The 3-connected binary matroids with circumference 8, part I

Manoel Lemos
Departamento de Matemática
Universidade Federal de Pernambuco
Recife, Pernambuco, 50740-540
Brazil
manoel.lemos@ufpe.br

Abstract

This is the first paper in a sequence of three that describe the 3-connected binary matroids with circumference 8 . A matroid M is said to be bent provided it has a maximum size circuit C such that M / C has a connected component with rank exceeding 1. Otherwise, it is said to be unbent. An unbent matroid M is said to be crossing when M has a maximum size circuit C, sets X and Y contained in different rank-1 connected components of M / C such that $|X|=|Y|=2$ and $M \mid(C \cup X \cup Y)$ is a subdivision of $M\left(K_{4}\right)$. Otherwise, it is said to be uncrossing. In this paper, we construct the unbent crossing 3-connected binary matroids with circumference 8 . In the second paper of this sequence, we describe the bent 3 -connected binary matroids with circumference 8 . In the third and final paper of this series, we deal with the unbent uncrossing 3 connected binary matroids with circumference 8 .

1 Introduction

We assume familiarity with matroid theory. The notation and terminology used in this article follow Oxley [7]. For a positive integer n, we use $[n]$ to denote the set $\{1,2, \ldots, n\}$. For a set S, the family of 2 -subsets of S is denoted by $\binom{S}{2}$. We decided to start the construction of all 3-connected binary matroids having circumference 8 and large rank with the unbent crossing case because only in this case does there appear a family of 4 -connected matroids.

There are many sharp extremal results in matroid theory whose bounds depend on the circumference. When one of these bounds is used to prove a theorem, it may imply that a counter-example to it must have small circumference. It is likely that the knowledge of all matroids with small circumference may simplify the proof of such a result. This was the motivation to construct the 3 -connected binary matroids
with circumference at most 7 and large rank by Cordovil, Maia Jr. and Lemos [2]. In this paper, we start to construct all 3 -connected binary matroids with circumference 8 and large rank. We hope to apply our results to describe the 3 -connected binary matroids with no odd circuit with size exceeding 7 extending the main result of Chun, Oxley and Wetzler [1].

Lemos and Oxley [6] establish a sharp lower bound for the circumference of a 3 -connected matroid with large rank, namely:

Theorem 1.1 Suppose that M is a 3-connected matroid. If $r(M) \geq 6$, then $\operatorname{circ}(M) \geq 6$.

A binary matroid M is said to be a book having pages $M_{1}, M_{2}, \ldots, M_{n}$, for $n \geq 2$, and r-spine T, for $r \geq 2$, provided:
(i) $M_{1}, M_{2}, \ldots, M_{n}$ are binary matroids;
(ii) $T=E\left(M_{1}\right) \cap E\left(M_{2}\right) \cap \cdots \cap E\left(M_{n}\right)$;
(iii) $E\left(M_{1}\right)-T, E\left(M_{2}\right)-T, \ldots, E\left(M_{n}\right)-T$ are pairwise disjoint sets;
(iv) $M_{1}\left|T=M_{2}\right| T=\cdots=M_{n} \mid T=K$ is isomorphic to $P G(r-1,2)$; and
(v) $M=P_{K}\left(M_{1}, M_{2}, \ldots, M_{n}\right)$, that is, the circuit space of M is spanned by $\mathcal{C}\left(M_{1}\right) \cup$ $\mathcal{C}\left(M_{2}\right) \cup \cdots \cup \mathcal{C}\left(M_{n}\right)$.

The next two theorems were restated using this concept of a book proposed by Chun, Oxley and Wetzler [1].

Theorem 1.2 (Cordovil, Maia Jr. and Lemos [2]) Let M be a 3-connected binary matroid such that $r(M) \geq 8$. Then, $\operatorname{circ}(M)=6$ if and only if there is a book M^{\prime} with pages $M_{1}, M_{2}, \ldots, M_{n}$, for $n=r(M)-2$, and 2 -spine T such that, for each $i \in[n], M_{i}$ is isomorphic to $M\left(K_{4}\right)$ or F_{7} and $M=M^{\prime} \backslash S$, for some $S \subseteq T$.

Let M^{\prime} be as described in Theorem 1.2. Without loss of generality, we may assume that M_{i} is isomorphic to F_{7} if and only if $i \leq m$. For $i \in[m]$, choose $a_{i} \in E\left(M_{i}\right)-T$ and set $T_{i}^{*}=E\left(M_{i}\right)-\left(T \cup a_{i}\right)$. Let $N_{0}=M^{\prime} \backslash\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$. Note that N_{0} is isomorphic to $M\left(K_{3, n}^{\prime \prime \prime}\right)$. For $i \in[m]$, consider $N_{i}=M^{\prime} \backslash\left\{a_{j}: j \in[m]\right.$ and $\left.j>i\right\}$. Hence $N_{m}=M^{\prime}$. For $i \in[m$, we have that
(1) T_{i}^{*} is a triad of N_{i-1}; and
(2) $N_{i-1}=N_{i} \backslash a_{i}$ and $T_{i}^{*} \cup a_{i}$ is a circuit-cocircuit of N_{i}.

Therefore N_{i} is the unique single-element binary extension of N_{i-1} obtained by adding the element a_{i} such that $T_{i}^{*} \cup a_{i}$ is a circuit. That is, M^{\prime} is obtained from a matroid isomorphic to $M\left(K_{3, n}^{\prime \prime \prime}\right)$ after a sequence of m single-element binary extensions each one adding a new element making a 4 -element circuit with the elements of some triad. A similar construction can be done for M^{\prime} in Theorem 1.3. This description was used to state the main results of Cordovil, Maia Jr. and Lemos [2].

Theorem 1.3 (Cordovil, Maia Jr. and Lemos [2]) Let M be a 3-connected binary matroid such that $r(M) \geq 9$. Then, $\operatorname{circ}(M)=7$ if and only if there is a book M^{\prime} with pages $M_{1}, M_{2}, \ldots, M_{n}$, for $n=r(M)-3$, and 2 -spine T such that, for each $i \in[n-1], M_{i}$ is isomorphic to $M\left(K_{4}\right)$ or F_{7}, M_{n} is a 3 -connected rank-4 binary matroid having a Hamiltonian circuit C satisfying $|T \cap C|=2$ and $M=M^{\prime} \backslash S$, for some $S \subseteq T$.

A union of pages from a book with a 2 -spine forms a 3 -separating set. Consequently any matroid that appears in Theorems 1.2 or 1.3 is not internally 4connected. The same thing happens with the main results of the next two papers of this series dealing with 3 -connected binary matroids with circumference 8 (see $[4,5]$). Below, we state the main result of [4] as an example. All matroids that will appear in $[4,5]$ are described using books with a 2 -spine.

Cordovil and Lemos [3] constructed the 3 -connected matroids with circumference 6 . These matroids can be described using a natural generalization of a book for non-binary maroids. We do not state the result here to avoid giving this definition since it is not necessary in the remainder of this paper.

For an integer k exceeding 3 , we denote by Z_{k} the rank- k binary spike. There is just one element of Z_{k} belonging to k triangles. This element is called the tip of Z_{k}. All matroids obtained from Z_{k} by deleting an element other than the tip are isomorphic. When $k=4$, such a matroid is isomorphic to S_{8}. The tip of S_{8} is its unique element belonging to 3 triangles.

Let M be a 3 -connected binary matroid having circumference 8 . We say that M is unbent provided, for every circuit C of M satisfying $|C|=8$, each connected component of M / C has rank equal to 0 or 1 . Otherwise, we say that M is bent. Now, the main result of Lemos [4] is:

Theorem 1.4 Let M be a bent 3-connected binary matroid with circumference 8. If $r(M) \geq 14$, then there is a book M^{\prime} with pages $M_{1}, M_{2}, \ldots, M_{n}$ and 2 -spine T such that, for a fixed $e \in T$ and for each $i \in[n]$,
(i) M_{i} is isomorphic to a matroid belonging to $\left\{Z_{4}, S_{8}, F_{7}, M\left(K_{4}\right)\right\}$;
(ii) when $r\left(M_{i}\right)=4$, e is the tip of M_{i}; and
(iii) $M=M^{\prime} \backslash T^{\prime}$, for some $T^{\prime} \subseteq T$.

Moreover, $m=\left|\left\{i \in[n]: r\left(M_{i}\right)=4\right\}\right| \geq 3$ and $m+n \geq 12$.
Let M be an unbent 3 -connected binary matroid having circumference 8 . We say that M is crossing when M has an 8 -element circuit C, sets X and Y contained in different rank-1 connected components of M / C such that $|X|=|Y|=2$ and $M \mid(C \cup X \cup Y)$ is a subdivision of $M\left(K_{4}\right)$. Now, we state the main result of this paper. Its proof can be found in Section 3.

Theorem 1.5 Let M be an unbent crossing 3-connected binary matroid with circumference 8. If $r(M) \geq 11$, then
(i) M is a 3-connected rank-preserving restriction of $M^{\prime \prime}$, where $M^{\prime \prime}$ is a book with pages $M_{1}, M_{2}, \ldots, M_{t}$, for $t=r(M)-3$, and 3 -spine F such that M_{i} is isomorphic to $P G(3,2)$, for every $i \in[t]$; or
(ii) $M=M^{\prime \prime} \backslash T^{\prime}$, where $T^{\prime} \subseteq T$ and $M^{\prime \prime}$ is a book with pages $M_{1}, M_{2}, \ldots, M_{t}$, for $t=r(M)-5$, and 2-spine T such that, for each $i \in[t]-\{1\}, M_{i}$ is isomorphic to $K\left(K_{4}\right)$ or F_{7} and M_{1} is a 3-connected binary matroid satisfying:
(A) M_{1} has a circuit D such that $|D|=6$ and $|D \cap T|=2$; and
(B) the simplification of M_{1} / T is isomorphic to F_{7}^{*} or $A G(3,2)$.

If $M^{\prime \prime}$ is the book described in Theorem 1.5(i), then $M^{\prime \prime}$ is internally 4-connected and $M^{\prime \prime} \backslash F$ is 4-connected. Both $M^{\prime \prime}$ and $M^{\prime \prime} \backslash F$ have circumference equal to 8. Note that $M^{\prime \prime} \backslash F$ has a rank-preserving restriction isomorphic to $M\left(K_{4, t}\right)$.

Every matroid described in the conclusion of Theorem 1.4 is a bent 3 -connected binary matroid with circumference 8 . To restrict the matroids described in Theorem $1.5(\mathrm{i})$ so that they are contained in the class of unbent crossing 3 -connected binary matroids with circumference 8 would produce a cumbersome statement (in the next paragraph, we state the condition). By Lemma 2.7(v), any matroid described in Theorem 1.5(i) has circumference at most 8 . We give just one example to stress the complications that may occur. For the book $M^{\prime \prime}$ described in Theorem 1.5(i), choose a line L of $M^{\prime \prime} \mid F$. For each $i \in[t]$, let P_{i} be a plane of M_{i} containing L. Observe that $N=M^{\prime \prime} \mid\left(F \cup P_{1} \cup P_{2} \cup \cdots \cup P_{t}\right)$ is a rank preserving restriction of $M^{\prime \prime}$. But N is a book with pages $M^{\prime \prime}\left|F, M_{1}\right| P_{1}, M_{2}\left|P_{2}, \ldots, M_{t}\right| P_{t}$ and 2-spine L. By Lemma 2.7(v), its circumference is 6 . (Each page of N is isomorphic to F_{7}.)

Let $M^{\prime \prime}$ be the book described in Theorem 1.5(i). We say that a subset X of $E\left(M^{\prime \prime}\right)-F$ induces a crossing on $M^{\prime \prime}$ when there is a 6 -subset $\left\{i_{1}, i_{2}, i_{3}, i_{4}, i_{5}, i_{6}\right\}$ of $[t]$, a partition $\left\{X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}\right\}$ of X and a 6 -subset $\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right\}$ of F such that, for each $k \in[6], X_{k}$ is a 2-subset of $E\left(M_{i_{k}}\right)-F$ and $X_{k} \cup a_{k}$ is a triangle of $M_{i_{k}}$. A restriction $M^{\prime \prime} \mid Y$ of $M^{\prime \prime}$, for some $Y \subseteq E\left(M^{\prime \prime}\right)$, is a rankpreserving unbent crossing 3 -connected binary matroid with circumference 8 if and only if there is $X \subseteq Y$ such that X induces a crossing on $M^{\prime \prime}$ and, for every $k \in[t]$, $\left|Y \cap\left[E\left(M_{k}\right)-F\right]\right| \geq 3$. In Lemma 2.9, we establish this fact.

Note that M_{1} may have at most 35 elements in Theorem 1.5(ii). This occurs when each parallel class of M_{1} / T has 4 elements and its simplification is isomorphic to $A G(3,2)$. If $M^{\prime \prime}$ satisfies Theorem 1.5(ii)(A), then the circumference of $M^{\prime \prime}$ is at least 8. To see this, assume that $D \cap T=\{\alpha, \beta\}$ and chose triangles T_{2} and T_{3} of M_{2} and M_{3} respectively such that $T_{2} \cap T=\{\alpha\}$ and $T_{3} \cap T=\{\beta\}$. Observe that $D \triangle T_{2} \triangle T_{3}$ is a circuit of $M^{\prime \prime}$ avoiding T having 8 elements. By Lemma 2.6, the circumference of $M^{\prime \prime}$ is at most 8 . Therefore, when $M^{\prime \prime}$ satisfies Theorem 1.5(ii), the circumference of $M^{\prime \prime} \backslash T$ is 8 .

The next results about the circuit space of a binary matroid M are used without reference throughout this paper:
(i) A cycle of M is an union of pairwise disjoint circuits of M.
(ii) The symmetric difference of circuits of M is a cycle of M.
(iii) The circuit space of M is spanned by the circuits of M and it has dimension equal to $r^{*}(M)$.
(iv) If C is a cycle of M and $X \subseteq E(M)$, then $C-X$ is a cycle of M / X.

2 Preliminary results

Let M be a matroid. For $F \subseteq E(M)$, an F-arc is a minimal non-empty subset A of $E(M)-F$ such that there exists a circuit C of M with $C-F=A$ and $C \cap F \neq \emptyset$. Note that A is an F-arc if and only if $A \in \mathcal{C}(M / F)-\mathcal{C}(M)$. The next result is Lemma 2.2 of Cordovil, Maia and Lemos [2].

Lemma 2.1 Let M be a connected matroid. If $\emptyset \neq F \subseteq E(M), M \mid F$ is connected and $\operatorname{circ}(M / F) \geq 3$, then there is a circuit C of M / F such that C is an F-arc and $|C| \geq 3$.

The next result is implicit in Cordovil, Maia and Lemos [2].
Lemma 2.2 Let M be a connected matroid. Suppose that $M \mid F$ is connected, for $\emptyset \neq F \varsubsetneqq E(M)$. If $|A| \leq 2$, for every F-arc A, then every connected component of M / F has rank equal to 0 or 1 .

Proof: The result follows because, by Lemma 2.1, $\operatorname{circ}(M / F) \leq 2$.
We say that L is a theta set of a matroid M provided $L \subseteq E(M)$ and $M \mid L$ is a subdivision of $U_{1,3}$. When L_{1}, L_{2} and L_{3} are the series classes of $M \mid L,\left\{L_{1}, L_{2}, L_{3}\right\}$ is said to be the canonical partition of L in M. If $\left|L_{1}\right|=a,\left|L_{2}\right|=b$ and $\left|L_{3}\right|=c$, then L is said to be an (a, b, c)-theta set of M. The next result has a standard proof. We present it for completeness.

Lemma 2.3 Let M be a matroid with circumference 8. If L is a theta set of M, then $|L| \leq 12$. Moreover, when $|L| \in\{11,12\}, L$ is an (a, b, c)-theta set of M, where $(a, b, c) \in\{(4,4,4),(4,4,3),(5,3,3)\}$.

Proof: Let $\left\{L_{1}, L_{2}, L_{3}\right\}$ be the canonical partition of L. Assume that

$$
\begin{equation*}
\left|L_{1}\right| \geq\left|L_{2}\right| \geq\left|L_{3}\right| . \tag{2.1}
\end{equation*}
$$

As $\mathcal{C}(M \mid L)=\left\{L_{1} \cup L_{2}, L_{1} \cup L_{3}, L_{2} \cup L_{3}\right\}$, it follows that

$$
\begin{align*}
24 & =3 \operatorname{circ}(M) \geq\left|L_{1} \cup L_{2}\right|+\left|L_{1} \cup L_{3}\right|+\left|L_{2} \cup L_{3}\right| \tag{2.2}\\
& =2\left(\left|L_{1}\right|+\left|L_{2}\right|+\left|L_{3}\right|\right)=2|L|
\end{align*}
$$

Therefore $|L| \leq 12$. If $|L|=12$, then equality holds in (2.2). In particular, $\mid L_{1} \cup$ $L_{2}\left|=\left|L_{1} \cup L_{3}\right|=\left|L_{2} \cup L_{3}\right|=8\right.$. Hence $| L_{1}\left|=\left|L_{2}\right|=\left|L_{3}\right|=4\right.$ and so L is a $(4,4,4)$-theta set. Assume that $|L|=11$. By (2.2), there is a 2 -subset $\{i, j\}$ of [3] such that $\left|L_{i} \cup L_{j}\right|=8$. By (2.1), we may assume that $\{i, j\}=\{1,2\}$. Hence $\left|L_{3}\right|=|L|-\left|L_{1} \cup L_{2}\right|=11-8=3$. Thus $\left|L_{1}\right|=\left|L_{2}\right|=4$ and L is a $(4,4,3)$-theta set of M or $\left|L_{1}\right|=5$ and $\left|L_{2}\right|=3$ and L is a (5,3,3)-theta set of M.

Lemma 2.4 If M is a matroid with circumference 8, then the following statements are equivalent:
(i) M is unbent.
(ii) Every theta set of M has at most 10 elements.

Proof: Assume that M is bent. By definition, M has a circuit C such that $|C|=8$ and M / C has a connected component with rank exceeding 1 . By Lemma 2.2, there is a C-arc A of M such that $|A| \geq 3$. Therefore $C \cup A$ is a theta set of M having at least 11 elements.

Now, assume that M has a theta set L such that $|L|>10$. By Lemma 2.3, L is an (a, b, c)-theta set of M, where $(a, b, c) \in\{(4,4,4),(4,4,3),(5,3,3)\}$. If $\left\{L_{1}, L_{2}, L_{3}\right\}$ is the canonical partition of L and $\left|L_{1}\right| \geq\left|L_{2}\right| \geq\left|L_{3}\right|$, then $C=L_{1} \cup L_{2}$ is a circuit of M having 8 elements and, in $M / C, L_{3}$ is a circuit with at least 3 elements. If K is the connected component of M / C such that $L_{3} \subseteq E(K)$, then $r(K) \geq\left|L_{3}\right|-1 \geq 2$. Thus M is bent.

Lemma 2.5 Let N be 3-connected binary matroid having a triangle T such that the simplification of N / T is isomorphic to F_{7}^{*} or $A G(3,2)$. If C is a circuit of N such that $C \cap T \neq \emptyset$, then

$$
\begin{equation*}
|C-T| \leq 8-2|T \cap C| \tag{2.3}
\end{equation*}
$$

Proof: Assume that $|T \cap C|=1$. In this case (2.3) becames $|C|-1 \leq 6$. This is true because $\operatorname{circ}(N) \leq r(N)+1=7$. If $|T \cap C|=2$, then $N / T=N /(T \cap C) \backslash(T-C)$. Thus $C-T$ is a circuit of N / T and so $|C-T| \leq 4$. Hence (2.3) follows.

The next lemma will be used to establish that the circumference of any matroid described in Theorem 1.5(ii) is exactly 8.

Lemma 2.6 Let N be a book having pages $N_{1}, N_{2}, \ldots, N_{m}$, for $m \geq 3$, and 2-spine T such that N_{i} is isomorphic to F_{7} or $M\left(K_{4}\right)$, for each $i \in[m]-\{1\}$. If N_{1} is a 3-connected binary matroid such that the simplification of N_{1} / T is isomorphic to F_{7}^{*} or $A G(3,2)$, then $\operatorname{circ}(N) \leq 8$.

Proof: Assume this result fails. If C is a circuit of N such that $|C|=\operatorname{circ}(N)$, then $|C| \geq 9$. For a positive integer $n, C=C_{i_{1}} \triangle C_{i_{2}} \triangle \cdots \triangle C_{i_{n}}$, where C_{j} is a cycle of N_{j}, for every $j \in J=\left\{i_{1}, i_{2}, \ldots, i_{n}\right\} \subseteq[m]$, where $1 \leq i_{1}<i_{2}<\cdots<i_{n} \leq m$. Choose J and these cycles such that n is minimum. If $n=1$, then C is a circuit of $N_{i_{1}}$; a contradiction because $|C| \leq \operatorname{circ}\left(N_{i_{1}}\right) \leq r\left(N_{i_{1}}\right)+1 \leq 7$. Thus $n \geq 2$. By the choice of $n, C_{j}-T \neq \emptyset$, for every $j \in J$. (If $C_{j} \subseteq T$, say $j=i_{n}$, then $C_{i_{n}} \in\{\emptyset, T\}$ is a cycle of $N_{j_{n-1}}$ and so $C_{i_{n-1}} \triangle C_{i_{n}}$ is a cycle of $N_{i_{n-1}}$. This cycle can replace $C_{i_{n-1}}$ and $C_{i_{n}}$ in the symmetric difference that defines C; a contradiction to the minimality of n.) If $C_{j} \cap T=\emptyset$, for some $j \in J$, then there is a circuit D of N_{j} such that $D \subseteq C_{j} \varsubsetneqq C$; a contradiction since D is a circuit of N. Hence $C_{j} \cap T \neq \emptyset$, for every $j \in J$. Therefore $\left|C_{j} \cap T\right| \in\{1,2\}$, for each $j \in J$. For $j \in J$, we set

$$
D_{j}= \begin{cases}C_{j}, & \text { when }\left|C_{j} \cap T\right|=1, \\ C_{j} \triangle T, & \text { when }\left|C_{j} \cap T\right|=2\end{cases}
$$

In particular, $\left|D_{j} \cap T\right|=1$. Note that D_{j} is a circuit of N_{j}, otherwise C contains properly a circuit of N_{j}. Now, we show that

$$
\begin{equation*}
\text { if }\left\{j, j^{\prime}\right\} \text { is a 2-subset of }[n] \text {, then } D_{j} \cap T \neq D_{j^{\prime}} \cap T \text {. } \tag{2.4}
\end{equation*}
$$

If (2.4) fails, then $D_{j} \triangle D_{j^{\prime}}$ is a cycle of N and so $C=D_{j} \triangle D_{j^{\prime}}=\left(D_{j}-T\right) \cup\left(D_{j^{\prime}}-T\right)$. If $j^{\prime}<j$, then N_{j} is isomorphic to $M\left(K_{4}\right)$ or F_{7} and so $\left|D_{j}-T\right|=2$. Hence $9 \leq|C|=\left|D_{j^{\prime}}-T\right|+2$; a contradiction because $7 \leq\left|D_{j^{\prime}}-T\right|=\left|D_{j^{\prime}}\right|-1 \leq$ $\operatorname{circ}\left(N_{j^{\prime}}\right)-1 \leq r\left(N_{j^{\prime}}\right) \leq 6$. Thus (2.4) holds. In particular, $n \leq|T|=3$. Next, we establish that $i_{1}=1$. If $1 \notin J$, then

$$
\begin{aligned}
9 \leq|C| & =|C \cap T|+\left|D_{i_{1}}-T\right|+\left|D_{i_{2}}-T\right|+\cdots+\left|D_{i_{n}}-T\right| \\
& =|C \cap T|+2 n \leq|C \cap T|+6 \leq 8
\end{aligned}
$$

a contradiction. Thus $1 \in J$.
Case 1. $n=3$, say $J=\{1,2,3\}$.
By (2.4), $T=\left\{e_{1}, e_{2}, e_{3}\right\}$, where $\left\{e_{j}\right\}=D_{j} \cap T$ for $j \in J$. First, we prove that $\left\{e_{2}, e_{3}\right\} \cap \mathrm{cl}_{N_{1}}\left(D_{1}\right)=\emptyset$. If e_{2} or e_{3} belongs to $\mathrm{cl}_{N_{1}}\left(D_{1}\right)$, say e_{2}, then there is a circuit D of N_{1} such that $e_{2} \in D \subseteq\left(D_{1}-e_{1}\right) \cup e_{2}$. Thus $D \triangle D_{2} \subseteq\left(D_{1}-e_{1}\right) \cup\left(D_{2}-e_{2}\right)$ is a non-empty cycle of N properly contained in C; a contradiction. Therefore $\left\{e_{2}, e_{3}\right\} \cap \operatorname{cl}_{N_{1}}\left(D_{1}\right)=\emptyset$. Hence $\left|D_{1}\right| \leq r\left(N_{1}\right)=6$. Observe that

$$
C^{\prime}=D_{1} \triangle D_{2} \triangle D_{3} \triangle T=\left(D_{1}-e_{1}\right) \cup\left(D_{2}-e_{3}\right) \cup\left(D_{3}-e_{3}\right)
$$

is a cycle of N and so $C=C^{\prime}$. Hence $9 \leq|C|=\left|D_{1}-e_{1}\right|+\left|D_{2}-e_{2}\right|+\left|D_{3}-e_{3}\right|=$ $\left|D_{1}-e_{1}\right|+4$. Hence $\left|D_{1}\right|=6$. Now, $D=D_{1} \triangle T$ is a circuit of N_{1} because $\left\{e_{2}, e_{3}\right\} \cap$ $\operatorname{cl}_{N_{1}}\left(D_{1}\right)=\emptyset$; a contradiction to Lemma 2.5 since $5=|D-T|>8-2|D \cap T|=4$.

Case 2. $n=2$, say $J=\{1,2\}$.
As $C_{1} \cap C_{2} \neq \emptyset$, it follows that $\left\{C_{1}, C_{2}\right\} \in\left\{\left\{D_{1} \triangle T, D_{2}\right\},\left\{D_{1}, D_{2} \triangle T\right\},\left\{D_{1} \triangle\right.\right.$ $\left.\left.T, D_{2} \triangle T\right\}\right\}$. Hence

$$
C=\left\{\begin{array}{l}
D_{1} \triangle D_{2} \triangle T=\left(D_{1}-e_{1}\right) \cup\left(D_{2}-e_{2}\right) \cup\left(T-\left\{e_{1}, e_{2}\right\}\right) \quad \text { or } \\
D_{1} \triangle D_{2}=D_{1} \cup D_{2} .
\end{array}\right.
$$

The second possibility cannot occur and so

$$
\begin{aligned}
9 \leq|C| & =\left|D_{1}-e_{1}\right|+\left|D_{2}-e_{2}\right|+\left|T-\left\{e_{1}, e_{2}\right\}\right| \\
& =\left|D_{1}-e_{1}\right|+2+1=\left|D_{1}-e_{1}\right|+3 .
\end{aligned}
$$

Therefore $\left|D_{1}\right|=7$ and $D_{1}-e_{1}$ is a basis for N_{1}. When $T=\left\{e_{1}, e_{2}, e_{3}\right\}$, there is a circuit C^{\prime} of N_{1} such that $e_{3} \in C^{\prime} \subseteq\left(D_{1}-e_{1}\right) \cup e_{3}$; a contradiction because C^{\prime} is properly contained in C.

Now, we establish a simple result. Item (ii) of the next lemma was used by Cordovil, Maia Jr. and Lemos [2] without proof. We added item (iv) in the next lemma because Theorem 1.5 (i) will become an immediate consequence of it.

Lemma 2.7 Let N be a simple binary matroid. For $L \subseteq E(N)$ and $m \geq 2$, if the connected components $K_{1}, K_{2}, \ldots, K_{m}$ of N / L satisfy $r\left(K_{1}\right)=r\left(K_{2}\right)=\cdots=$ $r\left(K_{m}\right)=1$, then
(i) the circuit space of N is spanned by $\{C \in \mathcal{C}(N):|C-L| \in\{0,2\}\}$;
(ii) $E\left(K_{1}\right), E\left(K_{2}\right), \ldots, E\left(K_{m}\right)$ are pairwise disjoint cocircuits of N;
(iii) when $N \mid L \cong P G(r-1,2)$, for some $r \geq 2$, then N is a book with pages $N\left|\left[E\left(K_{1}\right) \cup L\right], N\right|\left[E\left(K_{2}\right) \cup L\right], \ldots, N \mid\left[E\left(K_{m}\right) \cup L\right]$ and r-spine L. Moreover, each page of this book has rank equal to $r+1$; and
(iv) when $N \mid L \cong P G(r-1,2)$, for some $r \geq 2$, then N is a rank-preserving restriction of a book with r-spine L and $r(N)-r$ pages, each isomorphic to $P G(r, 2)$; and
(v) when $N \mid L \cong P G(r-1,2)$, for some $r \geq 2$, then $\operatorname{circ}(N) \leq 2 r+2$.

Proof: If B^{\prime} and $B^{\prime \prime}$ are bases of $N \mid L$ and N / L respectively, then $B=B^{\prime} \cup B^{\prime \prime}$ is a basis of N. As K_{i} is a connected component of N / L and $r\left(K_{i}\right)=1$, it follows that $\left|B^{\prime \prime} \cap E\left(K_{i}\right)\right|=1$, say $B^{\prime \prime} \cap E\left(K_{i}\right)=\left\{a_{i}\right\}$. Hence $B^{\prime \prime}=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$. For each $b \in B^{*}=E(N)-B$, let C_{b} be the circuit of N such that $C_{b}-B=\{b\}$. The circuit space of N is spanned by $\mathcal{C}=\left\{C_{b}: b \in B^{*}\right\}$. Observe that (i) follows provided we establish that $\left|C_{b}-L\right| \in\{0,2\}$. As $C_{b}-L$ is a cycle of N / L, it follows that $C_{b}-L$ is a disjoint union of circuits of N / L. In particular, $\left|C_{b} \cap E\left(K_{i}\right)\right| \in$ $\{0,2\}$, for every $i \in[m]$, and $\left|C_{b} \cap E\left(K_{i}\right)\right|=2$ if and only if $b \in E\left(K_{i}\right)$ (and
$\left.C_{b} \cap E\left(K_{i}\right)=\left\{b, a_{i}\right\}\right)$. Therefore $C_{b} \subseteq L$, when $b \in L$, and $C_{b}-L=\left\{b, a_{i}\right\}$, when $b \in E\left(K_{i}\right)$. Hence (i) follows. Observe that $\operatorname{cl}_{N}\left(B-a_{i}\right)=E(N)-E\left(K_{i}\right)$ for each $i \in[m]$. Therefore $E\left(K_{i}\right)$ is a cocircuit of N. We have (ii). By the proof of (i), there is a natural partition $\left\{\mathcal{C}_{0}, \mathcal{C}_{1}, \mathcal{C}_{2}, \ldots, \mathcal{C}_{m}\right\}$ of \mathcal{C}, where $\mathcal{C}_{0}=\left\{C_{b}: b \in L\right\}$ and, for $i \in[m], \mathcal{C}_{i}=\left\{C_{b}: b \in E\left(K_{i}\right)-a_{i}\right\}$. Note that, for $i \in[m], \mathcal{C}_{0} \cup \mathcal{C}_{i}$ spans the circuit space of $N_{i}=N \mid\left[E\left(K_{i}\right) \cup L\right]$ because $B^{\prime} \cup b_{i}$ is a basis of N_{i}. Therefore $N=P_{N \mid L}\left(N_{1}, N_{2}, \ldots, N_{m}\right)$ and (iii) holds. For $i \in[m]$, let N_{i}^{\prime} be a matroid isomorphic to $P G(r, 2)$ such that $E\left(N_{i}\right) \subseteq E\left(N_{i}^{\prime}\right)$ and $N_{i}=N_{i}^{\prime} \mid E\left(N_{i}\right)$. Choose $N_{1}^{\prime}, N_{2}^{\prime}, \ldots, N_{m}^{\prime}$ such that $E\left(N_{1}^{\prime}\right)-L, E\left(N_{2}^{\prime}\right)-L, \ldots, E\left(N_{m}^{\prime}\right)-L$ are pairwise disjoint. Consider the book $N^{\prime}=P_{N \mid L}\left(N_{1}^{\prime}, N_{2}^{\prime}, \ldots, N_{m}^{\prime}\right)$ having pages $N_{1}^{\prime}, N_{2}^{\prime}, \ldots, N_{m}^{\prime}$ and r-spine L. Note that $N=N^{\prime} \mid E(N)$ and $m=r(M)-r(L)=r(M)-r$. Hence (iv) follows.

Now, we establish (v). Let C be a circuit of N such that $|C|=\operatorname{circ}(N)$. Assume that $|C|>2 r+2 \geq 4$. By binary orthogonality and (ii), $C \cap E\left(K_{1}\right), C \cap$ $E\left(K_{2}\right), \ldots, C \cap E\left(K_{m}\right)$ are even sets that partition $C-L$. Therefore there is a partition $\left\{X_{1}, X_{2}, \ldots, X_{s}\right\}$ of $C-L$ such that $\left|X_{1}\right|=\left|X_{2}\right|=\cdots=\left|X_{s}\right|=2$ and, for each $i \in[s]$, there exists $j \in[m]$ such that $X_{i} \subseteq E\left(K_{j}\right)$. By (iii), for each $i \in[s]$, there is $a_{i} \in L$ such that $X_{i} \cup a_{i}$ is a triangle of N. If $a_{s+1}, a_{s+2}, \ldots, a_{t}$ are the elements of $C \cap L$, then,

$$
\begin{equation*}
\text { for any } 2 \text {-subset }\{i, j\} \text { of }[t], a_{i} \neq a_{j} . \tag{2.5}
\end{equation*}
$$

Assume that (2.5) fails. Suppose that $i<j$. If $j>s$, then $i \leq s$ and $X_{i} \cup a_{j}$ is a triangle of M contained in C. Hence $C=X_{i} \cup a_{j}$; a contradiction. Thus $i<j \leq s$. In this case $\left(X_{i} \cup a_{i}\right) \triangle\left(X_{j} \cup a_{j}\right)=X_{i} \cup X_{j}$ is a cycle of N contained in C. Hence $C=X_{i} \cup X_{j} ;$ a contradiction. Therefore (2.5) holds. Next, we show that
any proper subset of $\left\{a_{1}, a_{2}, \ldots, a_{t}\right\}$ is independent in $N \mid L$.
Let C^{\prime} be a circuit of $N \mid L$ contained in $\left\{a_{1}, a_{2}, \ldots, a_{t}\right\}$, say $C^{\prime}=\left\{a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{k}}\right\}$, for $1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq t$. If $i_{k} \leq s$, then we define $l=k$. If $s<i_{k}$, then there is $l \in[k-1]$ such that $i_{l} \leq s<i_{l+1}$. (If $s<i_{1}$, then $C^{\prime}=C$; a contradiction because $\operatorname{circ}(N \mid L)=r+1$.) Thus
$C^{\prime} \triangle\left(X_{i_{1}} \cup a_{i_{1}}\right) \triangle\left(X_{i_{2}} \cup a_{i_{2}}\right) \triangle \cdots \Delta\left(X_{i_{l}} \cup a_{i_{l}}\right)=X_{i_{1}} \cup X_{i_{2}} \cup \cdots \cup X_{i_{l}} \cup\left\{a_{i_{l+1}}, \ldots, a_{i_{k}}\right\}$
is a non-empty cycle of N contained in C. Thus it must be equal to C. Hence $k=t$, that is, $C^{\prime}=\left\{a_{1}, a_{2}, \ldots, a_{t}\right\}$. Therefore (2.6) holds. By (2.6), $t \leq \operatorname{circ}(N \mid L)=r+1$ and $|C| \leq 2 t=2 r+2$; a contradiction and so (v) follows.

The next result has a very simple proof. We omit it.
Lemma 2.8 Let C be a cycle of a binary matroid N. If S is a series class of N such that $C-S$ is a non-empty independent set of N, then C is a circuit of N.

In the next lemma, we use the same notation as used in Theorem 1.5(i).

Lemma 2.9 For $t \geq 6$, let $M^{\prime \prime}$ be a book with pages $M_{1}, M_{2}, \ldots, M_{t}$ and 3-spine F such that M_{i} is isomorphic to $P G(3,2)$ for every $i \in[t]$. For $Y \subseteq E\left(M^{\prime \prime}\right), M^{\prime \prime} \mid Y$ is a rank-preserving unbent crossing 3 -connected binary matroid with circumference 8 if and only if there is $X \subseteq Y$ such that X induces a crossing on $M^{\prime \prime}$ and, for every $k \in[t],\left|Y \cap\left[E\left(M_{k}\right)-F\right]\right| \geq 3$.

Proof: By Lemma 2.7(v), the circumference of $M^{\prime \prime}$ is 8 . First, we describe a maximum size circuit of $M^{\prime \prime}$. Let C be a circuit of $M^{\prime \prime}$ such that $|C|=8$. For $i \in[t]$, set $X_{i}=\left[E\left(M_{i}\right)-F\right] \cap C$. Assume that $\left|X_{1}\right| \geq\left|X_{2}\right| \geq \cdots \geq\left|X_{t}\right|$. By binary orthogonality, $\left|X_{i}\right|$ is even. As $r\left(M_{i}\right)=4$, it follows that $\left|X_{i}\right| \in\{0,2,4\}$. Let s be the biggest integer such that $\left|X_{s}\right| \neq 0$. For $i \in[s]$, set
$F_{i}=\left\{a \in F\right.$: there is a 2-subset A of X_{i} such that $A \cup a$ is a triangle of $\left.M^{\prime \prime}\right\}$.
Note that $\left|F_{i}\right|=1$, when $\left|X_{i}\right|=2$, and $\left|F_{i}\right|=6$, when $\left|X_{i}\right|=4$. Set $F_{0}=C \cap F$. Now, we prove that $F_{0}, F_{1}, F_{2}, \ldots, F_{s}$ are pairwise disjoint. Suppose that $a \in F_{i} \cap F_{j}$ for $0 \leq i<j \leq s$. Let A be a 2-subset of X_{j} such that $A \cup a$ is a triangle of $M^{\prime \prime}$. As $A \cup a \nsubseteq C$, it follows that $a \notin C$ and so $i \geq 1$. If A^{\prime} is a 2 -subset of X_{i} such that $A^{\prime} \cup a$ is a triangle of $M^{\prime \prime}$, then $A \cup A^{\prime}=(A \cup a) \triangle\left(A^{\prime} \cup a\right)$ is a cycle of $M^{\prime \prime}$ properly contained in C; a contradiction. Hence $F_{0}, F_{1}, F_{2}, \ldots, F_{s}$ are pairwise disjoint and so $\left|F_{0}\right|+\left|F_{1}\right|+\cdots+\left|F_{s}\right| \leq|F|=7$. Next, we show that $\left|X_{1}\right|=2$. If $\left|X_{1}\right| \neq 2$, then $\left|X_{1}\right|=4$ and so $\left|F_{1}\right|=6$. In this case, $s=1$ and $|C| \leq 5$ or $s=2$ and $|C|=6$; a contradiction. Thus $\left|X_{1}\right|=2$. For $i \in[s]$, we have that $F_{i}=\left\{a_{i}\right\}$, for some $a_{i} \in F$. Note that $D=F_{0} \cup\left\{a_{1}, a_{2}, \ldots, a_{s}\right\}$ is a circuit of $M^{\prime \prime} \mid F$. Therefore $s \leq 4-\left|F_{0}\right|$ and so $|C|=\left|F_{0}\right|+2 s=8-\left|F_{0}\right|$. Consequently $\left|F_{0}\right|=0$ and $s=4$. In resume, there is a partition $\left\{X_{1}, X_{2}, X_{3}, X_{4}\right\}$ of C such that $\left|X_{1}\right|=\left|X_{2}\right|=\left|X_{3}\right|=\left|X_{4}\right|=2$, there are pairwise different elements i_{1}, i_{2}, i_{3} and i_{4} of $[t]$ such that $X_{k} \subseteq E\left(M_{i_{k}}\right)-F$ and, when $X_{k} \cup a_{k}$ is a triangle of $M^{\prime \prime}$ for $a_{k} \in F$, we have that $\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ is a circuit of $M^{\prime \prime} \mid F$. If X^{\prime} and Y^{\prime} are contained in different rank-1 connected components of $\left(M^{\prime \prime} \mid Y\right) / C,\left|X^{\prime}\right|=\left|Y^{\prime}\right|=2$ and $M \mid\left(C \cup X^{\prime} \cup Y^{\prime}\right)$ is a subdivision of $M\left(K_{4}\right)$, then we can take $X_{5}=X^{\prime}$ and $X_{6}=Y^{\prime}$ to construct the set $X=C \cup X^{\prime} \cup Y^{\prime} \subseteq Y$ that induces a crossing on $M^{\prime \prime} \mid Y$.

Suppose that $M^{\prime \prime} \mid Y$ is not 3-connected. Let $\{Z, W\}$ be a l-separation for $M^{\prime \prime} \mid Y$, where $l \in\{1,2\}$, say $|Z \cap X| \geq 6$. As $M^{\prime \prime}$ does not have loops or parallel elements, it follows that $r(Z) \leq r\left(M^{\prime \prime}\right)-1$. Now, we may assume that Z is closed in $M^{\prime \prime} \mid Y$. Observe that $|Z \cap X| \geq 10$ because $M^{\prime \prime} \mid X$ is a subdivision of $M\left(K_{4}\right)$ having every series class with size 2 . Hence Z spans F in $M^{\prime \prime}$ and so

$$
\operatorname{cl}_{M^{\prime \prime}}(Z)=\cup\left\{E\left(M_{i}\right): i \in[t] \text { and }\left[E\left(M_{i}\right)-F\right] \cap Z \neq \emptyset\right\} .
$$

If $I=\left\{i \in[t]:\left[E\left(M_{i}\right)-F\right] \cap Z=\emptyset\right\}$, then $I \neq \emptyset$ and

$$
W=\cup_{i \in I}\left[(Y-F) \cap E\left(M_{i}\right)\right] .
$$

Note that $r\left(M^{\prime \prime}\right)=r(Z)+|I|$ and $r(W) \geq 2+|I|$. Therefore $r(Z)+r(W) \geq r\left(M^{\prime \prime}\right)+2$. With this contradiction, we conclude that $M^{\prime \prime} \mid Y$ is 3-connected.

Figure 1: Graphs G and H. For $K \in\{G, H\}$, let K^{\prime} be a graph obtained from K by replacing each edge $u v$ whose label is a 2 -set S by a $u v$-path of size 2 whose edges are labeled by the elements of S. Observe that $M\left(G^{\prime}\right)=M \mid\left(C \cup A_{i} \cup A_{j}\right)$ (see item (i) of Lemma 3.1) and that $M\left(H^{\prime}\right)=M \mid\left(C \cup I_{l}\right)$ in item (vi)(2) of Lemma 3.1.

3 Proof of Theorem 1.5

We first fix some of the notation used throughout this section. Let M be an unbent 3 -connected binary matroid having circumference 8 . Let C be a circuit of M such that $|C|=8$. Let $H_{1}, H_{2}, \ldots, H_{n}$ be the rank-1 connected components of M / C. By definition, when H is a connected component of M / C such that $H \notin\left\{H_{1}, H_{2}, \ldots, H_{n}\right\}$, then $r(H)=0$. Therefore $r(M)=7+n$. We assume that

$$
\begin{equation*}
n \geq 4 \text { or, equivalently, } r(M) \geq 11 \tag{3.1}
\end{equation*}
$$

By Lemma 2.7(ii), $E\left(H_{1}\right), E\left(H_{2}\right), \ldots, E\left(H_{n}\right)$ are pairwise disjoint cocircuits of M.
For a 2-subset $\{i, j\}$ of $[n]$, when there are 2-subsets A_{i} and A_{j} of $E\left(H_{i}\right)$ and $E\left(H_{j}\right)$, respectively, such that $M \mid\left(C \cup A_{i} \cup A_{j}\right)$ is a subdivision of $M\left(K_{4}\right)$, we say that:
(1) A_{i} and A_{j} cross with respect to C; and
(2) the 2 -subset $\{i, j\}$ of $[n]$ induces a crossing on C.

Moreover, the next two definitions are used to split the proof of Theorem 1.5 into two natural cases:
(3) M is C-crossing provided there is a 2-subset of $[n]$ that induces a crossing on C; and
(4) M is strong C-crossing provided, for every $k \in[n]$, there is a 2 -subset of $[n]-\{k\}$ that induces a crossing on C.

The next lemma is the core of the proof of Theorem 1.5.

Lemma 3.1 Let A_{l} be a 2-subset of $E\left(H_{l}\right)$, for every l belonging to the 3 -subset $\{i, j, k\}$ of $[n]$. If A_{i} and A_{j} cross with respect to C, then, when C_{1} and C_{2} are circuits of M such that $A_{i} \subseteq C_{1} \subseteq C \cup A_{i}$ and $A_{j} \subseteq C_{2} \subseteq C \cup A_{j}$,
(i) $\left|S_{1}\right|=\left|S_{2}\right|=\left|S_{3}\right|=\left|S_{4}\right|=2$, where $S_{1}=C_{1} \cap C_{2}, S_{2}=\left(C_{1}-C_{2}\right) \cap C, S_{3}=$ $C-\left(C_{1} \cup C_{2}\right)$ and $S_{4}=\left(C_{2}-C_{1}\right) \cap C$. (See the graph in the left in Figure 1.)
(ii) $D_{1}=C_{1} \triangle C_{2}$ and $D_{2}=\left(C_{1} \triangle C_{2}\right) \triangle C$ are 8-elements circuits of M.
(iii) Suppose that $S \in\left\{A_{k},\{e\}\right\}$, where $e \in \operatorname{cl}_{M}(C)-C$. If D is a circuit of M such that $S \subseteq D \subseteq C \cup S$, then $|J| \leq 2$, where $J=\left\{l \in[4]:\left|S_{l} \cap D\right|=1\right\}$. Moreover, if $S=\{e\}$, then $|J| \leq 1$.
(iv) There is $J \subseteq[4]$ such that $A_{k} \cup\left(\bigcup\left\{S_{l}: l \in J\right\}\right)$ is a circuit of M.
(v) $r\left(E\left(H_{l}\right)\right) \leq 4$, for every $l \in[n]-\{i, j\}$.
(vi) If I is an independent set of M such that $|I|=4$ and $I \subseteq E\left(H_{l}\right)$, for some $l \in[n]-\{i, j\}$, then
(1) there is a 3-subset $\{a, b, c\}$ of I such that $\{a, b\} \cup S_{1} \cup S_{2},\{a, c\} \cup S_{1} \cup$ $\left.S_{3}\right\},\{b, c\} \cup S_{1} \cup S_{4}$ are circuits of M and, when $d \in I-\{a, b, c\},\{a, d\} \cup$ $S_{i_{1}},\{b, d\} \cup S_{i_{2}},\{c, d\} \cup S_{i_{3}}$ are circuits of M, for a 3-subset $\left\{i_{1}, i_{2}, i_{3}\right\}$ of [4]; or
(2) The elements of I can be labeled by a, b, c, d such that $\{a, b\} \cup S_{i_{1}},\{b, c\} \cup$ $S_{i_{2}},\{c, d\} \cup S_{i_{3}},\{d, a\} \cup S_{i_{4}}$ are circuits of M, where $[4]=\left\{i_{1}, i_{2}, i_{3}, i_{4}\right\}$. (See the graph in the right in Figure 1.)
(vii) If I is an independent set of M such that $I \subseteq E\left(H_{l}\right)$ and $r\left(E\left(H_{l}\right)\right)=|I|=3$, for some $l \in[n]-\{i, j\}$, then the elements of I can be labeled by a, b, c such that
(1) $\{a, b\} \cup S_{1} \cup S_{2},\{a, c\} \cup S_{1} \cup S_{3},\{b, c\} \cup S_{1} \cup S_{4}$ are circuits of M; or
(2) $\{a, b\} \cup S_{i_{1}},\{b, c\} \cup S_{i_{2}},\{a, c\} \cup S_{i_{1}} \cup S_{i_{2}}$ are circuits of M, for a 2-subset $\left\{i_{1}, i_{2}\right\}$ of [4].
(viii) If it is not possible to choose A_{k} such that A_{i} and A_{k} cross with respect to C, then $r\left(E\left(H_{k}\right)\right)=3$ and (vii)(2) occurs for $l=k$ and an independent 3 -subset I of $E\left(H_{k}\right)$ with $\left\{i_{1}, i_{2}\right\} \in\{\{1,2\},\{3,4\}\}$. Moreover, we can choose A_{k} such that A_{j} and A_{k} cross with respect to C.
(ix) If $\{i, k\}$ does not induces a crossing on C, for every $k \in[n]-\{i, j\}$, then $r\left(E\left(H_{l}\right)\right)=3$, for every $l \in[n]-\{j\}$, and when I_{l} is an independent set of M such that $I_{l} \subseteq E\left(H_{l}\right),\left|I_{l}\right|=3$, we can label the elements of I_{l} by a_{l}, b_{l}, c_{l} such that
(1) $\left\{a_{l}, b_{l}\right\} \cup S_{1},\left\{b_{l}, c_{l}\right\} \cup S_{2},\left\{a_{l}, c_{l}\right\} \cup S_{1} \cup S_{2}$ are circuits of M; or
(2) $\left\{a_{l}, b_{l}\right\} \cup S_{3},\left\{b_{l}, c_{l}\right\} \cup S_{4},\left\{a_{l}, c_{l}\right\} \cup S_{3} \cup S_{4}$ are circuits of M.

Figure 2: The geometric representation of $M^{\prime} \mid F$ (see Lemma 3.1(xi)). It is isomorphic to F_{7}.
(x) If $r\left(E\left(H_{i}\right)\right)=3$, for $l \in[n]$, then $\left|E\left(H_{l}\right)\right| \in\{3,4\}$. Moreover, when $\left.\mid E\left(H_{l}\right)\right) \mid=$ 4, $E\left(H_{l}\right)$ is a circuit-cocircuit of M.
(xi) Let M^{\prime} be a binary matroid such that:
(a) $E(M) \subseteq E\left(M^{\prime}\right)$;
(b) $r(M)=r\left(M^{\prime}\right)$;
(c) $M=M^{\prime} \mid E(M)$;
(d) $E\left(M^{\prime}\right)-E(M) \subseteq\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{12}, \alpha_{13}, \alpha_{14}\right\}=F$;
(e) $M^{\prime} \mid F \cong F_{7}$ (see Figure 2);
(f) $S_{1} \cup \alpha_{1}, S_{2} \cup \alpha_{2}, S_{3} \cup \alpha_{3}, S_{4} \cup \alpha_{4}$ are triangles of M^{\prime}; and
(g) $\left|E\left(M^{\prime}\right)\right|$ is minimum subject to the conditions (a) to (f).

Then M^{\prime} is 3 -connected and, when $l \in[n]-\{i, j\}, H_{l}$ is a connected component of M^{\prime} / F.
(xii) If $A_{k} \cup S_{l}$ is a circuit of M, for some $l \in[4]$, then $C^{\prime}=\left(C-S_{l}\right) \cup A_{k}$ is an 8-element circuit of M such that A_{i} and A_{j} cross with respect to C^{\prime}. Moreover, there is a rank-1 matroid K such that $S_{l} \subseteq E(K)$ and K is a connected component of both M / C^{\prime} and M^{\prime} / F.
(xiii) Each element of $\mathrm{cl}_{M^{\prime}}(C)-(C \cup F)$ is in parallel to some element of C in M^{\prime} / F.

Consider the circuits $C_{1}^{\prime}=C_{1} \triangle C$ and $C_{2}^{\prime}=C_{2} \triangle C$ of M. As $A_{i} \subseteq C_{1}^{\prime} \subseteq C \cup A_{i}$ and $A_{j} \subseteq C_{2}^{\prime} \subseteq C \cup A_{j}$, we can replace C_{1} by C_{1}^{\prime} and/or C_{2} by C_{2}^{\prime}, when necessary, in the proof of Lemma 3.1. Observe that

$$
\begin{array}{lll}
C_{1}^{\prime} \cap C_{2}=S_{4} & \text { and } & C-\left(C_{1}^{\prime} \cup C_{2}\right)=S_{2} \\
C_{1} \cap C_{2}^{\prime}=S_{2} & \text { and } & C-\left(C_{1} \cup C_{2}^{\prime}\right)=S_{4} ; \\
C_{1}^{\prime} \cap C_{2}^{\prime}=S_{3} & \text { and } & C-\left(C_{1}^{\prime} \cup C_{2}^{\prime}\right)=S_{1} .
\end{array}
$$

Depending on the choice of the circuits contained in the theta sets $A_{i} \cup C$ and $A_{j} \cup C$ to be C_{1} and C_{2} respectively, any series class of $M \mid\left(C \cup A_{i} \cup A_{j}\right)$ contained in C
can be S_{1} or S_{3}, for example. In the proof of this lemma, when we want to prove some property of S_{l}, for $l \in[4]$, we just say that "by symmetry, we may assume that $l=1$ ". (For l to be 1 , we may need to replace C_{1} by C_{1}^{\prime} and/or C_{2} by C_{2}^{\prime} but we are not going to say that every time to avoid repetition.) The next matrix organizes the intersection of these circuits with C. The union of the sets in the first and the second lines are equal to $C_{2} \cap C$ and $C_{2}^{\prime} \cap C$ respectively. The union of the sets in the first and the second columns are equal to $C_{1}^{\prime} \cap C$ and $C_{1} \cap C$ respectively.

$$
\left(\begin{array}{ll}
S_{4} & S_{1} \\
S_{3} & S_{2}
\end{array}\right)
$$

Compare this matrix with the subgraph $G \backslash\left\{A_{i}, A_{j}\right\}$ of the graph G illustrated in Figure 1.

Proof: (i) First, we show that $\left|S_{l}\right| \geq 2$, for every $l \in[4]$. Assume that $\left|S_{l}\right| \leq 1$. As $M \mid\left(C \cup A_{i} \cup A_{j}\right)$ is a subdivision of $M\left(K_{4}\right)$, it follows that $S_{l} \neq \emptyset$. Thus $\left|S_{l}\right|=1$. Observe that $L=\left(C \cup A_{i} \cup A_{j}\right)-S_{l}$ is a theta set of M because $r^{*}\left(M \mid\left(C \cup A_{i} \cup A_{j}\right)\right)=3$ and S_{l} is a series class of $M \mid\left(C \cup A_{i} \cup A_{j}\right)$. Hence $|L|=|C|+\left|A_{i}\right|+\left|A_{j}\right|-\left|S_{l}\right|=11$; a contradiction to Lemma 2.4. Therefore $\left|S_{l}\right| \geq 2$, for every $l \in[4]$. The result follows because $\left\{S_{1}, S_{2}, S_{3}, S_{4}\right\}$ is a partition of C and $|C|=8$.
(ii) Observe that both $D_{1}=A_{i} \cup A_{j} \cup S_{2} \cup S_{4}$ and $D_{2}=A_{i} \cup A_{j} \cup S_{1} \cup S_{3}$ have 8 elements, by (i).
(iii) Replacing D by $D \triangle C$, when necessary, we may assume that $|D \cap C| \leq 4$. For $l \in J$, set $D \cap S_{l}=\left\{a_{l}\right\}$ and $S_{l}-D=\left\{b_{l}\right\}$. For clarity, we decide to divide the proof of this item into two similar parts.

Now, suppose that $|J| \in\{3,4\}$. By symmetry, when $|J|=3$, we may assume that $J=\{1,2,4\}$. Thus $D \cap S_{3}=\emptyset$ because $|D \cap C| \leq 4$. Consider the following cycle of $N=M \mid\left(C \cup A_{i} \cup A_{j} \cup S\right)$:

$$
C^{\prime}= \begin{cases}D \triangle C_{1} \triangle C_{2}=S \cup A_{i} \cup A_{j} \cup\left\{a_{1}, b_{2}, a_{3}, b_{4}\right\}, & \text { when }|J|=4, \\ C \triangle D \triangle C_{1} \triangle C_{2}=S \cup A_{i} \cup A_{j} \cup\left\{b_{1}, a_{2}, a_{4}\right\} \cup S_{3}, & \text { when }|J|=3 .\end{cases}
$$

Observe that

$$
C^{\prime}-S= \begin{cases}A_{i} \cup A_{j} \cup\left\{a_{1}, b_{2}, a_{3}, b_{4}\right\}, & \text { when }|J|=4, \\ A_{i} \cup A_{j} \cup\left\{b_{1}, a_{2}, a_{4}\right\} \cup S_{3}, & \text { when }|J|=3,\end{cases}
$$

is a non-empty independent set of N. By Lemma $2.8, C^{\prime}$ is a circuit of N since S is a series class of N. We arrive at a contradiction because $\left|C^{\prime}\right| \geq 9$. Thus $|J| \leq 2$.

Next, suppose that $|J|=2$. To finish the proof of (iii), we need to establish that $S \neq\{e\}$. By symmetry, we may assume that $D \cap S_{4}=\emptyset$. First, we show that $|D \cap C|=2$. If $|D \cap C| \neq 2$, then $|D \cap C|=4$ and $D \cap S_{l} \neq \emptyset$, for every $l \in[3]$. Moreover, there is a unique $l \in[3]$ such that $S_{l} \subseteq D$. Consider the cycle of N :

$$
D^{\prime}= \begin{cases}D \triangle C_{1} \triangle C=S \cup A_{i} \cup S_{1} \cup S_{4} \cup\left\{a_{2}, b_{3}\right\}, & \text { when } S_{1} \subseteq D \\ D \triangle C_{1} \triangle C_{2}=S \cup A_{i} \cup A_{j} \cup S_{4} \cup\left\{a_{1}, a_{3}\right\}, & \text { when } S_{2} \subseteq D \\ D \triangle C_{2}=S \cup A_{j} \cup S_{3} \cup S_{4} \cup\left\{b_{1}, a_{2}\right\}, & \text { when } S_{3} \subseteq D\end{cases}
$$

Observe that $D^{\prime}-S$ is an independent set of N. By Lemma 2.8, D^{\prime} is a circuit of N; a contradiction because $\left|D^{\prime}\right| \geq 9$. Thus $|D \cap C|=2$. Now, we show that $J=\{1,3\}$. Suppose that $J \in\{\{1,2\},\{2,3\}\}$. By symmetry, we may assume that $J=\{1,2\}$. In this case, using Lemma 2.8 again, we conclude that $D \triangle C_{1} \triangle C_{2}=$ $S \cup A_{i} \cup A_{j} \cup\left\{a_{1}, b_{2}\right\} \cup S_{4}$ is a circuit of N with at least 9 elements; a contradiction. Thus $J=\{1,3\}$. Assume that $S=\{e\}$. In $\left[M \mid\left(C \cup A_{i} \cup A_{j}\right)\right] / D_{1}, S_{1}$ and S_{3} are parallel classes. Hence M / D_{1} has rank-1 connected components H_{1}^{\prime} and H_{2}^{\prime} such that $S_{1} \subseteq E\left(H_{1}^{\prime}\right)$ and $S_{3} \subseteq E\left(H_{2}^{\prime}\right)$ because, by (ii), D_{1} is an 8-element circuit of M and M is unbent. As $D=\left\{e, a_{1}, a_{3}\right\}$ is a cycle of M / D_{1}, it follows that $a_{1} \in X_{1}=D \cap E\left(H_{1}^{\prime}\right)$ and $a_{3} \in X_{2}=D \cap E\left(H_{2}^{\prime}\right)$ are disjoint cycles of M / D_{1} contained in D; a contradiction because $\left|X_{1}\right| \geq 2,\left|X_{2}\right| \geq 2$ and $|D|=3$. Consequently $|J| \leq 1$ when $S=\{e\}$. Thus (iii) follows.
(iv) As $A_{k} \cup C$ is a theta-set of M, we can choose a circuit D of M such that $A_{k} \subseteq$ $D \subseteq C \cup A_{k}$ and $|D \cap C| \leq 4$. Observe that $|D \cap C| \geq 2$, otherwise $\left(A_{k} \cup C\right)-(D \cap C)$ is a circuit of M with 9 elements. Assume that (iv) fails. By symmetry, we may assume that $\left|D \cap S_{1}\right|=1$. Now, we show that $D \cap S_{2} \neq \emptyset$. If $D \cap S_{2}=\emptyset$, then $\emptyset \neq D \cap\left(S_{3} \cup S_{4}\right) \varsubsetneqq S_{3} \cup S_{4}$ because $2 \leq|D \cap C| \leq 4$ and so $1 \leq\left|D \cap\left[C-\left(S_{1} \cup S_{2}\right)\right]\right| \leq 3$. Therefore A_{i} and A_{k} cross with respect of C; a contradiction to (i) applied to A_{i} and A_{k} because $\left|C_{1} \cap D\right|=1$. Thus $D \cap S_{2} \neq \emptyset$. Now, A_{j} and A_{k} cross with respect to C. By (i) applied to A_{j} and A_{k}, we have that $\left|D \cap\left(S_{1} \cup S_{4}\right)\right|=\left|D \cap\left(S_{2} \cup S_{3}\right)\right|=2$. As $\left|D \cap S_{1}\right|=1$, it follows that $\left|D \cap S_{4}\right|=1$. Observe that A_{i} and A_{k} cross with respect to C and so $\left|D \cap\left(S_{1} \cup S_{2}\right)\right|=\left|D \cap\left(S_{3} \cup S_{4}\right)\right|=2$, by (i) applied to A_{i} and A_{k}. Therefore $\left|D \cap S_{l}\right|=1$, for every $l \in[4]$; a contradiction to (iii). With this contradiction, we finish the proof of item (iv).

Now, we set the notation to be used in items (v) to (vii). Assume that I is an independent set of M such that $I \subseteq E\left(H_{l}\right)$, for some $l \in[n]$. For a 2-subset A of I, let C_{A} be a circuit of M such that $A \subseteq C_{A} \subseteq C \cup A$. (There are two choices for C_{A} because $C \cup A$ is a theta set of M.) By (iv), there is a $\emptyset \neq J_{A} \varsubsetneqq[4]$ such that $C_{A}=A \cup\left(\bigcup\left\{S_{t}: t \in J_{A}\right\}\right)$. Note that

$$
\begin{equation*}
J_{A} \neq J_{A^{\prime}}, \text { when } A \text { and } A^{\prime} \text { are different } 2 \text {-subsets of } I, \tag{3.2}
\end{equation*}
$$

otherwise $C_{A} \triangle C_{A^{\prime}}=A \triangle A^{\prime} \neq \emptyset$ is a cycle of M properly contained in I.
(v) Suppose that $|I|=5$. Replacing C_{A} by $C \triangle C_{A}$, when necessary, we may assume that $4 \in J_{A}$. There are at most 7 different possibilities for J_{A}. As $\left|\binom{I}{2}\right|=10$, it follows that I contains different 2 -subsets A and A^{\prime} such that $J_{A}=J_{A^{\prime}}$; a contradiction to (3.2) and so I does not exist. Hence $r\left(E\left(H_{l}\right)\right) \leq 4$.

To establish items (vi) and (vii), we make a different choice for J_{A}. Replacing C_{A} by $C \triangle C_{A}$, when necessary, we may assume that $\left|J_{A}\right| \in\{1,2\}$ and, when $\left|J_{A}\right|=2$, $1 \in J_{A}$. Therefore

$$
\begin{equation*}
J_{A} \in\{\{1\},\{2\},\{3\},\{4\},\{1,2\},\{1,3\},\{1,4\}\} . \tag{3.3}
\end{equation*}
$$

(vi) Suppose that $|I|=4$. Consider $\Upsilon=\left\{J_{A}: A \in\binom{I}{2}\right\}$. By (3.2), $|\Upsilon|=6$. By (3.3), we have 7 choices for J_{A}. We have two cases to deal with:

Case 1. $\{\{1,2\},\{1,3\},\{1,4\}\} \subseteq \Upsilon$.
Suppose that $J_{A_{1}}=\{1,2\}, J_{A_{2}}=\{1,3\}$ and $J_{A_{3}}=\{1,4\}$, for 2-subsets A_{1}, A_{2} and A_{3} of I. Thus

$$
C_{A_{1}} \triangle C_{A_{2}} \triangle C_{A_{3}}=\left(A_{1} \triangle A_{2} \triangle A_{3}\right) \cup\left(S_{1} \cup S_{2} \cup S_{3} \cup S_{4}\right)=\left(A_{1} \triangle A_{2} \triangle A_{3}\right) \cup C
$$

Therefore $A_{1} \triangle A_{2} \triangle A_{3} \subseteq I$ is a cycle of M and so $A_{1} \triangle A_{2} \triangle A_{3}=\emptyset$. As A_{1}, A_{2}, A_{3} are 2-subsets of I, it follows that $A_{1}=\{a, b\}, A_{2}=\{a, c\}, A_{3}=\{b, c\}$, for a 3-subset $\{a, b, c\}$ of I. Thus $\{a, b\} \cup S_{1} \cup S_{2},\{a, c\} \cup S_{1} \cup S_{3},\{b, c\} \cup S_{1} \cup S_{4}$ are circuits of M. If $d \in A$, for a 2 -subset A of I and $\{d\}=I-\{a, b, c\}$, then, by (3.3), $\left|J_{A}\right|=1$. By (3.2), we have (vi)(1) holds in this case.

Case 2. $\{\{1\},\{2\},\{3\},\{4\}\} \subseteq \Upsilon$.
Let G be a complete graph having I as vertex set. If $\{a, b\}$ is a 2 -subset of I, then we color the edge $a b$ of G with the color $\left|J_{\{a, b\}}\right| \in\{1,2\}$. By (3.2) and (3.3), G has 2 edges with color 2 and 4 edges with color 1 . Now, we show that G has no monochromatic triangle. Assume that $\{a, b, c\}$ is a monochromatic triangle of G. The color of its edges must be 1 . There is a 3 -subset $\left\{i_{1}, i_{2}, i_{3}\right\}$ of I such that $C_{\{a, b\}}=\{a, b\} \cup S_{i_{1}}, C_{\{a, c\}}=\{a, c\} \cup S_{i_{2}}$, and $C_{\{b, c\}}=\{b, c\} \cup S_{i_{3}}$. Therefore $C_{\{a, b\}} \triangle C_{\{a, c\}} \triangle C_{\{b, c\}}=S_{i_{1}} \cup S_{i_{2}} \cup S_{i_{3}}$ is a cycle of M properly contained in C; a contradiction. Thus G has no monochromatic triangle. Hence the edges of color 2 is a perfect matching of G, say $a c$ and $b d$. Therefore $C_{\{a, b\}}=\{a, b\} \cup S_{i_{1}}, C_{\{b, c\}}=$ $\{b, c\} \cup S_{i_{2}}, C_{\{c, d\}}=\{c, d\} \cup S_{i_{3}}, C_{\{d, a\}}=\{d, a\} \cup S_{i_{4}}$, where $\left\{i_{1}, i_{2}, i_{3}, i_{4}\right\}=[I]$. We have (vi)(2). Note that $M \mid(C \cup I)$ is a subdivision of $M\left(W_{4}\right)$.
(vii) If (1) does not hold, then, by (3.2) and (3.3), there is a 2 -subset $\{a, b\}$ of I such that $C_{\{a, b\}}=\{a, b\} \cup S_{i_{1}}$, for some $i_{1} \in[4]$. We have (2) unless $C_{\{a, c\}}=\{a, c\} \cup S_{1} \cup S_{j_{1}}$ and $C_{\{b, c\}}=\{b, c\} \cup S_{1} \cup S_{j_{2}}$, for a 2-subset $\left\{j_{1}, j_{2}\right\}$ of [4]. Assume this is the case. Thus the cycle of M

$$
\emptyset \neq C_{\{a, b\}} \triangle C_{\{a, c\}} \triangle C_{\{b, c\}}=S_{i_{1}} \triangle\left(S_{j_{1}} \cup S_{j_{2}}\right)
$$

is properly contained in C; a contradiction.
(viii) Suppose this result fails. First, we show that $r\left(E\left(H_{k}\right)\right)=3$. Assume that $r\left(E\left(H_{k}\right)\right)>3$. By $(\mathrm{v}), r\left(E\left(H_{k}\right)\right)=4$. If (vi)(1) happens for $l=k$, then A_{i} and $A_{k}=\{b, c\}$ cross with respect to C; a contradiction. If (vi)(2) happens for $l=k$, then A_{i} and A_{k} cross with respect to C, for some $A_{k} \in\{\{a, c\},\{b, d\}\}$; a contradiction. Hence $r\left(E\left(H_{k}\right)\right)=3$. Now, we show that (vii)(1) cannot happen for $l=k$. If (vii)(1) occurs for $l=k$, then A_{i} and $A_{k}=\{b, c\}$ cross with respect of C; a contradiction. Thus (vii)(2) happens for $l=k$. As A_{i} and $A_{k}=\{a, c\}$ do not cross with respect to C, it follows that $\left\{i_{1}, i_{2}\right\} \in\{\{1,2\},\{3,4\}\}$. Note that A_{j} and $A_{k}=\{a, c\}$ cross with respect of C.
(ix) By (viii), (ix) follows for $l \in[n]-\{i, j\}$. We need to establish it for $l=i$. By (viii), there is a 2-subset $\left\{j_{1}, j_{2}\right\} \in\{\{1,2\},\{3,4\}\}$ such that $A_{k} \cup S_{j_{1}} \cup S_{j_{2}}$ is a circuit of M, for some A_{k}. Hence $A_{k} \cup S_{1} \cup S_{2}$ is a circuit of M. Thus A_{j} and A_{k} cross. By
(viii) applied to k, j, i in place of i, j, k, we conclude that (vii)(2) holds for $l=i$ with $\left\{i_{1}, i_{2}\right\} \in\{\{1,2\},\{3,4\}\}$. Hence (ix) follows also for $l=i$.
(x) If $d \in E\left(H_{l}\right)-I$, where I is a 3 -subset of $E\left(H_{l}\right)$, then, by binary orthogonality, $d \cup I$ is a circuit of M. Thus d is unique and $\left|E\left(H_{l}\right)\right|=4$.
(xi) As F may contain many elements of M, it follows, by the minimality of M^{\prime}, that M^{\prime} is simple and so M^{\prime} is 3 -connected. By (iv), $E\left(H_{l}\right)$ is contained in a parallel class of M^{\prime} / F. As $E\left(H_{l}\right)$ is a cocircuit of M, by Lemma 2.7, and $E(M)-E\left(H_{l}\right)$ spans F in M^{\prime}, it follows that $E\left(H_{l}\right)$ is a cocircuit of M^{\prime}. Thus H_{l} is a connected component of M^{\prime} / F.
(xii) By symmetry, we may assume that $l=1$. As $C \cup A_{k}$ is a theta set of M, it follows that $C^{\prime}=C \triangle\left(S_{1} \cup A_{k}\right)$ is an 8-element circuit of M. The simplification N of $M \mid\left(C \cup A_{i} \cup A_{j} \cup A_{k}\right)$ has a non-trivial parallel class $P=E(N) \cap\left(S_{1} \cup A_{k}\right)$, say $P=\{a, b\}$, where $a \in S_{1}$ and $b \in A_{k}$. Thus $N \backslash b$ and $N \backslash a$ are simplifications of $M \mid\left(C \cup A_{i} \cup A_{j}\right)$ and $M \mid\left(C^{\prime} \cup A_{i} \cup A_{j}\right)$ respectively. Hence A_{i} and A_{j} cross with respect of both C and C^{\prime}. Note that $\left\{A_{k}, S_{2}, S_{3}, S_{4}\right\}$ is the set of non-trivial series classes of $M \mid\left(C^{\prime} \cup A_{i} \cup A_{j}\right)$ contained in C^{\prime}. As $H_{1}, \ldots, H_{k-1}, H_{k+1}, \ldots, H_{n}$ are the rank-1 connected components of $M /\left(C \cup A_{k}\right)=M /\left(C^{\prime} \cup S_{1}\right)$, it follows that M / C^{\prime} has another rank-1 connected component K such that $S_{1} \subseteq K$. Observe that $A_{k} \cup \alpha_{1}=\left(S_{1} \cup \alpha_{1}\right) \triangle\left(A_{k} \cup S_{1}\right)$ is a triangle of M^{\prime}. Therefore, when we construct the matroid M^{\prime} using C^{\prime} instead of C, we arrive at the same matroid (up to the labeling of the elements of F). By Lemma 3.1(xi) taking C^{\prime} in the place of C, we conclude that K is also a connected component of M^{\prime} / F,
(xiii) Assume that $e \in \operatorname{cl}_{M^{\prime}}(C)-(C \cup F)$. Let D be a circuit of M such that $e \in$ $D \subseteq C \cup e$. There are disjoint subsets J_{1} and J_{2} of [4] such that $\left|D \cap S_{l}\right|=t \in\{1,2\}$ if and only if $l \in J_{t}$. By (iii) applied to $S=\{e\}$, we have that $\left|J_{1}\right| \leq 1$. As S_{1}, S_{2}, S_{3} and S_{4} are circuits of M^{\prime} / F, it follows that $D^{\prime}=D-\cup\left\{S_{l}: l \in J_{2}\right\}$ is a cycle of M^{\prime} / F. If $J_{1}=\emptyset$, then $D^{\prime}=\{e\}$ and so e is spanned by F in M^{\prime}; a contradiction. Thus $\left|J_{1}\right|=1$, say $J_{1}=\{l\}$ and $D \cap S_{l}=\left\{a_{l}\right\}$. In this case, $D^{\prime}=\left\{e, a_{l}\right\}$ and (xiii) follows.

Now, we describe briefly how to establish Theorem 1.5(i). Let M^{\prime} be defined as in Lemma 3.1(xi). In items (xi) and (xii) of Lemma 3.1, we give conditions for M^{\prime} / F to have many rank- 1 connected components. When we are lucky and all connected components of M^{\prime} / F have rank equal to 1 , we can apply Lemma 2.7(iv) to conclude that Theorem 1.5(i) holds. This strategy will be used three times to obtain Theorem 1.5(i). In the remaining case, we need another decomposition to get Theorem 1.5(ii).

To describe M, we need to divide the analysis into two cases with different approaches.

Case 1. It is possible to choose C such that M is strong C-crossing.

Lemma 3.2 If $X=\operatorname{cl}_{M}(C)-C$, then there is a partition $\left\{S_{1}, S_{2}, S_{3}, S_{4}\right\}$ of C such that $S_{1}, S_{2}, S_{3}, S_{4}$ are non-trivial series classes of $M \backslash X$. Moreover, when M^{\prime} is defined as in Lemma 3.1(xi), $H_{1}, H_{2}, \ldots, H_{n}$ are connected components of M^{\prime} / F.

Proof: Let G be a simple graph having $[n]$ as vertex set such that $i j \in E(G)$ if and only if $\{i, j\}$ is a 2 -subset of $[n]$ that induces a crossing on C. (Remember that $n \geq 4$, by (3.1).) By hypothesis, for each $i \in[n]$, there is an edge of G not incident to i. By Lemma 3.1(viii), for each $i j \in E(G)$ and $k \in[n]-\{i, j\}$, we have that $E(G) \cap\{i k, j k\} \neq \emptyset$. Thus G contains a matching Y such that $|Y|=2$. After a reordering of H_{i} 's, we may assume that $Y=\{12,34\}$, that is,

$$
\begin{equation*}
\text { both }\{1,2\} \text { and }\{3,4\} \text { induce a crossing on } C \text {. } \tag{3.4}
\end{equation*}
$$

For $\{i, j\} \in\{\{1,2\},\{3,4\}\}$, let A_{i} and A_{j} be respectively a 2-subset of $E\left(H_{i}\right)$ and $E\left(H_{j}\right)$ such that A_{i} and A_{j} cross with respect to C. Consider $N_{i j}=M \backslash[X \cup$ $\left.\left(E\left(H_{i}\right)-A_{i}\right) \cup\left(E\left(H_{j}\right)-A_{j}\right)\right]$. By Lemmas 2.7(i) and 3.1(i)(iv), there are partitions $\left\{S_{1}, S_{2}, S_{3}, S_{4}\right\}$ and $\left\{S_{1}^{\prime}, S_{2}^{\prime}, S_{3}^{\prime}, S_{4}^{\prime}\right\}$ of C such that $S_{1}, S_{2}, S_{3}, S_{4}$ are non-trivial series classes of N_{12} and $S_{1}^{\prime}, S_{2}^{\prime}, S_{3}^{\prime}, S_{4}^{\prime}$ are non-trivial series classes of N_{34}. As $N_{12} \mid(C \cup$ $\left.A_{1} \cup A_{2} \cup A_{3} \cup A_{4}\right)=N_{34} \mid\left(C \cup A_{1} \cup A_{2} \cup A_{3} \cup A_{4}\right)$, it follows that $\left\{S_{1}, S_{2}, S_{3}, S_{4}\right\}=$ $\left\{S_{1}^{\prime}, S_{2}^{\prime}, S_{3}^{\prime}, S_{4}^{\prime}\right\}$. The result follows because the circuit space of $M \backslash X$ is spanned by $\mathcal{C}\left(N_{12}\right) \cup \mathcal{C}\left(N_{34}\right)$. To conclude that Lemma 3.1 (v)(vi)(vii)(xi)(xiii) holds for every $l \in[n]$ and Lemma 3.1(xii) holds for every $k \in[n]$, we apply Lemma 3.1 for an $\{i, j\} \in$ $\{\{1,2\},\{3,4\}\}$ such that $l \notin\{i, j\}$ and $k \notin\{i, j\}$ respectively. By Lemma 3.1(xi), $H_{1}, H_{2}, \ldots, H_{n}$ are connected components of M^{\prime} / F.

Lemma 3.3 Using the partition $\left\{S_{1}, S_{2}, S_{3}, S_{4}\right\}$ of C obtained in Lemma 3.2, if M^{\prime} is the matroid described in Lemma 3.1(xi), then the connected components of M^{\prime} / F are $H_{1}, H_{2}, \ldots, H_{n}, K_{1}, K_{2}, K_{3}, K_{4}$, where $r\left(K_{i}\right)=1$ and $S_{i} \subseteq E\left(K_{i}\right)$, for every $i \in[4]$.

Proof: By Lemma 3.2, $H_{1}, H_{2}, \ldots, H_{n}$ are connected components of M^{\prime} / F. For $i \in[4]$, there is a parallel class P_{i} of M^{\prime} / F such that $S_{i} \subseteq P_{i}$ because S_{i} is a circuit of M^{\prime} / F. If K_{i} is a connected component of M^{\prime} / F such that $P_{i} \subseteq E\left(K_{i}\right)$, then $E\left(K_{i}\right) \subseteq E\left(M^{\prime}\right)-\left[F \cup E\left(H_{1}\right) \cup E\left(H_{2}\right) \cup \cdots \cup E\left(H_{n}\right)\right]=\mathrm{cl}_{M}(C)-F$ because $H_{1}, H_{2}, \ldots, H_{n}$ are connected components of M^{\prime} / F. By Lemma 3.1(xiii), $\mathrm{cl}_{M}(C)-$ $F=P_{1} \cup P_{2} \cup P_{3} \cup P_{4}$. Thus $E\left(K_{i}\right) \subseteq P_{1} \cup P_{2} \cup P_{3} \cup P_{4}$. If $E\left(K_{i}\right)=P_{i}$, for every $i \in[4]$, then Lemma 3.3 follows. Assume that $E\left(K_{i}\right) \neq P_{i}$, for some $i \in$ [4], say $i=1$. As $r_{M^{\prime}}(C)=7$ and $r_{M^{\prime}}(F)=3$, it follows that $r_{M^{\prime} / F}(C)=4$. For $i \in[4]$, choose $a_{i} \in S_{i}$. Hence $r_{M^{\prime} / F}\left(\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}\right)=4$. Let K be the simplification of K_{1} such that $E(K) \subseteq\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$. We arrive at a contradiction because $E(K)$ is independent in K.

By Lemma 3.3, we can apply Lemma 2.7 (iv) to M^{\prime} to obtain Theorem 1.5(i), when Case 1 happens.

Case 2. It is not possible to choose C such that M is strong C-crossing. Choose C such that M is C-crossing (but M is not strong C-crossing).

By definition of strong C-crossing, there is $j \in[n]$ such that no 2 -subset of $[n]-\{j\}$ induces a C-crossing. When necessary, we can reorder $H_{1}, H_{2}, \ldots, H_{n}$ so that $j=1$ and $\{1,2\}$ induces a crossing on C. By Lemma 3.1(i), there is a partition $\left\{S_{1}, S_{2}, S_{3}, S_{4}\right\}$ of C and 2-subsets A_{1} and A_{2} of $E\left(H_{1}\right)$ and $E\left(H_{2}\right)$ respectively such that $\left|S_{1}\right|=\left|S_{2}\right|=\left|S_{3}\right|=\left|S_{4}\right|=2$ and $C_{1}=A_{1} \cup S_{1} \cup S_{4}$ and $C_{2}=A_{2} \cup S_{1} \cup S_{2}$ are circuits of M. (We are applying Lemma 3.1 for $i=2$ and $j=1$.)

By Lemma 3.1(viii), $\{1, l\}$ induces a crossing on $C, r\left(E\left(H_{l}\right)\right)=3$ and, for an independent set of $E\left(H_{l}\right)$, Lemma 3.1(vii)(2) occurs with $\left\{i_{1}, i_{2}\right\} \in\{\{1,2\},\{3,4\}\}$, for every $l \in[n]-\{1\}$ (depending of the value of l, use $\{1,2\}$ or $\{1,3\}$ as the set that induces a crossing on C to apply this lemma). For an integer m satisfying $1 \leq m \leq n$, we may assume that Lemma 3.1(vii)(2) occurs with $\left\{i_{1}, i_{2}\right\}=\{1,2\}$, for every l such that $2 \leq l \leq m$, and Lemma 3.1(vii)(2) occurs with $\left\{i_{1}, i_{2}\right\}=\{3,4\}$, for every l such that $m+1 \leq l \leq n$. That is, for $l \in[n]-\{1\}$, there is an independent 3 -set I_{l} of M contained in $E\left(H_{l}\right)$, say $I_{l}=\left\{a_{l}, b_{l}, c_{l}\right\}$, such that:
(1) $\left\{a_{l}, b_{l}\right\} \cup S_{1},\left\{b_{l}, c_{l}\right\} \cup S_{2},\left\{a_{l}, c_{l}\right\} \cup S_{1} \cup S_{2}$ are circuits of M, for every l such that $2 \leq l \leq m$; and
(2) $\left\{a_{l}, b_{l}\right\} \cup S_{3},\left\{b_{l}, c_{l}\right\} \cup S_{4},\left\{a_{l}, c_{l}\right\} \cup S_{3} \cup S_{4}$ are circuits of M, for every l such that $m+1 \leq l \leq n$.
(If $m=1$, then (2) occurs for every $l \in[n]-\{1\}$. If $m=n$, then (1) occurs for every $l \in[n]-\{1\}$.)

When $m=1$ or $m=n$, we say this C-crossing is homogeneous. When $2 \leq m<n$, we say this C-crossing is heterogeneous.

Subcase 2.1. We can choose C such that the C-crossing is heterogeneous.
Thus $2 \leq m<n$. Consequently the partition $\left\{S_{1}, S_{2}, S_{3}, S_{4}\right\}$ of C is defined by (1) and (2) applied to $l=2$ and $l=n$ respectively. Therefore this partition does not depend on the choice of A_{1}. Let M^{\prime} be the matroid defined in Lemma 3.1(xi). By Lemma 3.1(xi) applied to $l \in[n]-\{1\}$, we conclude that H_{l} is a connected component of M^{\prime} / F. By Lemma 3.1(xii), for each $t \in[4]$, there is a rank- 1 connected component K_{t} of M^{\prime} / F such that $S_{t} \subseteq E\left(K_{t}\right)$. Therefore $H_{2}, H_{3}, \ldots, H_{n}, K_{1}, K_{2}, K_{3}, K_{4}$ are rank-1 connected components of M^{\prime} / F. As M^{\prime} / F does not have loops, it follows, by (3.1), that M^{\prime} / F has just another connected component that must have rank 1. This connected component must be H_{1}. Again, we obtain the book decomposition described Theorem 1.5(i) as an immediate consequence of Lemma 2.7(iv) applied to M^{\prime}.

Subcase 2.2. We cannot choose C such that the C-crossing is heterogeneous. Choose C such that the C-crossing is homogeneous.

Figure 3: A graph that illustrates the possibility of $m=n$ in Subcase 2.2.
Assume that $m=1$ or $m=n$. By symmetry, we may assume that $m=n$. In Figure 3, we illustrate this situation. The roles of α, β and γ are described in the next paragraph. Assume also that Theorem 1.5(i) does not hold. By Lemma 2.7(iv),
M^{\prime} / F must have a connected component with rank exceeding 1.

Let $M^{\prime \prime}$ be a matroid such that $E(M) \subseteq E\left(M^{\prime \prime}\right), r(M)=r\left(M^{\prime \prime}\right), M^{\prime \prime} \mid E(M)=$ $M, E\left(M^{\prime \prime}\right)=E(M) \cup\{\alpha, \beta, \gamma\}, \alpha \cup S_{1}, \beta \cup S_{2}$ and $T=\{\alpha, \beta, \gamma\}$ are triangles of $M^{\prime \prime}$ and $M^{\prime \prime}$ is simple (that is, some of the elements of $\{\alpha, \beta, \gamma\}$ may belong to M). Hence $M^{\prime \prime}$ is 3 -connected. By (1), for $l \in[n]-\{1\},\left\{a_{l}, b_{l}, c_{l}\right\}$ is contained in a parallel class of $M^{\prime \prime} / T$ and so, Lemma 3.1(x), $E\left(H_{l}\right)$ is contained in a parallel class of $M^{\prime \prime} / T$. As $E\left(H_{l}\right)$ is a cocircuit of $M^{\prime \prime}$, it follows that $H_{2}, H_{3}, \ldots, H_{n}$ are connected components of $M^{\prime \prime} / T$. For $l \in[n]-\{1\}$, set $M_{l}=M^{\prime \prime} \mid\left(T \cup E\left(H_{i}\right)\right)$. (Observe that if we rename α_{1}, α_{2} and α_{12} in $M^{\prime} \backslash\left[\left\{\alpha_{3}, \alpha_{4}, \alpha_{13}, \alpha_{1,4}\right\}-E(M)\right]$ by α, β and γ respectively, then we obtain $M^{\prime \prime}$.)

Now, we prove that $M^{\prime \prime} / T$ has a rank-1 connected component K_{l} such that $S_{l} \subseteq$ $E\left(K_{l}\right)$, for each $l \in[2]$, say $l=1$. By Lemma 3.1(xii) and (1), $C^{\prime}=C \triangle\left(\left\{a_{n}, b_{n}\right\} \cup\right.$ $\left.S_{1}\right)=\left(C-S_{1}\right) \cup\left\{a_{n}, b_{n}\right\}$ is a circuit of M such that A_{1} and A_{2} cross with respect to C^{\prime}. By Lemma 3.1(xii), there is a rank-1 connected component K_{1} of M / C^{\prime} such that $S_{1} \subseteq E\left(K_{1}\right)$. Set $S_{1}^{\prime}=\left\{a_{n}, b_{n}\right\}$. By (1), for $l \in[n-1]-\{1\},\left(\left\{a_{l}, b_{l}\right\} \cup S_{1}\right) \triangle\left(S_{1}^{\prime} \cup S_{1}\right)=$ $\left\{a_{l}, b_{l}\right\} \cup S_{1}^{\prime}$ is a circuit of M. Similarly $\left\{a_{l}, c_{l}\right\} \cup S_{1}^{\prime} \cup S_{2}$ is a circuit of M. Hence
(3) $\left\{a_{l}, b_{l}\right\} \cup S_{1}^{\prime},\left\{b_{l}, c_{l}\right\} \cup S_{2},\left\{a_{l}, c_{l}\right\} \cup S_{1}^{\prime} \cup S_{2}$ are circuits of M, for every l such that $2 \leq l \leq n-1$.

If $S_{1}=\left\{a_{n}^{\prime}, b_{n}^{\prime}\right\}$, then $\left\{a_{n}^{\prime}, b_{n}^{\prime}\right\} \cup S_{1}^{\prime}$ is a circuit of M. Choose $c_{n}^{\prime} \in E\left(K_{1}\right)-\left\{a_{n}^{\prime}, b_{n}^{\prime}\right\}$ such that $I_{n}^{\prime}=\left\{a_{n}^{\prime}, b_{n}^{\prime}, c_{n}^{\prime}\right\}$ is independent in M. As the C^{\prime}-crossing is homogeneous and (3) holds for $l \in\{2,3\}$ since $n \geq 4$, it follows that
(4) $\left\{a_{n}^{\prime}, b_{n}^{\prime}\right\} \cup S_{1}^{\prime},\left\{b_{n}^{\prime}, c_{n}^{\prime}\right\} \cup S_{2},\left\{a_{n}^{\prime}, c_{n}^{\prime}\right\} \cup S_{1}^{\prime} \cup S_{2}$ are circuits of M or

Figure 4: A graph G such that $\left(M^{\prime \prime} / T\right) \mid\left(S_{3} \cup S_{4} \cup A\right)=M(G)$.
(5) $\left\{b_{n}^{\prime}, a_{n}^{\prime}\right\} \cup S_{1}^{\prime},\left\{a_{n}^{\prime}, c_{n}^{\prime}\right\} \cup S_{2},\left\{b_{n}^{\prime}, c_{n}^{\prime}\right\} \cup S_{1}^{\prime} \cup S_{2}$ are circuits of M
because $\left\{a_{n}^{\prime}, b_{n}^{\prime}\right\} \cup S_{1}^{\prime}$ is a circuit of M. When we use C^{\prime} instead of C to construct $M^{\prime \prime}$, we obtain the same matroid because $M^{\prime \prime}$ is defined by (1) or (3) for $l=2$. By the previous paragraph applied to C^{\prime} instead of C, we conclude that K_{1} is a connected component of $M^{\prime \prime} / T$. For $l \in[2]$, set $M_{n+l}=M^{\prime \prime} \mid\left(T \cup E\left(K_{l}\right)\right)$.

If $M_{1}=M^{\prime \prime} \backslash\left[E\left(H_{2}\right) \cup E\left(H_{3}\right) \cup \cdots \cup E\left(H_{n}\right) \cup E\left(K_{1}\right) \cup E\left(K_{2}\right)\right]$, then $M^{\prime \prime}$ is a book having $M_{1}, M_{2}, \ldots, M_{n}, M_{n+1}, M_{n+2}$ as pages and spine T. Moreover, for each $l \in[n+2]-\{1\}, M_{l}$ is isomorphic to $M\left(K_{4}\right)$ or F_{7} because $r\left(M_{l}\right)=3$.

To conclude the proof of Theorem 1.5(ii), we need to verify that M_{1} satisfies (A) and (B).

Consider $K=M^{\prime \prime} \backslash\left[E\left(H_{2}\right) \cup E\left(H_{3}\right) \cup \cdots \cup E\left(H_{n}\right) \cup\left(E\left(K_{1}\right)-S_{1}\right) \cup\left(E\left(K_{2}\right)-S_{2}\right)\right]$. Observe that S_{1} and S_{2} are non-trivial series classes of K such that $K \backslash\left(S_{1} \cup S_{2}\right)=M_{1}$. Let H be a cosimplification of K. Assume that $E(H) \cap S_{1}=\{a\}$ and $E(H) \cap S_{2}=\{b\}$. As $S_{1} \cup \alpha$ and $S_{2} \cup \beta$ are triangles of K, it follows that $\{a, \alpha\}$ and $\{b, \beta\}$ are parallel classes of H. Moreover, $H \backslash\{a, b\}=M_{1}$. This construction permits one to obtain a circuit of $K \backslash T$ from a circuit of M_{1} by replacing α and β by respectively the elements of S_{1} and S_{2} (and vice-versa). In the first cases, we use symmetric differences to go from one of these circuits to the other.

Observe that $D=C \triangle\left(\alpha \cup S_{1}\right) \triangle\left(\beta \cup S_{2}\right)=\{\alpha, \beta\} \cup S_{3} \cup S_{4}$ is a circuit of M_{1}. Consequently M_{1} satisfies (A) of Theorem 1.5(ii).

Now, we describe the matroid M_{1}. Let A be a 2 -subset of $E\left(H_{1}\right)$ such that $A \cup S_{1} \cup S_{4}$ is a circuit of M. Thus $\left(A \cup S_{1} \cup S_{4}\right) \triangle\left(S_{1} \cup \alpha\right)=A \cup S_{4} \cup \alpha$ is a circuit of M_{1}. Assume that $S_{3}=\left\{y_{2}, z_{2}\right\}, S_{4}=\left\{y_{3}, z_{3}\right\}$ and $A=\left\{y_{1}, z_{1}\right\}$. If G is the graph in Figure 4 , then $\left(M^{\prime \prime} / T\right) \mid\left(S_{3} \cup S_{4} \cup A\right)=M(G)$. Observe that $\left\{z_{1}, y_{1}, y_{2}, y_{3}\right\}$ is a basis of M_{1} / T. For $e \in E\left(M_{1}\right)-\left(S_{3} \cup S_{4} \cup A \cup T\right)$, let C_{e} be a circuit of M_{1} / T such that $e \in C_{e} \subseteq e \cup S_{3} \cup S_{4} \cup A$. For $i \in[3]$, there is $X_{i} \subseteq\left\{y_{i}, z_{i}\right\}$ such that $C_{e}=e \cup X_{1} \cup X_{2} \cup X_{3}$. Choose C_{e} such that $x_{e}=\left|X_{1}\right|+\left|X_{2}\right|+\left|X_{3}\right|$ is minimum. First, we establish that

$$
\begin{equation*}
\text { if }\{i, j\} \text { is a 2-subset of }[3] \text {, then }\left|X_{i}\right|+\left|X_{j}\right| \leq 2 \text {. } \tag{3.6}
\end{equation*}
$$

Assume that (3.6) fails. As $\left\{y_{i}, y_{j}, z_{i}, z_{j}\right\}$ is a circuit of M_{1} / T, it follows that $\left|X_{i}\right|+$ $\left|X_{j}\right|=3$, say $X_{i} \subseteq C_{e}$ and $y_{j} \in C_{e}$. Observe that $D=C_{e} \triangle\left\{y_{i}, y_{j}, z_{i}, z_{j}\right\}=$
$\left(C_{e} \cup x_{j}\right)-\left(X_{i} \cup y_{j}\right)$ is a cycle of M_{1} / T. If D^{\prime} is a circuit of M_{1} / T such that $e \in D^{\prime} \subseteq D$, then D^{\prime} is contrary to the choice of C_{e} because $\left|D^{\prime} \cap\left(A \cup S_{3} \cup S_{4}\right)\right| \leq x_{e}-2$. Thus (3.6) follows. Now, we consider the three possibilities for x_{e}. If $x_{e}=1$, then e is in parallel with some element of $S_{3} \cup S_{4} \cup A$ in M_{1} / T. The other two possibilities for x_{e} are dealt in the next two lemmas.

There is a circuit C_{e}^{\prime} of M_{1} such that $C_{e}^{\prime}-T=C_{e}$ and $C_{e}^{\prime} \cap T \subseteq\{\alpha, \beta\}$. Making the symmetric difference of C_{e}^{\prime} with the triangles $S_{1} \cup \alpha$ and $S_{2} \cup \beta$, when necessary, we obtain the following circuit D_{e} of M :

$$
D_{e}= \begin{cases}C_{e}, & \text { if } C_{e}^{\prime} \cap\{\alpha, \beta\}=\emptyset, \\ C_{e} \cup S_{1}, & \text { if } C_{e}^{\prime} \cap\{\alpha, \beta\}=\{\alpha\}, \\ C_{e} \cup S_{2}, & \text { if } C_{e}^{\prime} \cap\{\alpha, \beta\}=\{\beta\}, \\ C_{e} \cup S_{1} \cup S_{2}, & \text { if } C_{e}^{\prime} \cap\{\alpha, \beta\}=\{\alpha, \beta\} .\end{cases}
$$

Lemma 3.4 If $x_{e}=2$, then $\left|X_{i}\right|=2$, for some $i \in[3]$, and e labels an edge joining v_{1} with v_{2} in G.

Proof: Assume this result fails. Hence $\left|X_{i}\right|=\left|X_{j}\right|=1$, for a 2-subset $\{i, j\}$ of [3]. If $\{i, j\}=\{2,3\}$, then, we may permute y_{3} with z_{3} in the graph to assume that e label the edge $v_{3} v_{4}$. That is, $C_{e}=\left\{e, y_{2}, y_{3}\right\}$. Hence $D_{e}-C=\{e\}$ and so $e \in \operatorname{cl}_{M}(C)-C$. We arrive at a contradiction to Lemma 3.1(iii) by taking $S=\{e\}$ because $D_{e} \cap S_{3}=$ $\left\{y_{2}\right\}$ and $D_{e} \cap S_{4}=\left\{y_{3}\right\}$. Thus $1 \in\{i, j\}$. By symmetry, we may assume that $\{i, j\}=\{1,2\}$, say $C_{e}=\left\{e, y_{1}, y_{2}\right\}$; that is, e labels the edge $v_{0} v_{3}$. Observe that $D_{e}-C=\left\{e, y_{1}\right\}$. Therefore e belongs to $E\left(H_{1}\right)$ because $A=\left\{y_{1}, z_{1}\right\} \subseteq E\left(H_{1}\right)$. As $C \cap\left[D_{e}-\left(\left\{a_{2}, c_{2}\right\} \cup S_{1} \cup S_{2}\right)\right]=\left\{y_{2}\right\}$, it follows, by Lemma 3.1(i), that $\left\{e, y_{1}\right\}$ and $\left\{a_{2}, c_{2}\right\}$ do not cross with respect to C. Thus $D_{e}=C_{e}$ or $D_{e}=C_{e} \cup S_{1} \cup S_{2}$. Observe that C_{e} cannot be a circuit of M, otherwise $C \triangle C_{e}=\left(C-y_{2}\right) \cup\left\{e, y_{1}\right\}$ is a 9 -element circuit of M. Thus

$$
\begin{equation*}
\left\{e, y_{1}, y_{2}\right\} \cup S_{1} \cup S_{2} \text { is a circuit of } M \tag{3.7}
\end{equation*}
$$

Observe that $C_{e} \triangle\left\{y_{1}, y_{2}, z_{1}, z_{2}\right\}=\left\{e, z_{1}, z_{2}\right\}$ is a circuit of M_{1} / T. Taking $\left\{e, z_{1}, z_{2}\right\}$ instead of C_{e} in the previous argument, (3.7) became

$$
\begin{equation*}
\left\{e, z_{1}, z_{2}\right\} \cup S_{1} \cup S_{2} \text { is a circuit of } M \tag{3.8}
\end{equation*}
$$

By (3.7) and (3.8),

$$
\left(\left\{e, y_{1}, y_{2}\right\} \cup S_{1} \cup S_{2}\right) \triangle\left(\left\{e, z_{1}, z_{2}\right\} \cup S_{1} \cup S_{2}\right)=\left\{y_{1}, y_{2}, z_{1}, z_{2}\right\}=A \cup S_{3}
$$

is a cycle of M properly contained in $A \cup S_{2} \cup S_{3}$; a contradiction.
Lemma 3.5 If $x_{e}=3$, then $\left\{e, y_{1}, y_{2}, y_{3}\right\}$ or $\left\{e, z_{1}, y_{2}, y_{3}\right\}$ is a circuit of M_{1} / T. Moreover, M_{1} / T must have $\left\{e, y_{1}, y_{2}, y_{3}\right\}$ or $\left\{e, z_{1}, y_{2}, y_{3}\right\}$ as a circuit.

Proof: By the choice of C_{e} and (3.6), we have that $\left|X_{1}\right|=\left|X_{2}\right|=\left|X_{3}\right|=1$. The first part of the result follows provide we replace C_{e} by C_{e}^{\prime}, where

$$
C_{e}^{\prime}= \begin{cases}C_{e} \triangle\left\{y_{2}, y_{3}, z_{2}, z_{3}\right\}, & \text { when }\left\{z_{2}, z_{3}\right\} \subseteq C_{e} \\ C_{e} \triangle\left\{y_{1}, y_{3}, z_{1}, z_{3}\right\}, & \text { when }\left\{y_{2}, z_{3}\right\} \subseteq C_{e} \\ C_{e} \triangle\left\{y_{1}, y_{2}, z_{1}, z_{2}\right\}, & \text { when }\left\{z_{2}, y_{3}\right\} \subseteq C_{e}\end{cases}
$$

Observe that $\left[M^{\prime} / F\right] \mid\left(S_{3} \cup S_{4} \cup A\right)=M\left(G^{\prime}\right)$, where G^{\prime} is the graph obtained from G by identifying v_{1} with v_{2}. In particular S_{3}, S_{4} and A are 2 -circuits of M^{\prime} / F. If $x_{f} \in\{1,2\}$, for every $f \in E\left(M_{1}\right)-\left(S_{3} \cup S_{4} \cup A \cup T\right)$, then, by Lemma 3.4, each element of $E\left(M_{1}\right)-(T \cup F)$ is in parallel with some element of $\left\{y_{1}, y_{2}, y_{3}\right\}$ in M^{\prime} / F. As $\left\{y_{1}, y_{2}, y_{3}\right\}$ is independent in M^{\prime} / F, it follows that, for each $i \in[3]$, there is a rank- 1 connected component N_{i} of M^{\prime} / F such that $y_{i} \in E\left(N_{i}\right)$. Thus M^{\prime} / F has only rank- 1 connected components; a contradiction. Therefore there is $f \in E\left(M_{1}\right)-\left(S_{3} \cup S_{4} \cup A \cup T\right)$ such that $x_{f}=3$ and the second part of this result follows from the first.

Lemma $3.6 x_{e} \neq 2$.

Proof: Assume that $x_{e}=2$, for some $e \in E\left(M_{1}\right)-\left(S_{3} \cup S_{4} \cup A \cup T\right)$. By Lemma 3.4, we can take $C_{e}=\left\{e, y_{i}, z_{i}\right\}$, for some $i \in[3]$. If $j \neq i$ and $j \in[3]$, we can replace C_{e} by $C_{e} \triangle\left\{y_{i}, z_{i}, y_{j}, z_{j}\right\}=\left\{e, y_{j}, z_{j}\right\}$. Thus we may assume that $C_{e}=\left\{e, y_{2}, z_{2}\right\}$. By Lemma 3.5, there is $f \in E\left(M_{1}\right)-\left(S_{3} \cup S_{4} \cup A \cup T\right)$ such that $x_{f}=3$. If possible, choose C_{f} such that $\left\{a_{2}, c_{2}\right\}$ and $D_{f}-C$ cross with respect to C. Assume that $C_{f}=\left\{f, y_{1}, y_{2}, y_{3}\right\}$. Observe that $f \in E\left(H_{1}\right)$ because $D_{f}-C=\left\{f, y_{1}\right\}$ and $y_{1} \in E\left(H_{1}\right)$. Now, we prove that $\left\{a_{2}, c_{2}\right\}$ and $\left\{f, y_{1}\right\}$ does not cross with respect to C. If $\left\{a_{2}, c_{2}\right\}$ and $\left\{f, y_{1}\right\}$ cross with respect to C, then, by Lemma 3.1(i), $S_{5}=$ $\left\{y_{2}, y_{3}\right\}=D_{f}-\left(\left\{a_{2}, c_{2}\right\} \cup S_{1} \cup S_{2}\right)$ and $S_{6}=\left\{z_{2}, z_{3}\right\}=C-\left[D_{f} \cup\left(\left\{a_{2}, c_{2}\right\} \cup S_{1} \cup S_{2}\right)\right]$ are series classes of $M \mid\left(C \cup\left\{f, y_{1}, a_{2}, c_{2}\right\}\right)$. Note that D_{e} meets both S_{5} and S_{6} in just one element; a contradiction to Lemma 3.1(iii) because $e \in \mathrm{cl}_{M}(C)-C$. Thus $\left\{a_{2}, c_{2}\right\}$ and $\left\{f, y_{1}\right\}$ does not cross with respect to C. Now, $D_{f} \cap\left(S_{1} \cup S_{2}\right)=\emptyset$ or $S_{1} \cup S_{2} \subseteq D_{f}$. Then $D_{f}=C_{f}$ or $D_{f} \triangle C=\left\{f, y_{1}, z_{2}, z_{3}\right\}$ is a circuit of M respectively, say C_{f} is a circuit of M. But $C_{f} \triangle\left(A \cup S_{1} \cup S_{4}\right)=\left\{f, z_{1}\right\} \cup\left\{y_{2}, z_{3}\right\} \cup S_{1}$ is a circuit of M. Thus $\left\{a_{2}, c_{2}\right\}$ and $\left\{f, z_{1}\right\}$ cross with respect to C. Therefore $\left\{f, z_{1}\right\} \cup\left\{y_{2}, z_{3}\right\}$ is contrary to the choice of C_{f}.

By Lemmas 3.5 and 3.6, the simplification K of M_{1} / T is isomorphic to F_{7}^{*} or $A G(3,2)$. The following matrix gives the binary representation of K. The labels of the first 6 columns are respectively $y_{1}, z_{1}, y_{2}, y_{3}, z_{2}$ and z_{3}. At least one of the last two columns must exist in the representation of K.

$$
A=\left[\begin{array}{llllllll}
1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}\right]
$$

Consequently M_{1} satisfies (B) of Theorem 1.5(ii). Therefore the proof of Theorem 1.5 is concluded.

References

[1] C. Chun, J. Oxley and K. Wetzler, The binary matroids with no odd circuits of size exceeding five, J. Combin. Theory Ser. B 152 (2022), 80-120.
[2] R. Cordovil, B. Maia Jr. and M. Lemos, The 3-connected binary matroids with circumference 6 or 7, European J. Combin. 30 (2009), 1810-1824.
[3] R. Cordovil and M. Lemos, The 3-connected matroids with circumference 6, Discrete Math. 310 (2010), 1354-1365.
[4] M. Lemos, The 3 -connected binary matroids with circumference 8, part II, in preparation.
[5] M. Lemos, The 3-connected binary matroids with circumference 8, part III, in preparation.
[6] M. Lemos and J. Oxley, On size, circumference and circuit removal in 3-connected matroids, Discrete Math. 220 (2000), 145-157.
[7] J. Oxley, Matroid Theory, Second Edition, Oxford University Press, New York, 2011.

