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Abstract

Let G be a graph, and S be a subset of V (G) with even cardinality. We
denote the set of the endvertices of a path P by end(P ). A path P is
an S-path if |V (P )| ≥ 2 and V (P ) ∩ S = end(P ). An l-S-path-system
P is a set of vertex-disjoint S-paths such that S =

⋃
P∈P(V (P )∩ S) and

|V (P )| ≤ l for each P ∈ P . In this paper, we show that if G is a bipartite
graph with partite sets A and B with δ(G) ≥ max{|A|, |B|}/2, and if S is
a subset of V (G) with even cardinality such that |A∩S|−|B∩S| ≤ 2|B\S|
and |B ∩ S| − |A ∩ S| ≤ 2|A\S|, then, unless |A| = |B| is even and G is
isomorphic to K|A|/2,|A|/2 ∪ K|A|/2,|A|/2, G has a 6-S-path-system P such
that every path in P , possibly but one, has order two or three.

1 Introduction

In this paper, we consider only finite simple graphs. Let G be a graph. We write
|G| for the order of G; that is, |G| = |V (G)|. We denote the set of the endvertices
of a path P by end(P ). Let S be a subset of V (G) with even cardinality. A path
P is an S-path if |P | ≥ 2 and V (P ) ∩ S = end(P ). An S-path-system P is a
set of vertex-disjoint S-paths such that S =

⋃
P∈P(V (P ) ∩ S). If S = ∅, then by

definition, ∅ is an S-path-system. For an S-path system P and an integer i ≥ 2, we
let Pi = {P ∈ P : |P | = i}. For an integer l ≥ 2, an S-path-system consisting of
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S-paths of order at most l is called an l-S-path-system. Thus an S-path-system P is
an l-S-path-system if and only if Pi = ∅ for all i ≥ l+1. Note that a 2-S-path-system
is simply a perfect matching on the subgraph induced by S in G.

In [2], Chiba and Yamashita pointed out that as a corollary of the following
theorem, we obtain a degree sum condition for a graph to have an S-path-system.

Theorem 1.1 (Berman [1]). Let G be a graph, and let M be a matching of G. If
dG(x) + dG(y) ≥ |G|+ 1 for any non-adjacent vertices x, y ∈ V (G) with x 6= y, then
G has a cycle passing through M .

Corollary 1.2 (Chiba and Yamashita [2]). Let G be a graph, and let S be a subset of
V (G) with even cardinality. If dG(x) +dG(y) ≥ |G|+ 1 for any non-adjacent vertices
x, y ∈ V (G) with x 6= y, then G has an S-path-system.

Recently, in [6], Tsugaki and Yashima showed that the following theorem implies
a refinement of Corollary 1.2, which we state as Corollary 1.4.

Theorem 1.3 (Shi [5]). Let G be a 2-connected graph, and let S be a subset of V (G).
If dG(x) + dG(y) ≥ |G| for any non-adjacent vertices x, y ∈ S with x 6= y, then G
has a cycle which contains all the vertices of S.

Corollary 1.4 (Tsugaki and Yashima [6]). Let G be a graph, and let S be a subset of
V (G) with even cardinality. If dG(x) +dG(y) ≥ |G|−1 for any non-adjacent vertices
x, y ∈ S with x 6= y, then G has a 3-S-path-system.

Recall that a 2-S-path-system is a perfect matching on S, and the notion of a
3-S-path-system is a weakening of the notion of a perfect matching on S. Corollary
1.4 shows that there is a natural degree sum condition for the existence of a 3-S-
path-system. This suggests the importance of the study of l-S-path-systems with
small values of l.

In this paper, we focus on bipartite graphs. We denote by G[A,B] a bipartite
graph G with partite sets A and B. For a bipartite graph G[A,B], we define

σ1,1(G) = min{dG(a) + dG(b) : a ∈ A, b ∈ B, ab 6∈ E(G)}

if G[A,B] is not complete; otherwise σ1,1(G) = ∞. Also we let δ(G) denote the
minimum degree of G.

If a graph G has a Hamilton path, then G has an S-path-system. Thus the
degree sum condition of the following result also assures us of the existence of an
S-path-system in a balanced bipartite graph (in fact, a characterization of balanced
bipartite graphs G[A,B] such that σ1,1(G) ≥ |B| and G has no Hamilton cycle is
obtained in [4]).

Theorem 1.5 (Ferrara, Jacobson and Powell [4]). Let G[A,B] be a connected bal-
anced bipartite graph. If σ1,1(G) ≥ |B|, then G has a Hamilton path.
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In [6], Tsugaki and Yashima showed that this degree sum condition also ensures
the existence of an l-S-path-system such that l is small regardless of whether or not
G is balanced.

Theorem 1.6 (Tsugaki and Yashima [6]). Let G[A,B] be a bipartite graph, and let
S be a subset of V (G) with even cardinality. Suppose that |A∩S|−|B∩S| ≤ 2|B \S|
and |B∩S|−|A∩S| ≤ 2|A\S|. If σ1,1(G) ≥ max{|A|, |B|}, then one of the following
statements holds:

(i) G has a 5-S-path-system;

(ii) G is balanced, and G has a 6-S-path-system P such that |P4 ∪P5 ∪P6| ≤ 1; or

(iii) G ∼= Kt,t ∪K|B|−t,|B|−t for some integer 1 ≤ t ≤ |B| − 1.

In [6], examples which show that in Theorem 1.6, for any constant α, we cannot
strengthen statement (i) by adding the condition that |P4∪P5| ≤ α are constructed.
However, the examples constructed in [6] have a small minimum degree. Thus it is
natural to conjecture that we can strengthen statement (i) if we replace the assump-
tion that σ1,1(G) ≥ max{|A|, |B|} by the corresponding minimum degree condition.
In this paper, we confirm this conjecture by proving the following theorem.

Theorem 1.7. Let G[A,B] be a bipartite graph, and let S be a subset of V (G) with
even cardinality. Suppose that |A ∩ S| − |B ∩ S| ≤ 2|B \ S| and |B ∩ S| − |A ∩ S| ≤
2|A \ S|. If δ(G) ≥ max{|A|, |B|}/2, then one of the following statements holds:

(i) G is unbalanced, and G has a 5-S-path-system P such that |P4 ∪ P5| ≤ 1;

(ii) G is balanced, and G has a 6-S-path-system P such that |P4 ∪P5 ∪P6| ≤ 1; or

(iii) |A| = |B| is even, and G ∼= K|G|/4,|G|/4 ∪K|G|/4,|G|/4.

Before discussing the proof of Theorem 1.7, we here insert three paragraphs con-
cerning the sharpness of Theorem 1.7. The minimum degree condition in Theorem
1.7 is sharp in the sense that the conclusion of the theorem does not necessarily hold
for bipartite graphs G[A,B] with δ(G) ≥ (max{|A|, |B|} − 1)/2. To see this, let m
be a positive integer. For i = 1, 2, let Gi[Ai, Bi] be a complete bipartite graph with
partite sets Ai and Bi (|A1| = m + 1, |A2| = m, |B1| = m and |B2| = m + 1). Let
G[A,B] be the bipartite graph with partite sets A = A1 ∪A2 and B = B1 ∪B2 such
that E(G) = E(G1)∪E(G2)∪{ab : a ∈ A2, b ∈ B1}. Let S be a subset of V (G) such
that |S| is even and A2 ∪ B2 ⊆ S (see Figure 1). Then, G is a balanced bipartite
graph with δ(G) = m = (|B| − 1)/2 and we clearly have |A∩S| − |B ∩S| ≤ 2|B \S|
and |B ∩ S| − |A ∩ S| ≤ 2|A \ S|, but G has no S-path-system.

In (ii) in the conclusion of Theorem 1.7, we cannot avoid the use of a 6-S-path-
system; i.e., the statement becomes false if we replace the term “6-S-path-system”
by “5-S-path-system”. Let m be a positive integer. For i = 1, 2, let Gi[Ai, Bi] be
a complete bipartite graph with partite sets Ai and Bi such that |Ai| = |Bi| = m.
Take S ⊆ A2 ∪ B1 so that |S ∩ A2| and |S ∩ B1| are odd. Let G[A,B] be the
bipartite graph with partite sets A = A1 ∪ A2 and B = B1 ∪ B2 such that E(G) =
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Figure 1: Sharpness of the minimum degree condition
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Figure 2: Necessity of the use of an S-path of order 6

E(G1) ∪ E(G2) ∪ {ab : a ∈ A2\S, b ∈ B1\S} (see Figure 2). Then, G is a balanced
bipartite graph such that δ(G) = m = |B|/2, and we have |A∩S|−|B∩S| ≤ 2|B\S|
and |B ∩ S| − |A ∩ S| ≤ 2|A \ S|, but G has no 5-S-path-system.

One might think that if we change the minimum degree condition in Theorem
1.7 into δ(G) ≥ max{|A|, |B|}/2 + α, where α is a constant, then G has a 3-S-path-
system. However, this is not true. Fix a positive integer α. Let k1, k2, l1 and l2 be
positive integers such that k1 and k2 are odd, and l1 and l2 are large enough and
|l1−l2| ≤ k1+k2. For i = 1, 2, let Gi[Ai, Bi] be a complete bipartite graph with partite
sets Ai and Bi such that |A1| = k1, |A2| = l2, |B1| = l1 and |B2| = k2. Let G[A,B]
be the bipartite graph with partite sets A = A1 ∪ A2 and B = B1 ∪ B2 such that
E(G) = E(G1)∪E(G2)∪{ab : a ∈ A2, b ∈ B1}. Let S = A1∪B2 (see Figure 3). Then,
|A∩S|−|B∩S| = k1−k2 ≤ 2l1 = 2|B\S|, |B∩S|−|A∩S| = k2−k1 ≤ 2l2 = 2|A\S|,
and δ(G) = min{|A2|, |B1|} ≥ max{|A|, |B|}/2 + α, but, G has no 3-S-path-system.

Theorem 1.7 follows from the following two propositions.

Proposition 1.8. Let G[A,B] be a bipartite graph, and let S be a subset of V (G)
such that |S| ≥ 2 and |S| is even. Suppose that |A ∩ S| − |B ∩ S| ≤ 2|B \ S|
and |B ∩ S| − |A ∩ S| ≤ 2|A \ S|. If δ(G) ≥ max{|A|, |B|}/2, then there exist
s1, s2 ∈ S with s1 6= s2 such that G − {s1, s2} has a 3-(S\{s1, s2})-path-system P,
and NG(si) ∩

(
V (G)\

⋃
P∈P V (P )

)
6= ∅ for each i = 1, 2.

A1 B1 A2 B2

k1 l1 l2 k2

+ + +

Figure 3: Necessity of the use of an S-path of order j with j = 4, 5, 6
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Proposition 1.9. Let G[A,B] be a bipartite graph, and let S be a subset of V (G)
such that |S| ≥ 2 and |S| is even. Suppose that there exist vertices s1, s2 ∈ S which
satisfy the conclusion of Proposition 1.8. If σ1,1(G) ≥ max{|A|, |B|}, then one of the
following statements holds:

(i) G is unbalanced, and G has a 5-S-path-system P such that |P4 ∪ P5| ≤ 1;

(ii) G is balanced, and G has a 6-S-path-system P such that |P4 ∪P5 ∪P6| ≤ 1; or

(iii) G ∼= Kt,t ∪K|B|−t,|B|−t for some integer 1 ≤ t ≤ |B| − 1.

In Sections 2 and 3, we prove Propositions 1.8 and 1.9, respectively.

Our notation is standard, and is mostly taken from Diestel [3]. Possible exceptions
are as follows. Let G[A,B] be a bipartite graph. For a set P of paths in G, let
PAA = {P ∈ P : end(P ) ⊆ A}, PBB = {P ∈ P : end(P ) ⊆ B} and PAB = {P ∈
P : end(P ) ∩ A 6= ∅ and end(P ) ∩B 6= ∅}. For disjoint subsets X, Y of V (G), let
EG(X, Y ) be the set of edges in G between X and Y . For a path P with a given
orientation and x ∈ V (P ), we denote the successor of x on P by x+.

2 Proof of Proposition 1.8

Let G[A,B] be a bipartite graph with δ(G) ≥ max{|A|, |B|}/2, and let S be a subset
of V (G) which satisfies the assumption of Proposition 1.8. Write |S| = 2k (k ≥ 1).
First we prove the following lemma.

Lemma 2.1. There exist s1, s2 ∈ S such that G has a 3-(S\{s1, s2})-path-system.

Proof. We prove Lemma 2.1 by induction on k. By the definition of an S-path-
system, we see that Lemma 2.1 is true in the case where k = 1. Thus let k ≥ 2, and
assume that the lemma is proved for k − 1. Suppose that

(C1) G has no 3-(S\{s1, s2})-path-system for any s1, s2 ∈ S.

Let

F = {P : P is a 3-(S\S ′)-path-system for some S ′ ⊆ S with |S ′| = 4 }.

Take s1, s2 ∈ S so that s1 6= s2. By the induction hypothesis, there exist s3, s4 ∈
S\{s1, s2} such that s3 6= s4 and G has a 3-(S\{s1, s2, s3, s4})-path-system. This
implies that F 6= ∅. By the definition of F , for each P ∈ F , there exists SP ⊆ S such
that |SP | = 4 and P is a 3-(S\SP)-path-system. Let m = min{

∑
P∈P |P | : P ∈ F},

and let
Fmin = {P ∈ F :

∑
P∈P

|P | = m}.

Note that for each P ∈ Fmin, PAA ∪ PBB = P3 and PAB = P2 because P is a
3-(S\SP)-path-system. For each P ∈ Fmin, we have SP ∩

⋃
P∈P V (P ) = ∅ by the

minimality of m, and hence it follows from (C1) that SP is an independent set. For
each P ∈ Fmin and each P ∈ P , write end(P ) = {aP , bP}. We assume that we
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have aP ∈ A and bP ∈ B in the case where P ∈ PAB. Moreover, we regard P as an
oriented path from aP to bP . For each P ∈ Fmin, let WP = V (G)\(SP∪

⋃
P∈P V (P )).

By the definition of Fmin, we obtain the following fact.

Fact 2.2. There exists no P ∈ F such that
∑

P∈P |P | < m.

The rest of the proof consists of a number of claims. After stating several claims,
we outline the proof in the third paragraph following Claim 2.6.

Claim 2.3.

(i) If P ∈ Fmin and s ∈ SP ∩ A, then NG(s) ∩ V (P ) = ∅ for each P ∈ PBB.

(ii) If P ∈ Fmin and s ∈ SP ∩B, then NG(s) ∩ V (P ) = ∅ for each P ∈ PAA.

Proof. In view of the symmetry of A and B, it suffices to prove (i). Suppose that
there exists c ∈ NG(s) ∩ V (P ) for some P ∈ Fmin, s ∈ SP ∩ A and P ∈ PBB. Let
P ′ = sc, {c′} = end(P )\{c} and S ′ = (SP\{s})∪{c′}. Then, P ′ = (P\{P})∪{P ′} is
a 3-(S\S ′)-path-system with |S ′| = 4, and

∑
Q∈P ′ |Q| =

∑
Q∈P |Q|−|P |+|P ′| = m−1,

which contradicts Fact 2.2.

Claim 2.4. If P ∈ Fmin, s1 ∈ SP ∩ A and s2 ∈ SP ∩ B, then |NG(s1) ∩ V (P )| +
|NG(s2) ∩ V (P )| ≤ 1 for each P ∈ PAB.

Proof. Suppose that there exist bP ∈ NG(s1) and aP ∈ NG(s2) for some P ∈ Fmin,
s1 ∈ SP ∩ A, s2 ∈ SP ∩ B and P ∈ PAB. Let P1 = s1bP and P2 = s2aP . Then,
(P\{P}) ∪ {P1, P2} is a 3-(S\(SP\{s1, s2}))-system, which contradicts (C1).

By (C1), we obtain the following claim.

Claim 2.5.

(i) If P ∈ Fmin and s1, s2 ∈ SP ∩A with s1 6= s2, then NG(s1)∩NG(s2)∩WP = ∅.
(ii) If P ∈ Fmin and s1, s2 ∈ SP ∩B with s1 6= s2, then NG(s1)∩NG(s2)∩WP = ∅.

Claim 2.6. We have |SP ∩ A| 6= 2 for each P ∈ Fmin.

Proof. Suppose that |SP ∩ A| = 2 for some P ∈ Fmin. Write SP ∩ A = {s1, s2} and
SP ∩ B = {s3, s4}. By Claims 2.3 and 2.4,

∑
1≤i≤4 |NG(si) ∩ V (P )| ≤ 2 ≤ |P | for

each P ∈ P . By Claim 2.5,
∑

1≤i≤4 |NG(si) ∩WP | ≤ |WP |. Since |G| ≤ 4δ(G) by
assumption, we get |G| ≤

∑
1≤i≤4 dG(si) ≤

∑
P∈P |P | + |WP | = |G| − |SP | < |G|, a

contradiction.

Hereafter, we fix P ∈ Fmin. We choose P so that NG(SP) ∩WP 6= ∅ if possible.
By Claim 2.6, either |SP ∩A| ≤ 1 or |SP ∩A| ≥ 3 holds. By the symmetry of A and
B, we may assume that |SP ∩ A| ≥ 3.

Choose distinct s1, s2 ∈ SP ∩A so that |NG(s1)∩WP |+ |NG(s2)∩WP | is as small
as possible. Let

B1 =
⋃

P∈PAB∪PAA

(V (P ) ∩B),
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Ps1s2 = {P ∈ PAB ∪ PAA : NG(s1) ∩NG(s2) ∩ V (P ) 6= ∅}
and

A0 =
⋃

P∈Ps1s2

(V (P ) ∩ A).

We here include a sketch of the proof of Lemma 2.1. We show that vertices in A0

behave like vertices in SP ∩A (Claims 2.10 and 2.12). We then take a suitable vertex
x0 ∈ A0 and, by using x0, we define A′1 ⊆ A as we defined A0 by using s1 and s2.
From Claims 2.10 and 2.12, it follows that |A′1| ≥ |A|/2 − 2 (Clams 2.11 and 2.13).
We observe that vertices in A′1 also behave like vertices in SP ∩A (see the paragraph
following the proof of Claim 2.13). In the case where |SP∩A| = 3, we write SP∩B =
{s4} and, based on this observation, we show that EG(A′1, {s4}) = ∅ which, in view
of Claim 2.13, contradicts the minimum degree condition in Proposition 1.8 (Claim
2.16). In the case where |SP∩A| = 4, we have (NG(SP)∩WP)∪

⋃
P∈PBB

(V (P )∩B) 6=
∅, and thus take b0 ∈ (NG(SP)∩WP)∪

⋃
P∈PBB

(V (P )∩B) and, again based on the
above observation, we can show that EG(A′1, {b0}) = ∅ (Claims 2.14 and 2.15), which
contradicts the minimum degree condition (see the last paragraph of the proof of the
lemma).

Now by Claim 2.5 and the choice of s1 and s2, we obtain the following claim.

Claim 2.7. |NG(s1) ∩WP |+ |NG(s2) ∩WP | ≤ 2|WP ∩B|/|SP ∩ A|.

Claim 2.8. max{|A|, |B|}−2|WP∩B|/|SP∩A|−|B1| ≤ |NG(s1)∩NG(s2)∩B1| ≤ |A0|.

Proof. By Claim 2.3, |NG(s1) ∩ V (P )| + |NG(s2) ∩ V (P )| = 0 for each P ∈ PBB.
Hence by Claim 2.7,

|NG(s1) ∩NG(s2) ∩B1| ≥ |NG(s1) ∩B1|+ |NG(s2) ∩B1| − |B1|
≥ 2δ(G)− 2|WP ∩B|/|SP ∩ A| − |B1|
≥ max{|A|, |B|} − 2|WP ∩B|/|SP ∩ A| − |B1|.

Since |V (P )∩B| ≤ |V (P )∩A| for each P ∈ Ps1s2 , we also have |NG(s1)∩NG(s2)∩
B1| ≤ |A0|.

Claim 2.9. NG(s1) ∩NG(s2) ∩B1 6= ∅.

Proof. Suppose that NG(s1) ∩NG(s2) ∩B1 = ∅. Since |SP ∩A| ≥ 3, we clearly have
2|WP |/|SP ∩ A| ≤ 2|WP |/3. Hence it follows from Claim 2.8 that

0 = |NG(s1) ∩NG(s2) ∩B1| ≥ max{|A|, |B|} − 2|WP ∩B|/3− |B1|
≥ max{|A|, |B|} − |WP ∩B| − |B1|
≥ max{|A|, |B|} − |B|.

Consequently |B| ≥ |A| and WP ∩ B = ∅, which further implies B = B1, and hence
|SP∩B| = 0 and |SP∩A| = 4. Since |V (P )∩A| ≥ |V (P )∩B| for each P ∈ PAB∪PAA,
we now get |A| = |A\SP | + 4 ≥ |B1| + 4 = |B| + 4, which contradicts the assertion
that |B| ≥ |A|.

For each x ∈ A0, let Px ∈ Ps1s2 be the path such that x ∈ V (Px).
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Claim 2.10. We have NG(x) ∩NG(y) ∩WP = ∅ for any x, y ∈ A0 with x 6= y.

Proof. Let x, y ∈ A0 with x 6= y. By symmetry, we may assume that (i) Px, Py ∈
PAB, (ii) Px ∈ PAB and Py ∈ PAA, (iii) Px, Py ∈ PAA and Px 6= Py, or (iv) Px, Py ∈
PAA and Px = Py.

Recall that for each P ∈ P , end(P ) = {aP , bP} and P is oriented from aP to bP
and, in the case where P ∈ PAB, we have aP ∈ A and bP ∈ B.

We may assume that y = aPy in the case where (ii) holds, x = aPx and y = aPy

in the case where (iii) holds, and x = aPx in the case where (iv) holds. Let

P ′ =


(P\{Px, Py}) ∪ {s1bPx , s2bPy} if (i) holds,

(P\{Px, Py}) ∪ {s1bPx , s2y
+bPy} if (ii) holds,

(P\{Px, Py}) ∪ {s1x+bPx , s2y
+bPy} if (iii) holds,

(P\{Px}) ∪ {s1x+s2} if (iv) holds.

Then, P ′ is a 3-(S\((SP\{s1, s2})∪{x, y}))-path-system such that P ′ ∈ Fmin, WP ′ ∩
B = WP ∩ B and x, y ∈ SP ′ ∩ A. Hence applying Claim 2.5 (i) to P ′, we get
NG(x) ∩NG(y) ∩WP = ∅.

Note that A0 6= ∅ by Claims 2.8 and 2.9. Choose x0 ∈ A0 so that |NG(x0) ∩WP |
is as small as possible.

Claim 2.11. |NG(x0) ∩WP | ≤ 2.

Proof. If WP ∩ B = ∅, then |NG(x0) ∩ WP | = 0 ≤ 2. Thus we may assume that
WP ∩B 6= ∅, which implies that |B|− 2|WP ∩B|/|SP ∩A|− |B1| > |B|− |WP ∩B|−
|B1| ≥ 0. Hence, in view of the minimality of |NG(x0) ∩WP |, it follows from Claims
2.8 and 2.10 that

|NG(x0) ∩WP | ≤ |WP ∩B|/|A0|
≤ |WP ∩B|/(|B| − 2|WP ∩B|/|SP ∩ A| − |B1|).

(1)

If |SP ∩ A| = 4, then by (1), we obtain

|NG(x0) ∩WP | ≤ |WP ∩B|/(|B| − |WP ∩B|/2− |B1|)
≤ |WP ∩B|/(|WP ∩B|/2) = 2.

If |SP ∩ A| = 3, then by (1), we obtain

|NG(x0) ∩WP | ≤ |WP ∩B|/(|B| − 2|WP ∩B|/3− |B1|)
≤ |WP ∩B|/(|WP ∩B|/3 + |SP ∩B|)
< |WP ∩B|/(|WP ∩B|/3) = 3.
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Figure 4: Definition of Qx (the case where x 6= x0 and Px0 ∈ PAB)
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Figure 5: Definition of Qx (the case where x 6= x0 and Px0 ∈ PAA)

Claim 2.12. EG({x0}, V (P )) = ∅ for each P ∈ PBB.

Proof. Note that if Px0 ∈ PAA, then we may assume that x0 = aPx0
. Under this

assumption, let P ′ = s1bPx0
or P ′ = s1a

+
Px0
bPx0

according as Px0 ∈ PAB or Px0 ∈ PAA.

Then, P ′ = (P\{Px0}) ∪ {P ′} is a 3-S\((SP\{s1}) ∪ {x0})-path-system such that
P ′ ∈ Fmin and P ′BB = PBB and x0 ∈ SP ′ ∩ A. Hence applying Claim 2.3 (i) to P ′,
we see that EG({x0}, V (P )) = ∅ for each P ∈ PBB.

Let
Px0 = {P ∈ PAB ∪ PAA : NG(x0) ∩ V (P ) 6= ∅}.

We have Px0 ∈ Px0 . Let

A′1 =
⋃

P∈Px0

(V (P ) ∩ A).

For each x ∈ A′1, let Qx ∈ Px0 be the path such that x ∈ V (Qx) (see Figures 4
through 6; in these figures, bold lines indicate Px0 and Qx). Note that Qx0 = Px0 .

Claim 2.13. |A′1| ≥ |A|/2− 2.

Proof. Since |V (P )∩A| ≥ |V (P )∩B| for each P ∈ Px0 , it follows from Claims 2.11
and 2.12 that |A′1| ≥ |Px0| = dG(x0)− |NG(x0) ∩WP | ≥ |A|/2− 2.

For each i = 1, 2 and each x ∈ A′1, we define P(i, x) ∈ Fmin as follows.

Case I. Px0 ∈ PAB.

x0=x

s1 s2

Px0=Qx0
x0=x

s1 s2

Px0=Qx0

Figure 6: Definition of Qx (the case where x = x0)
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Note that if Qx ∈ PAA, then we may assume that x = aQx . Under this assump-
tion, let

P(i,x)=


(P\{Qx})∪{sibPx0

} if Qx=Px0 ,

(P\{Px0 ,Qx})∪{sibPx0
,x0bQx} if Qx∈PAB and Qx 6=Px0 ,

(P\{Px0 ,Qx})∪{sibPx0
,x0x

+bQx} if Qx∈PAA.

Case II. Px0 ∈ PAA.

If Qx = Px0 , then we may assume that x = aPx0
; if Qx ∈ PAA and Qx 6= Px0 , then

we may assume that x0 = aPx0
and x = aQx ; if Qx ∈ PAB, then we may assume that

x0 = aPx0
. Let

P(i,x)=


(P\{Qx})∪{six+bPx0

} if Qx=Px0 ,

(P\{Px0 ,Qx})∪{six+0 bPx0
,x0x

+bQx} if Qx∈PAA and Qx 6=Px0 ,

(P\{Px0 ,Qx})∪{six+0 bPx0
,x0bQx} if Qx∈PAB.

Note that P(i, x) ∈ Fmin, SP(i,x) = (SP\{si}) ∪ {x}, WP(i,x) = WP and
P(i, x)BB = PBB.

Claim 2.14. EG(A′1, NG(SP ∩ A) ∩WP) = ∅.

Proof. Let x ∈ A′1 and y ∈ SP ∩ A. By the symmetry of s1 and s2, we may assume
that y 6= s1. Note that P(1, x) ∈ Fmin and x, y ∈ SP(1,x)∩A. Hence by Claim 2.5 (i),
NG(x)∩NG(y)∩WP(1,x) = ∅. Since WP(1,x) = WP , this implies that EG({x}, NG(y)∩
WP) = ∅. Since x ∈ A′1 and y ∈ SP ∩ A are arbitrary, we get EG(A′1, NG(SP ∩ A) ∩
WP) = ∅.

Claim 2.15. EG(A′1, V (P )) = ∅ for each P ∈ PBB.

Proof. Let x ∈ A′1 and P ∈ PBB. Then, since P(1, x) ∈ Fmin, P(1, x)BB = PBB

and x ∈ SP(1,x) ∩ A, it follows from Claim 2.3 (i) that NG(x) ∩ V (P ) = ∅. Hence
EG(A′1, V (P )) = ∅ for each P ∈ PBB.

Claim 2.16. SP ⊆ A.

Proof. Suppose not. Write (SP\{s1, s2}) ∩ A = {s3} and (SP\{s1, s2}) ∩ B = {s4}.
For each x ∈ A′1, xs4 6∈ E(G) because x, s4 ∈ SP(1,x) and SP(1,x) is an independent
set. Hence EG(A′1, {s4}) = ∅. By (C1), NG(s4) ∩ {s1, s2, s3} = ∅. Hence by Claim
2.13, dG(s4) ≤ |A| − |A′1| − 3 ≤ |A|/2 − 1, which contradicts the minimum degree
condition.

Claim 2.17. If NG(SP) ∩WP = ∅, then EG(A′1,WP) = ∅.

Proof. Suppose that NG(SP) ∩WP = ∅ and EG(A′1,WP) 6= ∅. Then, there exists
x ∈ A′1 such that NG(x)∩WP 6= ∅. Since WP(1,x) = WP and x ∈ SP(1,x), this implies
that NG(SP(1,x)) ∩ WP(1,x) 6= ∅. Hence NG(SP) ∩ WP 6= ∅ by the choice of P , a
contradiction.
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Claim 2.18. If WP ∩B 6= ∅, then NG(SP) ∩WP 6= ∅.

Proof. Suppose that WP ∩ B 6= ∅ and NG(SP) ∩WP = ∅, and take b ∈ WP ∩ B.
Since NG(SP) ∩WP = ∅, it follows from Claim 2.17 that EG(A′1,WP) = ∅. Hence
dG(b) ≤ |A|− |A′1∪ (SP ∩A)| ≤ |A|/2−2 by Claims 2.13 and 2.16, which contradicts
the minimum degree condition.

Suppose that WP ∩ B = ∅ and PBB = ∅. Then, P = PAB ∪ PAA, and it follows
from Claim 2.16 that B =

⋃
P∈P(V (P ) ∩ B). Let P ∈ P . If P ∈ PAA, then

|V (P ) ∩ A ∩ S| = 2, |V (P ) ∩B ∩ S| = 0 and |V (P ) ∩ (B\S)| = 1; if P ∈ PAB, then
|V (P ) ∩ A ∩ S| = 1, |V (P ) ∩ B ∩ S| = 1 and |V (P ) ∩ (B\S)| = 0. In either case,
|V (P )∩A∩S| − |V (P )∩B ∩S| = 2|V (P )∩ (B\S)|. Since P is arbitrary, we obtain
|(A ∩ S)\SP | − |B ∩ S| = 2|B\S|. Since |A ∩ S| = |(A ∩ S)\SP | + 4 by Claim 2.16,
it follows that |A ∩ S| − |B ∩ S| = 2|B\S| + 4, which contradicts the assumption
that |A ∩ S| − |B ∩ S| ≤ 2|B\S|. Thus either WP ∩ B 6= ∅ or PBB 6= ∅. By Claim
2.18, this implies that there exists b0 ∈

(
NG(SP) ∩WP

)
∪
⋃

P∈PBB
(V (P ) ∩ B). If

b0 ∈ NG(SP)∩WP , then |NG(b0)∩SP | = 1 by Claim 2.5 (i); if b0 ∈
⋃

P∈PBB
(V (P )∩B),

then NG(b0) ∩ SP = ∅ by Claim 2.3 (i). Hence by Claims 2.13, 2.14, 2.15 and 2.16,
|NG(b0)| ≤ |A| − |A′1| − 3 ≤ |A|/2 − 1, which contradicts the minimum degree
condition. This completes the proof of Lemma 2.1.

By Lemma 2.1, there exist s1, s2 ∈ S such thatG has a 3-(S\{s1, s2})-path-system
P . Choose such s1, s2 and P so that

(T1)
∑

P∈P |P | is as small as possible, and

(T2)
∑

i=1,2 |NG(si)\
⋃

P∈P V (P )| is as large as possible, subject to (T1).

By (T1), s1, s2 6∈
⋃

P∈P V (P ). For each P ∈ P , let aP , bP be as in the proof
of Lemma 2.1. We show that NG(si)\

⋃
P∈P V (P ) 6= ∅ for each i ∈ {1, 2}. Suppose

that for some i ∈ {1, 2}, we have NG(si)\
⋃

P∈P V (P ) = ∅. By the symmetry of s1
and s2, we may assume that NG(s1)\

⋃
P∈P V (P ) = ∅. By the symmetry of A and

B, we may assume that s1 ∈ A. By (T1), we obtain the following claim.

Claim 2.19. We have NG(s1) ∩ V (P ) = ∅ for each P ∈ PBB.

Let
B1 =

⋃
P∈PAB∪PAA

(V (P ) ∩B).

By Claim 2.19 and the minimum degree condition, |NG(s1)∩B1| = |NG(s1)| ≥ |A|/2.
Let

Ps1 = {P ∈ PAB ∪ PAA : NG(s1) ∩ V (P ) 6= ∅},

A0 =
⋃

P∈Ps1

(V (P ) ∩ A).

Then, |A0| ≥ |Ps1| = |NG(s1) ∩ B1| ≥ |A|/2. Let x ∈ A0, and let Px ∈ Ps1 be the
path such that x ∈ V (Px). Note that if Px ∈ PAA, then we may assume that x = aPx .
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Under this assumption, let

P ′ =

{
(P\{Px}) ∪ {s1bPx} if Px ∈ PAB,

(P\{Px}) ∪ {s1x+bPx} if Px ∈ PAA.

Then P ′ is a 3-(S\{x, s2})-path-system such that∑
P∈P ′

|P | =
∑
P∈P

|P |, V (G)\
⋃

P∈P ′

V (P ) = ((V (G)\
⋃
P∈P

V (P ))\{s1}) ∪ {x}

and P ′BB = PBB. Note that s1 6∈ NG(s2) because NG(s1)\
⋃

P∈P V (P ) = ∅. This
implies that |NG(s2)\

⋃
P∈P ′ V (P )| ≥ |NG(s2)\

⋃
P∈P V (P )|.

Hence NG(x)\
⋃

P∈P ′ V (P ) = ∅ by (T2) and, applying Claim 2.19 to P ′, we see
that NG(x) ∩ V (P ) = ∅ for each P ∈ PBB. Since x ∈ A0 is arbitrary, it follows that
NG(A0) ⊆ B1.

Suppose that B = B1. Then, PBB = ∅ and s2 ∈ A. Since |V (P )∩A∩S|−|V (P )∩
B∩S| = 2|V (P )∩ (B\S)| for each P ∈ PAA∪PAB, it follows that |A∩S|−|B∩S| =
|(A∩S)\{s1, s2}|−|B∩S|+2 = 2|B\S|+2, which contradicts the assumption that |A∩
S|−|B∩S| ≤ 2|B\S|. Thus B\B1 6= ∅. Take b0 ∈ B\B1 (it is possible that b0 = s2).
Then, b0 ∈ B\

⋃
P∈P V (P ) or b0 ∈

⋃
P∈PBB

(V (P ) ∩B). If b0 ∈ B\
⋃

P∈P V (P ), then
s1 6∈ NG(b0) by the assumption that NG(s1)\

⋃
P∈P V (P ) = ∅; if b0 ∈

⋃
P∈PBB

(V (P )∩
B), then s1 6∈ NG(b0) by Claim 2.19. Hence s1 6∈ NG(b0). Since NG(A0) ⊆ B1, we
also have NG(b0)∩A0 = ∅. Therefore, |NG(b0)| ≤ |A|−|A0|−|{s1}| ≤ |A|−|A|/2−1,
which contradicts the assumption that δ(G) ≥ max{|A|, |B|}/2. This completes the
proof of Proposition 1.8.

3 Proof of Proposition 1.9

In this section, we present a proof of Proposition 1.9. The proof is almost the same
as that of Theorem 1.6 described in [6]. However, for the convenience of the reader,
we here include a rather detailed description of the proof of Proposition 1.9.

Proof of Proposition 1.9. Let G[A,B] be a bipartite graph with σ1,1(G) ≥
max{|A|, |B|}, and let S be a subset of V (G) which satisfies the assumption of
Proposition 1.9. Suppose that

(D1) G satisfies neither (i) nor (ii) of Proposition 1.9.

The following claim immediately follows from the assumption of Proposition 1.9.

Claim 3.1. There exist s1, s2 ∈ S with s1 6= s2 such that G − {s1, s2} has a 3-
(S\{s1, s2})-path-system P and NG(si)\

⋃
P∈P V (P ) 6= ∅ for each i ∈ {1, 2}.

Let s1, s2,P be as in Claim 3.1. Take ti ∈ NG(si)\
⋃

P∈P V (P ) for each i ∈ {1, 2}.
By (D1), {s1, t1} ∩ {s2, t2} = ∅ and EG({s1, t1}, {s2, t2}) = ∅. For each i ∈ {1, 2},
write {si, ti} = {xi, yi} with xi ∈ A and yi ∈ B.



Y. EGAWA ET AL. /AUSTRALAS. J. COMBIN. 87 (3) (2023), 423–439 435

Before proving the next claim, we outline the proof of Proposition 1.9. We first
prove inequalities concerning the number of edges between {x1, y1, x2, y2} and V (P )
with P ∈ P (Claims 3.2 and 3.3). Based on Claim 3.3, we show that the vertices
of G can be classified into several types (Claim 3.6). Using (D1), we show the
nonexistence of edges between some two types of vertices described in Claim 3.6
(Claims 3.7 through 3.10). Finally we derive the desired conclusion from Claims 3.9
and 3.10 and the degree condition in the proposition.

Claim 3.2. Let P ∈ P.

(i) For each i ∈ {1, 2}, we have NG(xi) ∩ V (P ) = ∅ or NG(y3−i) ∩ V (P ) = ∅.
(ii) If NG(x1)∩V (P ) 6=∅and NG(x2)∩V (P ) 6=∅, then |(NG(x1)∪NG(x2))∩V (P )|=1.

(iii) If NG(y1)∩V (P ) 6=∅ and NG(y2)∩V (P ) 6=∅, then |(NG(y1)∪NG(y2))∩V (P )|=1.

Proof. We prove (i), (ii) and (iii) simultaneously. If NG(xi)∩V (P ) 6=∅ and NG(y3−i)∩
V (P ) 6= ∅ for some i ∈ {1, 2}, or NG(x1) ∩ V (P ) 6= ∅ and NG(x2) ∩ V (P ) 6= ∅ and
|(NG(x1)∪NG(x2))∩ V (P )| = 2, or NG(y1)∩ V (P ) 6= ∅ and NG(y2)∩ V (P ) 6= ∅ and
|(NG(y1) ∪ NG(y2)) ∩ V (P )| = 2, then there exist disjoint S-paths Q,Q′ such that
V (Q) ∪ V (Q′) ⊆ V (P ) ∪ {x1, y1, x2, y2}, min{|Q|, |Q′|} ≤ 3 and max{|Q|, |Q′|} ≤ 4,
and hence P ′ = (P\{P}) ∪ {Q,Q′} is a 4-S-path-system such that |P ′4| ≤ 1, which
contradicts (D1).

For each P ∈ P2, write V (P ) = {aP , bP} with aP ∈ A and bP ∈ B. For i = 1, 2,
let

P(xi, yi) = {P ∈ P : V (P ) ⊆ NG(xi) ∪NG(yi)}.
Also let

P2(x1, x2) = {P ∈ P2 : bP ∈ NG(x1) ∩NG(x2)},
P2(y1, y2) = {P ∈ P2 : aP ∈ NG(y1) ∩NG(y2)}.

It follows from Claim 3.2 (i) that P(x1, y1), P(x2, y2), P2(x1, x2) and P2(y1, y2) are
pairwise disjoint.

Claim 3.3. For each P ∈ P,
∑

i=1,2(|NG(xi) ∩ V (P )| + |NG(yi) ∩ V (P )|) ≤ |P |.
Further, if equality holds, then P ∈ P(x1, y1) ∪ P(x2, y2) ∪ P2(x1, x2) ∪ P2(y1, y2).

Proof. Let P ∈ P . By Claim 3.2 (i), we have NG(x1)∩V (P ) = ∅ or NG(y2)∩V (P ) =
∅. By symmetry, we may assume that NG(x1)∩V (P ) = ∅. By Claim 3.2 (i), we also
have NG(x2) ∩ V (P ) = ∅ or NG(y1) ∩ V (P ) = ∅.

First assume thatNG(x2)∩V (P ) = ∅. Since |NG(y1)∩V (P )|+|NG(y2)∩V (P )| ≤ 2
by Claim 3.2 (iii), we get∑

i=1,2

(|NG(xi) ∩ V (P )|+ |NG(yi) ∩ V (P )|)

= |NG(y1) ∩ V (P )|+ |NG(y2) ∩ V (P )| ≤ 2 ≤ |P |.

If equality holds, then P ∈ P2, and hence |NG(y1)∩V (P )| = 1 and |NG(y2)∩V (P )| =
1, which implies that P ∈ P2(y1, y2).
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Next assume that NG(y1) ∩ V (P ) = ∅. Then,∑
i=1,2

(|NG(xi) ∩ V (P )|+ |NG(yi) ∩ V (P )|)

= |NG(x2) ∩ V (P )|+ |NG(y2) ∩ V (P )|
≤ |V (P ) ∩B|+ |V (P ) ∩ A| = |P |.

If equality holds, then NG(x2)∩ V (P ) = V (P )∩B and NG(y2)∩ V (P ) = V (P )∩A,
and hence V (P ) ⊆ NG(x2) ∪NG(y2), which implies P ∈ P(x2, y2).

Let W = V (G)\
⋃

P∈P V (P ) and, for each i ∈ {1, 2}, let W (xi) = NG(xi) ∩W
and W (yi) = NG(yi) ∩ W (note that yi ∈ W (xi) and xi ∈ W (yi)). Recall that
{xi, yi} = {si, ti}. The following claim follows from the definition of P(xi, yi), W (xi)
and W (yi).

Claim 3.4. Let i ∈ {1, 2}.

(i) For each P ∈ P(xi, yi) and each z ∈ V (P ), there exists an S-path Q such that
|Q| ≤ 3, V (Q) ⊆ {xi, yi} ∪ V (P ), z 6∈ V (Q) and |V (Q) ∩ V (P )| = 1.

(ii) For each z ∈ W (xi) ∪W (yi), there exists a path R such that |R| ≤ 3, V (R) ⊆
{xi, yi, z} and end(R) = {si, z}.

Claim 3.5. We have W (x1) ∩W (x2) = ∅ and W (y1) ∩W (y2) = ∅.

Proof. Suppose that W (x1) ∩ W (x2) 6= ∅ or W (y1) ∩ W (y2) 6= ∅, and take z ∈
(W (x1)∩W (x2))∪ (W (y1)∩W (y2)). By Claim 3.4 (ii), there exist paths R,R′ such
that V (R) ⊆ {x1, y1, z}, end(R) = {s1, z}, V (R′) ⊆ {x2, y2, z} and end(R) = {s2, z}.
Then, R ∪R′ is an S-path with |R ∪R′| ≤ 5, which contradicts (D1).

Recall that x1y2, x2y1 6∈ E(G). Hence by Claims 3.3 and 3.5,

|G| ≤ 2 max{|A|, |B|}
≤ 2σ1,1(G)

≤ (dG(x1) + dG(y2)) + (dG(x2) + dG(y1))

≤
∑
P∈P

|P |+ |W | = |G|.

Hence equality holds throughout, which, together with Claim 3.3, implies the follow-
ing claim.

Claim 3.6.

(i) σ1,1(G) = |A| = |B|.
(ii) P = P(x1, y1) ∪ P(x2, y2) ∪ P2(x1, x2) ∪ P2(y1, y2).

(iii) W =
⋃

i=1,2(W (xi) ∪W (yi)).

For i = 1, 2, let Vi = W (xi) ∪ W (yi) ∪
⋃

P∈P(xi,yi)
V (P ). Note that V (G) =

V1 ∪ V2 ∪
⋃

P∈P2(x1,x2)∪P2(y1,y2)
V (P ) by Claim 3.6 (ii), (iii).
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Claim 3.7. EG(W (x1) ∪W (y1),W (x2) ∪W (y2)) = ∅.

Proof. Suppose not, and let zz′ be an edge with z ∈ W (x1)∪W (y1) and z′ ∈ W (x2)∪
W (y2). By Claim 3.4 (ii), there exist paths R,R′ such that V (R) ⊆ {x1, y1, z},
end(R) = {s1, z}, V (R′) ⊆ {x2, y2, z′}, end(R′) = {s2, z′}. Concatenating R and R′

with the edge zz′, we get an S-path Q in V (G)\(
⋃

P∈P V (P )) having order at most
6. Then, P ′ = P ∪ {Q} is a 6-S-path-system such that |P ′4 ∪ P ′5 ∪ P ′6| ≤ 1. Since G
is balanced by Claim 3.6 (i), this contradicts (D1).

Claim 3.8. Let i ∈ {1, 2}. Then, EG(V (P ),W (x3−i) ∪ W (y3−i)) = ∅ for each
P ∈ P(xi, yi).

Proof. Let P ∈ P(xi, yi). Suppose that EG(V (P ),W (x3−i) ∪ W (y3−i)) 6= ∅, and
let zz′ be an edge with z ∈ V (P ) and z′ ∈ W (x3−i) ∪W (y3−i). By Claim 3.4 (i),
there exists an S-path Q such that V (Q) ⊆ {xi, yi} ∪ V (P ), z 6∈ V (Q) and |V (Q) ∩
V (P )| = 1. By Claim 3.4 (ii), there exists a path R such that V (R) ⊆ {x3−i, y3−i, z′}
and end(R) = {s3−i, z′}. Write S ∩ V (P ) = {u, v} with V (Q) ∩ V (P ) = {u}.
Since z ∈ V (P )\{u} and zz′ ∈ E(G), we can extend R to an S-path Q′ such that
V (Q′) ⊆ V (R) ∪ (V (P )\{u}) and end(Q′) = {s3−i, v}. Note that |V (Q′)| ≤ 5.
Hence P ′ = (P\{P}) ∪ {Q,Q′} is a 5-S-path-system such that |P4 ∪ P5| ≤ 1, which
contraicts (D1).

Claim 3.9. EG(V1, V2) = ∅.

Proof. In view of Claims 3.7 and 3.8, it suffices to show that EG(V (P ), V (P ′)) = ∅ for
each P ∈ P(x1, y1) and each P ′ ∈ P(x2, y2). Let P ∈ P(x1, y1) and P ′ ∈ P(x2, y2).
Suppose that EG(V (P ), V (P ′)) 6= ∅, and let zz′ be an edge with z ∈ V (P ) and
z′ ∈ V (P ′). By Claim 3.4 (i), there exist S-paths Q,Q′ such that V (Q) ⊆ {x1, y1} ∪
V (P ), z 6∈ V (Q), |V (Q) ∩ V (P )| = 1, V (Q′) ⊆ {x2, y2} ∪ V (P ′), z′ 6∈ V (Q′) and
|V (Q′) ∩ V (P ′)| = 1. Write S ∩ V (P ) = {u, v} and V (Q) ∩ V (P ) = {u}. Also write
S ∩ V (P ′) = {u′, v′} and V (Q′) ∩ V (P ′) = {u′}. Since zz′ ∈ E(G), there exists an
S-path Q′′ with V (Q′′) ⊆ (V (P )\{u}) ∪ (V (P ′)\{u′}) and end(Q′′) = {v, v′}. Then,
P ′ = (P\{P, P ′}) ∪ {Q,Q′, Q′′} is a 4-S-path-system such that |P4| ≤ 1, which
contradicts (D1).

Claim 3.10.

(i) For each P ∈ P2(x1, x2), NG(aP ) ⊆ {bR : R ∈ P2(x1, x2)}.
(ii) For each P ∈ P2(y1, y2), NG(bP ) ⊆ {aR : R ∈ P2(y1, y2)}.

Proof. By the symmetry of A and B, it suffices to prove (i). Let P ∈ P2(x1, x2).

First we show that NG(aP )∩ (V1∪V2) = ∅. Suppose that NG(aP )∩ (V1∪V2) 6= ∅,
and take z ∈ NG(aP ) ∩ (V1 ∪ V2). By the symmetry of {x1, y1} and {x2, y2}, we
may assume that z ∈ V1. Note that by the definition of P2(x1, x2), there exists an
S-path Q such that V (Q) ⊆ {x2, y2, bP} and end(Q) = {s2, bP}. Assume for the
moment that z ∈ W (x1)∪W (y1). By Claim 3.4 (ii), there exists a path R such that
V (R) ⊆ {x1, y1, z} and end(R) = {s1, z}. Since aP z ∈ E(G), we can extend R to
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an S-path Q′ such that V (Q′) = V (R) ∪ {aP} and end(Q′) = {s1, aP}. Then, P ′ =
(P\{P})∪ {Q,Q′} is a 4-S-path-system such that |P ′4| ≤ 1, which contradicts (D1).
Thus z ∈

⋃
P ′∈P(x1,y1)

V (P ′). Let P ′ ∈ P(x1, y1) be the path such that z ∈ V (P ′). By

Claim 3.4 (i), there exists an S-pathQ′ such that V (Q′) ⊆ {x1, y1}∪V (P ′), z 6∈ V (Q′)
and |V (Q′)∩V (P ′)| = 1. Write S∩V (P ′) = {u, v} with V (Q′)∩V (P ′) = {u}. Since
aP z ∈ E(G), there exists an S-path Q′′ such that V (Q′′) ⊆ {aP} ∪ (V (P ′)\{u}) and
end(Q′′) = {aP , v}. Then, (P\{P, P ′}) ∪ {Q,Q′, Q′′} is a 3-S-path-system, which
contradicts (D1). Consequently NG(aP ) ∩ (V1 ∪ V2) = ∅.

Next we show that NG(aP ) ∩
⋃

P ′∈P2(y1,y2)
V (P ′) = ∅. Suppose that there exists

P ′ ∈ P2(y1, y2) such that NG(aP ) ∩ V (P ′) 6= ∅. Then, aP bP ′ ∈ E(G). Let Q
be as above. There also exists an S-path Q′ such that V (Q′) ⊆ {x1, y1, aP ′} and
end(Q′) = {s1, aP ′}. Then, (P\{P, P ′})∪{Q,Q′, aP bP ′} is a 3-S-path-system, which
contradicts (D1). Thus NG(aP ) ∩

⋃
P ′∈P2(y1,y2)

V (P ′) = ∅.
Therefore, NG(aP ) ⊆ B\(V1 ∪ V2 ∪

⋃
P ′∈P2(y1,y2)

V (P ′)) = {bR : R ∈ P2(x1, x2)}.

Now suppose that P2(x1, x2)∪P2(y1, y2) 6= ∅. We may assume that P2(x1, x2) 6= ∅.
Take Q ∈ P2(x1, x2). By Claim 3.10 (i), dG(aQ) ≤ |P2(x1, x2)|. On the other
hand, it follows from Claims 3.9 and 3.10 (i) that dG(y1) ≤ |A| − |V2 ∩ A| − |{aP :
P ∈ P2(x1, x2)}| = |A| − |V2 ∩ A| − |P2(x1, x2)|. Recall that x2 ∈ V2 ∩ A. Hence
dG(y1) < |A| − |P2(x1, x2)|. Consequently dG(aQ) + dG(y1) < |A|. Since aQy1 6∈
E(G) by Claim 3.10 (i), this contradicts the assumption that σ1,1(G) ≥ |B| (= |A|).
Therefore, P2(x1, x2) ∪ P2(y1, y2) = ∅. Since V1, V2 6= ∅, it now follows from Claim
3.9 that G is disconnected. In view of the assumption that σ1,1(G) ≥ |B|, this forces
G ∼= Kt,t ∪ K|B|−t,|B|−t for some 1 ≤ t ≤ |B| − 1. This completes the proof of
Proposition 1.9.
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