5] (see also [13]) but has been implicitly applied in
many earlier papers. It appears to be the main method by which prism-hamiltonicity
of graphs is established.

Theorem 1.5 Every graph that has a good cactus as a spanning subgraph is prism-
hamiltonian.

This theorem is (implicitly) applied in [12] and [3] to prove prism-hamiltonicity
of 3-connected cubic graphs. It was also applied to the class of 3-connected planar
graphs of minimum degree 4 in [13], to 1/2-tough P4-free graphs in [5], and to
bipartite 3-connected planar graphs in [2].

One might be tempted to think that all prism-hamiltonian graphs have a span-
ning good cactus as a subgraph. In [10] the author shows that this is not true by
constructing an infinite family of 3-connected planar prism-hamiltonian graphs with
no spanning good cactus (however all graphs given in [10] are non-biparitite). In
this paper we also give an example of bipartite prism-hamiltonian graph with no
spanning good cactus (see Proposition 2.2).

2 Results

Let G = (V (G), E(G)) be a graph and M a set of edges. We define the following
graphs G −M = (V (G), E(G) \M) and G ∪M = (V (G), E(G) ∪M). Let K2 be
the complete graph on two vertices and V (K2) = {b, w}. We denote the Cartesian
product of graphs G and H by G2H; in particular G2K2 is the prism over G. The
edge connecting (x,w) and (x, b) in G2K2 is called the vertical edge at x.

Let P = x1, . . . , xn be a path. P is even (respectively odd) if n is even (respectively
odd). An alternating path in P2K2 is a path that contains exactly one vertex in
M = {(x1, b), (x1, w)}, exactly one vertex in N = {(xn, b), (xn, w)}, and all vertices
of P2K2 − (M ∪N).

In [12] the author gives the definition of a SEEP-subgraph of a graph G. The
definition is rather long so we skip it here; however, the author proves that prism-
hamiltonian graphs are precisely those graphs that have a SEEP-subgraph. We
give another characterization of prism-hamiltonian graphs, namely that a graph G
is prism-hamiltonian if and only if it has a spanning subgraph in class of graphs C,
which we define below. It follows from this that G has a SEEP-subgraph (which is by
the definition a spanning subgraph of G) precisely when it has a spanning subgraph
in C, and therefore the class C is just another description of SEEP-subgraphs.
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Let C be the class of graphs containing P2, and graphs obtained from even cycles
by the following construction.

1. Let C be an even cycle.

2. Color an even (possibly 0) number of vertices of C by black and white so that
one half of vertices are black and the other half is white (we do not require that
the coloring is proper nor that all vertices are colored) so that every path P
in C whose internal vertices are uncolored and endvertices are colored by the
same (by distinct) color(s) is even (odd).

3. Identify every white vertex with a black vertex (bijectively).

Note that in step 3 double edges might appear, and in this case we identify any
two edges with the same set of endvertices. An example of a coloring from step
2 is given in Figure 2, where the uncolored vertices are gray, and colored vertices
are black or white. As we shall see in the proof below, the uncolored vertices of C
correspond to vertices x of G such that the Hamilton cycle in G2K2 uses vertical
edge in x.

Theorem 2.1 A graph G is prism-hamiltonian if and only if it has a spanning
subgraph in C.

Proof. We prove first that every graph in C is prism-hamiltonian. This is clearly
true for P2 and all even cycles. Suppose that G is a graph in class C, and let C ′ be
the cycle obtained after step 2 of the definition of C. Note that C ′ has a coloring of
a subset of its vertices as described in step 2, and we fix one such coloring and refer
to it in the sequel.

We define a cycle C0 in C ′2K2 as follows. For every path P = u1, . . . , un in C ′

such that every internal vertex of P is uncolored and its endvertices are colored we
do the following:

(i) if u1 is white and un is black, let C0 contain all edges of the alternating path
from (u1, w) to (un, b) in P2K2, and

(ii) if both endvertices of P are white (respectively black) then let C0 contain all
edges of the alternating path from (u1, w) to (un, w) (respectively (u1, b) to
(un, b)) in P2K2.

Since such paths P are pairwise internally disjoint and they cover V (C ′) this defines
a cycle C0 in C ′2K2. Moreover, C0 contains all vertices of C ′2K2, except (x,w) for
black x, and (x, b) for white x. When we identify black and white vertices (bijectively)
in step 3 of the construction we get a Hamilton cycle in G2K2.

Suppose now that G is a prism-hamiltonian graph, and let C be a Hamilton
cycle in G2K2. First we contract all vertical edges of C, and we obtain a cycle C ′

(if C is not a 4-cycle). If C is a 4-cycle, then G = P2 which is a graph in class
C. So assume C ′ is a cycle, and note that C ′ is an even cycle because C has an
even number of vertical edges. Now we color vertices of C ′ which were not identified
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during contractions: vertices (x, b) by black and (x,w) by white (vertices that were
identified during contractions remain uncolored). If P = u1, . . . , un is a path in
C ′ such that all internal vertices of P are uncolored, and u1, un received the same
color in this coloring, then n is even (due to the fact that uncolored vertices of C ′

correspond to vertices of G2K2 in which C uses the vertical edge); otherwise if u1
and un have distinct colors then n is odd. Then C ′ together with the coloring defined
above satisfies the conditions given in step 2 of the construction. Clearly, when we
identify each pair of black and white vertices of C ′ with equal first coordinate, we
obtain a spanning subgraph of G (and if there are no black or white vertices, then
C ′ is a cycle that spans G). �

Now we focus our attention to prism-hamiltonicity of bipartite graphs. As men-
tioned in the introduction, every graph that has a good cactus as a spanning subgraph
is prism-hamiltonian. We show that having a good cactus is not equivalent to being
prism-hamiltonian, and in particular this is not equivalent for the class of bipartite
graphs; cf. [10] as well.

z′

y′x′

c

ba

x y
z

Figure 1: An example of a bipartite prism-hamiltonian graph with no
spanning good cactus.

Proposition 2.2 There exist infinitely many bipartite prism-hamiltonian graphs
which have no spanning good cactus as a subgraph.

Proof. We claim that the graph G in Figure 1 is a bipartite prism-hamiltonian
graph with no spanning good cactus. Observe that G is obtained from an even
cycle by identification of vertices as indicated in Figure 2 (equally named vertices
are identified). Hence G is in class C and therefore, by Theorem 2.1, G is prism-
hamiltonian.

To see that G has no spanning good cactus we observe that any spanning good
cactus K in G must have a cycle. Now both cases: (1) K has a cycle containing a, b
and c, and (2) K contains the cycle containing a, c and/or the cycle containing a, b,
lead to a contradiction (that K spans G).
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Figure 2: After identification of black and white vertices we obtain the
graph in Figure 1.

Clearly, if x (or any pendant vertex) is replaced with a path, the proof would
require only a trivial adjustment; this gives an infinite set of examples that prove
the proposition. �

As mentioned in the introduction, τ(G) ≥ 1
2

is a necessary condition for a bipartite
graph G to be prism-hamiltonian, moreover we prove next that τ(G) ≥ 1/2 is not a
sufficient condition. Consider the graph G shown in Figure 3. It is easy to see that
τ(G) = 1/2, and we claim that G is not prism-hamiltonian. To see this observe that
prism-hamiltonicity of G implies existence of a Hamilton cycle C in the prism over
G− x′ such that C uses the vertical edge at x. But then C uses the vertical edge at
one of the neighbors of x, and therefore at least two vertices of degree 2 in the prism
over G − x′ remain uncovered by C, which is a contradiction. It follows that G is
not prism-hamiltonian, as claimed.

Now we prove Theorem 1.4. First we state the following lemma which is a key
ingredient of our proof.

Lemma 2.3 [9] Every 1-tough bipartite graph has 2-factor.

Theorem 1.4 Every 1-tough bipartite graph which has no adjacent vertices of degree
at least 4 is prism-hamiltonian.

Proof of Theorem 1.4. Let G be a 1-tough bipartite graph with no adjacent
vertices of degree at least four. We shall prove that G is prism-hamiltonian. By
Lemma 2.3, G has a 2-factor H. We claim that there exists a matching M ⊆
E(G) \ E(H), such that H ∪M is a connected graph (and hence G has a spanning
good cactus).

Let S = E(G) \ E(H). Since no two vertices of degree more than three are
adjacent in G, R = (V (G), S) is a star forest. If e ∈ S then we denote the vertex
incident to e of degree more than one in R (if any) by v(e); we call it the central
vertex (of the star) belonging to e. We call any star of R which is isomorphic to K2
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x

x′

Figure 3: An example of a 1/2-tough bipartite graph which is not prism-
hamiltonian.

a trivial star. Let A ⊆ S be the set of edges that belong to a trivial star of R. Define
H ′ = H ∪ A.

An auxiliary multigraph Q is formed by contracting in G each component of H ′

into a single vertex and discarding loops that appear; after contractions G becomes
Q and edges of R now become edges of Q, unless both endvertices of the edge
are in the same component of H ′. If there is more than one edge of S connecting
two components of H ′ then there are in Q parallel edges between the two vertices
representing these two components. To obtain a required matching M we have to
prove that there is a spanning tree T in Q, such that T contains at most one edge
of each star of R.

Note that any edge of Q belongs to a nontrivial star of R and hence it has a
central vertex. Moreover, since no two vertices of degree more than 3 are adjacent in
G, we find that the set of central vertices belonging to edges of Q is an independent
set in G. In particular, each component of H ′ has a vertex which is not a central
vertex of an edge of Q.

Let T be a maximal tree in Q such that T contains at most one edge of each star
of R. If V (T ) = V (Q) we are done, so assume that V (T ) 6= V (Q). We will color the
edges of Q in the following way: let X be the set of edges of Q belonging to a fixed
star of R, then all edges of X will be colored

1. Green: if an edge of X is in E(T ), and an edge of X is incident to V (Q)\V (T ).

2. Blue: if an edge of X is in E(T ), and no edge of X is incident to V (Q) \V (T ).

3. Red: if no edge of X is in E(T ).

By maximality of T there is no red edge with one endvertex in V (T ) and the other
in V (Q)\V (T ). All edges of T are either green or blue, and green edges are precisely
those which have an endvertex adjacent to V (Q)\V (T ). Suppose first that there are
no red edges with both endvertices in V (T ). We note that by this assumption, and
by maximality of T , every edge of Q incident to a vertex of T is green or blue. Then
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removing all green and blue edges of Q results in at least |V (T )| + 1 components
in Q. Equivalently, removing the central vertex of every edge of T results in (at
least) |V (T )| + 1 components in G (recall that each component of H ′ has a vertex
which is not a central vertex of an edge of T , hence no component of H ′ is entirely
removed). We note that removal of central vertices results in removing all edges of
G that were represented in Q by green and blue edges. Since there are |V (T )| − 1
edges in T , there are exactly |V (T )| − 1 central vertices. It follows that G is at most
(|V (T )| − 1)/(|V (T )|+ 1)-tough.

Therefore there is at least one red edge with both endvertices in V (T ). Let U be
the set of green edges of T .

Claim 1: There is no red edge with endvertices in distinct components of T − U .
Proof: Suppose to the contrary, that a red edge e connects distinct components of
T −U . Then there is a green edge f , such that the endvertices of e are contained in
distinct components of T − f . Let T ′ be the tree obtained from T by deleting f and
adding edges e and xy, where x = v(f) and y ∈ V (Q) \ V (T ). Then T ′ is a larger
tree containing at most one edge of each star of R. This contradicts the maximality
of T . �

Let N0 = U . For i ∈ N we inductively define M ′
i ,Mi and Ni as follows (we only

need Ni−1 to define these sets). Let M ′
i be the set of blue edges xy /∈ E(T ), such

that x and y are contained in distinct components of T −Ni−1. Let

Mi = {e ∈ E(T ) | v(e) = v(e′) for some e′ ∈M ′
i}

and define Ni = Mi∪Ni−1. Note that Mi is the set of blue edges e in T that have an
adjacent edge e′, such that e and e′ belong to the same star of R (i.e. v(e) = v(e′)),
and e′ connects two distinct components of T −Ni−1 (i.e. e′ ∈M ′

i). In the sequel we
generalize Claim 1.

e

f1

f ′1

f0x

y

Figure 4: Edges not in T are marked by dashed lines. The only vertex
not in T (the vertex y) is white. Vertices of C are yellow.

Claim 2: There is no red edge with endvertices in distinct components of T −N1.
Proof: Suppose to the contrary, that a red edge e connects distinct components of
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T − N1. By Claim 1 both endvertices of e are contained in the same component
of T − U , call it C (see Figure 4). Then there is a blue edge f1 ∈ N1 \ U , such
that the endvertices of e are contained in distinct components of C − f1. Since
f1 ∈ N1 \U = M1, there is an edge f ′1 ∈M ′

1 such that v(f ′1) = v(f1). Since f ′1 ∈M ′
1,

there is a (green) edge f0 ∈ N0 = U , such that the endvertices of f ′1 are contained in
distinct components of T − f0. Let T ′ be the tree obtained from T by deleting f0, f1
and adding edges xy, f ′1, e, and vertex y, where x = v(f0) and y ∈ V (Q)\V (T ). Then
T ′ is a larger tree containing at most one edge of each star of R. This contradicts
the maximality of T . �

Claim 2 has the following generalization (we skip the proof of Claim 3 since it is
similar to the proof of Claim 2).

Claim 3: For every natural number k there is no red edge with endvertices in
distinct components of T −Nk.

Let k be the minimum integer such that Nk = Nk+1. It follows from the definition
of sets Ni, that then Mk+1 ⊆ Nk. In other words, for every blue edge e′ ∈ M ′

k+1

with endvertices in distinct components of T − Nk, there is an edge e ∈ Nk such
that v(e) = v(e′). Moreover, by Claim 3, there are no red edges with endvertices in
distinct components of T −Nk.

Let Y ′ ⊆ E(Q) be the set of edges incident to a vertex in Y = {v(e) | e ∈ Nk}.
We recall that U ⊆ Nk. It follows from the above discussion that Y ′ contains all
green and blue edges between distinct components of T −Nk, and since there are no
red edges with endvertices in distinct components of T −Nk, we find that Q−Y has
at least |Nk|+ 2 components (there are |Nk|+ 1 components of T −Nk and at least
one component contained in V (Q) \ V (T )).

Now we return back to graph G. Note that removing Y ′ from Q is the same as
removing Y from G (in terms of connected components that appear). In each case
we get at least |Nk| + 2 components. Hence G is at most |Nk|/(|Nk| + 2)-tough, a
contradiction. This proves V (T ) = V (Q), and completes the proof of the theorem.

�

We finish our paper with open problems and questions. The main problem that
remains open is to solve Conjecture 1.3. The example given in Figure 3 is an example
of a non-prism-hamiltonian bipartite graph which is 1/2-tough but not 2-connected.
The question below asks if there exist 2-connected graphs with these properties.

Question 2.4 Is there a 2-connected bipartite graph G with τ(G) ≥ 1/2 which is
not prism-hamiltonian?

The following problem is a special case of Conjecture 1.3.

Problem 2.5 Prove that every 1-tough regular bipartite graph and every 1-tough
bipartite graph of maximum degree 4 is prism-hamiltonian.
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