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Abstract

This is the first paper in a sequence of three that describe the 3-connected
binary matroids with circumference 8. A matroid M is said to be bent
provided it has a maximum size circuit C such that M/C has a connected
component with rank exceeding 1. Otherwise, it is said to be unbent.
An unbent matroid M is said to be crossing when M has a maximum
size circuit C, sets X and Y contained in different rank-1 connected
components of M/C such that |X| = |Y | = 2 and M |(C ∪ X ∪ Y ) is
a subdivision of M(K4). Otherwise, it is said to be uncrossing. In this
paper, we construct the unbent crossing 3-connected binary matroids
with circumference 8. In the second paper of this sequence, we describe
the bent 3-connected binary matroids with circumference 8. In the third
and final paper of this series, we deal with the unbent uncrossing 3-
connected binary matroids with circumference 8.

1 Introduction

We assume familiarity with matroid theory. The notation and terminology used in
this article follow Oxley [7]. For a positive integer n, we use [n] to denote the set
{1, 2, . . . , n}. For a set S, the family of 2-subsets of S is denoted by

(
S
2

)
. We decided

to start the construction of all 3-connected binary matroids having circumference 8
and large rank with the unbent crossing case because only in this case does there
appear a family of 4-connected matroids.

There are many sharp extremal results in matroid theory whose bounds depend
on the circumference. When one of these bounds is used to prove a theorem, it may
imply that a counter-example to it must have small circumference. It is likely that
the knowledge of all matroids with small circumference may simplify the proof of
such a result. This was the motivation to construct the 3-connected binary matroids
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with circumference at most 7 and large rank by Cordovil, Maia Jr. and Lemos [2]. In
this paper, we start to construct all 3-connected binary matroids with circumference
8 and large rank. We hope to apply our results to describe the 3-connected binary
matroids with no odd circuit with size exceeding 7 extending the main result of
Chun, Oxley and Wetzler [1].

Lemos and Oxley [6] establish a sharp lower bound for the circumference of a
3-connected matroid with large rank, namely:

Theorem 1.1 Suppose that M is a 3-connected matroid. If r(M) ≥ 6, then
circ(M) ≥ 6.

A binary matroid M is said to be a book having pages M1,M2, . . . ,Mn, for n ≥ 2,
and r-spine T , for r ≥ 2, provided:

(i) M1,M2, . . . ,Mn are binary matroids;

(ii) T = E(M1) ∩ E(M2) ∩ · · · ∩ E(Mn);

(iii) E(M1)− T,E(M2)− T, . . . , E(Mn)− T are pairwise disjoint sets;

(iv) M1|T = M2|T = · · · = Mn|T = K is isomorphic to PG(r − 1, 2); and

(v) M = PK(M1,M2, . . . ,Mn), that is, the circuit space ofM is spanned by C(M1)∪
C(M2) ∪ · · · ∪ C(Mn).

The next two theorems were restated using this concept of a book proposed by Chun,
Oxley and Wetzler [1].

Theorem 1.2 (Cordovil, Maia Jr. and Lemos [2]) Let M be a 3-connected bi-
nary matroid such that r(M) ≥ 8. Then, circ(M) = 6 if and only if there is a book
M ′ with pages M1,M2, . . . ,Mn, for n = r(M)− 2, and 2-spine T such that, for each
i ∈ [n], Mi is isomorphic to M(K4) or F7 and M = M ′\S, for some S ⊆ T .

LetM ′ be as described in Theorem 1.2. Without loss of generality, we may assume
that Mi is isomorphic to F7 if and only if i ≤ m. For i ∈ [m], choose ai ∈ E(Mi)−T
and set T ∗

i = E(Mi) − (T ∪ ai). Let N0 = M ′\{a1, a2, . . . , am}. Note that N0 is
isomorphic to M(K ′′′

3,n). For i ∈ [m], consider Ni = M ′\{aj : j ∈ [m] and j > i}.
Hence Nm = M ′. For i ∈ [m], we have that

(1) T ∗
i is a triad of Ni−1; and

(2) Ni−1 = Ni\ai and T ∗
i ∪ ai is a circuit-cocircuit of Ni.

Therefore Ni is the unique single-element binary extension ofNi−1 obtained by adding
the element ai such that T ∗

i ∪ ai is a circuit. That is, M ′ is obtained from a matroid
isomorphic to M(K ′′′

3,n) after a sequence of m single-element binary extensions each
one adding a new element making a 4-element circuit with the elements of some
triad. A similar construction can be done for M ′ in Theorem 1.3. This description
was used to state the main results of Cordovil, Maia Jr. and Lemos [2].
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Theorem 1.3 (Cordovil, Maia Jr. and Lemos [2]) Let M be a 3-connected bi-
nary matroid such that r(M) ≥ 9. Then, circ(M) = 7 if and only if there is a book
M ′ with pages M1,M2, . . . ,Mn, for n = r(M)− 3, and 2-spine T such that, for each
i ∈ [n − 1], Mi is isomorphic to M(K4) or F7, Mn is a 3-connected rank-4 binary
matroid having a Hamiltonian circuit C satisfying |T ∩ C| = 2 and M = M ′\S, for
some S ⊆ T .

A union of pages from a book with a 2-spine forms a 3-separating set. Con-
sequently any matroid that appears in Theorems 1.2 or 1.3 is not internally 4-
connected. The same thing happens with the main results of the next two papers of
this series dealing with 3-connected binary matroids with circumference 8 (see [4, 5]).
Below, we state the main result of [4] as an example. All matroids that will appear
in [4, 5] are described using books with a 2-spine.

Cordovil and Lemos [3] constructed the 3-connected matroids with circumfer-
ence 6. These matroids can be described using a natural generalization of a book for
non-binary maroids. We do not state the result here to avoid giving this definition
since it is not necessary in the remainder of this paper.

For an integer k exceeding 3, we denote by Zk the rank-k binary spike. There
is just one element of Zk belonging to k triangles. This element is called the tip of
Zk. All matroids obtained from Zk by deleting an element other than the tip are
isomorphic. When k = 4, such a matroid is isomorphic to S8. The tip of S8 is its
unique element belonging to 3 triangles.

Let M be a 3-connected binary matroid having circumference 8. We say that
M is unbent provided, for every circuit C of M satisfying |C| = 8, each connected
component of M/C has rank equal to 0 or 1. Otherwise, we say that M is bent.
Now, the main result of Lemos [4] is:

Theorem 1.4 Let M be a bent 3-connected binary matroid with circumference 8. If
r(M) ≥ 14, then there is a book M ′ with pages M1,M2, . . . ,Mn and 2-spine T such
that, for a fixed e ∈ T and for each i ∈ [n],

(i) Mi is isomorphic to a matroid belonging to {Z4, S8, F7,M(K4)};
(ii) when r(Mi) = 4, e is the tip of Mi; and

(iii) M = M ′\T ′, for some T ′ ⊆ T .

Moreover, m = |{i ∈ [n] : r(Mi) = 4}| ≥ 3 and m+ n ≥ 12.

Let M be an unbent 3-connected binary matroid having circumference 8. We
say that M is crossing when M has an 8-element circuit C, sets X and Y contained
in different rank-1 connected components of M/C such that |X| = |Y | = 2 and
M |(C ∪ X ∪ Y ) is a subdivision of M(K4). Now, we state the main result of this
paper. Its proof can be found in Section 3.
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Theorem 1.5 Let M be an unbent crossing 3-connected binary matroid with cir-
cumference 8. If r(M) ≥ 11, then

(i) M is a 3-connected rank-preserving restriction of M ′′, where M ′′ is a book
with pages M1,M2, . . . ,Mt, for t = r(M) − 3, and 3-spine F such that Mi is
isomorphic to PG(3, 2), for every i ∈ [t]; or

(ii) M = M ′′\T ′, where T ′ ⊆ T and M ′′ is a book with pages M1,M2, . . . ,Mt, for
t = r(M)−5, and 2-spine T such that, for each i ∈ [t]−{1}, Mi is isomorphic
to K(K4) or F7 and M1 is a 3-connected binary matroid satisfying:

(A) M1 has a circuit D such that |D| = 6 and |D ∩ T | = 2; and

(B) the simplification of M1/T is isomorphic to F ∗
7 or AG(3, 2).

If M ′′ is the book described in Theorem 1.5(i), then M ′′ is internally 4-connected
and M ′′\F is 4-connected. Both M ′′ and M ′′\F have circumference equal to 8. Note
that M ′′\F has a rank-preserving restriction isomorphic to M(K4,t).

Every matroid described in the conclusion of Theorem 1.4 is a bent 3-connected
binary matroid with circumference 8. To restrict the matroids described in The-
orem 1.5(i) so that they are contained in the class of unbent crossing 3-connected
binary matroids with circumference 8 would produce a cumbersome statement (in the
next paragraph, we state the condition). By Lemma 2.7(v), any matroid described
in Theorem 1.5(i) has circumference at most 8. We give just one example to stress
the complications that may occur. For the book M ′′ described in Theorem 1.5(i),
choose a line L of M ′′|F . For each i ∈ [t], let Pi be a plane of Mi containing L.
Observe that N = M ′′|(F ∪ P1 ∪ P2 ∪ · · · ∪ Pt) is a rank preserving restriction of
M ′′. But N is a book with pages M ′′|F,M1|P1,M2|P2, . . . ,Mt|Pt and 2-spine L. By
Lemma 2.7(v), its circumference is 6. (Each page of N is isomorphic to F7.)

Let M ′′ be the book described in Theorem 1.5(i). We say that a subset X of
E(M ′′) − F induces a crossing on M ′′ when there is a 6-subset {i1, i2, i3, i4, i5, i6}
of [t], a partition {X1, X2, X3, X4, X5, X6} of X and a 6-subset {a1, a2, a3, a4, a5, a6}
of F such that, for each k ∈ [6], Xk is a 2-subset of E(Mik) − F and Xk ∪ ak is
a triangle of Mik . A restriction M ′′|Y of M ′′, for some Y ⊆ E(M ′′), is a rank-
preserving unbent crossing 3-connected binary matroid with circumference 8 if and
only if there is X ⊆ Y such that X induces a crossing on M ′′ and, for every k ∈ [t],
|Y ∩ [E(Mk)− F ]| ≥ 3. In Lemma 2.9, we establish this fact.

Note that M1 may have at most 35 elements in Theorem 1.5(ii). This occurs
when each parallel class of M1/T has 4 elements and its simplification is isomorphic
to AG(3, 2). If M ′′ satisfies Theorem 1.5(ii)(A), then the circumference of M ′′ is at
least 8. To see this, assume that D ∩ T = {α, β} and chose triangles T2 and T3 of
M2 and M3 respectively such that T2 ∩ T = {α} and T3 ∩ T = {β}. Observe that
D � T2 � T3 is a circuit of M ′′ avoiding T having 8 elements. By Lemma 2.6, the
circumference of M ′′ is at most 8. Therefore, when M ′′ satisfies Theorem 1.5(ii), the
circumference of M ′′\T is 8.
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The next results about the circuit space of a binary matroid M are used without
reference throughout this paper:

(i) A cycle of M is an union of pairwise disjoint circuits of M .

(ii) The symmetric difference of circuits of M is a cycle of M .

(iii) The circuit space of M is spanned by the circuits of M and it has dimension
equal to r∗(M).

(iv) If C is a cycle of M and X ⊆ E(M), then C −X is a cycle of M/X .

2 Preliminary results

Let M be a matroid. For F ⊆ E(M), an F -arc is a minimal non-empty subset A of
E(M)− F such that there exists a circuit C of M with C − F = A and C ∩ F 	= ∅.
Note that A is an F -arc if and only if A ∈ C(M/F ) − C(M). The next result is
Lemma 2.2 of Cordovil, Maia and Lemos [2].

Lemma 2.1 Let M be a connected matroid. If ∅ 	= F ⊆ E(M),M |F is connected
and circ(M/F ) ≥ 3, then there is a circuit C of M/F such that C is an F -arc and
|C| ≥ 3.

The next result is implicit in Cordovil, Maia and Lemos [2].

Lemma 2.2 Let M be a connected matroid. Suppose that M |F is connected, for
∅ 	= F � E(M). If |A| ≤ 2, for every F -arc A, then every connected component of
M/F has rank equal to 0 or 1.

Proof: The result follows because, by Lemma 2.1, circ(M/F ) ≤ 2. �

We say that L is a theta set of a matroid M provided L ⊆ E(M) and M |L is a
subdivision of U1,3. When L1, L2 and L3 are the series classes of M |L, {L1, L2, L3}
is said to be the canonical partition of L in M . If |L1| = a, |L2| = b and |L3| = c,
then L is said to be an (a,b,c)-theta set of M . The next result has a standard proof.
We present it for completeness.

Lemma 2.3 Let M be a matroid with circumference 8. If L is a theta set of M ,
then |L| ≤ 12. Moreover, when |L| ∈ {11, 12}, L is an (a, b, c)-theta set of M , where
(a, b, c) ∈ {(4, 4, 4), (4, 4, 3), (5, 3, 3)}.

Proof: Let {L1, L2, L3} be the canonical partition of L. Assume that

|L1| ≥ |L2| ≥ |L3|. (2.1)
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As C(M |L) = {L1 ∪ L2, L1 ∪ L3, L2 ∪ L3}, it follows that
24 = 3circ(M) ≥ |L1 ∪ L2|+ |L1 ∪ L3|+ |L2 ∪ L3| (2.2)

= 2(|L1|+ |L2|+ |L3|) = 2|L|.
Therefore |L| ≤ 12. If |L| = 12, then equality holds in (2.2). In particular, |L1 ∪
L2| = |L1 ∪ L3| = |L2 ∪ L3| = 8. Hence |L1| = |L2| = |L3| = 4 and so L is a
(4, 4, 4)-theta set. Assume that |L| = 11. By (2.2), there is a 2-subset {i, j} of
[3] such that |Li ∪ Lj | = 8. By (2.1), we may assume that {i, j} = {1, 2}. Hence
|L3| = |L| − |L1 ∪ L2| = 11 − 8 = 3. Thus |L1| = |L2| = 4 and L is a (4, 4, 3)-theta
set of M or |L1| = 5 and |L2| = 3 and L is a (5, 3, 3)-theta set of M . �

Lemma 2.4 If M is a matroid with circumference 8, then the following statements
are equivalent:

(i) M is unbent.

(ii) Every theta set of M has at most 10 elements.

Proof: Assume that M is bent. By definition, M has a circuit C such that |C| = 8
and M/C has a connected component with rank exceeding 1. By Lemma 2.2, there
is a C-arc A of M such that |A| ≥ 3. Therefore C ∪A is a theta set of M having at
least 11 elements.

Now, assume thatM has a theta set L such that |L| > 10. By Lemma 2.3, L is an
(a, b, c)-theta set of M , where (a, b, c) ∈ {(4, 4, 4), (4, 4, 3), (5, 3, 3)}. If {L1, L2, L3} is
the canonical partition of L and |L1| ≥ |L2| ≥ |L3|, then C = L1 ∪ L2 is a circuit of
M having 8 elements and, in M/C, L3 is a circuit with at least 3 elements. If K is
the connected component of M/C such that L3 ⊆ E(K), then r(K) ≥ |L3| − 1 ≥ 2.
Thus M is bent. �

Lemma 2.5 Let N be 3-connected binary matroid having a triangle T such that the
simplification of N/T is isomorphic to F ∗

7 or AG(3, 2). If C is a circuit of N such
that C ∩ T 	= ∅, then

|C − T | ≤ 8− 2|T ∩ C|. (2.3)

Proof: Assume that |T ∩C| = 1. In this case (2.3) becames |C| − 1 ≤ 6. This is true
because circ(N) ≤ r(N) + 1 = 7. If |T ∩ C| = 2, then N/T = N/(T ∩ C)\(T − C).
Thus C − T is a circuit of N/T and so |C − T | ≤ 4. Hence (2.3) follows. �

The next lemma will be used to establish that the circumference of any matroid
described in Theorem 1.5(ii) is exactly 8.

Lemma 2.6 Let N be a book having pages N1, N2, . . . , Nm, for m ≥ 3, and 2-spine
T such that Ni is isomorphic to F7 or M(K4), for each i ∈ [m] − {1}. If N1 is a
3-connected binary matroid such that the simplification of N1/T is isomorphic to F ∗

7

or AG(3, 2), then circ(N) ≤ 8.
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Proof: Assume this result fails. If C is a circuit of N such that |C| = circ(N), then
|C| ≥ 9. For a positive integer n, C = Ci1�Ci2�· · ·�Cin, where Cj is a cycle of Nj,
for every j ∈ J = {i1, i2, . . . , in} ⊆ [m], where 1 ≤ i1 < i2 < · · · < in ≤ m. Choose
J and these cycles such that n is minimum. If n = 1, then C is a circuit of Ni1; a
contradiction because |C| ≤ circ(Ni1) ≤ r(Ni1) + 1 ≤ 7. Thus n ≥ 2. By the choice
of n, Cj −T 	= ∅, for every j ∈ J . (If Cj ⊆ T , say j = in, then Cin ∈ {∅, T} is a cycle
of Njn−1 and so Cin−1�Cin is a cycle of Nin−1 . This cycle can replace Cin−1 and Cin in
the symmetric difference that defines C; a contradiction to the minimality of n.) If
Cj ∩ T = ∅, for some j ∈ J , then there is a circuit D of Nj such that D ⊆ Cj � C; a
contradiction since D is a circuit of N . Hence Cj ∩T 	= ∅, for every j ∈ J . Therefore
|Cj ∩ T | ∈ {1, 2}, for each j ∈ J . For j ∈ J , we set

Dj =

{
Cj, when |Cj ∩ T | = 1,

Cj � T, when |Cj ∩ T | = 2.

In particular, |Dj ∩ T | = 1. Note that Dj is a circuit of Nj , otherwise C contains
properly a circuit of Nj. Now, we show that

if {j, j′} is a 2-subset of [n], then Dj ∩ T 	= Dj′ ∩ T. (2.4)

If (2.4) fails, then Dj�Dj′ is a cycle of N and so C = Dj�Dj′ = (Dj−T )∪(Dj′−T ).
If j′ < j, then Nj is isomorphic to M(K4) or F7 and so |Dj − T | = 2. Hence
9 ≤ |C| = |Dj′ − T | + 2; a contradiction because 7 ≤ |Dj′ − T | = |Dj′| − 1 ≤
circ(Nj′) − 1 ≤ r(Nj′) ≤ 6. Thus (2.4) holds. In particular, n ≤ |T | = 3. Next, we
establish that i1 = 1. If 1 	∈ J , then

9 ≤ |C| = |C ∩ T |+ |Di1 − T |+ |Di2 − T |+ · · ·+ |Din − T |
= |C ∩ T |+ 2n ≤ |C ∩ T |+ 6 ≤ 8;

a contradiction. Thus 1 ∈ J .

Case 1. n = 3, say J = {1, 2, 3}.
By (2.4), T = {e1, e2, e3}, where {ej} = Dj ∩ T for j ∈ J . First, we prove that
{e2, e3}∩ clN1(D1) = ∅. If e2 or e3 belongs to clN1(D1), say e2, then there is a circuit
D of N1 such that e2 ∈ D ⊆ (D1 − e1) ∪ e2. Thus D �D2 ⊆ (D1 − e1) ∪ (D2 − e2)
is a non-empty cycle of N properly contained in C; a contradiction. Therefore
{e2, e3} ∩ clN1(D1) = ∅. Hence |D1| ≤ r(N1) = 6. Observe that

C ′ = D1 �D2 �D3 � T = (D1 − e1) ∪ (D2 − e3) ∪ (D3 − e3)

is a cycle of N and so C = C ′. Hence 9 ≤ |C| = |D1 − e1|+ |D2 − e2|+ |D3 − e3| =
|D1− e1|+4. Hence |D1| = 6. Now, D = D1�T is a circuit of N1 because {e2, e3}∩
clN1(D1) = ∅; a contradiction to Lemma 2.5 since 5 = |D − T | > 8− 2|D ∩ T | = 4.
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Case 2. n = 2, say J = {1, 2}.
As C1 ∩ C2 	= ∅, it follows that {C1, C2} ∈ {{D1 � T,D2}, {D1, D2 � T}, {D1 �
T,D2 � T}}. Hence

C =

{
D1 �D2 � T = (D1 − e1) ∪ (D2 − e2) ∪ (T − {e1, e2}) or

D1 �D2 = D1 ∪D2.

The second possibility cannot occur and so

9 ≤ |C| = |D1 − e1|+ |D2 − e2|+ |T − {e1, e2}|
= |D1 − e1|+ 2 + 1 = |D1 − e1|+ 3.

Therefore |D1| = 7 and D1 − e1 is a basis for N1. When T = {e1, e2, e3}, there is a
circuit C ′ of N1 such that e3 ∈ C ′ ⊆ (D1 − e1) ∪ e3; a contradiction because C ′ is
properly contained in C. �

Now, we establish a simple result. Item (ii) of the next lemma was used by
Cordovil, Maia Jr. and Lemos [2] without proof. We added item (iv) in the next
lemma because Theorem 1.5 (i) will become an immediate consequence of it.

Lemma 2.7 Let N be a simple binary matroid. For L ⊆ E(N) and m ≥ 2, if
the connected components K1, K2, . . . , Km of N/L satisfy r(K1) = r(K2) = · · · =
r(Km) = 1, then

(i) the circuit space of N is spanned by {C ∈ C(N) : |C − L| ∈ {0, 2}};
(ii) E(K1), E(K2), . . . , E(Km) are pairwise disjoint cocircuits of N ;

(iii) when N |L ∼= PG(r − 1, 2), for some r ≥ 2, then N is a book with pages
N |[E(K1) ∪ L], N |[E(K2) ∪ L], . . . , N |[E(Km) ∪ L] and r-spine L. Moreover,
each page of this book has rank equal to r + 1; and

(iv) when N |L ∼= PG(r−1, 2), for some r ≥ 2, then N is a rank-preserving restric-
tion of a book with r-spine L and r(N)− r pages, each isomorphic to PG(r, 2);
and

(v) when N |L ∼= PG(r − 1, 2), for some r ≥ 2, then circ(N) ≤ 2r + 2.

Proof: If B′ and B′′ are bases of N |L and N/L respectively, then B = B′ ∪ B′′ is
a basis of N . As Ki is a connected component of N/L and r(Ki) = 1, it follows
that |B′′ ∩ E(Ki)| = 1, say B′′ ∩ E(Ki) = {ai}. Hence B′′ = {a1, a2, . . . , am}. For
each b ∈ B∗ = E(N) − B, let Cb be the circuit of N such that Cb − B = {b}.
The circuit space of N is spanned by C = {Cb : b ∈ B∗}. Observe that (i) follows
provided we establish that |Cb − L| ∈ {0, 2}. As Cb − L is a cycle of N/L, it follows
that Cb − L is a disjoint union of circuits of N/L. In particular, |Cb ∩ E(Ki)| ∈
{0, 2}, for every i ∈ [m], and |Cb ∩ E(Ki)| = 2 if and only if b ∈ E(Ki) (and
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Cb ∩ E(Ki) = {b, ai}). Therefore Cb ⊆ L, when b ∈ L, and Cb − L = {b, ai},
when b ∈ E(Ki). Hence (i) follows. Observe that clN(B − ai) = E(N) − E(Ki) for
each i ∈ [m]. Therefore E(Ki) is a cocircuit of N . We have (ii). By the proof of
(i), there is a natural partition {C0, C1, C2, . . . , Cm} of C, where C0 = {Cb : b ∈ L}
and, for i ∈ [m], Ci = {Cb : b ∈ E(Ki) − ai}. Note that, for i ∈ [m], C0 ∪ Ci
spans the circuit space of Ni = N |[E(Ki) ∪ L] because B′ ∪ bi is a basis of Ni.
Therefore N = PN |L(N1, N2, . . . , Nm) and (iii) holds. For i ∈ [m], let N ′

i be a
matroid isomorphic to PG(r, 2) such that E(Ni) ⊆ E(N ′

i) and Ni = N ′
i |E(Ni).

Choose N ′
1, N

′
2, . . . , N

′
m such that E(N ′

1)−L,E(N ′
2)−L, . . . , E(N ′

m)−L are pairwise
disjoint. Consider the book N ′ = PN |L(N ′

1, N
′
2, . . . , N

′
m) having pages N ′

1, N
′
2, . . . , N

′
m

and r-spine L. Note that N = N ′|E(N) and m = r(M) − r(L) = r(M)− r. Hence
(iv) follows.

Now, we establish (v). Let C be a circuit of N such that |C| = circ(N). As-
sume that |C| > 2r + 2 ≥ 4. By binary orthogonality and (ii), C ∩ E(K1), C ∩
E(K2), . . . , C∩E(Km) are even sets that partition C−L. Therefore there is a parti-
tion {X1, X2, . . . , Xs} of C −L such that |X1| = |X2| = · · · = |Xs| = 2 and, for each
i ∈ [s], there exists j ∈ [m] such that Xi ⊆ E(Kj). By (iii), for each i ∈ [s], there is
ai ∈ L such that Xi ∪ ai is a triangle of N . If as+1, as+2, . . . , at are the elements of
C ∩ L, then,

for any 2-subset {i, j} of [t], ai 	= aj . (2.5)

Assume that (2.5) fails. Suppose that i < j. If j > s, then i ≤ s and Xi ∪ aj is a
triangle of M contained in C. Hence C = Xi ∪ aj ; a contradiction. Thus i < j ≤ s.
In this case (Xi ∪ ai)� (Xj ∪ aj) = Xi ∪Xj is a cycle of N contained in C. Hence
C = Xi ∪Xj ; a contradiction. Therefore (2.5) holds. Next, we show that

any proper subset of {a1, a2, . . . , at} is independent in N |L. (2.6)

Let C ′ be a circuit of N |L contained in {a1, a2, . . . , at}, say C ′ = {ai1 , ai2 , . . . , aik},
for 1 ≤ i1 < i2 < · · · < ik ≤ t. If ik ≤ s, then we define l = k. If s < ik, then there is
l ∈ [k − 1] such that il ≤ s < il+1. (If s < i1, then C ′ = C; a contradiction because
circ(N |L) = r + 1.) Thus

C ′� (Xi1 ∪ai1)� (Xi2 ∪ai2)�· · ·� (Xil ∪ail) = Xi1 ∪Xi2 ∪· · ·∪Xil ∪{ail+1
, . . . , aik}

is a non-empty cycle of N contained in C. Thus it must be equal to C. Hence k = t,
that is, C ′ = {a1, a2, . . . , at}. Therefore (2.6) holds. By (2.6), t ≤ circ(N |L) = r + 1
and |C| ≤ 2t = 2r + 2; a contradiction and so (v) follows. �

The next result has a very simple proof. We omit it.

Lemma 2.8 Let C be a cycle of a binary matroid N . If S is a series class of N
such that C − S is a non-empty independent set of N , then C is a circuit of N .

In the next lemma, we use the same notation as used in Theorem 1.5(i).
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Lemma 2.9 For t ≥ 6, let M ′′ be a book with pages M1,M2, . . . ,Mt and 3-spine F
such that Mi is isomorphic to PG(3, 2) for every i ∈ [t]. For Y ⊆ E(M ′′), M ′′|Y is
a rank-preserving unbent crossing 3-connected binary matroid with circumference 8
if and only if there is X ⊆ Y such that X induces a crossing on M ′′ and, for every
k ∈ [t], |Y ∩ [E(Mk)− F ]| ≥ 3.

Proof: By Lemma 2.7(v), the circumference ofM ′′ is 8. First, we describe a maximum
size circuit of M ′′. Let C be a circuit of M ′′ such that |C| = 8. For i ∈ [t],
set Xi = [E(Mi) − F ] ∩ C. Assume that |X1| ≥ |X2| ≥ · · · ≥ |Xt|. By binary
orthogonality, |Xi| is even. As r(Mi) = 4, it follows that |Xi| ∈ {0, 2, 4}. Let s be
the biggest integer such that |Xs| 	= 0. For i ∈ [s], set

Fi = {a ∈ F : there is a 2-subset A of Xi such that A ∪ a is a triangle of M ′′}.
Note that |Fi| = 1, when |Xi| = 2, and |Fi| = 6, when |Xi| = 4. Set F0 = C ∩ F .
Now, we prove that F0, F1, F2, . . . , Fs are pairwise disjoint. Suppose that a ∈ Fi ∩Fj

for 0 ≤ i < j ≤ s. Let A be a 2-subset of Xj such that A∪ a is a triangle of M ′′. As
A ∪ a 	⊆ C, it follows that a 	∈ C and so i ≥ 1. If A′ is a 2-subset of Xi such that
A′ ∪ a is a triangle of M ′′, then A∪A′ = (A∪ a)� (A′ ∪ a) is a cycle of M ′′ properly
contained in C; a contradiction. Hence F0, F1, F2, . . . , Fs are pairwise disjoint and so
|F0| + |F1| + · · · + |Fs| ≤ |F | = 7. Next, we show that |X1| = 2. If |X1| 	= 2, then
|X1| = 4 and so |F1| = 6. In this case, s = 1 and |C| ≤ 5 or s = 2 and |C| = 6; a
contradiction. Thus |X1| = 2. For i ∈ [s], we have that Fi = {ai}, for some ai ∈ F .
Note that D = F0 ∪ {a1, a2, . . . , as} is a circuit of M ′′|F . Therefore s ≤ 4− |F0| and
so |C| = |F0| + 2s = 8 − |F0|. Consequently |F0| = 0 and s = 4. In resume, there
is a partition {X1, X2, X3, X4} of C such that |X1| = |X2| = |X3| = |X4| = 2, there
are pairwise different elements i1, i2, i3 and i4 of [t] such that Xk ⊆ E(Mik)−F and,
when Xk ∪ ak is a triangle of M ′′ for ak ∈ F , we have that {a1, a2, a3, a4} is a circuit
of M ′′|F . If X ′ and Y ′ are contained in different rank-1 connected components of
(M ′′|Y )/C, |X ′| = |Y ′| = 2 and M |(C ∪ X ′ ∪ Y ′) is a subdivision of M(K4), then
we can take X5 = X ′ and X6 = Y ′ to construct the set X = C ∪X ′ ∪ Y ′ ⊆ Y that
induces a crossing on M ′′|Y .

Suppose that M ′′|Y is not 3-connected. Let {Z,W} be a l-separation for M ′′|Y ,
where l ∈ {1, 2}, say |Z ∩X| ≥ 6. As M ′′ does not have loops or parallel elements,
it follows that r(Z) ≤ r(M ′′) − 1. Now, we may assume that Z is closed in M ′′|Y .
Observe that |Z ∩ X| ≥ 10 because M ′′|X is a subdivision of M(K4) having every
series class with size 2. Hence Z spans F in M ′′ and so

clM ′′(Z) = ∪{E(Mi) : i ∈ [t] and [E(Mi)− F ] ∩ Z 	= ∅}.
If I = {i ∈ [t] : [E(Mi)− F ] ∩ Z = ∅}, then I 	= ∅ and

W = ∪i∈I [(Y − F ) ∩ E(Mi)].

Note that r(M ′′) = r(Z)+|I| and r(W ) ≥ 2+|I|. Therefore r(Z)+r(W ) ≥ r(M ′′)+2.
With this contradiction, we conclude that M ′′|Y is 3-connected. �
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Figure 1: Graphs G and H. For K ∈ {G,H}, let K ′ be a graph obtained from K
by replacing each edge uv whose label is a 2-set S by a uv-path of size 2 whose
edges are labeled by the elements of S. Observe that M(G′) = M |(C ∪ Ai ∪ Aj)
(see item (i) of Lemma 3.1) and that M(H ′) = M |(C ∪ Il) in item (vi)(2) of
Lemma 3.1.

3 Proof of Theorem 1.5

We first fix some of the notation used throughout this section. Let M be an unbent
3-connected binary matroid having circumference 8. Let C be a circuit ofM such that
|C| = 8. Let H1, H2, . . . , Hn be the rank-1 connected components of M/C. By defi-
nition, when H is a connected component of M/C such that H 	∈ {H1, H2, . . . , Hn},
then r(H) = 0. Therefore r(M) = 7 + n. We assume that

n ≥ 4 or, equivalently, r(M) ≥ 11. (3.1)

By Lemma 2.7(ii), E(H1), E(H2), . . . , E(Hn) are pairwise disjoint cocircuits of M .

For a 2-subset {i, j} of [n], when there are 2-subsets Ai and Aj of E(Hi) and
E(Hj), respectively, such that M |(C ∪ Ai ∪ Aj) is a subdivision of M(K4), we say
that:

(1) Ai and Aj cross with respect to C; and

(2) the 2-subset {i, j} of [n] induces a crossing on C.

Moreover, the next two definitions are used to split the proof of Theorem 1.5 into
two natural cases:

(3) M is C-crossing provided there is a 2-subset of [n] that induces a crossing on
C; and

(4) M is strong C-crossing provided, for every k ∈ [n], there is a 2-subset of
[n]− {k} that induces a crossing on C.

The next lemma is the core of the proof of Theorem 1.5.
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Lemma 3.1 Let Al be a 2-subset of E(Hl), for every l belonging to the 3-subset
{i, j, k} of [n]. If Ai and Aj cross with respect to C, then, when C1 and C2 are
circuits of M such that Ai ⊆ C1 ⊆ C ∪Ai and Aj ⊆ C2 ⊆ C ∪ Aj,

(i) |S1| = |S2| = |S3| = |S4| = 2, where S1 = C1 ∩ C2, S2 = (C1 − C2) ∩ C, S3 =
C − (C1 ∪C2) and S4 = (C2 −C1)∩C. (See the graph in the left in Figure 1.)

(ii) D1 = C1 � C2 and D2 = (C1 � C2)� C are 8-elements circuits of M .

(iii) Suppose that S ∈ {Ak, {e}}, where e ∈ clM(C) − C. If D is a circuit of M
such that S ⊆ D ⊆ C ∪ S, then |J | ≤ 2, where J = {l ∈ [4] : |Sl ∩ D| = 1}.
Moreover, if S = {e}, then |J | ≤ 1.

(iv) There is J ⊆ [4] such that Ak ∪ (
⋃{Sl : l ∈ J}) is a circuit of M .

(v) r(E(Hl)) ≤ 4, for every l ∈ [n]− {i, j}.
(vi) If I is an independent set of M such that |I| = 4 and I ⊆ E(Hl), for some

l ∈ [n]− {i, j}, then
(1) there is a 3-subset {a, b, c} of I such that {a, b} ∪ S1 ∪ S2, {a, c} ∪ S1 ∪

S3}, {b, c}∪S1 ∪S4 are circuits of M and, when d ∈ I −{a, b, c}, {a, d}∪
Si1 , {b, d} ∪ Si2, {c, d} ∪ Si3 are circuits of M , for a 3-subset {i1, i2, i3} of
[4]; or

(2) The elements of I can be labeled by a, b, c, d such that {a, b} ∪ Si1, {b, c} ∪
Si2 , {c, d} ∪ Si3 , {d, a} ∪ Si4 are circuits of M , where [4] = {i1, i2, i3, i4}.
(See the graph in the right in Figure 1.)

(vii) If I is an independent set of M such that I ⊆ E(Hl) and r(E(Hl)) = |I| = 3,
for some l ∈ [n] − {i, j}, then the elements of I can be labeled by a, b, c such
that

(1) {a, b} ∪ S1 ∪ S2, {a, c} ∪ S1 ∪ S3, {b, c} ∪ S1 ∪ S4 are circuits of M ; or

(2) {a, b} ∪ Si1, {b, c} ∪ Si2, {a, c} ∪ Si1 ∪ Si2 are circuits of M , for a 2-subset
{i1, i2} of [4].

(viii) If it is not possible to choose Ak such that Ai and Ak cross with respect to C,
then r(E(Hk)) = 3 and (vii)(2) occurs for l = k and an independent 3-subset
I of E(Hk) with {i1, i2} ∈ {{1, 2}, {3, 4}}. Moreover, we can choose Ak such
that Aj and Ak cross with respect to C.

(ix) If {i, k} does not induces a crossing on C, for every k ∈ [n] − {i, j}, then
r(E(Hl)) = 3, for every l ∈ [n]− {j}, and when Il is an independent set of M
such that Il ⊆ E(Hl), |Il| = 3, we can label the elements of Il by al, bl, cl such
that

(1) {al, bl} ∪ S1, {bl, cl} ∪ S2, {al, cl} ∪ S1 ∪ S2 are circuits of M ; or

(2) {al, bl} ∪ S3, {bl, cl} ∪ S4, {al, cl} ∪ S3 ∪ S4 are circuits of M .
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Figure 2: The geometric representation of M ′|F (see Lemma 3.1(xi)). It is iso-
morphic to F7.

(x) If r(E(Hi)) = 3, for l ∈ [n], then |E(Hl)| ∈ {3, 4}. Moreover, when |E(Hl))| =
4, E(Hl) is a circuit-cocircuit of M .

(xi) Let M ′ be a binary matroid such that:

(a) E(M) ⊆ E(M ′);

(b) r(M) = r(M ′);

(c) M = M ′|E(M);

(d) E(M ′)− E(M) ⊆ {α1, α2, α3, α4, α12, α13, α14} = F ;

(e) M ′|F ∼= F7 (see Figure 2);

(f) S1 ∪ α1, S2 ∪ α2, S3 ∪ α3, S4 ∪ α4 are triangles of M ′; and

(g) |E(M ′)| is minimum subject to the conditions (a) to (f).

Then M ′ is 3-connected and, when l ∈ [n]−{i, j}, Hl is a connected component
of M ′/F .

(xii) If Ak ∪ Sl is a circuit of M , for some l ∈ [4], then C ′ = (C − Sl) ∪ Ak is an
8-element circuit of M such that Ai and Aj cross with respect to C ′. More-
over, there is a rank-1 matroid K such that Sl ⊆ E(K) and K is a connected
component of both M/C ′ and M ′/F .

(xiii) Each element of clM ′(C)−(C∪F ) is in parallel to some element of C in M ′/F .

Consider the circuits C ′
1 = C1�C and C ′

2 = C2�C of M . As Ai ⊆ C ′
1 ⊆ C ∪Ai

and Aj ⊆ C ′
2 ⊆ C ∪ Aj, we can replace C1 by C ′

1 and/or C2 by C ′
2, when necessary,

in the proof of Lemma 3.1. Observe that

C ′
1 ∩ C2 = S4 and C − (C ′

1 ∪ C2) = S2;

C1 ∩ C ′
2 = S2 and C − (C1 ∪ C ′

2) = S4;

C ′
1 ∩ C ′

2 = S3 and C − (C ′
1 ∪ C ′

2) = S1.

Depending on the choice of the circuits contained in the theta sets Ai∪C and Aj∪C
to be C1 and C2 respectively, any series class of M |(C ∪ Ai ∪ Aj) contained in C
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can be S1 or S3, for example. In the proof of this lemma, when we want to prove
some property of Sl, for l ∈ [4], we just say that “by symmetry, we may assume that
l = 1”. (For l to be 1, we may need to replace C1 by C ′

1 and/or C2 by C ′
2 but we

are not going to say that every time to avoid repetition.) The next matrix organizes
the intersection of these circuits with C. The union of the sets in the first and the
second lines are equal to C2 ∩ C and C ′

2 ∩ C respectively. The union of the sets in
the first and the second columns are equal to C ′

1 ∩ C and C1 ∩ C respectively.(
S4 S1

S3 S2

)
Compare this matrix with the subgraph G\{Ai, Aj} of the graph G illustrated in
Figure 1.

Proof: (i) First, we show that |Sl| ≥ 2, for every l ∈ [4]. Assume that |Sl| ≤ 1. As
M |(C ∪ Ai ∪ Aj) is a subdivision of M(K4), it follows that Sl 	= ∅. Thus |Sl| = 1.
Observe that L = (C∪Ai∪Aj)−Sl is a theta set ofM because r∗(M |(C∪Ai∪Aj)) = 3
and Sl is a series class of M |(C∪Ai∪Aj). Hence |L| = |C|+ |Ai|+ |Aj|−|Sl| = 11; a
contradiction to Lemma 2.4. Therefore |Sl| ≥ 2, for every l ∈ [4]. The result follows
because {S1, S2, S3, S4} is a partition of C and |C| = 8.

(ii) Observe that both D1 = Ai ∪ Aj ∪ S2 ∪ S4 and D2 = Ai ∪ Aj ∪ S1 ∪ S3 have 8
elements, by (i).

(iii) Replacing D by D� C, when necessary, we may assume that |D ∩ C| ≤ 4. For
l ∈ J , set D∩Sl = {al} and Sl−D = {bl}. For clarity, we decide to divide the proof
of this item into two similar parts.

Now, suppose that |J | ∈ {3, 4}. By symmetry, when |J | = 3, we may assume
that J = {1, 2, 4}. Thus D ∩ S3 = ∅ because |D ∩ C| ≤ 4. Consider the following
cycle of N = M |(C ∪Ai ∪Aj ∪ S):

C ′ =

{
D � C1 � C2 = S ∪ Ai ∪ Aj ∪ {a1, b2, a3, b4}, when |J | = 4,

C �D � C1 � C2 = S ∪Ai ∪Aj ∪ {b1, a2, a4} ∪ S3, when |J | = 3.

Observe that

C ′ − S =

{
Ai ∪ Aj ∪ {a1, b2, a3, b4}, when |J | = 4,

Ai ∪ Aj ∪ {b1, a2, a4} ∪ S3, when |J | = 3,

is a non-empty independent set of N . By Lemma 2.8, C ′ is a circuit of N since S is
a series class of N . We arrive at a contradiction because |C ′| ≥ 9. Thus |J | ≤ 2.

Next, suppose that |J | = 2. To finish the proof of (iii), we need to establish
that S 	= {e}. By symmetry, we may assume that D ∩ S4 = ∅. First, we show that
|D ∩ C| = 2. If |D ∩ C| 	= 2, then |D ∩ C| = 4 and D ∩ Sl 	= ∅, for every l ∈ [3].
Moreover, there is a unique l ∈ [3] such that Sl ⊆ D. Consider the cycle of N :

D′ =

⎧⎪⎨
⎪⎩
D � C1 � C = S ∪Ai ∪ S1 ∪ S4 ∪ {a2, b3}, when S1 ⊆ D,

D � C1 � C2 = S ∪ Ai ∪ Aj ∪ S4 ∪ {a1, a3}, when S2 ⊆ D,

D � C2 = S ∪ Aj ∪ S3 ∪ S4 ∪ {b1, a2}, when S3 ⊆ D.
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Observe that D′ − S is an independent set of N . By Lemma 2.8, D′ is a circuit
of N ; a contradiction because |D′| ≥ 9. Thus |D ∩ C| = 2. Now, we show that
J = {1, 3}. Suppose that J ∈ {{1, 2}, {2, 3}}. By symmetry, we may assume that
J = {1, 2}. In this case, using Lemma 2.8 again, we conclude that D � C1 � C2 =
S ∪Ai ∪Aj ∪ {a1, b2} ∪S4 is a circuit of N with at least 9 elements; a contradiction.
Thus J = {1, 3}. Assume that S = {e}. In [M |(C ∪ Ai ∪ Aj)]/D1, S1 and S3 are
parallel classes. Hence M/D1 has rank-1 connected components H ′

1 and H ′
2 such that

S1 ⊆ E(H ′
1) and S3 ⊆ E(H ′

2) because, by (ii), D1 is an 8-element circuit of M and M
is unbent. As D = {e, a1, a3} is a cycle ofM/D1, it follows that a1 ∈ X1 = D∩E(H ′

1)
and a3 ∈ X2 = D∩E(H ′

2) are disjoint cycles ofM/D1 contained inD; a contradiction
because |X1| ≥ 2, |X2| ≥ 2 and |D| = 3. Consequently |J | ≤ 1 when S = {e}. Thus
(iii) follows.

(iv) As Ak ∪ C is a theta-set of M , we can choose a circuit D of M such that Ak ⊆
D ⊆ C∪Ak and |D∩C| ≤ 4. Observe that |D∩C| ≥ 2, otherwise (Ak∪C)−(D∩C)
is a circuit of M with 9 elements. Assume that (iv) fails. By symmetry, we may
assume that |D ∩ S1| = 1. Now, we show that D ∩ S2 	= ∅. If D ∩ S2 = ∅, then
∅ 	= D∩(S3∪S4) � S3∪S4 because 2 ≤ |D∩C| ≤ 4 and so 1 ≤ |D∩[C−(S1∪S2)]| ≤ 3.
Therefore Ai and Ak cross with respect of C; a contradiction to (i) applied to Ai and
Ak because |C1 ∩D| = 1. Thus D ∩ S2 	= ∅. Now, Aj and Ak cross with respect to
C. By (i) applied to Aj and Ak, we have that |D ∩ (S1 ∪ S4)| = |D ∩ (S2 ∪ S3)| = 2.
As |D ∩ S1| = 1, it follows that |D ∩ S4| = 1. Observe that Ai and Ak cross with
respect to C and so |D ∩ (S1 ∪ S2)| = |D ∩ (S3 ∪ S4)| = 2, by (i) applied to Ai and
Ak. Therefore |D ∩ Sl| = 1, for every l ∈ [4]; a contradiction to (iii). With this
contradiction, we finish the proof of item (iv).

Now, we set the notation to be used in items (v) to (vii). Assume that I is an
independent set of M such that I ⊆ E(Hl), for some l ∈ [n]. For a 2-subset A of
I, let CA be a circuit of M such that A ⊆ CA ⊆ C ∪ A. (There are two choices for
CA because C ∪ A is a theta set of M .) By (iv), there is a ∅ 	= JA � [4] such that
CA = A ∪ (

⋃{St : t ∈ JA}). Note that

JA 	= JA′, when A and A′ are different 2-subsets of I, (3.2)

otherwise CA � CA′ = A� A′ 	= ∅ is a cycle of M properly contained in I.

(v) Suppose that |I| = 5. Replacing CA by C�CA, when necessary, we may assume
that 4 ∈ JA. There are at most 7 different possibilities for JA. As

∣∣(I
2

)∣∣ = 10, it follows
that I contains different 2-subsets A and A′ such that JA = JA′; a contradiction
to (3.2) and so I does not exist. Hence r(E(Hl)) ≤ 4.

To establish items (vi) and (vii), we make a different choice for JA. Replacing CA

by C � CA, when necessary, we may assume that |JA| ∈ {1, 2} and, when |JA| = 2,
1 ∈ JA. Therefore

JA ∈ {{1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}}. (3.3)

(vi) Suppose that |I| = 4. Consider Υ =
{
JA : A ∈ (

I
2

)}
. By (3.2), |Υ| = 6. By (3.3),

we have 7 choices for JA. We have two cases to deal with:
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Case 1. {{1, 2}, {1, 3}, {1, 4}} ⊆ Υ.

Suppose that JA1 = {1, 2}, JA2 = {1, 3} and JA3 = {1, 4}, for 2-subsets A1, A2 and
A3 of I. Thus

CA1 � CA2 � CA3 = (A1 � A2 � A3) ∪ (S1 ∪ S2 ∪ S3 ∪ S4) = (A1 �A2 � A3) ∪ C.

Therefore A1�A2�A3 ⊆ I is a cycle of M and so A1�A2�A3 = ∅. As A1, A2, A3

are 2-subsets of I, it follows that A1 = {a, b}, A2 = {a, c}, A3 = {b, c}, for a 3-subset
{a, b, c} of I. Thus {a, b} ∪ S1 ∪ S2, {a, c} ∪ S1 ∪ S3, {b, c} ∪ S1 ∪ S4 are circuits of
M . If d ∈ A, for a 2-subset A of I and {d} = I − {a, b, c}, then, by (3.3), |JA| = 1.
By (3.2), we have (vi)(1) holds in this case.

Case 2. {{1}, {2}, {3}, {4}} ⊆ Υ.

Let G be a complete graph having I as vertex set. If {a, b} is a 2-subset of I,
then we color the edge ab of G with the color |J{a,b}| ∈ {1, 2}. By (3.2) and (3.3),
G has 2 edges with color 2 and 4 edges with color 1. Now, we show that G has
no monochromatic triangle. Assume that {a, b, c} is a monochromatic triangle of
G. The color of its edges must be 1. There is a 3-subset {i1, i2, i3} of I such
that C{a,b} = {a, b} ∪ Si1, C{a,c} = {a, c} ∪ Si2 , and C{b,c} = {b, c} ∪ Si3 . Therefore
C{a,b} � C{a,c} � C{b,c} = Si1 ∪ Si2 ∪ Si3 is a cycle of M properly contained in C; a
contradiction. Thus G has no monochromatic triangle. Hence the edges of color 2
is a perfect matching of G, say ac and bd. Therefore C{a,b} = {a, b} ∪ Si1 , C{b,c} =
{b, c} ∪ Si2, C{c,d} = {c, d} ∪ Si3 , C{d,a} = {d, a} ∪ Si4 , where {i1, i2, i3, i4} = [I]. We
have (vi)(2). Note that M |(C ∪ I) is a subdivision of M(W4).

(vii) If (1) does not hold, then, by (3.2) and (3.3), there is a 2-subset {a, b} of I such
that C{a,b} = {a, b}∪Si1 , for some i1 ∈ [4]. We have (2) unless C{a,c} = {a, c}∪S1∪Sj1

and C{b,c} = {b, c} ∪ S1 ∪ Sj2, for a 2-subset {j1, j2} of [4]. Assume this is the case.
Thus the cycle of M

∅ 	= C{a,b} � C{a,c} � C{b,c} = Si1 � (Sj1 ∪ Sj2)

is properly contained in C; a contradiction.

(viii) Suppose this result fails. First, we show that r(E(Hk)) = 3. Assume that
r(E(Hk)) > 3. By (v), r(E(Hk)) = 4. If (vi)(1) happens for l = k, then Ai and
Ak = {b, c} cross with respect to C; a contradiction. If (vi)(2) happens for l = k, then
Ai and Ak cross with respect to C, for some Ak ∈ {{a, c}, {b, d}}; a contradiction.
Hence r(E(Hk)) = 3. Now, we show that (vii)(1) cannot happen for l = k. If (vii)(1)
occurs for l = k, then Ai and Ak = {b, c} cross with respect of C; a contradiction.
Thus (vii)(2) happens for l = k. As Ai and Ak = {a, c} do not cross with respect to
C, it follows that {i1, i2} ∈ {{1, 2}, {3, 4}}. Note that Aj and Ak = {a, c} cross with
respect of C.

(ix) By (viii), (ix) follows for l ∈ [n] − {i, j}. We need to establish it for l = i. By
(viii), there is a 2-subset {j1, j2} ∈ {{1, 2}, {3, 4}} such that Ak∪Sj1 ∪Sj2 is a circuit
of M , for some Ak. Hence Ak ∪ S1 ∪ S2 is a circuit of M . Thus Aj and Ak cross. By
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(viii) applied to k, j, i in place of i, j, k, we conclude that (vii)(2) holds for l = i with
{i1, i2} ∈ {{1, 2}, {3, 4}}. Hence (ix) follows also for l = i.

(x) If d ∈ E(Hl)− I, where I is a 3-subset of E(Hl), then, by binary orthogonality,
d ∪ I is a circuit of M . Thus d is unique and |E(Hl)| = 4.

(xi) As F may contain many elements of M , it follows, by the minimality of M ′,
that M ′ is simple and so M ′ is 3-connected. By (iv), E(Hl) is contained in a parallel
class of M ′/F . As E(Hl) is a cocircuit of M , by Lemma 2.7, and E(M) − E(Hl)
spans F in M ′, it follows that E(Hl) is a cocircuit of M ′. Thus Hl is a connected
component of M ′/F .

(xii) By symmetry, we may assume that l = 1. As C ∪ Ak is a theta set of M , it
follows that C ′ = C � (S1 ∪ Ak) is an 8-element circuit of M . The simplification
N of M |(C ∪ Ai ∪ Aj ∪ Ak) has a non-trivial parallel class P = E(N) ∩ (S1 ∪ Ak),
say P = {a, b}, where a ∈ S1 and b ∈ Ak. Thus N\b and N\a are simplifications
of M |(C ∪ Ai ∪ Aj) and M |(C ′ ∪ Ai ∪ Aj) respectively. Hence Ai and Aj cross
with respect of both C and C ′. Note that {Ak, S2, S3, S4} is the set of non-trivial
series classes of M |(C ′ ∪ Ai ∪ Aj) contained in C ′. As H1, . . . , Hk−1, Hk+1, . . . , Hn

are the rank-1 connected components of M/(C ∪Ak) = M/(C ′ ∪ S1), it follows that
M/C ′ has another rank-1 connected component K such that S1 ⊆ K. Observe that
Ak∪α1 = (S1∪α1)� (Ak∪S1) is a triangle of M ′. Therefore, when we construct the
matroid M ′ using C ′ instead of C, we arrive at the same matroid (up to the labeling
of the elements of F ). By Lemma 3.1(xi) taking C ′ in the place of C, we conclude
that K is also a connected component of M ′/F ,

(xiii) Assume that e ∈ clM ′(C) − (C ∪ F ). Let D be a circuit of M such that e ∈
D ⊆ C ∪ e. There are disjoint subsets J1 and J2 of [4] such that |D∩Sl| = t ∈ {1, 2}
if and only if l ∈ Jt. By (iii) applied to S = {e}, we have that |J1| ≤ 1. As S1, S2, S3

and S4 are circuits of M ′/F , it follows that D′ = D − ∪{Sl : l ∈ J2} is a cycle of
M ′/F . If J1 = ∅, then D′ = {e} and so e is spanned by F in M ′; a contradiction.
Thus |J1| = 1, say J1 = {l} and D ∩ Sl = {al}. In this case, D′ = {e, al} and (xiii)
follows. �

Now, we describe briefly how to establish Theorem 1.5(i). Let M ′ be defined
as in Lemma 3.1(xi). In items (xi) and (xii) of Lemma 3.1, we give conditions for
M ′/F to have many rank-1 connected components. When we are lucky and all
connected components of M ′/F have rank equal to 1, we can apply Lemma 2.7(iv)
to conclude that Theorem 1.5(i) holds. This strategy will be used three times to
obtain Theorem 1.5(i). In the remaining case, we need another decomposition to get
Theorem 1.5(ii).

To describe M , we need to divide the analysis into two cases with different ap-
proaches.
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Case 1. It is possible to choose C such that M is strong C-crossing.

Lemma 3.2 If X = clM(C) − C, then there is a partition {S1, S2, S3, S4} of C
such that S1, S2, S3, S4 are non-trivial series classes of M\X. Moreover, when M ′ is
defined as in Lemma 3.1(xi), H1, H2, . . . , Hn are connected components of M ′/F .

Proof: Let G be a simple graph having [n] as vertex set such that ij ∈ E(G) if
and only if {i, j} is a 2-subset of [n] that induces a crossing on C. (Remember that
n ≥ 4, by (3.1).) By hypothesis, for each i ∈ [n], there is an edge of G not incident
to i. By Lemma 3.1(viii), for each ij ∈ E(G) and k ∈ [n] − {i, j}, we have that
E(G) ∩ {ik, jk} 	= ∅. Thus G contains a matching Y such that |Y | = 2. After a
reordering of Hi’s, we may assume that Y = {12, 34}, that is,

both {1, 2} and {3, 4} induce a crossing on C. (3.4)

For {i, j} ∈ {{1, 2}, {3, 4}}, let Ai and Aj be respectively a 2-subset of E(Hi) and
E(Hj) such that Ai and Aj cross with respect to C. Consider Nij = M\[X ∪
(E(Hi)−Ai)∪ (E(Hj)−Aj)]. By Lemmas 2.7(i) and 3.1(i)(iv), there are partitions
{S1, S2, S3, S4} and {S ′

1, S
′
2, S

′
3, S

′
4} of C such that S1, S2, S3, S4 are non-trivial series

classes of N12 and S ′
1, S

′
2, S

′
3, S

′
4 are non-trivial series classes of N34. As N12|(C ∪

A1 ∪A2 ∪A3 ∪A4) = N34|(C ∪A1 ∪A2 ∪A3 ∪A4), it follows that {S1, S2, S3, S4} =
{S ′

1, S
′
2, S

′
3, S

′
4}. The result follows because the circuit space of M\X is spanned

by C(N12)∪C(N34). To conclude that Lemma 3.1(v)(vi)(vii)(xi)(xiii) holds for every
l ∈ [n] and Lemma 3.1(xii) holds for every k ∈ [n], we apply Lemma 3.1 for an {i, j} ∈
{{1, 2}, {3, 4}} such that l 	∈ {i, j} and k 	∈ {i, j} respectively. By Lemma 3.1(xi),
H1, H2, . . . , Hn are connected components of M ′/F . �

Lemma 3.3 Using the partition {S1, S2, S3, S4} of C obtained in Lemma 3.2, if M ′

is the matroid described in Lemma 3.1(xi), then the connected components of M ′/F
are H1, H2, . . . , Hn, K1, K2, K3, K4, where r(Ki) = 1 and Si ⊆ E(Ki), for every
i ∈ [4].

Proof: By Lemma 3.2, H1, H2, . . . , Hn are connected components of M ′/F . For
i ∈ [4], there is a parallel class Pi of M ′/F such that Si ⊆ Pi because Si is a
circuit of M ′/F . If Ki is a connected component of M ′/F such that Pi ⊆ E(Ki),
then E(Ki) ⊆ E(M ′) − [F ∪ E(H1) ∪ E(H2) ∪ · · · ∪ E(Hn)] = clM(C)− F because
H1, H2, . . . , Hn are connected components of M ′/F . By Lemma 3.1(xiii), clM(C)−
F = P1 ∪ P2 ∪ P3 ∪ P4. Thus E(Ki) ⊆ P1 ∪ P2 ∪ P3 ∪ P4. If E(Ki) = Pi, for every
i ∈ [4], then Lemma 3.3 follows. Assume that E(Ki) 	= Pi, for some i ∈ [4], say
i = 1. As rM ′(C) = 7 and rM ′(F ) = 3, it follows that rM ′/F (C) = 4. For i ∈ [4],
choose ai ∈ Si. Hence rM ′/F ({a1, a2, a3, a4}) = 4. Let K be the simplification of
K1 such that E(K) ⊆ {a1, a2, a3, a4}. We arrive at a contradiction because E(K) is
independent in K. �
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By Lemma 3.3, we can apply Lemma 2.7(iv) to M ′ to obtain Theorem 1.5(i),
when Case 1 happens.

Case 2. It is not possible to choose C such that M is strong C-crossing. Choose C
such that M is C-crossing (but M is not strong C-crossing).

By definition of strong C-crossing, there is j ∈ [n] such that no 2-subset of
[n] − {j} induces a C-crossing. When necessary, we can reorder H1, H2, . . . , Hn so
that j = 1 and {1, 2} induces a crossing on C. By Lemma 3.1(i), there is a partition
{S1, S2, S3, S4} of C and 2-subsets A1 and A2 of E(H1) and E(H2) respectively such
that |S1| = |S2| = |S3| = |S4| = 2 and C1 = A1 ∪ S1 ∪ S4 and C2 = A2 ∪ S1 ∪ S2 are
circuits of M . (We are applying Lemma 3.1 for i = 2 and j = 1.)

By Lemma 3.1(viii), {1, l} induces a crossing on C, r(E(Hl)) = 3 and, for an
independent set of E(Hl), Lemma 3.1(vii)(2) occurs with {i1, i2} ∈ {{1, 2}, {3, 4}},
for every l ∈ [n] − {1} (depending of the value of l, use {1, 2} or {1, 3} as the set
that induces a crossing on C to apply this lemma). For an integer m satisfying
1 ≤ m ≤ n, we may assume that Lemma 3.1(vii)(2) occurs with {i1, i2} = {1, 2}, for
every l such that 2 ≤ l ≤ m, and Lemma 3.1(vii)(2) occurs with {i1, i2} = {3, 4}, for
every l such that m+ 1 ≤ l ≤ n. That is, for l ∈ [n]− {1}, there is an independent
3-set Il of M contained in E(Hl), say Il = {al, bl, cl}, such that:

(1) {al, bl} ∪ S1, {bl, cl} ∪ S2, {al, cl} ∪ S1 ∪ S2 are circuits of M , for every l such
that 2 ≤ l ≤ m; and

(2) {al, bl} ∪ S3, {bl, cl} ∪ S4, {al, cl} ∪ S3 ∪ S4 are circuits of M , for every l such
that m+ 1 ≤ l ≤ n.

(If m = 1, then (2) occurs for every l ∈ [n]−{1}. If m = n, then (1) occurs for every
l ∈ [n]− {1}.)

When m = 1 orm = n, we say this C-crossing is homogeneous. When 2 ≤ m < n,
we say this C-crossing is heterogeneous.

Subcase 2.1. We can choose C such that the C-crossing is heterogeneous.

Thus 2 ≤ m < n. Consequently the partition {S1, S2, S3, S4} of C is defined by
(1) and (2) applied to l = 2 and l = n respectively. Therefore this partition does not
depend on the choice of A1. Let M ′ be the matroid defined in Lemma 3.1(xi). By
Lemma 3.1(xi) applied to l ∈ [n]−{1}, we conclude thatHl is a connected component
of M ′/F . By Lemma 3.1(xii), for each t ∈ [4], there is a rank-1 connected component
Kt of M ′/F such that St ⊆ E(Kt). Therefore H2, H3, . . . , Hn, K1, K2, K3, K4 are
rank-1 connected components of M ′/F . As M ′/F does not have loops, it follows,
by (3.1), that M ′/F has just another connected component that must have rank 1.
This connected component must be H1. Again, we obtain the book decomposition
described Theorem 1.5(i) as an immediate consequence of Lemma 2.7(iv) applied
to M ′.

Subcase 2.2. We cannot choose C such that the C-crossing is heterogeneous.
Choose C such that the C-crossing is homogeneous.
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Figure 3: A graph that illustrates the possibility of m = n in Subcase 2.2.

Assume that m = 1 or m = n. By symmetry, we may assume that m = n. In
Figure 3, we illustrate this situation. The roles of α, β and γ are described in the
next paragraph. Assume also that Theorem 1.5(i) does not hold. By Lemma 2.7(iv),

M ′/F must have a connected component with rank exceeding 1. (3.5)

Let M ′′ be a matroid such that E(M) ⊆ E(M ′′), r(M) = r(M ′′),M ′′|E(M) =
M,E(M ′′) = E(M) ∪ {α, β, γ}, α∪ S1, β ∪ S2 and T = {α, β, γ} are triangles of M ′′

andM ′′ is simple (that is, some of the elements of {α, β, γ}may belong to M). Hence
M ′′ is 3-connected. By (1), for l ∈ [n]−{1}, {al, bl, cl} is contained in a parallel class
of M ′′/T and so, Lemma 3.1(x), E(Hl) is contained in a parallel class of M ′′/T . As
E(Hl) is a cocircuit of M ′′, it follows that H2, H3, . . . , Hn are connected components
of M ′′/T . For l ∈ [n]− {1}, set Ml = M ′′|(T ∪ E(Hi)). (Observe that if we rename
α1, α2 and α12 in M ′\[{α3, α4, α13, α1,4}−E(M)] by α, β and γ respectively, then we
obtain M ′′.)

Now, we prove that M ′′/T has a rank-1 connected component Kl such that Sl ⊆
E(Kl), for each l ∈ [2], say l = 1. By Lemma 3.1(xii) and (1), C ′ = C � ({an, bn} ∪
S1) = (C −S1)∪{an, bn} is a circuit of M such that A1 and A2 cross with respect to
C ′. By Lemma 3.1(xii), there is a rank-1 connected component K1 ofM/C ′ such that
S1 ⊆ E(K1). Set S

′
1 = {an, bn}. By (1), for l ∈ [n−1]−{1}, ({al, bl}∪S1)�(S ′

1∪S1) =
{al, bl} ∪ S ′

1 is a circuit of M . Similarly {al, cl} ∪ S ′
1 ∪ S2 is a circuit of M . Hence

(3) {al, bl} ∪ S ′
1, {bl, cl} ∪ S2, {al, cl} ∪ S ′

1 ∪ S2 are circuits of M , for every l such
that 2 ≤ l ≤ n− 1.

If S1 = {a′n, b′n}, then {a′n, b′n} ∪ S ′
1 is a circuit of M . Choose c′n ∈ E(K1)− {a′n, b′n}

such that I ′n = {a′n, b′n, c′n} is independent in M . As the C ′-crossing is homogeneous
and (3) holds for l ∈ {2, 3} since n ≥ 4, it follows that

(4) {a′n, b′n} ∪ S ′
1, {b′n, c′n} ∪ S2, {a′n, c′n} ∪ S ′

1 ∪ S2 are circuits of M or
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Figure 4: A graph G such that (M ′′/T )|(S3 ∪ S4 ∪A) = M(G).

(5) {b′n, a′n} ∪ S ′
1, {a′n, c′n} ∪ S2, {b′n, c′n} ∪ S ′

1 ∪ S2 are circuits of M

because {a′n, b′n}∪S ′
1 is a circuit ofM . When we use C ′ instead of C to construct M ′′,

we obtain the same matroid because M ′′ is defined by (1) or (3) for l = 2. By the
previous paragraph applied to C ′ instead of C, we conclude that K1 is a connected
component of M ′′/T . For l ∈ [2], set Mn+l = M ′′|(T ∪ E(Kl)).

If M1 = M ′′\[E(H2) ∪ E(H3) ∪ · · · ∪ E(Hn) ∪ E(K1) ∪ E(K2)], then M ′′ is a
book having M1,M2, . . . ,Mn,Mn+1,Mn+2 as pages and spine T . Moreover, for each
l ∈ [n + 2]− {1}, Ml is isomorphic to M(K4) or F7 because r(Ml) = 3.

To conclude the proof of Theorem 1.5(ii), we need to verify that M1 satisfies (A)
and (B).

Consider K = M ′′\[E(H2)∪E(H3)∪· · ·∪E(Hn)∪ (E(K1)−S1)∪ (E(K2)−S2)].
Observe that S1 and S2 are non-trivial series classes ofK such thatK\(S1∪S2) = M1.
LetH be a cosimplification ofK. Assume that E(H)∩S1 = {a} and E(H)∩S2 = {b}.
As S1 ∪α and S2 ∪ β are triangles of K, it follows that {a, α} and {b, β} are parallel
classes of H . Moreover, H\{a, b} = M1. This construction permits one to obtain a
circuit of K\T from a circuit of M1 by replacing α and β by respectively the elements
of S1 and S2 (and vice-versa). In the first cases, we use symmetric differences to go
from one of these circuits to the other.

Observe that D = C � (α ∪ S1)� (β ∪ S2) = {α, β} ∪ S3 ∪ S4 is a circuit of M1.
Consequently M1 satisfies (A) of Theorem 1.5(ii).

Now, we describe the matroid M1. Let A be a 2-subset of E(H1) such that
A∪S1 ∪S4 is a circuit of M . Thus (A∪S1 ∪S4)� (S1 ∪α) = A∪S4 ∪α is a circuit
of M1. Assume that S3 = {y2, z2}, S4 = {y3, z3} and A = {y1, z1}. If G is the graph
in Figure 4, then (M ′′/T )|(S3 ∪ S4 ∪ A) = M(G). Observe that {z1, y1, y2, y3} is a
basis of M1/T . For e ∈ E(M1) − (S3 ∪ S4 ∪ A ∪ T ), let Ce be a circuit of M1/T
such that e ∈ Ce ⊆ e ∪ S3 ∪ S4 ∪ A. For i ∈ [3], there is Xi ⊆ {yi, zi} such that
Ce = e ∪X1 ∪ X2 ∪ X3. Choose Ce such that xe = |X1| + |X2| + |X3| is minimum.
First, we establish that

if {i, j} is a 2-subset of [3], then |Xi|+ |Xj| ≤ 2. (3.6)

Assume that (3.6) fails. As {yi, yj, zi, zj} is a circuit of M1/T , it follows that |Xi|+
|Xj | = 3, say Xi ⊆ Ce and yj ∈ Ce. Observe that D = Ce � {yi, yj, zi, zj} =
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(Ce∪xj)−(Xi∪yj) is a cycle ofM1/T . IfD
′ is a circuit ofM1/T such that e ∈ D′ ⊆ D,

then D′ is contrary to the choice of Ce because |D′∩(A∪S3∪S4)| ≤ xe−2. Thus (3.6)
follows. Now, we consider the three possibilities for xe. If xe = 1, then e is in parallel
with some element of S3 ∪ S4 ∪ A in M1/T . The other two possibilities for xe are
dealt in the next two lemmas.

There is a circuit C ′
e of M1 such that C ′

e − T = Ce and C ′
e ∩ T ⊆ {α, β}. Making

the symmetric difference of C ′
e with the triangles S1 ∪ α and S2 ∪ β, when necessary,

we obtain the following circuit De of M :

De =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Ce, if C ′

e ∩ {α, β} = ∅,
Ce ∪ S1, if C ′

e ∩ {α, β} = {α},
Ce ∪ S2, if C ′

e ∩ {α, β} = {β},
Ce ∪ S1 ∪ S2, if C ′

e ∩ {α, β} = {α, β}.

Lemma 3.4 If xe = 2, then |Xi| = 2, for some i ∈ [3], and e labels an edge joining
v1 with v2 in G.

Proof: Assume this result fails. Hence |Xi| = |Xj| = 1, for a 2-subset {i, j} of [3]. If
{i, j} = {2, 3}, then, we may permute y3 with z3 in the graph to assume that e label
the edge v3v4. That is, Ce = {e, y2, y3}. Hence De−C = {e} and so e ∈ clM(C)−C.
We arrive at a contradiction to Lemma 3.1(iii) by taking S = {e} because De ∩S3 =
{y2} and De ∩ S4 = {y3}. Thus 1 ∈ {i, j}. By symmetry, we may assume that
{i, j} = {1, 2}, say Ce = {e, y1, y2}; that is, e labels the edge v0v3. Observe that
De − C = {e, y1}. Therefore e belongs to E(H1) because A = {y1, z1} ⊆ E(H1).
As C ∩ [De − ({a2, c2} ∪ S1 ∪ S2)] = {y2}, it follows, by Lemma 3.1(i), that {e, y1}
and {a2, c2} do not cross with respect to C. Thus De = Ce or De = Ce ∪ S1 ∪ S2.
Observe that Ce cannot be a circuit of M , otherwise C � Ce = (C − y2) ∪ {e, y1} is
a 9-element circuit of M . Thus

{e, y1, y2} ∪ S1 ∪ S2 is a circuit of M . (3.7)

Observe that Ce�{y1, y2, z1, z2} = {e, z1, z2} is a circuit of M1/T . Taking {e, z1, z2}
instead of Ce in the previous argument, (3.7) became

{e, z1, z2} ∪ S1 ∪ S2 is a circuit of M . (3.8)

By (3.7) and (3.8),

({e, y1, y2} ∪ S1 ∪ S2)� ({e, z1, z2} ∪ S1 ∪ S2) = {y1, y2, z1, z2} = A ∪ S3

is a cycle of M properly contained in A ∪ S2 ∪ S3; a contradiction. �

Lemma 3.5 If xe = 3, then {e, y1, y2, y3} or {e, z1, y2, y3} is a circuit of M1/T .
Moreover, M1/T must have {e, y1, y2, y3} or {e, z1, y2, y3} as a circuit.
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Proof: By the choice of Ce and (3.6), we have that |X1| = |X2| = |X3| = 1. The first
part of the result follows provide we replace Ce by C ′

e, where

C ′
e =

⎧⎪⎨
⎪⎩
Ce � {y2, y3, z2, z3}, when {z2, z3} ⊆ Ce,

Ce � {y1, y3, z1, z3}, when {y2, z3} ⊆ Ce,

Ce � {y1, y2, z1, z2}, when {z2, y3} ⊆ Ce.

Observe that [M ′/F ]|(S3 ∪ S4 ∪ A) = M(G′), where G′ is the graph obtained from
G by identifying v1 with v2. In particular S3, S4 and A are 2-circuits of M ′/F .
If xf ∈ {1, 2}, for every f ∈ E(M1) − (S3 ∪ S4 ∪ A ∪ T ), then, by Lemma 3.4,
each element of E(M1) − (T ∪ F ) is in parallel with some element of {y1, y2, y3}
in M ′/F . As {y1, y2, y3} is independent in M ′/F , it follows that, for each i ∈ [3],
there is a rank-1 connected component Ni of M ′/F such that yi ∈ E(Ni). Thus
M ′/F has only rank-1 connected components; a contradiction. Therefore there is
f ∈ E(M1)− (S3 ∪ S4 ∪ A ∪ T ) such that xf = 3 and the second part of this result
follows from the first. �

Lemma 3.6 xe 	= 2.

Proof: Assume that xe = 2, for some e ∈ E(M1)− (S3 ∪S4 ∪A∪T ). By Lemma 3.4,
we can take Ce = {e, yi, zi}, for some i ∈ [3]. If j 	= i and j ∈ [3], we can replace
Ce by Ce � {yi, zi, yj, zj} = {e, yj, zj}. Thus we may assume that Ce = {e, y2, z2}.
By Lemma 3.5, there is f ∈ E(M1) − (S3 ∪ S4 ∪ A ∪ T ) such that xf = 3. If
possible, choose Cf such that {a2, c2} and Df − C cross with respect to C. Assume
that Cf = {f, y1, y2, y3}. Observe that f ∈ E(H1) because Df − C = {f, y1} and
y1 ∈ E(H1). Now, we prove that {a2, c2} and {f, y1} does not cross with respect
to C. If {a2, c2} and {f, y1} cross with respect to C, then, by Lemma 3.1(i), S5 =
{y2, y3} = Df − ({a2, c2}∪S1∪S2) and S6 = {z2, z3} = C− [Df ∪ ({a2, c2}∪S1∪S2)]
are series classes of M |(C ∪ {f, y1, a2, c2}). Note that De meets both S5 and S6 in
just one element; a contradiction to Lemma 3.1(iii) because e ∈ clM(C)− C. Thus
{a2, c2} and {f, y1} does not cross with respect to C. Now, Df ∩ (S1 ∪ S2) = ∅ or
S1∪S2 ⊆ Df . Then Df = Cf orDf�C = {f, y1, z2, z3} is a circuit ofM respectively,
say Cf is a circuit of M . But Cf � (A∪S1 ∪ S4) = {f, z1} ∪ {y2, z3} ∪ S1 is a circuit
of M . Thus {a2, c2} and {f, z1} cross with respect to C. Therefore {f, z1} ∪ {y2, z3}
is contrary to the choice of Cf . �

By Lemmas 3.5 and 3.6, the simplification K of M1/T is isomorphic to F ∗
7 or

AG(3, 2). The following matrix gives the binary representation of K. The labels of
the first 6 columns are respectively y1, z1, y2, y3, z2 and z3. At least one of the last
two columns must exist in the representation of K.

A =

⎡
⎢⎢⎣
1 0 0 0 1 1 1 0
0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1

⎤
⎥⎥⎦

Consequently M1 satisfies (B) of Theorem 1.5(ii). Therefore the proof of Theorem 1.5
is concluded.



M. LEMOS/AUSTRALAS. J. COMBIN. 87 (2) (2023), 277–300 300

References

[1] C. Chun, J. Oxley and K. Wetzler, The binary matroids with no odd circuits of
size exceeding five, J. Combin. Theory Ser. B 152 (2022), 80–120.

[2] R. Cordovil, B. Maia Jr. and M. Lemos, The 3-connected binary matroids with
circumference 6 or 7, European J. Combin. 30 (2009), 1810–1824.

[3] R. Cordovil and M. Lemos, The 3-connected matroids with circumference 6,
Discrete Math. 310 (2010), 1354–1365.

[4] M. Lemos, The 3-connected binary matroids with circumference 8, part II, in
preparation.

[5] M. Lemos, The 3-connected binary matroids with circumference 8, part III, in
preparation.

[6] M. Lemos and J. Oxley, On size, circumference and circuit removal in 3-connected
matroids, Discrete Math. 220 (2000), 145–157.

[7] J. Oxley, Matroid Theory, Second Edition, Oxford University Press, New York,
2011.

(Received 1 Oct 2022; revised 30 June 2023)


