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Abstract

Let L(Kn)(λ) denote the λ-fold line graph of the complete graph Kn.
In this paper, we obtain a maximum packing of L(Kn)(λ) with k-cycles,
k ∈ {4, 6}, with every possible leave, and also obtain a minimum covering
of L(Kn)(λ) with k-cycles, k ∈ {4, 6}, with every possible padding.

1 Introduction

For a graph G, let V (G) and E(G) denote the vertex set and edge set of the graph
G. A k-cycle is the cycle on k vertices; we denote it by Ck. The complete graph on n
vertices is denoted by Kn and the complete bipartite graph with bipartition (X, Y ),
where |X| = m and |Y | = n, is denoted by Km,n. The complete m-partite graph in
which each of its partite sets has n vertices is denoted by Km ◦Kn. For a positive
integer k, let kG denote k pairwise vertex-disjoint copies of G. For a graph G, the
graph G(λ) is obtained by replacing each edge of G by λ parallel edges. The graph
G(λ) is called the λ-fold copy of the graph G. For disjoint subsets A and B of the
vertex set V (G) of G, let E(A,B) denote the set of all edges of G each having one
end in A and the other end in B. For S ⊆ V (G) and E ′ ⊆ E(G), let 〈S〉 and 〈E ′〉
denote the subgraphs induced by S and E ′ respectively. A graph G is said to be
H-decomposable or H|G if the edge set of G can be partitioned into E1, E2, . . . , Ek

such that for each 1 ≤ i ≤ k, 〈Ei〉 � H ; if each 〈Ei〉 � Cr, then we say that G has a
Cr-decomposition or an r-cycle decomposition and in this case we write Cr|G.

The line graph of a graph G, denoted by L(G), is the graph with vertex set
V (L(G)) = E(G) and eiej ∈ E(L(G)) if and only if the edges ei and ej in G are
incident at a vertex of G. For a non-empty set S, let P2(S) denote the set of all
two-element subsets of S. The bowtie is a graph with five vertices, six edges, and
having two edge-disjoint 3-cycles with exactly one common vertex, and it is denoted
by B. A kite is the simple graph on four vertices, four edges, and having a triangle
and an edge incident with the triangle, and it is denoted by K. A graph with vertices
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a, b, c, d and edges ab, bc, ca, cd, cd is denoted by F1; that is, the graph consisting of
a triangle with a double edge attached, on 4 vertices and 5 edges. A graph with
vertices a, b, c, d, e and edges ab, bc, ca, de, de is denoted by F2; that is, the graph
having a triangle with a disjoint double edge, on 5 vertices and 5 edges. A graph
with vertices a, b, c and edges ab, bc, ca, ca, ca is denoted by F3.

For graphs G and H, the Cartesian product of G and H , denoted by G�H , has
vertex set V (G)×V (H) in which (g1, h1) is adjacent to (g2, h2) if and only if g1 = g2
and h1h2 ∈ E(H), or h1 = h2 and g1g2 ∈ E(G).

A k-cycle packing of the graph G is a triple (V,E, L), where V is the vertex set
of G, E is a set of edge-disjoint k-cycles of G, and L is the set of edges of G not
belonging to any of the k-cycles of E. The collection of edges L is the leave. If |E|
is as large as possible, or equivalently if |L| is as small as possible, then (V,E, L)
is called a maximum packing of G with k-cycles; see Chapter 4 of [24]. A k-cycle
covering of the graph G is a triple (V,E, P ), where V is the vertex set of G, P is a
subset of the edge set of G(λ), and E is a set of edge-disjoint k-cycles which partitions
the union of P and the edge set of G. The collection of edges P is called the padding.
If |P | is as small as possible, then (V,E, P ) is called a minimum covering of G with
k-cycles; see Chapter 4 of [24]. Definitions which are not given here can be found
in [24, 31].

Maximum packings of Kn with graphs K4 and certain graphs on five vertices are
studied in [4, 33]. Maximum packings and minimum coverings of Kn with 4-cycles,
5-cycles, 6-cycles, cubes and the graphs having four or fewer vertices are studied
in [1, 18, 19, 20, 26, 27, 28]. Maximum packings and minimum coverings of Kn,n(λ)
with 4-cycles and K1,4 are studied in [21]. In [22, 23], the existence of maximum
packings and minimum coverings of K2n+1 and Km,n with 8-cycles are established.
Maximum packings of the λ-fold complete multipartite graph (Ka1,a2,...,an)(λ) with 4-
cycles have been studied in [2, 3]. Also, maximum packings and minimum coverings
of λ-fold complete equipartite graphs with triangles or kites are obtained in [16, 32].
Maximum packings and minimum coverings of the complete equipartite graph with
K4−e are studied in [11, 12]. In [17], the existence of a maximum packing of Km◦Kn

with 5-cycles for an odd integer m is established. For k ∈ {6, 2l, (n
2

)}, existence of a
k-cycle decomposition of the graph L(Kn) has been studied in [6, 7, 14, 30]. In fact,
in [5, 9, 13], the existence of a k-cycle decomposition of L(Kn)(λ), k ∈ {4, 5} has been
obtained. Maximum packings of the graph L(Kn) with bowties has been completely
settled in [10]. Also, maximum packings and minimum coverings of L(Kn)(λ) with
kites have been considered in [25]. In this paper, existence of a maximum k-cycle
packing and a minimum k-cycle covering of L(Kn)(λ), k ∈ {4, 6}, with every possible
leave and padding, is established.

If n ≥ 4 and 4|E(L(Kn)(λ)), then L(Kn)(λ) has a 4-cycle decomposition. If
4 � E(L(Kn)(λ)), then we look into a 4-cycle decomposition of L(Kn)(λ)−E(L) and
L(Kn)(λ)∪E(P ), that is, the minimum number edges whose removal from L(Kn)(λ)
gives a 4-cycle decomposition, and the minimum number of edges whose addition to
L(Kn)(λ) gives a 4-cycle decomposition, where L is a leave and P is a padding. Note
that L and P are even graphs as the graph L(Kn)(λ) has regularity 2λ(n − 2). In
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Table 1, for λ = 1 and n ≡ 5 (mod 8), |E(L(Kn)(λ))| ≡ 6 (mod 8). Since L(Kn)
is a simple graph, |E(L)| = 6. The possible leaves are a 6-cycle or B or 2C3, and
|E(P )| = 2 with possible paddingK2(2). For λ ≡ 1 (mod 5) > 1 and n ≡ 5 (mod 8),
|E(L(Kn)(λ))| ≡ 6 (mod 8). Since L(Kn)(λ) is a multigraph, |E(L)| = 2. The only
possible leave is K2(2), and |E(P )| = 2 with possible padding K2(2). It is easy to
observe that the possible leaves and paddings of the remaining n and λ are listed in
Table 1.

We prove the following main results.

Theorem 1.1. The graph L(Kn)(λ) admits a maximum 4-cycle packing and a mini-
mum 4-cycle covering with every possible leave and padding. The possible leaves and
paddings are shown in Table 1.

λ ≡ n ≥ 4 and n ≡ Leave Padding

0 (mod 4) all n ∅ ∅
all λ 0 (mod 2) or 1 (mod 8) ∅ ∅

0 (mod 2) 5 (mod 8) ∅ ∅
3 (mod 8) C3 C5, F1, F2, F3

1 (mod 4) 5 (mod 8) {C6, B, 2C3 if λ = 1}, {K2(2) if λ ≥ 5} K2(2)
7 (mod 8) {C5 if λ = 1}, {C5, F1, F2, F3 if λ ≥ 5} C3

3 (mod 8) K2(2) K2(2)
2 (mod 4) 5 (mod 8) ∅ ∅

7 (mod 8) K2(2) K2(2)
3 (mod 8) C5, F1, F2, F3 C3

3 (mod 4) 5 (mod 8) K2(2) K2(2)
7 (mod 8) C3 C5, F1, F2, F3

Table 1: Leaves and paddings of L(Kn)(λ) with 4-cycle packings and 4-cycle coverings

Theorem 1.2. The graph L(Kn)(λ) admits a maximum 6-cycle packing and a mini-
mum 6-cycle covering with every possible leave and padding. The possible leaves and
paddings are shown in Table 2.

λ ≡ n ≥ 4 Leave Padding

1 (mod 2) n ≡ 3 (mod 4) ∅ ∅
n ≡ 3 (mod 4) C3 C3

0 (mod 2) all n ∅ ∅

Table 2: Leaves and paddings of L(Kn)(λ) with 6-cycle packings and 6-cycle coverings

We state the following known results for our future reference.

Theorem 1.3. [5] The graph L(Kn)(λ) has a 4-cycle decomposition if and only if n
and λ satisfy the following conditions:

(i) n even, or

(ii) n ≡ 1 (mod 4) and λ ≡ 0 (mod 2), or
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(iii) n ≡ 3 (mod 4) and λ ≡ 0 (mod 4), or

(iv) n ≡ 1 (mod 8) and λ is odd.

Theorem 1.4. [6] The graph L(Kn) has a 6-cycle decomposition if and only if
n ≡ 3 (mod 4).

The following lemma is an easy observation.

Lemma 1.5. If H|G, then H|G(λ) for any λ ≥ 2.

The following corollary is a consequence of Lemma 1.5 and Theorem 1.4.

Corollary 1.6. If n ≡ 3 (mod 4), n ≥ 4 and λ ≥ 1, then the graph L(Kn)(λ) has a
6-cycle decomposition.

Theorem 1.7. [29] The complete bipartite graph Km,n has a 2k-cycle decomposition
if and only if m and n are even, m ≥ k, n ≥ k, and 2k divides mn.

Theorem 1.8. [15] The graph Km�Kn has a 4-cycle decomposition if and only if
one of the following holds.

(i) m,n ≡ 0 (mod 2);

(ii) m,n ≡ 1 (mod 8);

(iii) m,n ≡ 5 (mod 8).

Theorem 1.9. [8] The graph Km�Kn has a 6-cycle decomposition if and only if

1. m,n are even, and
(a) 6|m or 6|n, or
(b) m+ n ≡ 2 (mod 3); or

2. m,n are odd, and
(a) if m,n ≡ 0 (mod 3), then (m+ n) ≡ 2 (mod 12), or
(b) if m ≡ 0 (mod 3) or n ≡ 0 (mod 3), then m+ n ≡ 2 (mod 4).

2 Existence of a maximum packing and a minimum covering

of L(Kn)(λ) with 4-cycles

In this section, we prove the existence of a 4-cycle packing and a 4-cycle covering of
L(Kn)(λ) with every possible leave and padding.

Observation 2.1. Consider k ≥ 2 and n ≥ 5. Let V (Kn) = {1, 2, . . . , n}. Then the
vertex set of L(Kn) can be given as V (L(Kn)) = P2({1, 2, . . . , n− 1, n}), that is, the
set of all two-element subsets of {1, 2, . . . , n − 1, n}. We partition the vertex set of
L(Kn) into three sets A1, A2 and A3, where n > k + 1, A1 = P2({1, 2, . . . , k, n}),
A2 = P2({k+1, k+2, . . . , n− 1, n}) and A3 = {{i, j}|1 ≤ i ≤ k, k+1 ≤ j ≤ n− 1}.
The subgraphs of L(Kn) induced by A1, A2 and A3 are isomorphic to L(Kk+1),
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L(Kn−k) and Kk�Kn−k−1, respectively, where � denotes the cartesian product of
graphs. Clearly, 〈E(A1, A2)〉 = 〈{{i, n}{j, n} ; 1 ≤ i ≤ k, k + 1 ≤ j ≤ n − 1}〉 =
Kk,n−k−1; we denote the graph 〈E(A1, A2)〉 by A′. For 1 ≤ i ≤ k, k + 1 ≤ j ≤ n− 1,
let Ri = {{i, k+1}, {i, k+2}, . . . , {i, n−1}} and let Qj = {{1, j}, {2, j}, . . . , {k, j}}.
Clearly, 〈E(Ri, A1)〉 ∼= Kn−k−1,k and 〈E(Qj, A2)〉 ∼= Kk,n−k−1. The induced subgraph
H = 〈∪k

i=1{E(Ri, A1)} ∪n−1
j=k+1 {E(Qj, A2)}〉 = Kk,n−k−1 ⊕ · · · ⊕Kk,n−k−1︸ ︷︷ ︸

(n−1) copies

. Thus

L(Kn) = 〈A1〉 ⊕ 〈A2〉 ⊕ 〈A3〉 ⊕ 〈E(A1, A2)〉 ⊕ 〈E(A3, A1)〉 ⊕ 〈E(A3, A2)〉
= L(Kk+1)⊕ L(Kn−k)⊕ (Kk�Kn−k−1)⊕ A′ ⊕ 〈∪k

i=1E(Ri, A1)〉⊕
〈∪n−1

j=k+1E(Qj , A2)〉
= L(Kk+1)⊕ L(Kn−k)⊕ (Kk�Kn−k−1)⊕ A′ ⊕H,

where H = Kk,n−k−1 ⊕ · · · ⊕Kk,n−k−1︸ ︷︷ ︸
(n−1) copies

, as each of the graphs

〈E(Ri, A1)〉 and 〈E(Qj, A2)〉 is isomorphic to Kk,n−k−1; see Figure 1.
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Figure 1: The graph L(Kn) = L(Kk+1)⊕ L(Kn−k)⊕ (Kk�Kn−k−1)⊕A′ ⊕H.

Note: This observation, in particular, the notation A′ and the decomposition of
L(Kn), will be used extensively in the rest of the paper.

Lemma 2.2. The graph L(K5) has a 4-cycle packing with leave L, L ∈ {C6, B, 2C3},
and B denotes the bowtie; also it has a 4-cycle covering with padding K2(2).

Proof. Let V (K5) = {1, 2, 3, 4, 5}. Then V (L(K5)) = P2({1, 2, 3, 4, 5}).
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(i) A 4-cycle packing of L(K5) with leave C6 is given by the set of 4-cycles in

F1 = {({1, 2}, {1, 3}, {2, 3}, {2, 4}), ({1, 2}, {1, 4}, {4, 5}, {1, 5}),
({1, 2}, {2, 3}, {3, 5}, {2, 5}), ({1, 3}, {1, 4}, {2, 4}, {3, 4}),
({1, 4}, {1, 5}, {3, 5}, {3, 4}), ({2, 3}, {2, 5}, {4, 5}, {3, 4})}

and the 6-cycle ({1, 3}, {1, 5}, {2, 5}, {2, 4}, {4, 5}, {3, 5}).
(ii) A 4-cycle packing of L(K5) with leave B is given by the set of 4-cycles in

F2 = {({1, 2}, {1, 5}, {3, 5}, {2, 3}), ({1, 2}, {2, 4}, {2, 3}, {2, 5}),
({1, 3}, {1, 5}, {1, 4}, {3, 4}), ({1, 3}, {2, 3}, {3, 4}, {3, 5}),
({1, 5}, {2, 5}, {3, 5}, {4, 5}), ({2, 4}, {2, 5}, {4, 5}, {3, 4})}

and the two 3-cycles of the bowtie are ({1, 2}, {1, 3}, {1, 4}) and ({1, 4}, {2, 4}, {4, 5}).
(iii) A 4-cycle packing of L(K5) with leave 2C3 is given by the set of 4-cycles in

F3 = {({1, 2}, {2, 4}, {2, 3}, {2, 5}), ({1, 2}, {1, 4}, {1, 3}, {1, 5}),
({1, 3}, {3, 5}, {2, 3}, {3, 4}), ({1, 4}, {2, 4}, {4, 5}, {3, 4}),
({1, 5}, {2, 5}, {4, 5}, {3, 5}), ({2, 4}, {2, 5}, {3, 5}, {3, 4})}

and the 2C3 is given by the two 3-cycles ({1,2}, {1,3}, {2,3}) and ({1,4}, {1,5}, {4,5}).
(iv) A 4-cycle covering of L(K5) with padding K2(2) is described below:

Clearly, the cycles in F1 (described in (i) above) together with the two 4-cycles,
namely, ({1,3}, {1,5}, {4,5}, {3,5}) and ({1,5}, {2,5}, {2,4}, {4,5})}, yield a 4-cycle
covering of L(K5) with padding K2(2) given by the edges in {{1,5}{4,5}, {1,5}{4,5}}.

Lemma 2.3. The graph L(K7) has a 4-cycle packing with leave C5; also it has a
4-cycle covering with padding C3.

Proof. Let V (K7) = {1, 2, . . . , 7}. Then V (L(K7)) = P2({1, 2, . . . , 7}).
(i) A 4-cycle packing of L(K7) with leave C5 is given by the set of 4-cycles in

F1 = {({1, 2}, {1, 3}, {1, 4}, {1, 5}), ({1, 2}, {1, 4}, {3, 4}, {2, 4}),
({1, 2}, {1, 6}, {6, 7}, {1, 7}), ({1, 2}, {2, 3}, {2, 4}, {2, 7}),
({1, 2}, {2, 5}, {2, 3}, {2, 6}), ({1, 3}, {1, 5}, {3, 5}, {2, 3}),
({1, 3}, {1, 6}, {4, 6}, {3, 6}), ({1, 3}, {3, 4}, {2, 3}, {3, 7}),
({1, 3}, {1, 7}, {3, 7}, {3, 5}), ({1, 4}, {4, 6}, {5, 6}, {4, 5}),
({1, 5}, {1, 6}, {3, 6}, {5, 6}), ({1, 5}, {2, 5}, {2, 7}, {5, 7}),
({1, 5}, {1, 7}, {4, 7}, {4, 5}), ({1, 6}, {1, 7}, {5, 7}, {5, 6}),
({1, 6}, {2, 6}, {2, 4}, {1, 4}), ({2, 3}, {2, 7}, {6, 7}, {3, 6}),
({2, 4}, {4, 5}, {5, 7}, {4, 7}), ({2, 5}, {5, 7}, {6, 7}, {5, 6}),
({2, 5}, {2, 4}, {4, 6}, {4, 5}), ({2, 6}, {6, 7}, {3, 7}, {3, 6}),
({2, 6}, {2, 7}, {4, 7}, {4, 6}), ({3, 4}, {3, 5}, {5, 7}, {3, 7}),
({3, 4}, {4, 6}, {6, 7}, {4, 7}), ({3, 4}, {3, 6}, {3, 5}, {4, 5}),
({3, 5}, {2, 5}, {2, 6}, {5, 6})}

and the 5-cycle ({1, 4}, {1, 7}, {2, 7}, {3, 7}, {4, 7}).
(ii) A 4-cycle packing of L(K7) with padding C3 is given by the set of 4-cycles in F1

(described in (i) above) together with the 4-cycles ({1, 4}, {1, 7}, {2, 7}, {4, 7}) and
({2, 7}, {2, 4}, {4, 7}, {3, 7}), where the padding C3 = ({2, 7}, {4, 7}, {2, 4}).
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Lemma 2.4. The graph L(K11) has a 4-cycle packing with leave C3; also it has a
4-cycle covering of L(K11) with padding C5, F1, F2 or F3.

Proof. Let V (K11) = {1, 2, . . . , 11}. Then V (L(K11)) = P2({1, 2, . . . , 11}).
(i) First we obtain a 4-cycle packing of L(K11) with leave C3. We partition the ver-
tex set of L(K11) into three sets A1, A2 and A3, where A1 = P2({1, 2, 3, 4, 11}),
A2 = P2({5, 6, . . . , 11}) and A3 = {{i, j} | 1 ≤ i ≤ 4, 5 ≤ j ≤ 10}. The
subgraphs induced by the vertices in A1 and A2 are isomorphic to L(K5) and
L(K7), respectively. The graph L(K11) = L(K5) ⊕ L(K7) ⊕ (K4�K6) ⊕ A′ ⊕ H ,
where H = K4,6 ⊕K4,6 ⊕ · · · ⊕K4,6︸ ︷︷ ︸

10 copies

, by Observation 2.1, where A′ is as defined in

Observation 2.1. Lemmas 2.2 and 2.3 explicitly give a 4-cycle decomposition of
(L(K5) − E(C6)) and (L(K7) − E(C5)), with C6 = ({1, 3}, {1, 11}, {2, 11}, {2, 4},
{4, 11}, {3, 11}) and C5 = ({5, 8}, {5, 11}, {6, 11}, {7, 11}, {8, 11}). By Theorems 1.8
and 1.7, C4|(K4�K6) and C4|H . Let H1 be the subgraph of L(K11) excluding the
edges of the 4-cycles in the decomposition of L(K5)−E(C6), L(K7)−E(C5), K4�K6

and H (listed above); clearly H1 = C6 ⊕ A′ ⊕ C5; see Figure 3 in the Appendix. A
4-cycle packing of H1 with leave C3 follows by Item 2 in the Appendix.

(ii) From the proof described in (i) above, we have C4|(L(K11) − E(H1)). Now a
4-cycle covering of H1 with padding C5, F1, F2, or F3 follows by the Items 3, 4, 5
and 6 in the Appendix.

Lemma 2.5. The graph (K3�K3)(2) admits a 4-cycle decomposition.

Proof. Let V (G) = {1, 2, 3} and V (H) = {a, b, c}.
A 4-cycle decomposition of (K3�K3)(2) is given by:

((1, a), (1, b), (2, b), (2, a)), ((1, a), (1, c), (2, c), (2, a)), ((1, a), (1, b), (3, b), (3, a)),
((1, a), (1, c), (3, c), (3, a)), ((1, b), (1, c), (3, c), (3, b)), ((1, b), (1, c), (2, c), (2, b)),
((2, a), (2, b), (3, b), (3, a)), ((2, a), (2, c), (3, c), (3, a)), ((2, b), (2, c), (3, c), (3, b)).

Lemma 2.6. The graphs L(K7)(2) and L(K11)(2) admit a 4-cycle packing with leave
K2(2); also they admit a 4-cycle covering with padding K2(2).

Proof. (i) Let V (K7(2)) = {1, 2, . . . , 7}. Then V (L(K7)(2)) = P2({1, 2, . . . , 7}).
We partition the vertex set of L(K7)(2) into three sets A1, A2 and A3, where
A1 = P2({1, 2, 3, 7}), A2 = P2({4, 5, 6, 7}) and A3 = {{i, j} | 1 ≤ i ≤ 3, 4 ≤ j ≤ 6}.
The graph L(K7)(2) = L(K4)(2) ⊕ L(K4)(2) ⊕ (K3�K3)(2) ⊕ A′(2) ⊕ H2, by Ob-
servation 2.1, where H2 = K3,3(2)⊕K3,3(2)⊕ · · · ⊕K3,3(2)︸ ︷︷ ︸

6 copies

, H2 � H(2) and A′(2)

is as in Observation 2.1. The graphs L(K4)(2), (K3�K3)(2) and H2 have 4-cycle
decompositions, by Theorem 1.3, Lemma 2.5 and Item 7 in the Appendix. Thus
C4|(L(K7)(2)− E(H3)), where A′(2) = H3. Now we obtain a 4-cycle packing and a
4-cycle covering of H3 with leave L, and the padding P is {{3, 7}{4, 7}, {3, 7}{4, 7}};
see Figure 4, as given in Items 8(a) and 9 of the Appendix.
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(ii) Let V (K11(2)) = {1, 2, . . . , 11}. Then V (L(K11)(2)) = P2({1, 2, . . . , 11}). We
partition the vertex set of L(K11)(2) into three sets A1, A2 and A3, where A1 =
P2({1, 2, 3, 4, 11}), A2 = P2({5, 6, 7, 8, 9, 10, 11}) and A3 = {{i, j} | 1 ≤ i ≤ 4, 5 ≤
j ≤ 10}. The graph L(K11)(2) = L(K5)(2)⊕L(K7)(2)⊕(K4�K6)(2)⊕A′(2)⊕H(2),
by Observation 2.1, where H(2) = K4,6(2)⊕K4,6(2)⊕ · · · ⊕K4,6(2)︸ ︷︷ ︸

10 copies

. By Theo-

rems 1.3, 1.8 and 1.7, the graphs L(K5)(2), (K4�K6)(2), A
′(2) and H(2) have 4-cycle

decompositions, where A′ is as in Observation 2.1. The required packing and covering
follow by Case (i) above, because L(K7)(2) has a 4-cycle packing and a 4-cycle cov-
ering with leave and padding K2(2) having the edges {{7, 11}{8, 11}, {7, 11}{8, 11}}.

Lemma 2.7. The graph L(K5)(3) admits a 4-cycle packing with leave L = K2(2)
and a 4-cycle covering with padding P = K2(2).

Proof. (i) A 4-cycle packing of L(K5)(3) with leave K2(2) is given by:

({1, 2}, {1, 3}, {1, 4}, {1, 5}), ({1, 2}, {2, 3}, {2, 4}, {2, 5}), ({1, 2}, {1, 3}, {3, 4}, {1, 4}),
({1, 2}, {2, 4}, {4, 5}, {2, 5}), ({1, 2}, {1, 4}, {4, 5}, {2, 5}), ({1, 2}, {1, 5}, {3, 5}, {2, 3}),
({1, 2}, {1, 3}, {2, 3}, {2, 4}), ({1, 2}, {1, 4}, {3, 4}, {2, 3}), ({1, 2}, {1, 5}, {4, 5}, {2, 4}),
({1, 3}, {2, 3}, {3, 4}, {3, 5}), ({1, 3}, {1, 4}, {1, 5}, {3, 5}), ({1, 3}, {1, 5}, {4, 5}, {3, 4}),
({1, 3}, {1, 5}, {3, 5}, {2, 3}), ({1, 3}, {1, 5}, {2, 5}, {3, 5}), ({1, 3}, {1, 4}, {2, 4}, {3, 4}),
({1, 4}, {2, 4}, {3, 4}, {4, 5}), ({1, 4}, {3, 4}, {3, 5}, {4, 5}), ({1, 4}, {1, 5}, {2, 5}, {2, 4}),
({1, 5}, {2, 5}, {3, 5}, {4, 5}), ({2, 3}, {2, 4}, {2, 5}, {3, 5}), ({2, 4}, {3, 4}, {3, 5}, {4, 5}),
({2, 3}, {2, 5}, {4, 5}, {3, 4}),
and the leave K2(2) is given by L = {{2, 3}{2, 5}, {2, 3}{2, 5}}.
(ii) The graph L(K5)(3) = L(K5)⊕L(K5)(2). By Theorem 1.3 and Lemma 2.2, the
graph L(K5)(2) has a 4-cycle decomposition and L(K5) has a 4-cycle covering with
padding K2(2).

Lemma 2.8. Each of the graphs L(K7)(3), L(K7)(5) and L(K11)(3) admits a 4-cycle
packing and a 4-cycle covering with every possible leave and padding. The leaves L
and paddings P are as follows:

(i) for L(K7)(3), the leave L = C3 and the padding P, P ∈ {C5, F1, F2, F3};
(ii) for L(K7)(5), the leave L ∈ {C5, F1, F2, F3} and the padding P = C3;

(iii) for L(K11)(3), the leave L ∈ {C5, F1, F2, F3} and the padding P = C3.

Proof. (i) A 4-cycle packing and a 4-cycle covering of L(K7)(3) with leave C3 and
padding C5, F1, F2, or F3 are given below.

The graph L(K7)(3) = L(K7) ⊕ L(K7)(2). By Lemma 2.3 and the proof of
Lemma 2.6, C4|(L(K7)−E(C5)), where C5 = ({1, 4}, {1, 7}, {2, 7}, {3, 7}, {4, 7}) and
C4|(L(K7)(2)−E(H3)); see Figure 4 in the Appendix. Let the graph H4 = C5⊕H3;
see Figure 5. A 4-cycle packing and a 4-cycle covering of H4 with leave C3 and
padding C5, F1, F2, or F3 are given in Items 10, 11, 12, 13 and 14 of the Appendix.

(ii) A 4-cycle packing and a 4-cycle covering of L(K7)(5) with leave C5, F1, F2, or
F3, and padding C3, are given below.
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The graph L(K7)(5) = L(K7)⊕L(K7)(4). By Theorem 1.3, C4|L(K7)(4) and by
Lemma 2.3, we get a 4-cycle packing and a 4-cycle covering with leave C5 and padding
C3. The graph L(K7)(5) = L(K7)(2)⊕L(K7)(3). From the proof of Lemma 2.6 and
Case (i) above, the graphs L(K7)(2) and L(K7)(3) have a 4-cycle packing with leave
K2(2) and leave C3 (given in Items 8 and 10 of the Appendix), respectively. From
the leaves K2(2) and C3, the union of leave K2(2) in Item 8(a) and leave C3 in Item
10(a) gives the leave F1; the union of leave K2(2) in Item 8(b) and leave C3 in Item
10(b) gives the leave F2; the union of leave K2(2) in Item 8(a) and leave C3 in Item
10(c) gives the leave F3.

(iii) A 4-cycle packing and a 4-cycle covering of L(K11)(3) with leave C5, F1, F2, or
F3, and padding C3 are given below.

The graph L(K11)(3) = L(K11) ⊕ L(K11)(2). From the proof of Lemmas 2.4
and 2.6, we have C4|(L(K11) − E(H1)) and C4|(L(K11)(2) − E(K2(2))), where
E(K2(2)) = {{7, 11}{8, 11}, {7, 11}{8, 11}}. Define the graph H5 = H1 ⊕ K2(2);
see Figure 6. Now a 4-cycle packing and a 4-cycle covering of H5 with leave C5, F1,
F2, or F3, and padding C3, follows by Items 15, 16, 17, 18 and 19 of the Appendix.

Lemma 2.9. For n ≥ 4, the graph L(Kn) has a 4-cycle packing and a 4-cycle
covering with every possible leave and padding. The leaves L and paddings P are as
follows:
(i) if n ≡ 3 (mod 8), then the leave L = C3 and padding P ∈ {C5, F1, F2, F3};
(ii) if n ≡ 5 (mod 8), then the leave L ∈ {C6, B, 2C3} and padding P = K2(2);
(iii) if n ≡ 7 (mod 8), then the leave L = C5 and padding P = C3.

Proof. (i) n ≡ 3 (mod 8): Let n = 8k+3, k ≥ 1. If k = 1, then the result follows by
Lemma 2.4. Now consider k ≥ 2. The graph L(K8k+3) = L(K11) ⊕ L(K8(k−1)+1) ⊕
(K10�K8(k−1)) ⊕ H , by Observation 2.1, where H is as defined in Observation 2.1,
namely, H = A′ ⊕ K10,8(k−1) ⊕K10,8(k−1) ⊕ · · · ⊕K10,8(k−1)︸ ︷︷ ︸

(8k+2) copies

. By Theorems 1.3, 1.8

and 1.7, C4|L(K8(k−1)+1), C4|(K10�K8(k−1)) and C4|H . Now the required packing
and covering follow by Lemma 2.4.

(ii) n ≡ 5 (mod 8): Let n = 8k + 5, k ≥ 0. For k = 0, the graph L(K5) has a
4-cycle packing and a 4-cycle covering, by Lemma 2.2. Now we consider k ≥ 1. The
graph L(K8k+5) = L(K5) ⊕ L(K8k+1) ⊕ (K4�K8k) ⊕ H , by Observation 2.1, where
H = A′ ⊕ K4,8k ⊕K4,8k ⊕ · · · ⊕K4,8k︸ ︷︷ ︸

(8k+4) copies

. Now the result follows by Lemma 2.2 and

Theorems 1.3, 1.8 and 1.7.

(iii) n ≡ 7 (mod 8): Let n = 8k + 7, k ≥ 0. Because of Lemma 2.3, we consider
k ≥ 1. The graph L(K8k+7) = L(K7)⊕L(K8k+1)⊕(K6�K8k)⊕H , by Observation 2.1,
where H = A′ ⊕K6,8k ⊕K6,8k ⊕ · · · ⊕K6,8k︸ ︷︷ ︸

(8k+6) copies

. The result now follows by Lemma 2.3

and Theorems 1.3, 1.8 and 1.7.
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Lemma 2.10. For n ≥ 4, the graph L(Kn)(2) has a 4-cycle packing and a 4-cycle
covering with every possible leave and padding. The leaves and paddings are as fol-
lows:

(i) L = (K2)(2) and P = K2(2) if n ≡ 3 (mod 8);

(ii) L = ∅ and P = ∅ if n ≡ 5 (mod 8);

(iii) L = (K2)(2) and P = K2(2) if n ≡ 7 (mod 8).

Proof. From the proof of Lemma 2.9, it is enough to show that each of the graphs
L(K5)(2), L(K7)(2) and L(K11)(2) admits a 4-cycle packing and a 4-cycle covering
with every possible leave and padding and the result follows by Theorem 1.3 and
Lemma 2.6.

Lemma 2.11. For n ≥ 4, the graph L(Kn)(3) has a 4-cycle packing and a 4-cycle
covering with every possible leave and padding. The leaves and paddings are as fol-
lows:

(i) L ∈ {C5, F1, F2, F3} and P = C3 if n ≡ 3 (mod 8);

(ii) L = K2(2) and P = K2(2) if n ≡ 5 (mod 8);

(iii) L = C3 and P ∈ {C5, F1, F2, F3} if n ≡ 7 (mod 8).

Proof. As in the proof of Lemma 2.9, it is enough to show that each of the graphs
L(K5)(3), L(K7)(3) and L(K11)(3) has a 4-cycle packing and a 4-cycle covering with
every possible leave and padding, and the result follows by Lemmas 2.7 and 2.8.

Lemma 2.12. For n ≥ 4, the graph L(Kn)(5) has a 4-cycle packing and a 4-cycle
covering with every possible leave and padding. The leaves and paddings are as fol-
lows:

(i) L = C3 and P ∈ {C5, F1, F2, F3} if n ≡ 3 (mod 8);

(ii) L = K2(2) and P = K2(2) if n ≡ 5 (mod 8);

(iii) L ∈ {C5, F1, F2, F3} and P = C3 if n ≡ 7 (mod 8).

Proof. (i) n ≡ 3 (mod 8): Let n = 8k + 3, k ≥ 1. The graph L(K8k+3)(5) =
L(K8k+3)⊕ L(K8k+3)(4), and the result follows by Lemma 2.9 and Theorem 1.3.

(ii) n ≡ 5 (mod 8): Let n = 8k+5, k ≥ 0. The graph L(K8k+5)(5) = L(K8k+5)(2)⊕
L(K8k+5)(3), and the result follows by Theorem 1.3 and Lemma 2.11.

(iii) n ≡ 7 (mod 8): Let n = 8k + 7, k ≥ 0. The graph L(K8k+7)(5) = L(K7)(5)⊕
L(K8k+1)(5) ⊕ (K6�K8k)(5) ⊕ A′(5) ⊕ H(5), by Observation 2.1, where H(5) =
K6,8k(5)⊕K6,8k(5)⊕ · · · ⊕K6,8k(5)︸ ︷︷ ︸

(8k+6) copies

. The result now follows by Lemmas 1.5 and 2.8

and Theorems 1.3, 1.8 and 1.7.

Proof of Theorem 1.1. By Lemmas 2.9, 2.10, 2.11 and 2.12, the proof follows for
λ ∈ {1, 2, 3, 5}. First, we consider the proof for λ ≡ 0, 2, 3 (mod 4). Let λ = 4k + i,
k ≥ 1, i ∈ {0, 2, 3}. For i = 0, the proof follows by Theorem 1.3. For i ∈ {2, 3},
let L(Kn)(λ) = L(Kn)(i) ⊕ L(Kn)(4k). Now the required maximum packing and
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minimum covering with 4-cycles follows by Lemma 2.10 and 2.11 and Theorem 1.3.
Finally, for λ ≡ 1 (mod 4) > 5, the graph L(Kn)(4k+1) = L(Kn)(5)⊕L(Kn)(4k−4)
and the result follows by Lemma 2.12 and Theorem 1.3.

3 Existence of a maximum packing and a minimum covering

of L(Kn)(λ) with 6-cycles

In this section, we prove the existence of a 6-cycle packing and a 6-cycle covering of
L(Kn)(λ) with every possible leave and padding.

Observation 3.1. For a graph G, S1(G) denotes the graph that arises out of the
subdivision of each edge of G exactly once; S1(G) is the first subdivision graph of G.
Let G� be the graph obtained from G by adding to each edge e = uv of G a new
vertex {u, v} such that the vertex {u, v} is adjacent to both the vertices u and v,
and {u, v} is a vertex of degree two in G�; see Figure 2. If we delete all the edges of
G in G�, then the resulting graph is isomorphic to S1(G), the first subdivision graph
of G, and hence G� = G⊕ S1(G).
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Figure 2: The graph C6 and C�
6 .

Let V (Kn+1) = {1, 2, . . . , n + 1}. Then V (L(Kn+1)) = P2({1, 2, . . . , n + 1}).
We partition the vertex set of L(Kn+1) into two sets A1 and A2, where A1 =
P2({1, 2, . . . , n}) and A2 =

⋃n
i=1{i, n + 1}. The subgraph of L(Kn+1) induced by

A1 (respectively, A2) is isomorphic to L(Kn) (respectively, Kn). Clearly, E(A1, A2),
in L(Kn+1), is {{i, j}{i, n + 1}, {i, j}{j, n + 1}}, 1 ≤ i < j ≤ n; note that each
two-element subset represents a vertex in the line graph. Then L(Kn+1) = 〈A1〉 ⊕
〈A2〉 ⊕ 〈E(A1, A2)〉 = L(Kn)⊕K�

n.

Lemma 3.2. Each of the graphs L(K7), L(K11) and L(K15) admits a 6-cycle packing
and a 6-cycle covering with leave C3 and padding C3.

Proof. (i) Let V (K7) = {1, 2, . . . , 7}. Let

C = {(1, 2, 3, 4, 6, 5), (1, 6, 2, 5, 3, 7), (1, 3, 6, 7, 2, 4), (4, 5, 7)}
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be a decomposition ofK7 into three copies of C6 and a C3. Clearly, the graph L(K7)−
E(L(C)) = (K6 − I)⊕ (K6 − I)⊕ · · · ⊕ (K6 − I)︸ ︷︷ ︸

7 copies

, where I is a perfect matching of

K6. As C6 | (K6−I), a 6-cycle packing of L(K7) with leave C3 = ({4, 5}, {5, 7}, {4, 7})
exists. Now the graph L(K7) = L(K6) ⊕ K�

6 , by Observation 3.1, and a required
6-cycle covering follows by Corollary 1.6 and Item 20 of the Appendix.

(ii) Let P2({1, 2, . . . , 10, 11}) = V (L(K11)). We partition the vertex set of L(K11)
into three sets A1, A2 and A3, where A1 = P2({1, 2, 3, 4, 11}), A2 = P2({5, 6, 7, 8, 9,
10, 11}) and A3 = {{i, j} | 1 ≤ i ≤ 4, 5 ≤ j ≤ 10}. The subgraphs induced by A1

and A2 are L(K5) and L(K7), respectively. The graph L(K11) = L(K5) ⊕ L(K7) ⊕
(K4�K6) ⊕ H , by Observation 2.1, where H = A′ ⊕ K4,6 ⊕K4,6 ⊕ · · · ⊕K4,6︸ ︷︷ ︸

10 copies

. By

Corollary 1.6 and Theorems 1.9 and 1.7, the graphs L(K5), K4�K6 and H admit
6-cycle decompositions. Then a required 6-cycle packing and a 6-cycle covering of
L(K11) with leave C3 and padding C3 exist by Case (i) above.

(iii) Let P2({1, 2, . . . , 14, 15}) = V (L(K15)). We partition the vertex set of L(K15)
into three sets A1 = P2({1, 2, 3, 4, 5, 6, 15}), A2 = P2({7, 8, . . . , 14, 15}) and A3 =
{{i, j} | 1 ≤ i ≤ 6, 7 ≤ j ≤ 14}. The graph L(K15) = L(K7)⊕L(K9)⊕(K6�K8)⊕H ,
by Observation 2.1, where H = A′ ⊕ K6,8 ⊕K6,8 ⊕ · · · ⊕K6,8︸ ︷︷ ︸

15 copies

. A required 6-cycle

packing and a 6-cycle covering of L(K15) with L = P = C3 follows by Corollary 1.6
and Theorems 1.9, 1.7 and Case (i) above.

Lemma 3.3. The graph K�
6 (2) admits a 6-cycle decomposition.

Proof. Let V (K6) = {1, 2, . . . , 6}. The 6-cycles are

(1, 4, {4, 5}, 5, {5, 6}, 6), (1, 2, 3, {3, 5}, 5, {1, 5}), (1, {1, 4}, 4, 3, 6, {1, 6}),
(1, {1, 2}, 2, {2, 5}, 5, 6), (2, {2, 3}, 3, {3, 4}, 4, 5), (1, 2, {2, 3}, 3, 4, {1, 4}),
(1, {1, 2}, 2, {2, 6}, 6, 5), (1, {1,3}, 3, {3,5}, 5, {1,5}), (2, 4, {4, 5}, 5, {5, 6}, 6),
(1, 5, 2, 6, 3, {1, 3}), (1, 3, 5, {2, 5}, 2, 4), (2, {2, 4}, 4, 6, {3, 6}, 3),
(2, {2, 4},4, {4, 6},6,{2, 6}), (3, {3, 6}, 6, {4, 6}, 4, 5), (1, 3, {3, 4}, 4, 6, {1, 6}).

Lemma 3.4. Each of the graphs L(K7)(2), L(K11)(2) and L(K15)(2) admits a 6-
cycle decomposition.

Proof. (i) The graph L(K7)(2) = L(K6)(2) ⊕ K�
6 (2), by Observation 3.1, and

C6|L(K6)(2) and C6|K�
6(2), by Corollary 1.6 and Lemma 3.3.

(ii) Let V (L(K11)(2)) = P2({1, 2, . . . , 10, 11}). We partition the vertex set of
L(K11)(2) into three sets A1 = P2({1, 2, 3, 4, 11}), A2 = P2({5, 6, 7, 8, 9, 10, 11}) and
A3 = {{i, j}|1 ≤ i ≤ 4, 5 ≤ j ≤ 10}. The graph L(K11)(2) = L(K5)(2)⊕L(K7)(2)⊕
(K4�K6)(2)⊕H(2), by Observation 2.1, where

H(2) = A′(2)⊕K4,6(2)⊕K4,6(2)⊕ · · · ⊕K4,6(2)︸ ︷︷ ︸
10 copies

.
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Hence a required decomposition follows by Corollary 1.6 and Theorems 1.9 and 1.7
and Case (i) above.

(iii) Let V (L(K15)(2)) = P2({1, 2, . . . , 14, 15}). We partition the vertex set of
L(K15)(2) into three sets A1 = P2({1, 2, 3, 4, 5, 6, 15}), A2 = P2({7, 8, . . . , 14, 15})
and A3 = {{i, j}|1 ≤ i ≤ 6, 7 ≤ j ≤ 14}. The graph L(K15)(2) = L(K7)(2) ⊕
L(K9)(2)⊕ (K6�K8)(2)⊕H(2), by Observation 2.1, where

H(2) = A′(2)⊕K6,8(2)⊕K6,8(2)⊕ · · · ⊕K6,8(2)︸ ︷︷ ︸
14 copies

.

Now the result follows by Case (i) above, Corollary 1.6 and Theorems 1.9 and 1.7.

Lemma 3.5. For n ≡ 3 (mod 4), n ≥ 4, the graph L(Kn) admits a 6-cycle packing
with leave C3 and a 6-cycle covering with padding C3.

Proof. We consider the following three cases.

Case 1. n ≡ 3 (mod 12). Let n = 12k + 3, k ≥ 1. For k = 1, the result fol-
lows by Lemma 3.2. So we consider k ≥ 2. The graph L(K12k+3) = L(K15) ⊕
L(K12k−11)⊕ (K14�K12(k−1))⊕H , where H = A′ ⊕K14,12(k−1) ⊕ · · · ⊕K14,12(k−1)︸ ︷︷ ︸

(12k+2) copies

, by

Observation 2.1. Thus a 6-cycle packing and a 6-cycle covering follow by Lemma 3.2,
Corollary 1.6 and Theorems 1.9 and 1.7.

Case 2. n ≡ 7 (mod 12). Let n = 12k + 7, k ≥ 0. For k = 0, the graph L(K7)
has a 6-cycle packing and a 6-cycle covering, by Lemma 3.2. Next we consider
k ≥ 1. The graph L(K12k+7) = L(K7) ⊕ L(K12k+1) ⊕ (K6�K12k) ⊕ H . Here, H =
A′ ⊕K6,12k ⊕ · · · ⊕K6,12k︸ ︷︷ ︸

(12k+6) copies

, by Observation 2.1. Hence by Lemma 3.2, Corollary 1.6,

Theorems 1.9 and 1.7, a required 6-cycle packing and a 6-cycle covering follow.

Case 3. n ≡ 11 (mod 12). Let n = 12k + 11, k ≥ 0. Because of Lemma 3.2, we
consider k ≥ 1. The graph L(K12k+11) = L(K11) ⊕ L(K12k+1) ⊕ (K10�K12k) ⊕ H .
Now H = A′⊕K10,12k ⊕ · · · ⊕K10,12k︸ ︷︷ ︸

(12k+10) copies

, by Observation 2.1. Now a 6-cycle packing and

a 6-cycle covering follow by Lemma 3.2, Corollary 1.6 and Theorems 1.9 and 1.7.

Lemma 3.6. For n ≡ 3 (mod 4), n ≥ 4, the graph L(Kn)(2) has a 6-cycle decom-
position.

Proof. From the proof of Lemma 3.5, it is enough to show that each of the graphs in
{L(K7)(2), L(K11)(2), L(K15)(2)} admits a 6-cycle decomposition. Now a required
decomposition follows by Lemma 3.4.

Proof of Theorem 1.2.
Case 1. First we consider λ ≡ 0 (mod 2), and let λ = 2k′, k′ ≥ 1. The graph
L(Kn)(2k

′) = L(Kn)(2)⊕ L(Kn)(2)⊕ · · · ⊕ L(Kn)(2), and a 6-cycle decomposition
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follows by applying Corollary 1.6 if n ≡ 3 (mod 4), and applying Lemma 3.6 if n ≡ 3
(mod 4).

Case 2. Next, λ ≡ 1 (mod 2), and let λ = 2k′+1, k′ ≥ 0. The graph L(Kn)(2k
′+1) =

L(Kn)⊕ L(Kn)(2k
′). We obtain a 6-cycle packing and 6-cycle covering of L(Kn)(λ)

by applying Corollary 1.6, and Lemmas 3.5 and 3.6.

4 Appendix

1. The subgraphs H1 of L(K11), H3 of L(K7)(2), H4 of L(K7)(3) and H5 of
L(K11)(3) are shown below:
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Figure 3: The subgraph H1 of L(K11).
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Figure 4: The subgraph H3 of L(K7)(2).
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Figure 5: The subgraph H4 of L(K7)(3).
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Figure 6: The subgraph H5 of L(K11)(3).

2. The subgraph H1 of L(K11) has a 4-cycle packing with leave C3.
({1,3},{1,11},{7,11},{3,11}), ({1,11},{5,11},{6,11},{2,11}),

({1,11},{6,11},{7,11},{8,11}), ({1,11},{9,11},{3,11},{10,11}),

({2,11},{5,11},{4,11},{7,11}), ({2,11},{8,11},{4,11},{9,11}),

({2,11},{2,4},{4,11},{10,11}), ({5,8},{5,11},{3,11},{8,11}) and the leave

L=({4,11},{3,11},{6,11}).

3. The subgraph H1 of L(K11) has a 4-cycle covering with padding C5.

({1,3},{1,11},{10,11},{3,11}), ({1,11},{5,11},{5,8},{8,11}),

({1,11},{2,11},{7,11},{6,11}), ({1,11},{7,11},{4,11},{9,11}),

({2,11},{6,11},{3,11},{9,11}), ({2,11},{2,4},{4,11},{10,11}),

({2,11},{2,4},{4,11},{5,11}), ({2,11},{7,11},{3,11},{8,11}),

({4,11},{3,11},{7,11},{8,11}), ({4,11},{3,11},{5,11},{6,11}) and the padding

P=({2,11},{2,4},{4,11},{3,11},{7,11}).

4. The subgraph H1 of L(K11) has a 4-cycle covering with padding F1.

({1,3},{1,11},{10,11},{3,11}), ({1,11},{5,11},{5,8},{8,11}),

({1,11},{2,11},{7,11},{6,11}), ({1,11},{7,11},{4,11},{9,11}),

({2,11},{6,11},{3,11},{9,11}), ({2,11},{2,4},{4,11},{8,11}),
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({2,11},{4,11},{6,11},{7,11}), ({2,11},{5,11},{4,11},{10,11}),

({3,11},{5,11},{6,11},{7,11}), ({3,11},{8,11},{7,11},{4,11}) and the padding

P={{2,11}{4,11},{4,11}{7,11},{7,11}{2,11},{6,11}{7,11}{6,11}{7,11}}.

5. The subgraph H1 of L(K11) has a 4-cycle covering with padding F2.

({1,3},{1,11},{10,11},{3,11}), ({1,11},{5,11},{5,8},{8,11}),

({1,11},{2,11},{7,11},{6,11}), ({1,11},{7,11},{4,11},{9,11}),

({2,11},{6,11},{3,11},{9,11}), ({2,11},{4,11},{6,11},{5,11}),

({2,11},{7,11},{3,11},{10,11}), ({2,11},{2,4},{4,11},{8,11}),

({4,11},{5,11},{3,11},{10,11}), ({4,11},{3,11},{8,11},{7,11}) and the padding

P={{2,11}{4,11},{4,11}{7,11},{7,11}{2,11},{3,11}{10,11},{3,11}{10,11}}.

6. The subgraph H1 of L(K11) has a 4-cycle covering with padding F3.

({1,3},{1,11},{10,11},{3,11}), ({1,11},{5,11},{5,8},{8,11}),

({1,11},{2,11},{7,11},{6,11}), ({1,11},{7,11},{4,11},{9,11}),

({2,11},{6,11},{3,11},{9,11}), ({2,11},{4,11},{6,11},{5,11}),

({2,11},{7,11},{4,11},{10,11}), ({2,11},{2,4},{4,11},{8,11}),

({4,11},{5,11},{3,11},{7,11}), ({4,11},{3,11},{8,11},{7,11}) and the padding

P={{2,11}{4,11},{4,11}{7,11},{7,11}{2,11},{4,11}{7,11},{4,11}{7,11}}.

7. The subgraph H2 of L(K7)(2) has a 4-cycle decomposition.

({1,3},{3,5},{3,7},{3,4}), ({2,3},{3,6},{3,7},{3,5}), ({1,3},{1,6},{1,7},{1,4}),

({1,3},{1,5},{1,7},{1,6}), ({1,2},{1,4},{1,7},{1,5}), ({1,2},{2,4},{2,7},{2,5}),

({2,3},{2,4},{2,7},{2,6}), ({2,3},{2,5},{2,7},{2,6}), ({1,3},{3,4},{3,7},{3,6}),

({1,2},{1,6},{4,6},{2,6}), ({1,3},{1,4},{4,6},{3,6}), ({2,3},{3,4},{4,5},{2,4}),

({2,3},{3,4},{4,6},{3,6}), ({1,6},{4,6},{2,6},{5,6}), ({1,5},{4,5},{3,5},{5,6}),

({2,5},{5,6},{3,5},{4,5}), ({1,5},{4,5},{2,5},{5,6}), ({2,3},{2,5},{5,7},{3,5}),

({1,3},{1,5},{5,7},{3,5}), ({1,2},{1,6},{6,7},{2,6}), ({1,4},{4,7},{3,4},{4,5}),

({1,4},{4,7},{2,4},{4,5}), ({1,6},{5,6},{3,6},{6,7}), ({2,4},{4,7},{3,4},{4,6}),

({1,2},{1,4},{4,6},{2,4}), ({1,2},{1,5},{5,7},{2,5}), ({2,6},{5,6},{3,6},{6,7}).

8. Two choices of 4-cycle packing with leave K2(2) from the graph H3 of L(K7)(2).

(a) The subgraph H3 of L(K7)(2) has a 4-cycle packing with leave K2(2).

({1,7},{4,7},{2,7},{5,7}), ({1,7},{5,7},{3,7},{6,7}),

({2,7},{5,7},{3,7},{6,7}), ({1,7},{4,7},{2,7},{6,7})

and the leave L={{3,7}{4,7},{3,7}{4,7}}.

(b) The subgraph H3 of L(K7)(2) has a 4-cycle packing with leave K2(2).

({1,7},{5,7},{3,7},{6,7}), ({2,7},{4,7},{3,7},{6,7}),

({1,7},{5,7},{2,7},{6,7}), ({2,7},{4,7},{3,7},{5,7})

and the leave L={{1,7}{4,7},{1,7}{4,7}}.

9. The subgraph H3 of L(K7)(2) has a 4-cycle covering with padding K2(2).

({1,7},{4,7},{3,7},{5,7}), ({1,7},{4,7},{3,7},{6,7}),

({1,7},{5,7},{2,7},{6,7}), ({2,7},{4,7},{3,7},{5,7}),

({2,7},{6,7},{3,7},{4,7}) and the padding P={{3,7}{4,7},{3,7}{4,7}}.

10. Three choices of 4-cycle packing with leave C3 from the graph H4 of L(K7)(3).

(a) The subgraph H4 of L(K7)(3) has a 4-cycle packing with leave C3.

({1,7},{2,7},{3,7},{4,7}), ({1,7},{5,7},{3,7},{6,7}),

({2,7},{4,7},{3,7},{6,7}), ({1,7},{5,7},{2,7},{6,7}),

({2,7},{4,7},{3,7},{5,7}) and the leave L=({1,4},{1,7},{4,7}).
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(b) The subgraph H4 of L(K7)(3) has a 4-cycle packing with leave C3.

({1,4},{1,7},{2,7},{4,7}), ({1,7},{4,7},{3,7},{6,7}),

({1,7},{4,7},{3,7},{5,7}), ({1,7},{5,7},{2,7},{6,7}),

({2,7},{4,7},{3,7},{6,7}) and the leave L=({2,7},{3,7},{5,7}).

(c) The subgraph H4 of L(K7)(3) has a 4-cycle packing with leave C3.

({1,4},{1,7},{2,7},{4,7}), ({1,7},{4,7},{3,7},{6,7}),

({1,7},{4,7},{3,7},{5,7}), ({1,7},{5,7},{2,7},{6,7}),

({2,7},{5,7},{3,7},{6,7}) and the leave L=({2,7},{3,7},{4,7}).

11. The subgraph H4 of L(K7)(3) has a 4-cycle covering with padding C5.

({1,4},{1,7},{2,7},{4,7}), ({1,7},{4,7},{3,7},{5,7}),

({1,7},{2,7},{3,7},{4,7}), ({1,7},{5,7},{2,7},{6,7}),

({2,7},{5,7},{3,7},{6,7}), ({1,7},{5,7},{3,7},{6,7}),

({2,7},{4,7},{3,7},{6,7}) and the padding

P=({1,7},{2,7},{6,7},{3,7},{5,7}).

12. The subgraph H4 of L(K7)(3) has a 4-cycle covering with padding F1.

({1,4},{1,7},{2,7},{4,7}), ({1,7},{2,7},{3,7},{5,7}),

({1,7},{6,7},{3,7},{4,7}), ({1,7},{5,7},{2,7},{6,7}),

({1,7},{6,7},{3,7},{4,7}), ({1,7},{3,7},{2,7},{6,7}),

({2,7},{4,7},{3,7},{5,7}) and the padding

P={1,7}{2,7},{2,7}{3,7},{3,7}{1,7},{1,7}{6,7},{1,7}{6,7}}.

13. The subgraph H4 of L(K7)(3) has a 4-cycle covering with padding F2.

({1,4},{1,7},{3,7},{4,7}), ({1,7},{4,7},{2,7},{5,7}),

({1,7},{2,7},{3,7},{6,7}), ({1,7},{5,7},{3,7},{6,7}),

({1,7},{2,7},{6,7},{4,7}), ({2,7},{4,7},{3,7},{5,7}),

({2,7},{3,7},{4,7},{6,7}) and the padding

P={{1,7}{2,7},{2,7}{3,7},{3,7}{1,7},{4,7}{6,7},{4,7}{6,7}}.

14. The subgraph H4 of L(K7)(3) has a 4-cycle covering with padding F3.

({1,4},{1,7},{3,7},{4,7}), ({1,7},{2,7},{3,7},{6,7}),

({1,7},{3,7},{5,7},{2,7}), ({1,7},{4,7},{2,7},{3,7}),

({1,7},{4,7},{3,7},{5,7}), ({1,7},{5,7},{2,7},{6,7}),

({2,7},{6,7},{3,7},{4,7}) and the padding

P={{1,7}{2,7},{2,7}{3,7},{3,7}{1,7},{3,7}{1,7},{3,7}{1,7}}.

15. The subgraph H5 of L(K11)(3) has a 4-cycle packing with leave C5.

({1,11},{5,11},{5,8},{8,11}), ({1,11},{2,11},{5,11},{6,11}),

({1,11},{9,11},{2,11},{10,11}), ({2,11},{2,4},{4,11},{7,11}),

({2,11},{6,11},{7,11},{8,11}), ({4,11},{3,11},{7,11},{8,11})

({4,11},{5,11},{3,11},{6,11}), ({4,11},{9,11},{3,11},{10,11}) and the leave

L=({1,3},{1,11},{7,11},{8,11},{3,11}).

16. The subgraph H5 of L(K11)(3) has a 4-cycle packing with leave F1.

({1,3},{1,11},{10,11},{3,11}), ({1,11},{2,11},{5,11},{6,11}),

({1,11},{5,11},{5,8},{8,11}), ({1,11},{7,11},{4,11},{9,11}),

({2,11},{2,4},{4,11},{10,11}), ({2,11},{8,11},{3,11},{9,11}),

({4,11},{3,11},{7,11},{8,11}), ({4,11},{5,11},{3,11},{6,11}) and the leave

L={{2,11}{6,11},{6,11}{7,11},{7,11}{2,11},{7,11}{8,11},{7,11}{8,11}}.
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17. The subgraph H5 of L(K11)(3) has a 4-cycle packing with leave F2.

({1,3},{1,11},{10,11},{3,11}), ({1,11},{2,11},{6,11},{7,11}),

({1,11},{8,11},{3,11},{9,11}), ({2,11},{2,4},{4,11},{7,11}),

({2,11},{5,11},{5,8},{8,11}), ({2,11},{9,11},{4,11},{10,11}),

({4,11},{3,11},{7,11},{8,11}), ({4,11},{5,11},{3,11},{6,11}) and the leave

L={{1,11}{5,11},{5,11}{6,11},{6,11}{1,11},{7,11}{8,11},{7,11}{8,11}}.

18. The subgraph H5 of L(K11)(3) has a 4-cycle packing with leave F3.

({1,3},{1,11},{9,11},{3,11}), ({1,11},{2,11},{5,11},{6,11}),

({1,11},{5,11},{3,11},{10,11}), ({2,11},{2,4},{4,11},{10,11}),

({2,11},{6,11},{4,11},{9,11}), ({2,11},{7,11},{3,11},{8,11}),

({4,11},{3,11},{6,11},{7,11}), ({4,11},{5,11},{5,8},{8,11}) and the leave

L={{1,11}{8,11},{8,11}{7,11},{7,11}{1,11},{7,11}{8,11},{7,11}{8,11}}.

19. The subgraph H5 of L(K11)(3) has a 4-cycle covering with padding C3.

({1,3},{1,11},{10,11},{3,11}), ({1,11},{2,11},{5,11},{6,11}),

({1,11},{3,11},{8,11},{7,11}), ({1,11},{5,11},{5,8},{8,11}),

({1,11},{8,11},{3,11},{9,11}), ({2,11},{2,4},{4,11},{7,11})

({2,11},{6,11},{7,11},{8,11}), ({2,11},{9,11},{4,11},{10,11})

({4,11},{3,11},{7,11},{8,11}), ({4,11},{5,11},{3,11},{6,11}) and the padding

P=({1,11},{3,11},{8,11}).

20. The graph K�
6 has a 6-cycle covering with padding C3.

(1,{1,4},4,3,{3,5},5), (1,{1,2},2,{2,3},3,6), (1,{1,3},3,5,{4,5},4),

(2,{2,5},5,{5,6},6,{2,6}), (1,3,{3,4},4,5,{1,5}), (1,{1,6},6,{3,6},3,2),

(2,{2,4},4,{4,6},6,5), (2,4,{4,5},5,3,6) and the padding

P=(2,3,6).
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