
AUSTRALASIAN JOURNAL OF COMBINATORICS
Volume 87(2) (2023), Pages 357–364

Enumerating spanning trees of a graph
with edge constraints

Jinshui Guo Weigen Yan∗

School of Science, Jimei University
Xiamen 361021

China
Jinshui4586@163.com weigenyan@263.net

Abstract

Suppose that F ∪ H is a spanning subgraph of a complete graph Kn of
order n, where F is a forest with s components of orders n1, n2, . . . , ns

and H is a subgraph of Kn. In this paper we prove that the number of
spanning trees of Kn containing all edges in F and avoiding (containing

no) edges in H equals ns−2

(
s∏

i=1

ni

)∏
α

(n−α), where the second product

ranges over all Laplacian eigenvalues α ofH ; this generalizes a well-known
result by Moon.

1 Introduction

Let G = (V (G), E(G)) be a graph with vertex set V (G) = {v1, v2, . . . , vn} and edge
set E(G) = {e1, e2, . . . , em}, and let Gc be the complement of G. Denote the number
of spanning trees of G by t(G). If G is an edge-weighted graph, we also use t(G) to
denote the sum of the weights of spanning trees of G, where the weight of a spanning
tree T in G is the product of weights of the edges in T . Enumeration of spanning
trees in a graph is an important and popular topic in mathematics, physics, computer
science, and so on, and has been studied extensively for a long time (see, for example,
[1, 5, 6, 7, 8, 9, 11, 12, 16]).

The well-known Cayley’s formula states that a complete graph Kn with n vertices
has nn−2 spanning trees [2]. This result is extended to a complete multipartite graph
Kn1,n2,...,ns [1], and it is proved that

t(Kn1,n2,...,ns) = ns−2

s∏
i=1

(n− ni)
ni−1,
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where n = n1 + n2 + · · ·+ ns.

For the enumeration of spanning trees of a complete graph Kn with some con-
straints, Moon [13] first proved that the number of spanning trees of Kn containing
all edges in a spanning forest F = T1 ∪ T2 ∪ · · · ∪ Tc with c components, denoted by
tF (Kn), can be expressed by

tF (Kn) = nc−2
c∏

i=1

ni, (1)

where n1, n2, . . . , nc are the numbers of vertices of T1, T2, . . . , Tc, respectively.

Recently, Dong and Ge [4] extended this result to a complete bipartite graph,
and obtained an interesting formula as follows. If F = T1∪T2∪· · ·∪Tk is a spanning
forest of a complete bipartite graph Km,n with a bipartition (X, Y ) satisfying mi =
|X ∩ V (Ti)| and ni = |Y ∩ V (Ti)| for 1 ≤ i ≤ k, then the number of spanning trees
of Km,n containing edges in F can be expressed by

tF (Km,n) =
1

mn

[
k∏

i=1

(min+ nim)

](
1−

k∑
j=1

mjnj

mjn+ njm

)
, (2)

which generalizes the results in [15] by Zhang and Yan, and in [10] by Ge and Dong.
Furthermore, Cheng, Chen and Yan [3] extended Eq. (2) to complete multipartite
graphs.

On the other hand, Weinberg [14] first considered the enumerative problem of
spanning trees of a complete graph Kn containing no edges in a subgraph H of Kn.
This is equivalent to enumerating spanning trees of the graph G = Kn − E(H)
obtained from Kn by deleting all edges in H . Weinberg [14] obtained the following
formulae:

t(Kn − pK2) = nn−2

(
1− 2

n

)p

(3)

and
t(Kn −E(K1,k)) = (n− 1− k)(n− 1)k−1nn−k−2, (4)

where pK2 is a matching of Kn (2p ≤ n), and K1,k is a star with k+1 vertices which
is a subgraph of Kn (k ≤ n− 1).

More generally, if H is a subgraph of Kn with s vertices and has Laplacian
eigenvalues 0 = α1 ≤ α2 ≤ · · · ≤ αs, then the Laplacian eigenvalues of G = Kn −
E(H) are 0,

n−s︷ ︸︸ ︷
n, . . . , n, n − α2, n − α3, . . . , n − αs, which implies that the number of

spanning trees of Kn containing no edges in H can be expressed by

t(Kn − E(H)) = nn−s−2

s∏
i=1

(n− αi), (5)

where the product is over all Laplacian eigenvalues of H [1]. Obviously, Eq. (5)
generalizes Eqs. (3) and (4).
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A natural problem is to enumerate spanning trees of Kn containing all edges in
F and avoiding (containing no) edges in H , where F is a forest of Kn and H is a
subgraph of Kn such that V (F )∩ V (H) = ∅ and V (Kn) = V (F )∪ V (H); that is, to
calculate tF (G), where G = Kn − E(H).

Ge and Dong [10] first considered a similar problem, and obtained the following
result. Let M = A ∪ B be a matching of a complete bipartite graph Km,n with k
edges, and A ∩ B = ∅, |A| = k − i and |B| = i. Then the number of spanning trees
of Km,n containing all edges in A and avoiding edges in B can be expressed by

tk−i,i(Km,n) =

(m+ n)k−i−1(mn−m− n)i−1[(m+ n− k)(mn−m− n) + imn]mn−k−1nm−k−1.

In this paper, we solve the problem above, and prove mainly the following result,
whose proof will be given in the next section.

Theorem 1.1. Let G be a simple graph with n vertices, which is the graph obtained
from a complete graph Kn by deleting all edges of a subgraph H of Kn. Suppose that
F = T1∪T2∪· · ·∪Ts is a subforest of G with s components satisfying V (F )∩V (H) = ∅
and V (G) = V (F ) ∪ V (H). Then the number of spanning trees of G containing all
edges in F is

tF (G) = ns−2

(
s∏

i=1

ni

)∏
α

(n− α), (6)

where ni = |V (Ti)| for 1 ≤ i ≤ s, and the second product ranges over all Laplacian
eigenvalues α of H.

Remark 1.1. Obviously, Eqs. (1), (3), (4) and (5) are special cases of Eq. (6) for
V (H) = ∅, H = pK2 (a matching with p edges) and F = (n−2p)K1 (n−2p isolated
vertices), H = K1,k and F = (n− k − 1)K1, and F = (n− s)K1, respectively.

Remark 1.2. In the theorem above, if H is the vertex disjoint union of some
complete bipartite graphs Ka1,b1 , Ka2,b2 , . . . , Kat,bt , i.e., the components of H are
Ka1,b1, Ka2,b2, . . . , Kat,bt , then

tF (Kn − E(H)) = ns+t−2

(
s∏

i=1

ni

)
t∏

j=1

(n− aj − bj)a
bj−1
j b

aj−1
j .

In particular, if H = pK2 is a matching of Kn, then

tF (Kn − pK2) = ns+2p−2

(
1− 2

n

)p s∏
i=1

ni.

2 Proof of Theorem 1.1

In this section we give the proof of Theorem 1.1. Firstly, we need to introduce some
lemmas as follows.
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Lemma 2.1 (Matrix-Tree Theorem, [1]). Let LG be the Laplacian matrix of a graph
G. Then

t(G) = (−1)i+j det(LG)ij,

where (LG)ij is the submatrix of LG obtained from L(G) by deleting the i-th row and
j-th column.

Let G∨H be the join of two vertex-disjoint graphs G and H . That is, G∨H has
vertex set V (G) ∪ V (H) and edge set E(G) ∪ E(H) ∪ {(u, v)|u ∈ V (G), v ∈ V (H)}.

Given a vertex-weighted graph G = (V (G), E(G)) with a vertex weight function
ω : V (G) → R, this results in an edge-weighted graph, also denoted by G, in which
each edge e = uv ∈ E(G) has weight ω(u)ω(v). Let G∗ be the weighted graph
obtained from G by replacing the induced subgraph H of G with {o} ∨ Hc, where
the weight of an edge in G∗ is defined as⎧⎪⎨

⎪⎩
ω(vivj) = −ω(vi)ω(vj), if vivj ∈ E(Hc),
ω(vivj) = ω(vi)ω(vj), if vivj ∈ E(G)\E(H),
ω(ovi) = ω(vi)

∑
v∈V (H)

ω(v), if vi ∈ V (H).

Zhou and Bu [16] used the Schur complement formula to give the mesh-star
transformation in vertex-weighted version as follows, which will play an important
role in the proof of the main result.

Lemma 2.2 ([16]). Let G be a weighted graph with vertex set V (G) and edge set E(G)
and let ω : V (G) → R be the vertex-weighted function, where each edge vivj ∈ E(G)
has weight ω(vi)ω(vj). Keeping the notation above,

t(G) =
1( ∑

v∈V (H)

ω(v)

)2 t(G
∗). (7)
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Figure 1: (a) The subforest F = P2∪P3∪P2 in K10.
(b) The subgraph H of K10. (c) The graph G∗.

Now, we can give the proof of Theorem 1.1 as follows.
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Proof of Theorem 1.1. Note that F ∪ H is a spanning subgraph of Kn and
F = T1 ∪ T2 ∪ · · · ∪ Ts is a subforest of G = Kn − E(H) with s components of
n1, n2, . . . , ns vertices and H is a subgraph of Kn such that V (F ) ∩ V (H) = ∅.
Hence H has n − n1 − n2 − · · · − ns vertices. Contracting each component Ti of
T in G = Kn − E(H) into a new vertex ui for i = 1, 2, . . . , s, we get a new edge-
weighted graph G∗ with vertex set V (G∗) = {u1, u2, . . . , us} ∪ V (H) and edge set
E(G∗) = {uiuj | 1 ≤ i < j ≤ s}∪{uiv | 1 ≤ i ≤ s, v ∈ V (H)}∪E(Hc), and the edge
weight function ω satisfies:

ω(uiuj) = ninj for 1 ≤ i < j ≤ s,

ω(uiv) = ni for 1 ≤ i ≤ s, v ∈ V (H),

and ω(e) = 1 for all edges e ∈ E(Hc),

where Hc is the complement of H . For example, if n = 10, F = P2 ∪ P3 ∪ P2 and
H = P3, are illustrated in Figures 1(a) and (b), and the corresponding edge-weighted
graph G∗ is illustrated in Figure 1(c).

Obviously, the number of spanning trees of Kn containing all edges in F and no
edge in H equals the sum of weights of spanning trees in G∗, that is,

tF (G) = tF (Kn − E(H)) = t(G∗). (8)
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Figure 2: The edge-weighted graph G′.

Define a vertex weight function ω∗ : V (G∗) → R such that ω∗(ui) = ni for
1 ≤ i ≤ s and ω∗(v) = 1 for v ∈ V (H). Obviously, the edge weight function ω of
G∗ satisfies: ω(uiuj) = ω∗(ui)ω

∗(uj) for any 1 ≤ i, j ≤ s, ω(upv) = ω∗(up)ω
∗(v) for

1 ≤ p ≤ s, and ω(xy) = ω∗(x)ω∗(y) for any x, y ∈ V (H).

Let G′ be the edge-weighted graph obtained from G∗ by replacing G∗ by {o} ∨
(G∗)c, where the weight of each edge in G′ is defined as⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ω(xy) = −ω∗(x)ω∗(y) = −1, for xy ∈ E((G∗)c),
ω(uiuj) = ω∗(ui)ω

∗(uj) = ninj , for 1 ≤ i 
= j ≤ s,
ω(oui) = ω∗(ui)

∑
x∈V (G∗)

ω∗(x) = ni(
∑s

p=1 np+|V (H)|) = nin, for 1 ≤ i ≤ s,

ω(ov) = ω∗(v)
∑

x∈V (G∗)
ω∗(x) =

∑s
p=1 np + |V (H)| = n, for v ∈ V (H).
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For the edge-weighted graph G∗ illustrated in Figure 1(c), the corresponding
edge-weighted graph G′ is illustrated in Figure 2.

By Lemma 2.2,

t(G∗) =
1(∑

x∈V (G∗) ω
∗(x)

)2 t(G′) =
1

n2
t(G′). (9)

Note that the induced subgraph G1 of G′ with vertex set {o, u1, u2, . . . , us} is an
edge-weighted star in which each edge oui has weight nni for i = 1, 2, . . . , s, and the
induced subgraph G2 of G

′ with vertex set {o} ∪ V (H) is an edge-weighted graph in
which each edge ov has weight n for each v ∈ V (H) and each edge e ∈ E(H) has
weight −1. Particularly, V (G1) ∩ V (G2) = o (i.e., o is a cut vertex of G′). Thus

t(G′) = t(G1)t(G2) = ns

(
s∏

i=1

ni

)
t(G2). (10)

Note that if we delete the row and column corresponding to vertex o of the
Laplacian matrix LG2 of G2, then we obtain the matrix nI−LH , where I is the n×n
identity matrix and LH is the Laplacian matrix of H . By Lemma 2.1,

t(G2) = det(nI − LH) =
∏
α

(n− α), (11)

where the product ranges over all Laplacian eigenvalues α of H .

The theorem is immediate from Eqs. (8)–(11). �

3 Discussion

In this paper, by the so-called mesh-star transformation in the vertex-weighted ver-
sion by Zhou and Bu [16], we obtain an enumerative formula for the number of
spanning trees in a complete graph Kn containing all edges in a subforest F and
no edge in a subgraph H of Kn, where F ∪ H is a spanning subgraph of Kn which
satisfies V (F )∩V (H) = ∅. This result generalizes Moon’s formula (i.e., Eq. (1)) and
Weinberg’s formulae (i.e., Eqs. (3) and (4)). Note that Dong and Ge [4] generalized
Moon’s formula to the case of the complete bipartite graph and Ge and Dong [10]
obtained a formula for the number of spanning trees of a complete bipartite graph
Km,n containing all edges in a matching M1 of Km,n and avoiding all edges in a
matching M2 in Km,n, where V (M1) ∩ V (M2) = ∅. A natural problem is: if F ∪H
is a spanning subgraph of a complete multipartite graph G = Kn1,n2,...,ns for s ≥ 2,
find a formula for the number of spanning trees of G containing edges in F and
avoiding edges in H , where F is a forest of G and H is a subgraph of G such that
V (F ) ∩ V (H) = ∅.
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