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Abstract

A graph G is equimatchable if every maximal matching of G has the same
cardinality. In this paper, we investigate equimatchable graphs such that
the removal of any edge creates a graph that is not equimatchable, called
edge-critical equimatchable graphs (ECE-graphs). We show that apart
from two simple cases, namely bipartite ECE-graphs and even cliques, all
ECE-graphs are 2-connected factor-critical. Accordingly, we give a char-
acterization of factor-critical ECE-graphs with connectivity 2. Our result
provides a partial answer to an open question posed by Levit and Man-
drescu [Eur. J. Comb. 20 (2019), 261–272] on the characterization of well-
covered graphs with no shedding vertex. We also introduce equimatch-
able graphs such that the removal of any vertex creates a graph that
is not equimatchable, called vertex-critical equimatchable graphs (VCE-
graphs). To conclude, we clarify the relationship between various sub-
classes of equimatchable graphs (including ECE-graphs and VCE-graphs)
and discuss the properties of factor-critical ECE-graphs with connectivity
at least 3.

1 Introduction

Matching theory is one of the fundamental fields that encompasses both practical
and theoretical challenges [14]. Given a graph G, a matching is a set of edges of
G having pairwise no common endvertices. It is well-known that given a graph, a
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matching of maximum size can be efficiently computed whereas finding an inclusion-
wise maximal matching of minimum cardinality is an NP-complete problem even in
several restricted cases [22].

A graph G is called equimatchable if every maximal matching of G has the same
cardinality. The structure of equimatchable graphs has been widely studied in the
literature (see for instance [1, 2, 4, 5, 8, 9, 11, 15, 16, 17]). The counterpart of
equimatchable graphs for independent sets are the well-covered graphs: a graph is
well-covered if all its maximal independent sets have the same size. Well-covered
graphs have been first introduced in [18] and studied extensively since then. Given
a graph G, the line graph L(G) is the graph obtained by representing every edge of
G with a vertex in L(G) and making two vertices of L(G) adjacent if the edges of G
represented by these vertices have a common endvertex. It follows that a graph G is
equimatchable if and only if its line graph L(G) is well-covered. Motivated by this
link and the related research on well-covered graphs, we investigate in this paper the
criticality of equimatchable graphs, which has been posed as an open question on
well-covered graphs in [13] and reformulated in [6] in terms of equimatchable graphs.

A graph is 1-well-covered if it is well-covered and remains well-covered upon re-
moval of any vertex [19]. Recently, the stability of being equimatchable with respect
to edge removals has been studied in [6]. An equimatchable graph G is called edge-
stable if the graph obtained by the removal of any edge of G remains equimatchable.
Edge-stable equimatchable graphs are denoted ESE-graphs as a shorthand. So, a
graph is edge-stable equimatchable if and only if its line graph is 1-well-covered. A
shedding vertex is a vertex x such that for every independent set I in the graph
obtained by removing the neighborhood of x and the vertex x, there exists some
neighbor y of x such that I ∪ {y} is independent. Shedding vertices are strongly re-
lated to the combinatorial topology of independence complexes of graphs [13, 21], and
play an important role in identifying vertex decomposable graphs [3]. In [13], Levit
and Mandrescu showed that all vertices of a well-covered graph G without isolated
vertices are shedding if and only if G is 1-well-covered, and posed their characteriza-
tion as an open problem. A partial answer has been given in [6] by showing that the
characterization of edge-stable equimatchable graphs (with no component isomor-
phic to an edge) provides a characterization for well-covered line graphs such that all
vertices are shedding. In the same paper [13], finding all well-covered graphs having
no shedding vertex has been posed as an open problem. In terms of equimatchable
graphs, this corresponds to the notion of criticality which is the opposite of stability.
In this paper, we investigate edge-critical equimatchable graphs which correspond to
well-covered line graphs with no shedding vertex; we provide their characterization
in some cases and shed light to their structure from various perspectives.

For an equimatchable graph G, we say that e ∈ E(G) is a critical edge if the
removal of e from G makes it non-equimatchable. Note that if an equimatchable
graph G is not edge-stable, then it has a critical edge. A graph G is called edge-critical
equimatchable, denoted ECE for short, if G is equimatchable and every e ∈ E(G) is
critical. We note that ECE-graphs can be obtained from any equimatchable graph
by recursively removing non-critical edges. By definition of ECE-graphs, a graph G
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with no component isomorphic to an edge is ECE if and only if L(G) is well-covered
and has no shedding vertex. Thus, the complete characterization of ECE-graphs
would clarify the structure and the recognition of well-covered line graphs with no
shedding vertex.

At the expense of losing the link with 1-well-covered graphs, one can also extend
the notion of criticality of equimatchable graphs to vertex removals. An equimatch-
able graph G is called vertex-critical if G looses its equimatchability by the removal
of any vertex. We denote vertex-critical equimatchable graphs shortly by VCE.

We start with formal definitions and frequently used results on equimatchability
in Section 2. We proceed with the characterization of VCE-graphs in Section 3. Our
findings point out that apart from an easily detectable simple structure, VCE-graphs
coincide with factor-critical equimatchable graphs and that they contain all factor-
critical ECE-graphs. This motivates once again the study of ECE-graphs, which we
start in Section 4. We first show that ECE-graphs are either 2-connected factor-
critical or 2-connected bipartite or even cliques. Noting that 2-connected bipartite
ECE-graphs admit a simple characterization, we focus on factor-critical ECE-graphs.
We give a complete characterization of ECE-graphs with connectivity 2. In Section
5, we provide a comparison of various subclasses of equimatchable graphs in terms
of inclusions and intersections; ECE-graphs, VCE-graphs, edge-stable equimatchable
graphs and factor-critical equimatchable graphs are illustrated in Figure 3. We con-
clude in Section 6 with a discussion on factor-critical ECE-graphs with connectivity
at least 3.

2 Definitions and preliminaries

Given a graph G = (V,E) and a subset of vertices I, G[I] denotes the subgraph of
G induced by I, and G \ I = G[V \ I]. If I is a singleton {v}, we denote G \ I by
G− v. We also denote by G \ e the graph G(V,E \ {e}). For a subset I of vertices,
we say that I is complete to another subset I ′ of vertices (or by abuse of notation, to
a subgraph H) if all vertices of I are adjacent to all vertices of I ′ (respectively H).
Kr is a clique on r vertices. For a vertex v, the neighborhood of v in a subgraph H
is denoted by NH(v). We omit the subscript H when it is clear from the context.
For a subset V ′ ⊆ V , N(V ′) is the union of the neighborhoods of the vertices in V ′.
The degree of a vertex v is the number of its neighbors, denoted by d(v). For a graph
G, Δ(G) denotes the maximum degree of a vertex in G. For a connected graph G,
a k-cut set is a set of k vertices whose removal disconnects the graph into at least
two connected components. A 1-cut set is called a cut vertex. The smallest k such
that G has a k-cut set is called the connectivity of G. Also, a graph G having no
(k − 1)-cut is called k-connected. For simplicity, we sometimes abuse the language
and use a connected component and the graph induced by this connected component
interchangably.

Given a graph G, the size of a maximum matching of G is denoted by ν(G). A
matching is maximal if no other matching properly contains it. A matching M is
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said to saturate a vertex v if v is an endvertex of some edge in M , otherwise it leaves
a vertex exposed. If every matching M of G extends to a perfect matching, in other
words, for every matching M (including a single edge) there is a perfect matching
that contains M , then G is called randomly matchable. Clearly, if an equimatchable
graph has a perfect matching, then it is randomly matchable. If G− v has a perfect
matching for every v ∈ V (G), then G is called factor-critical. For short, a factor-
critical equimatchable graph is denoted an EFC-graph. For a vertex v, a matching
M is called a matching isolating v if {v} is a connected component of G \ V (M). If
G is factor-critical, it follows from its definition that for every vertex v, there is a
matching Mv isolating v.

The following result serves as a guideline to study the structure of equimatchable
graphs.

Theorem 2.1 [17] A 2-connected equimatchable graph is either factor-critical or
bipartite or K2t for some t ≥ 1.

In the view of Theorem 2.1, a systematic way to study various properties of
(subclasses of) equimatchable graphs is to consider i) equimatchable graphs with
a cut vertex, ii) 2-connected EFC-graphs, iii) 2-connected bipartite equimatchable
graphs, and iv) K2t for some t ≥ 1.

The case of bipartite graphs has been settled as follows.

Lemma 2.2 [17] A connected bipartite graph G = (U ∪W,E), |U | ≤ |W | is equi-
matchable if and only if for every u ∈ U , there exists a non-empty set S ⊆ N(u)
such that |N(S)| ≤ |S|.

Lemma 2.2, together with the well-known Hall’s condition implies the following
more insightful characterization of connected bipartite equimatchable graphs.

Theorem 2.3 (Hall’s Theorem) [12] A bipartite graph G = (A ∪ B,E) has a
matching saturating all vertices in A if and only if it satisfies |N(S)| ≥ |S| for every
subset S ⊆ A.

Corollary 2.4 [6] Let G = (U∪W,E) be a connected bipartite graph with |U | ≤ |W |.
Then G is equimatchable if and only if every maximal matching of G saturates U .

While studying equimatchable graphs with a cut vertex, the following will be
useful:

Lemma 2.5 [2] Let G be a connected equimatchable graph with a cut vertex v, then
each connected component of G− v is also equimatchable.

Recall that a graph is equimatchable if and only if every connected component
of it is equimatchable. Therefore, in the remainder of this paper, we assume that all
graphs are simple, finite, connected.
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It should be noted that in the studies of equimatchable graphs with respect to
various properties in [9, 10, 11], the case of factor-critical equimatchable graphs
has been the most complicated one. The following basic observations will guide
us through our proofs. Since the size of any maximal matching in a factor-critical
equimatchable graph is (n− 1)/2 where n is the number of vertices of the graph, we
have the following:

Lemma 2.6 [6] Let G be a factor-critical graph. G is equimatchable if and only if
there is no independent set I with three vertices such that G\I has a perfect matching.

An equivalent reformulation of Lemma 2.6 is the following:

Corollary 2.7 Let G be a factor-critical equimatchable graph. Then every maximal
matching of G leaves exactly one vertex exposed.

Another useful result on factor-critical equimatchable graphs is the following.

Lemma 2.8 [9] Let G be a 2-connected factor-critical equimatchable graph. Let v
be a vertex of G and Mv a minimal matching isolating v. Then G \ (V (Mv) ∪ {v})
is isomorphic to K2n or Kn,n for some n ∈ N.

Lastly, equimatchable graphs with a perfect matching are precisely randomly
matchable graphs whose structure is well-known:

Lemma 2.9 [20] A connected graph is randomly matchable if and only if it is iso-
morphic to a K2n or a Kn,n (n ≥ 1).

3 Vertex-critical equimatchable graphs

Let us first investigate vertex-critical equimatchable graphs. As suggested by Theo-
rem 2.1, we will proceed seperately with VCE-graphs with a cut vertex, 2-connected
bipartite VCE-graphs, even cliques (showing that all three of them are empty), and
finally with 2-connected factor-critical VCE-graphs. As a result, we will show that
VCE-graphs are almost equivalent to factor-critical equimatchable graphs. Building
upon the results obtained in this section, we will show later that VCE-graphs contain
factor-critical ECE-graphs. This motivates even further the study of factor-critical
ECE-graphs.

Recall that a graph G is VCE if G is equimatchable and G − v is non-equi-
matchable for every v ∈ V (G). Let us call a vertex v ∈ V (G) strong (in G) if every
maximal matching of G saturates v, (or equivalently there is no maximal matching
of G− v saturating all neighbours of v), otherwise it is called weak (in G).

We have the following by noticing that every maximal matching of G saturates
v if and only if the size of every maximal matching of G decreases exactly by one
when v is removed from G:
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Remark 3.1 Let G be an equimatchable graph. Then v is a strong vertex if and
only if ν(G− v) = ν(G)− 1.

Proposition 3.2 Let G be an equimatchable graph. Then, for a vertex v ∈ V (G),
the graph G− v is equimatchable if and only if one of the following holds:

(i) v is a strong vertex in G,
(ii) all vertices in N(v) are strong in G− v.

Proof. Let G be an equimatchable graph, and assume that G− v is equimatchable
for a vertex v ∈ V (G). There are two possibilities: Either ν(G − v) = ν(G) − 1
and then v is a strong vertex by Remark 3.1. Otherwise, ν(G − v) = ν(G), i.e., v
is not strong, hence it is a weak vertex. Then we claim that N(v) is a set of strong
vertices in G− v. Indeed, if u ∈ N(v) is a weak vertex in G− v, then there exists a
maximal matching M of G−v leaving u exposed with |M | = ν(G−v) = ν(G). Then
M ∪ {vu} is a maximal matching in G, a contradiction with the equimatchability of
G. Hence N(v) is a set of strong vertices in G− v.

We now suppose the converse. Let G be an equimatchable graph, and let v be
a strong vertex. Then ν(G − v) = ν(G)− 1 and the size of each maximal matching
decreases exactly by one. It follows that G− v is equimatchable. Now, let N(v) be a
set of strong vertices in G−v. Then every maximal matching of G−v saturates N(v),
and therefore those are also maximal matchings of G. Since G is equimatchable, they
all have the same size, thus G− v is also equimatchable. �

By Lemma 2.5, if an equimatchable graph has a cut vertex, then its removal from
the graph leaves an equimatchable graph. Then we have the following.

Proposition 3.3 VCE-graphs are 2-connected.

Proposition 3.4 There is no bipartite VCE-graph.

Proof. Let G = (U ∪W,E) be a bipartite equimatchable graph with |U | ≤ |W |. By
Corollary 2.4, every vertex of U is strong. It follows that G − u is equimatchable
for every u ∈ U by Proposition 3.2. Therefore, G is not VCE. Hence, there is no
bipartite VCE-graph. �

Since every complete graph is an equimatchable graph, the removal of a vertex
from Kt yields an equimatchable graph. Thus we have the following.

Proposition 3.5 Kt for some integer t ≥ 2 is not VCE.

Theorem 2.1 together with Propositions 3.3, 3.4 and 3.5 imply the following:

Corollary 3.6 VCE-graphs are 2-connected factor-critical.
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So, the following result provides a characterization of all VCE-graphs.

Theorem 3.7 Let G be a 2-connected graph with 2r + 1 vertices. Then G is VCE
if and only if G is a (K2r, Kr,r)-free EFC-graph.

Proof. Let G be a VCE-graph with 2r+ 1 vertices, then it is 2-connected by Propo-
sition 3.3. We claim that G is (K2r, Kr,r)-free, since otherwise there exists a vertex
v ∈ V (G) such that G− v is isomorphic to a connected randomly matchable graph.
In such a case G − v is equimatchable, a contradiction with the vertex criticality
of G.

We now suppose the converse. Let G be a (K2r, Kr,r)-free EFC-graph. Assume for a
contradiction that there is a vertex v ∈ V (G) such that G−v is equimatchable. Since
G is factor-critical, the graph G− v has a perfect matching. It follows that G− v is
a connected randomly matchable graph which is either K2r or Kr,r by Lemma 2.9,
contradicting our assumption. Therefore G is VCE. �

Having obtained a characterization of VCE-graphs as a subclass of EFC-graphs,
let us now investigate the difference of EFC-graphs from VCE-graphs. This will
allow us to complete the containment relationships between various subclasses of
equimatchable graphs as depicted in Figure 3 of Section 5.

Theorem 3.8 [11] G is an EFC-graph with a cut-vertex v if and only if every con-
nected component Ci of G − v is isomorphic to Kr,r or to K2t for some integers
r, t ≥ 1 and where v is adjacent to at least two adjacent vertices of each Ci.

Theorem 3.7 together with Propositions 3.3 and Theorem 3.8 allow us to describe
all EFC-graphs that are not VCE as follows:

Proposition 3.9 Let G be an EFC-graph which is not VCE. Then there exists a
vertex v ∈ V (G) such that each connected component Ci of G− v is a Kr,r or a K2t

for some integers r, t ≥ 1 and where v is adjacent to at least two adjacent vertices of
each Ci.

Proof. If G has a cut-vertex, then the result follows from Theorem 3.8. Otherwise
G is a 2-connected graph with 2r + 1 vertices and contains one of K2r or Kr,r by
Theorem 3.7. Since G is 2-connected, v has at least two neighbors x and y in G− v;
moreover xy ∈ E. Indeed, if G − v is K2r then clearly xy ∈ E; if G − v is Kr,r

then x and y belong to the same (r)-stable set of Kr,r and v has no neighbor in the
other (r)-stable set; then G − x has no perfect matching, contradicting that G is
factor-critical. �

It follows from the above discussion that VCE-graphs are almost equivalent to
the class of factor-critical equimatchable graphs; indeed this is the most intriguing
subclass of equimatchable graphs as the structure of the remaining equimatchable
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graphs are rather well-known [5, 17]. By Proposition 3.9, the only factor-critical
equimatchable graphs that are not VCE are those graphs G admitting a vertex v
such that G−v leaves a graph whose connected components are Kr,r or K2t for some
integers r and t and where v is adjacent to at least two adjacent vertices of each
component of G− v.

We now start the investigation of ECE-graphs. It is worth noting that while
comparing subclasses of equimatchable graphs in Section 5, Proposition 3.3 and
Theorem 3.7 will allow us to derive (in Corollary 5.4) that all factor-critical ECE-
graphs are VCE.

4 Edge-critical equimatchable graphs

In this section, we investigate ECE-graphs. Our preliminary results in Section 4.1
show that apart from two simple cases, namely bipartite ECE-graphs and complete
graphs of even order, all ECE-graphs are (2-connected) factor-critical. Then, we
characterize factor-critical ECE-graphs with connectivity 2 in Section 4.2 (Theorem
4.9). It is worth mentioning that one can easily observe that ECE-graphs consist of
at least four vertices, i.e., no graphs of order at most three can be an ECE-graph.

4.1 Preliminaries on ECE-graphs

We start with a lemma that will be frequently used in our proofs.

Lemma 4.1 Let G be an equimatchable graph except K2. Then uv ∈ E(G) is critical
if and only if there is a matching of G containing uv and saturating N({u, v}).

Proof. Assume that uv is a critical edge in G. Then G \ uv admits two maximal
matchings M1 and M2 with |M1| < |M2|. Note that M1 leaves both u and v exposed
in G \ uv since otherwise M1 would be a maximal matching of G, contradicting that
G is equimatchable. This implies that M1 saturates all vertices in NG\uv({u, v}).
Hence, M1 ∪ {uv} is a maximal matching of G as desired.

We now suppose the converse. If there is such a matching M , then M \ {uv} is
a maximal matching in G \ uv. However, there exists another vertex w which is
without loss of generality a neighbour of v since G �= K2. So there is also another
maximal matching M ′ in G \ uv which can be obtained by extending the edge vw.
Clearly, M ′ has size ν(G) since it is also a maximal matching of G. Then G \ uv is
not equimatchable, implying that uv is a critical-edge in G. �

By Lemma 4.1, if a graph G is factor-critical ECE, then for every uv ∈ E(G),
there exists a matching of G containing uv and saturating N({u, v}). However such
a matching does not exist if N({u, v}) = V (G) since |G| is odd. It follows that:

Corollary 4.2 If G is a factor-critical ECE-graph, then there is no edge uv ∈ E(G)
such that N({u, v}) = V (G).
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The following is a direct consequence of Lemma 4.1, since any randomly match-
able graph has a matching containing uv and saturating N({u, v}) for every edge uv.

Remark 4.3 Randomly matchable graphs except K2 are edge-critical equimatch-
able.

In what follows, we shall prove that ECE-graphs have no cut vertex.

Lemma 4.4 ECE-graphs are 2-connected.

Proof. Assume that G is an ECE-graph, and has a cut-vertex z. Let H1, H2, . . . , Hk

be the components of G − z for k ≥ 2. By Lemma 2.5, each Hi is equimatchable.
Besides, since G is an ECE-graph, there exists a matching containing uv and sat-
urating N({u, v}) for every uv ∈ E(G) by Lemma 4.1. Let us pick a vertex wi

from each component Hi such that wi ∈ N(z) ∩ Hi. Then, for the edge zw1, there
exists a maximal matching M in G containing zw1 and saturating N({z, w1}). Let
M ∩ E(Hi) = Mi for i ∈ [k]. Observe that M1 saturates all vertices in NH1(w1).
Also, for each i ≥ 2, the matching Mi saturates all vertices in NHi

(z). We now
consider the edge zw2, similarly as above; there exists a maximal matching L in G
containing zw2 and saturating N({z, w2}). It follows that there exists a maximal
matching T = L ∩ E(H1) in H1 such that T saturates all vertices in NH1(z). In
this manner, we obtain a maximal matching T ∪ M2 ∪ . . . ∪ Mk in G isolating z,
and so we have ν(G) = |T |+ |M2| + . . .+ |Mk| since G is equimatchable. This also
implies that ν(G) =

∑
ν(Hi). On the other hand, observe that M1 is a maximal

matching in H1 since M1 saturates all vertices in NH1(w1). Moreover the matchings
M1 and T are of the same size since H1 is equimatchable. Thus M1 ∪M2 ∪ . . .∪Mk

must be of size ν(G). However, this contradicts that we have the maximal matching
M = M1 ∪M2 ∪ . . . ∪Mk ∪ {zw1} in G. Hence G has no cut-vertex. �

The following is an immediate consequence of Theorem 2.1 together with
Lemma 4.4.

Theorem 4.5 ECE-graphs are either factor-critical or bipartite or K2t for some
t ≥ 2.

In view of Theorem 4.5, we consider ECE-graphs under three disjoint categories:
2-connected factor-critical, 2-connected bipartite, and complete graphs of even order
(which are randomly matchable thus ECE).

The characterization of bipartite ECE-graphs has been given in [5] as follows.

Theorem 4.6 [5] A connected bipartite graph G = (U ∪V,E) with |U | ≤ |V | except
K2 is a bipartite ECE-graph if and only if for every u ∈ U, |N(S)| ≥ |S| holds for
any subset S ⊆ N(u) and the equality holds only for S = N(u).

It remains to clarify the structure of factor-critical ECE-graphs. Recall that all
factor-critical ECE-graphs are 2-connected by Lemma 4.4. In the next subsection,
we provide a characterization of factor-critical ECE-graphs with connectivity 2.
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4.2 Factor-critical ECE-graphs with connectivity 2

The following result on factor-critical equimatchable graphs with connectivity 2 will
guide us in this subsection.

Theorem 4.7 [11] Let G be an EFC-graph of order at least 5 and connectivity 2 and
let S = {s1, s2} be a 2-vertex-cut of G. Suppose that ai and bi are distinct neighbours
of si in respectively A and B for i = 1, 2. Then G \ S has precisely two components
A and B such that

(i) B is one of the four graphs K2p+1, K2p+1 \ b1b2, Kp,p+1 or Kp,p+1 + b1b2 and in
the two last cases b1 and b2 belong to the (p+ 1)-stable set of Kp,p+1.

(ii) A \ {a1, a2} is either K2q−2 or Kq−1,q−1, and if |B| > 1, then A is either K2q

or Kq,q

First, we show that there is no factor-critical ECE-graph of order 5 or less.

Remark 4.8 Factor-critical ECE-graphs have at least 7 vertices.

Proof. It is clear that there is no ECE-graph on 3 or fewer vertices. Assume that
there exists a connected factor-critical ECE-graph G with 5 vertices. If Δ(G) = 2,
then for any edge uv ∈ E(G) with d(u) = d(v) = 2, there is no matching containing
uv and saturating N({u, v}). Thus, uv is not critical by Lemma 4.1. For the other
case, if Δ(G) ≥ 3, then for a vertex u with d(u) ≥ 3, there exists a neighbour v of u
such that N [{u, v}] = V (G), a contradiction by Corollary 4.2. �

The general structure of a factor-critical ECE-graph G of order at least 7 and
connectivity 2 follows from Theorem 4.7; for a 2-cut S = {s1, s2}, the graph G − S
has exactly two components A and B as described in Theorem 4.7 and illustrated in
Figure 1.

a1

a2

b1

b2

s1

s2

A B

Figure 1: The structure of factor-critical ECE-graphs where |A| is even and |B|
is odd.

We will introduce five possible configurations with respect to A and B and then
show that a factor-critical ECE-graph with connectivity 2 falls into one of these five
types. For a graph G, consider A,B ⊂ V (G) each one with at least two vertices. We
say that A is partially-complete to B if there exist a non-empty partition A1, A2 of
A and a non-empty partition B1, B2 of B such that for each i = 1, 2, Ai is complete
to Bi and Ai has no neighbour in B3−i. Let S = {s1, s2} be an independent set.
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• Type I: A ∼= K2q, B ∼= K2p+1 for p, q ≥ 1 such that S is complete to A, and S
is partially-complete to B (see Figure 2(a)).

• Type II: A ∼= Kq,q, B ∼= K2p+1 for p, q ≥ 1 such that for i = 1, 2, each si is
complete to a distinct (q)-stable set of A, and S is partially-complete to B (see
Figure 2(b)).

• Type III: A ∼= K2q, B ∼= Kp,p+1 for p, q ≥ 1 such that S is complete to A, and
S is partially-complete to the (p+ 1)-stable set of B (see Figure 2(c)).

• Type IV: A ∼= Kq,q, B ∼= Kp,p+1 for p, q ≥ 1 such that for i = 1, 2, each si
is complete to distinct (q)-stable sets of A, and S is partially-complete to the
(p+ 1)-stable set of B (see Figure 2(d)).

• Type V: A \ {a1, a2} ∼= K2q−2 for q ≥ 3, B ∼= K1, and there is a vertex w ∈ A
such that {a1, a2, w} is a stable set, each si is complete to {b, ai, w} for i = 1, 2,
and {a1, a2, w} is complete to A \ {a1, a2, w} (see Figure 2(e)).
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A ∼= K2q B ∼= K2p+1

(a) Type I

s1

s2

A ∼= Kq,q B ∼= K2p+1

(b) Type II
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s2
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(c) Type III

s1

s2

A ∼= Kq,q B ∼= Kp,p+1

(d) Type IV

b

s1

s2

a1

w

a2
K2q−3

(e) Type V

Figure 2: The family F of factor-critical ECE-graphs with connectivity 2.

Let F stand for the family of all graphs falling into one of the five types of
configurations I, II, III, IV, V depicted in Figure 2. The main result of this section
is the following.

Theorem 4.9 A graph G is factor-critical ECE with connectivity 2 if and only if
G ∈ F where the five types describing F are depicted in Figure 2.
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We will obtain the proof of Theorem 4.9 as two separate lemmas, each one proving
one direction.

Lemma 4.10 All graphs belonging to F are ECE-graphs.

Proof. Let G ∈ F . We will show that each one of the five types of configuration is
an ECE-graph. Let Gi be the class of all graphs of Type i as described above and
depicted in Figure 2.

G ∈ G1 is equimatchable: Since S is complete to A and partially-complete to B,
and since G \ S consists of two cliques, it follows that the independence number of
G is equal to 2. Thus G is equimatchable by Lemma 2.6.

G ∈ G2 is equimatchable: Let A1, A2 be the bipartition of A with A1 = {a1, a2, . . . ,
aq} and A2 = {a′1, a′2, . . . , a′q} and without loss of generality suppose that for i = 1, 2,
each si is complete to Ai. Consider an independent set I of size 3. It is clear that
I cannot contain both s1 and s2 since N({s1, s2}) = V (G). Thus, there are two
possibilities. Either I contains at least two vertices of A, say a1, a2 ∈ A1, then G \ I
has no perfect matching since {a′1, a′2, . . . , a′q} is an independent set in G \ I having
only q − 1 neighbours in G \ I. Or I contains one vertex from each one of the sets
A, S and B, say I = {a, s, b}, respectively. Note that if s = s1, then a ∈ A2. In this
case, G \ I has no perfect matching since {a1, a2, . . . , aq} is an independent set in
G \ I having only q− 1 neighbours in G \ I. It then follows from Lemma 2.6 that G
is equimatchable.

G ∈ G3 is equimatchable: Let B1, B2 be the bipartition of B with B1 = {b1, b2, . . . ,
bp+1} and B2 = {b′1, b′2, . . . , b′p}. Note that S is complete to A and partially-complete
to B1. Consider an independent set I of size 3. Suppose I contains both vertices of
S = {s1, s2}, then its third vertex belongs to B2. We then observe that G \ I has
no perfect matching since B1 is an independent set of G \ I of size p + 1 but it has
only p− 1 neighbours in G \ I. So assume that I contains at most one vertex from
A ∪ S, thus at least two vertices x, y in B, necessarily both in B1 or both in B2. If
x, y ∈ B1, then G\ I has no perfect matching, since B2 is an independent set in G\ I
of size p but it has at most p−1 neighbours in G \ I. Finally, if x, y ∈ B2, then G \ I
has no perfect matching since B1 is an independent set in G \ I of size p + 1 but it
has at most p neighbours in G \ I. Hence G is equimatchable by Lemma 2.6.

G ∈ G4 is equimatchable: Let A1 and A2 be the bipartition of A with |A1| =
|A2| = q ≥ 1 and si is complete to Ai for i = 1, 2. Consider an independent set I of
size 3. If I contains both vertices of S = {s1, s2} or at least two vertices of B, then
we can show that G is equimatchable in a similar way as above. Thus, assume that
I contains at least two vertices of A which should be clearly in the same part of A,
say A1. Then G \ I has no perfect matching since A2 is an independent set in G \ I
of size q but it has at most q − 1 neighbours in G \ I (in A1 ∪ {s2}). Finally, if I
consists of one vertex from each one of the sets A, S and B, without loss of generality
I = {a, s1, b} where b ∈ V (B) and a ∈ A2, then G \ I has no perfect matching since
A1 is an independent set in G\I of size q but it has q−1 neighbours in G\I. Hence,
in each case, G is equimatchable by Lemma 2.6.
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G ∈ G1∪G2∪G3∪G4 is ECE: We will show that for every e = uv ∈ E(G) the graph
G \ e is not equimatchable by considering every possible type of edge. First, suppose
e is incident to two vertices in A and S, say without loss of generality u ∈ A and
v = s1. Then for some b ∈ B \N(s1) there is a perfect matching Mb in B \ {b}, and
a perfect matching MA in A \ {u′} for some u′ such that uu′, s2u′ ∈ E. Now, the set
MA∪Mb∪{uv, u′s2} is a matching containing uv and saturating N({u, v}). It follows
from Lemma 4.1 that G \ e is not equimatchable. Similarly, if e is incident to two
vertices in B and S, say u ∈ B and v = s1, then letting MA and Mu being perfect
matchings in A and B \ {u} respectively, the set MA ∪ Mu ∪ {uv} is a matching
containing uv and saturating N({u, v}). So, G \ e is not equimatchable. Now, if
e belongs to A, then there is a perfect matching MA of A containing the edge uv
such that for some bi ∈ NB(si) for i = 1, 2, the set MA ∪ {s1b1, s2b2} is a matching
containing uv and saturating N({u, v}). So, G \ e is not equimatchable. Finally, if e
belongs to B, then there exists b ∈ B \ {u, v} due to p ≥ 1, say bsi ∈ E(G) for some
i ∈ {1, 2} such that there exists a perfect matching Mb of B \ {b} containing the
edge uv, and a vertex a ∈ NA(s3−i) such that the set Mb ∪ {sib, s3−ia} is a matching
containing uv and saturating N({u, v}). So, G \ e is not equimatchable. Hence G is
ECE.

G ∈ G5 is equimatchable: By definition, the set {a1, a2, w} is independent, si is
complete to {b, ai, w} for i = 1, 2, and {a1, w, a2} is complete to A′ = A \ {a1, w, a2}.
Consider an independent set I of size 3. If I contains S or I = {a1, a2, w}, then
G \ I has an odd component implying that G \ I has no perfect matching. The
only remaining possibility is that I consists of the vertex b and two vertices from
{a1, a2, w}. In this case, {s1, s2} is an independent set in G \ I, but it has a unique
neighbour in G \ I. So G \ I has no perfect matching. Therefore, G is equimatchable
by Lemma 2.6.

G ∈ G5 is ECE: Let us show that for every possible e = uv ∈ E(G), the graph G \ e
is not equimatchable using Lemma 4.1. Let A′ = A \ {a1, w, a2}. If e is incident
to two vertices in B and S, say u = b and v = s1, then for some a′ ∈ A′, the set
{s1b, s2w, a1a′} is a matching containing s1b and saturating N({s1, b}). Similarly,
if e is incident to two vertices in {a1, a2, w} and S, say without loss of generality
u ∈ {a1, w} and v = s1, then for x ∈ {a1, w} \ {u}, there is a perfect matching Mx

of the graph induced by A′ ∪ {x} such that the set Mx ∪ {s1u, bs2} is a matching
containing s1u and saturating N({s1, u}). Finally, the cases where e is incident to
two vertices in {a1, a2, w} and A′, say without loss of generality u = a1 and v ∈ A′,
or two vertices in A′ will be handled commonly. In these cases, there is a perfect
matching Ma1 of the graph induced by A′ ∪ {a1} that contains the edge a1v. It
follows that the set Ma1 ∪ {s1w, s2a2} is a matching containing a1v and saturating
N({a1, v}). Hence G is ECE-graph by Lemma 4.1. �

Now, we will show that all factor-critical ECE-graphs with connectivity 2 belong
to the family F . To this end, we will first give an equivalent formulation for a graph
to belong to the family F which follows directly from the definitions of Types I, II,
III, IV, V forming the family F (as depicted in Figure 2).
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Proposition 4.11 Let G be a factor-critical graph of order at least 7 and connec-
tivity 2. Then G is a member of F if and only if there exists a 2-cut S = {s1, s2}
such that G \ S has exactly two components A and B, and the following hold:

(i) B is isomorphic to either K1 or K2p+1 or Kp,p+1 for p ≥ 1. Moreover, for
p ≥ 1, if B ∼= K2p+1 (resp. Kp,p+1), then S is partially-complete to B (resp.
(p+ 1)-stable set of B).

(ii) S is an independent set.
(iii) If |B| > 1, then A ∪ {s1, s2} induces either K2q+2 \ s1s2 or Kq+1,q+1 \ s1s2 for

q ≥ 1. If |B| = 1, then we have N(si) = {b, ai, w} where b ∈ B, and ai, w ∈ A
for i = 1, 2, and A ∼= K2q \ {a1a2, wa1, wa2} for q ≥ 3.

Lemma 4.12 Let G be a factor-critical graph and connectivity 2. If G is ECE-graph,
then G is a member of F .

Proof. Suppose that G is a factor-critical ECE-graph with connectivity 2. By Theo-
rem 4.7, there is a 2-vertex-cut S = {s1, s2} such that G−S has precisely two compo-
nents A and B as described in items (i) and (ii) of Theorem 4.7. Let s1b1, s2b2 ∈ E(G)
for vertices b1, b2 ∈ B (where b1 and b2 are distinct if |B| > 1, and b1 = b2 if B = K1),
and let s1a1, s2a2 ∈ E(G) for distinct vertices a1, a2 ∈ A (see Figure 1). We will prove
that G satisfies the conditions (i), (ii), (iii) in Proposition 4.11 to show that G has
one of the five configurations in Figure 2.

(i) If |B| = 1, then B = K1, and so the claim clearly holds. Thus we may assume
|B| > 1, and so |B| ≥ 3. First, note that A is either K2q or Kq,q by Theorem 4.7 (ii).
In addition, we infer that a1a2 ∈ E(G), since otherwise A would be Kq,q where a1
and a2 belong to the same q-stable set. However, extending s1a1, s2a2 into a maximal
matching in G leaves two vertices of A exposed, contradicting to the equimatchability
of G by Corollary 2.7.

We now claim that for every b ∈ NB({s1, s2}), B \ {b} is a randomly matchable
graph. Without loss of generality, assume bs1 ∈ E(G). Consider a matching Ma

containing bs1, s2a2 and saturating all vertices but a vertex a ∈ A. This is a minimal
matching isolating a. Thus, by Lemma 2.8, the graph G \ (V (Ma) ∪ {a}) which is
the graph induced by B− b is randomly matchable. It then follows from Lemma 2.9
that B \ {b} is isomorphic to Kp,p or K2p for every b ∈ NB({s1, s2}). Therefore, if B
is isomorphic to Kp,p+1 or Kp,p+1 + b1b2 as described in Theorem 4.7, then NB(S) is
included in the (p + 1)-stable set of Kp,p+1. Moreover, if B is K2p+1 \ b1b2, then S
has no neighbour in B other than b1 and b2.

Claim 1 If there is a vertex w ∈ B \N(S), then B \ {w} has no perfect matching.

Proof of the Claim. Assume for a contradiction that there is a vertex w ∈ B which
is not adjacent to S such that B \ {w} has a perfect matching M . Clearly, M is a
minimal matching isolating w, and therefore A ∪ S induces a connected randomly
matchable graph in G by Lemma 2.8. That is, A ∪ S induces a graph which is
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isomorphic to K2q+2 or Kq+1,q+1 for some q ≥ 1. It then follows that s1s2 ∈ E(G)
since a1a2, a1s1, a2s2 ∈ E(G). In this case, however, we show that s1b1 ∈ E(G) is not
a critical edge. Indeed, if B ∼= Kp,p+1 or B ∼= Kp,p+1 + b1b2, then T = N({s1, b1})
contains the (p)-stable set of Kp,p+1. On the other hand, T contains either A ∪ {s2}
(which induces a K2q+1) or the (q + 1)-stable set of A ∪ S. We then deduce that
every matching of G containing s1b1 leaves a vertex of T exposed. It can be checked
that the same holds if B ∼= K2p+1 or B ∼= K2p+1 \ b1b2 (recall that in this case
NB({s1, s2}) = {b1, b2}). Consequently, there is no matching containing s1b1 and
saturating T = N({s1, b1}), contradicting to the criticality of s1b1. ♦
We have already noticed that if B is K2p+1 \ b1b2 then S has no neighbor in B other
than b1 and b2. So, Claim 1 implies that B is not isomorphic to K2p+1 \ b1b2 for
p ≥ 2 (note that the case p = 1 corresponds to the graph K1,2). We also note that B
is not isomorphic to Kp,p+1 + b1b2 neither. Indeed, S has no neighbour in (p)-stable
set of Kp,p+1 + b1b2, but for a vertex b in (p)-stable set of Kp,p+1 + b1b2, the graph
(Kp,p+1+b1b2)−b has obviously a perfect matching, it contradicts Claim 1. Hence B
is not isomorphic to Kp,p+1+b1b2. It then follows from Claim 1 that either B ∼= K2p+1

and every vertex of B is adjacent to at least one of s1, s2, or B ∼= Kp,p+1 and every
vertex of (p+ 1)-stable set of B is adjacent to at least one of s1, s2.
To complete the proof, it remains to show that s1 and s2 have no common neighbour
in B. To this end, we first clarify the links between S and A as follows:

Claim 2 Both A ∪ {s1} and A ∪ {s2} induce either K2q+1 or Kq,q+1.

Proof of the Claim. We first claim that none of s1 or s2 is complete to B ∼= K2p+1 or
the (p+ 1)-stable set of B ∼= Kp,p+1. Assume for a contradiction that s1 is complete
to B ∼= K2p+1 or the (p + 1)-stable set of B ∼= Kp,p+1, then the edge s1a1 is not
critical. Indeed, NG\s1a1({s1, a1}) contains all vertices of B ∼= K2p+1 or the (p + 1)-
stable set of B ∼= Kp,p+1, as well as NA(a1) which is either an odd clique K2q−1 or the
q-stable set of A. In all cases, there is no matching containing s1a1 and saturating
N({s1, a1}), contradicting that s1a1 is a critical edge in G by Lemma 4.1. Thus, for
each i = 1, 2, there is a vertex b ∈ B such that sib /∈ E(G) where b is a vertex in
B ∼= K2p+1 or the (p + 1)-stable set of B ∼= Kp,p+1. This implies that there exists a
vertex b ∈ B with b ∈ N(s2) \N(s1) such that B \ {b} has a perfect matching P . In
addition, P ∪ {s2a2} is a matching isolating b. It then follows from Lemma 2.8 that
G[A∪{s1}] \ {a2} is a randomly matchable graph. By symmetry, G[A∪ {s2}] \ {a1}
is randomly matchable as well. Moreover, any vertex a ∈ NA(s1) (or a ∈ NA(s2))
can play the role of a1, i.e., the graph G[A∪{s2}]\{a} is randomly matchable graph
for every a ∈ NA(s1). Likewise, the graph G[A ∪ {s1}] \ {a} is randomly matchable
graph for every a ∈ NA(s2). This implies the following: if s1 and s2 have a common
neighbour in A then each of the sets A ∪ {s1} and A ∪ {s2} induce cliques of size
2q + 1; if s1 and s2 have no common neighbour in A then each of the sets A ∪ {s1}
and A ∪ {s2} induce Kq,q+1, and s1a2, s2a1 /∈ E(G). ♦

Let us now show that s1 and s2 have no common neighbour in B. Assume for a
contradiction that there is a vertex b ∈ B such that s1b, s2b ∈ E. In this case, we
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show that the edge s1b is not critical. Indeed, R = NG\s1b({s1, b}) contains either
B \ {b} (when B is an even clique) or (p)-stable set of B ∼= Kp,p+1. Moreover, R
contains either A∪{s2} (when A is an even clique) or (q+1)-stable set of A∪{s2}. In
all cases, one can easily check that there is no matching containing s1b and saturating
N({s1, b}), contradicting the criticality of s1b by Lemma 4.1.

(ii) If s1s2 ∈ E(G), then by the statement (i), N({s1, s2}) contains B or the (p+1)-
stable set of B when B ∼= K2p+1 or B ∼= Kp,p+1, respectively. Thus, there is no
matching containing s1s2 and saturating N({s1, s2}), implying that s1s2 is not a
critical edge by Lemma 4.1. It follows that s1s2 /∈ E(G).

(iii) We shall prove this item under two main cases with respect to the size of B.

Case 1: |B| > 1.

As we have already shown in Claim 2 that G[A∪ {s1, s2}] is either Kq+1,q+1 \ s1s2 or
K2q+2 \ s1s2.
Case 2: |B| = 1.

Let b be the unique vertex in B. By Theorem 4.7-(ii), A′ = A \ {a1, a2} is either
Kq−1,q−1 or K2q−2. Recall that q ≥ 2 by Remark 4.8. We first note that if s1 or
s2 has only two neighbours in G, say dG(s1) = 2, then it is similar to Case 1 as we
take the 2-cut S = {a1, s2}. Thus, dG(si) ≥ 3 for i = 1, 2. Similarly, if none of
s1, s2 has a neighbour in A′, then it boils down to the Case 1 as we take the 2-cut
S = {a1, a2}. Thus there exists w ∈ NA′(S). We then deduce that if s1 or s2 has
no neighbour in A′, say this is s1, then a2 would be a common neighbour of s1 and
s2 since d(s1) ≥ 3 and s1s2 /∈ E by the item (ii). It follows that for every pair
x, y ∈ {a1, a2, w} there exists a matching which saturates {s1, s2, x, y} and isolates b;
thus A \ {x, y} is randomly matchable by Lemma 2.8. Hence we may exchange the
roles of a2 and w as we desired. That is, if we define A′ = A \ {a1, w}, then both
s1 and s2 would have a neighbour in A′. It follows that s1 and s2 has a common
neighbor in A′ (and s1 has no other neighbor in A′). The only remaining case is if
both s1 and s2 have distinct neighbors in A′.

Combining the two cases, in what follows, we assume that each of {s1, s2} has at
least one neighbour in A′. So there exist w1, w2 ∈ A′ such that w1 ∈ N(s1) and
w2 ∈ N(s2) (with possibly w1 = w2). Since {s1w1, s2a2} is a matching isolating
b, the graph G[A′ ∪ {a1}] − w1 is randomly matchable by Lemma 2.8. Similarly,
G[A′ ∪ {a2}] − w2 is randomly matchable since {s1a1, s2w2} is a matching isolating
b. It then follows that if A′ is isomorphic to Kq−1,q−1 with a bipartition R and T ,
then for each i = 1, 2, we deduce that both ai and wi are complete to either R or T .
That is, all neighbours of si in A are complete to either R or T . Similarly, if A′ is
isomorphic to K2q−2, then for each i = 1, 2, we deduce that ai is complete to A′−wi.

For the remaining cases of the proof, we distinguish all possible cases according to
A′ = Kq−1,q−1 and A′ = K2q−2 and vertices w1, w2, s1, s2. We will see that there
is no ECE-graph where A′ = Kq−1,q−1, and the only possible configuration of an
ECE-graph with A′ = K2q−2 corresponds to Type V (see Figure 2(e)).
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Subcase 2.1: Suppose that A′ ∼= Kq−1,q−1, and there exists wi ∈ N(si) for each
i = 1, 2 such that w1 �= w2 and w1w2 ∈ E(G).

We claim that s1a2, s2a1 /∈ E(G). Assume for a contradiction that without loss of
generality s1a2 ∈ E(G). Then {s1a2, s2w2} is a matching isolating b. By Lemma
2.8, the remaining graph H = G[A′ ∪ {a1}] \ w2 must be randomly matchable. We
then say that a1 and w2 are complete to the same (q − 1)-stable set of A′. Recall
also that a1, w1 ∈ V (H) are complete to the same (q − 1)-stable set of A′, and
w1w2 ∈ E(G). This implies that H is not randomly matchable whenever q > 2. If
however q = 2, i.e, A′ = {w1, w2}, then H being randomly matchable implies that
a1w1 ∈ E(G). Now, noting that a1w2 ∈ E(G), the edge a1s1 is not critical in G since
all vertices w1, w2, a2, b belong to N({a1, s1}) \ {a1, s1} whereas there is no matching
in G \ {a1, s1} saturating {w1, w2, a2, b}, a contradiction by Lemma 4.1. Thus, we
conclude that s1a2 /∈ E(G). By symmetry, we also have s2a1 /∈ E(G). Moreover,
a1 is adjacent to a2, since otherwise for a perfect matching M in A′ \ {w1, w2}, the
set M ∪ {s1w1, s2w2} is a perfect matching in G \ {a1, a2, b} where {a1, a2, b} is an
independent set, it is contradiction to the equimatchability of G by Lemma 2.6.

Now, assume A′ has a third vertex w′
2 ∈ N(s2) with w′

2 /∈ {w1, w2}, then there is also
w′

1 in A since A′ ∼= Kq−1,q−1. Then, a1 is adjacent to both w2 and w′
2, similarly a2

is adjacent to both w1 and w′
1. Now we claim that the vertex a2 has no neighbor in

the stable set R of A′ containing w2 and w′
2. Indeed, if a2w ∈ E(G) for some w ∈ R

(which is not necessarily a neighbor of s2) then letting without loss of generality w′
2 to

be a neighbor of s2 different from w, the matching {s1a1, s2w′
2} isolates b. However,

the remaining graph G\{b, s1, s2, a1, w′
2} is not randomly matchable since the vertices

w1, w, a2, w
′
1 induce K4 \w1w

′
1 in G, a contradiction to the equimatchability of G by

Lemma 2.8. Thus, R ∪ {a2} is a stable set in G. In this case however, the edge
s1a1 is not critical because there is no matching containing s1a1 and saturating
N = N({s1, a1}); indeed N contains the independent set R ∪ {b, a2} of size q + 1
while G \ {s1, a1} has 2q + 1 vertices. We therefore conclude that for i = 1, 2, each
si is adjacent to only wi in A′.

We next claim that w1a1, w2a2 ∈ E(G). Assume it is not true and without loss of
generality, let w2a2 /∈ E(G). In this case, the edge s1a1 is not critical. To show this,
let us first note that a2 has no neighbor in the (q−1)-stable set R of A′ containing w2

since {s1w1, s2w2} is a matching isolating b, the graph G[A \ {w1, w2}] is randomly
matchable by Lemma 2.8. Now, N = N({s1, a1}) contains the stable set R ∪ {b, a2}
of size (q+1) while G\{a1, s1} has 2q+1 vertices. So, there is no matching containing
s1a1 and saturating N , a contradiction by Lemma 4.1.

Lastly, we show that the obtained graph is not ECE as follows. The matching
{w1a1, bs2} is a matching isolating s1, however, the remaining graph H = G \
{w1, a1, b, s2, s1} is isomorphic to Kq−2,q + a2w2. Clearly, H is not randomly match-
able if q > 2 which yields a contradiction to the equimatchability of G by Lemma
2.8. In addition, if q = 2, then a1s1 is not a critical edge, since N({a1, s1}) \ {a1, s1}
consists of the vertices w1, w2, a2, b which cannot be saturated by any matching in
G \ a1s1. We conclude that there is no such type of ECE-graph.
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Subcase 2.2: Suppose that A′ ∼= Kq−1,q−1, and there exists wi ∈ N(si) for each
i = 1, 2 such that w1 �= w2 and w1w2 /∈ E(G).
Consider the graph A′ ∼= Kq−1,q−1 with a bipartition R and T , and let without loss
of generality w1, w2 ∈ R and take w′

1, w
′
2 ∈ T . If a1a2 ∈ E(G), then for a perfect

matching M in A′ \ {w1, w
′
1, w2, w

′
2}, the set M ∪ {s1w1, s2w2, a1a2} is a perfect

matching in G \ {w′
1, w

′
2, b} where {w′

1, w
′
2, b} is a stable set, it is a contradiction to

the equimatchability of G by Lemma 2.6. Thus a1a2 /∈ E(G). Besides, we observe
that if none of the edges w1a1 and w2a2 is present, then G is bipartite with bipartition
T ∪ {s1, s2} and R ∪ {a1, a2, b}. However, bipartite graphs are not factor-critical, a
contradiction. So we conclude that one of w1a1, w2a2 appears in G. If both of
them are present, then for a perfect matching M in A′ \{w1, w

′
1, w2, w

′
2}, the set M ∪

{w1a1, w2a2, bs2} is a perfect matching in G\{w′
1, w

′
2, s1} where {w′

1, w
′
2, s1} is a stable

set, contradicting that G is equimatchable by Lemma 2.6. Therefore precisely one of
w1a1 or w2a2 appears on the graph G, without loss of generality assume w1a1 /∈ E(G)
and w2a2 ∈ E(G). Then, we claim that a1s2 /∈ E(G), since otherwise {a1s2, w1s1} is
a matching isolating b whereas the remain graph G\{a1, s2, w1, s1, b} is not randomly
matchable since it contains the edge w2a2, a contradiction by Lemma 2.8. Likewise,
if s2 is adjacent to w1, then {a1s1, w1s2} is a matching isolating b whereas the remain
graph G\{a1, s1, w1, s2, b} is not randomly matchable, a contradiction by Lemma 2.8.
Therefore {w1, a1, s2} is a stable set. Then, for a perfect matching M in A′\{w1, w

′
1},

the set M ∪{w′
1a2, bs1} is a perfect matching in G\{w1, a1, s2}, contradicting that G

is equimatchable by Lemma 2.6. Consequently, there is no such type of ECE-graph.
Subcase 2.3: Suppose that A′ ∼= Kq−1,q−1, and the vertices s1, s2 have a unique

neighbour w1 = w2 = w in A′.
Consider the graph A′ ∼= Kq−1,q−1 with a bipartition R and T , and let w ∈ R. Then,
for i = 1, 2 each ai is adjacent to all vertices in T . Besides, if w is adjacent to none
of a1 and a2, then G induces a bipartite graph with a bipartition T ∪ {s1, s2} and
R ∪ {a1, a2, b}. However, bipartite graphs are not factor-critical, a contradiction.
So there exists at least one edge between w and {a1, a2}, without loss of generality
assume wa1 ∈ E(G). Then, there is no matching containing a1w and saturating
N = N({a1, w}) since N includes T ∪ {s1, s2} which is an independent set of size
q + 1 whereas G \ {a1, w} has 2q + 1 vertices, a contradiction to the fact that the
edge wa1 is critical by Lemma 4.1. Hence, s1 and s2 has no common neighbour in
A′. Consequently, there is no such type of ECE-graph.

Subcase 2.4: Let A′ ∼= K2q−2 for q ≥ 2.
Recall first that for each i = 1, 2, ai is complete to A′ \ {wi}. Let us first show
that a1a2 /∈ E(G). Indeed, if a1a2 ∈ E(G), then N({s1, a1}) contains all vertices
in V (G) \ {s2}. It can be observed that there is no matching containing s1a1 and
saturating N({s1, a1}), a contradiction to the criticality of the edge s1a1 by Lemma
4.1. We next claim that each vertex of s1, s2 has a unique neighbour in A′, and
they are the same. Indeed, if w1 �= w2, then {s1w1, s2w2} would be a matching
isolating b. However, A \ {w1, w2} is not randomly matchable since a1a2 /∈ E(G), a
contradiction by Lemma 2.8. Hence the vertices s1, s2 have a unique neighbour in A′,
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say w = w1 = w2. If one of the edges a1w, a2w is present in G, say a1w ∈ E(G), then
this edge is not critical since there is no matching containing a1w and saturating
N({a1, w}), a contradiction by Lemma 4.1. Therefore {a1, a2, w} is a stable set.
Lastly, observe that if A′ \ {w} consists of a single vertex, then G induces a bipartite
graph. However, bipartite graphs are not factor-critical. Hence q ≥ 3 and A′ \{w} ∼=
K2q−3 (see Figure 2(e)). �

By combining Lemmas 4.10 and 4.12, and noting that factor-critical ECE-graphs
have at least 7 vertices by Remark 4.8, we obtain the characterization of factor-critical
ECE-graphs with connectivity 2 given in Theorem 4.9.

5 An overview of subclasses of equimatchable graphs

Let us give a comparison of VCE-graphs and ECE-graphs with other subclasses of
equimatchable graphs that are well-studied in the literature, namely factor-critical
equimatchable (EFC) graphs and edge-stable equimatchable (ESE) graphs (see Fig-
ure 3). To this end, we define the following disjoint families of graphs:

- A is the class of EFC-graphs admitting a vertex v such that G−v is isomorphic
to K2r for some integer r ≥ 2 and 2 ≤ d(v) ≤ 2r − 2.

- B is the class of EFC-graphs admitting a vertex v such that G−v is isomorphic
to Kr,r for some integer r ≥ 2 where v is adjacent to at least two adjacent
vertices in Kr,r, and v has at least one non-neighbor in each one of the (r)-
stable sets of Kr,r.

- C is the class of graphs which are isomorphic to K3, K2r+1 or K2r+1 \ e for an
edge e ∈ E(K2r+1) for some integer r ≥ 2.

- D is the class of EFC-graphs admitting a vertex v such that G−v is isomorphic
to Kr,r for some integer r ≥ 2 where v is adjacent to at least two adjacent
vertices in Kr,r, and v is complete to an (r)-stable set of Kr,r.

- E is the class of EFC-graphs with a cut vertex.

Note that an EFC-graph must be connected since it is factor-critical. Thus,
EFC-graphs consist of two parts: EFC-graphs with a cut vertex and 2-connected
EFC-graphs. We observe that all graphs in A ∪ B ∪ C ∪ D are 2-connected.

We first investigate the relation of the graph class ESE with the above defined
graph classes. It has been shown in [6] that ESE-graphs are either 2-connected
factor-critical or bipartite.

Proposition 5.1 We have (A ∪ B ∪ E) ∩ ESE = ∅ and (C ∪ D) ⊆ ESE.
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Proof. Let us first show that no graph in A∪B is ESE. Recall that an equimatchable
graph G is edge-stable if G \ e is also equimatchable for any e ∈ E(G). In [6], it has
been proved that an EFC-graph is edge-stable if and only if there is no induced P3

in G such that G \ P3 has a perfect matching where P3 is the complement of a path
on 3 vertices. Consider a graph G ∈ A ∪ B with the vertex v as described in the
definitions of the families A and B. Then there exist two adjacent non-neighbors x
and y of v such that {v, x, y} induces a P3 in G, and G \ P3 has a perfect matching
(since G \ P3 is isomorphic to K2r−2 or Kr−1,r−1). Therefore, (A ∪ B) ∩ ESE = ∅.
Besides, ESE-graphs with a cut-vertex are bipartite [6], thus not factor-critical. It
follows that E ∩ ESE = ∅.

On the other hand, for r ≥ 2, a clique K2r+1 and K2r+1 \xy are ESE by Theorem
12 in [6] as well as K3 which is an ESE-graph. So every graph in C is an ESE-graph.
Besides, if G is a graph in D with the vertex v as stated, the graph G has no P3 as
an induced subgraph since v is complete to an (r)-stable set of G − v. Thus, every
graph in D is an ESE-graph. It follows that (C ∪ D) ⊆ ESE. �

Let us now establish the links between VCE-graphs, ECE-graphs and the families
A,B, C,D and E . First of all, it is known that both VCE-graphs and ECE-graphs
are 2-connected (by Proposition 3.3 and Lemma 4.4 respectively); thus VCE∩E = ∅
and ECE∩E = ∅. Moreover, we have clearly ESE∩ECE = ∅ by definition of these
classes.

We next show that the graphs in A∪ B ∪ C ∪ D are not ECE.

Proposition 5.2 Let G be a connected graph with 2r + 1 vertices for some r ≥ 1.
If G contains one of K2r, Kr,r as an induced subgraph, then G is not ECE.

Proof. Let G be a connected graph with 2r+1 vertices, and suppose that G contains
one of K2r, Kr,r as an induced subgraph. Then there exists a vertex v ∈ V (G) such
that G−v is isomorphic to K2r or Kr,r. Since G is connected, the vertex v is adjacent
to a vertex u in V (G − v). Note that G \ uv contains one of K2r and Kr,r as an
induced subgraph. So every maximal matching in G \ uv is of size r. This means
that the edge uv is not critical, thus G is not ECE. �

By Proposition 5.2 and the definitions of the families A,B, C,D, we have the
following:

Corollary 5.3 (A ∪ B ∪ C ∪ D) ∩ ECE = ∅.

Since VCE-graphs are equivalent to 2-connected (K2r, Kr,r)-free EFC-graphs on
2r+1 vertices (by Theorem 3.7), and ECE-graphs on 2r+ 1 vertices do not contain
K2r or Kr,r (by Proposition 5.2), we have the following:

Corollary 5.4 All factor-critical ECE-graphs are VCE.
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As we have (A ∪ B ∪ C ∪ D) ∩ ECE = ∅ by Corollary 5.3, Corollary 5.4 implies
that A∪B ∪ C ∪D ∪E ⊆ EFC \VCE. It remains to show that VCE is equivalent to
the class EFC \(A ∪ B ∪ C ∪ D ∪ E).

Corollary 5.5 EFC \VCE = A ∪ B ∪ C ∪ D ∪ E .

Proof. Let G be a graph in EFC \VCE. Then, by Proposition 3.9, G has a vertex
v such that every component of G− v is isomorphic to Kr,r or K2t for some r, t ≥ 1
and where v is adjacent to at least two adjacent vertices of G−v. If v is a cut-vertex
then G ∈ E . Assume v is not a cut-vertex, then G − v is a connected graph on 2r
vertices. If G − v is a Kr,r for r ≥ 2 then G ∈ B ∪ D. If however G − v is a K2r

then G ∈ A∪C. It follows that the families A,B, C,D form together all 2-connected
graphs in EFC \VCE as decribed in Proposition 3.9. �

As we stated above, EFC-graphs with a cut vertex are equivalent to the family
E while 2-connected EFC-graphs consist of three disjoint subclasses; A ∪ B, C ∪ D
and VCE-graphs. Let us also recall that ECE-graphs are either factor-critical, or
bipartite, or even cliques by Theorem 4.5. This completes the full containment
relationship between VCE-graphs, ECE-graphs, ESE-graphs and EFC-graphs as il-
lustrated in Figure 3 where these classes are represented by sets VCE, ECE, ESE
and EFC respectively, and FC means factor-critical.

All EFC
graphs with
a cut vertex

(E)

EFC

FC-ECE

VCE

ECE

ESE

VCE \ (ESE ∪ ECE)

- Bipartite ECE
- Even cliques

FC-ESE \ C ∪ D

A ∪ B C ∪ D Bipartite ESE

Figure 3: The world of equimatchable graphs.

6 Conclusion

In this paper, we shed light on the structure of equimatchable graphs from a new
perspective, namely the criticality with respect to vertex removals and edge removals.
We first showed that VCE-graphs boil down to factor-critical equimatchable graphs
apart from a few simple exceptions. We also noted that factor-critical ECE-graphs
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form a subclass of VCE-graphs. This motivated our studies on factor-critical ECE-
graphs, whose structure can be analyzed according to their connectivity [10, 11]. We
gave a full characterization of factor-critical ECE-graphs with connectivity 2.

We also investigated the case of factor-critical ECE-graphs with connectivity at
least 3. We obtained partial results towards their full characterization, leaving some
open cases. The reader is referred to the Appendix in [7] for details.
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