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Abstract

Let L(K,)(\) denote the A-fold line graph of the complete graph K.
In this paper, we obtain a maximum packing of L(K,)(\) with k-cycles,
k € {4,6}, with every possible leave, and also obtain a minimum covering
of L(K,)(\) with k-cycles, k € {4,6}, with every possible padding.

1 Introduction

For a graph G, let V(G) and E(G) denote the vertex set and edge set of the graph
G. A k-cycle is the cycle on k vertices; we denote it by C. The complete graph on n
vertices is denoted by K, and the complete bipartite graph with bipartition (X,Y),
where | X| = m and |Y| = n, is denoted by K,,,. The complete m-partite graph in
which each of its partite sets has n vertices is denoted by K,, o K,. For a positive
integer k, let kG denote k pairwise vertex-disjoint copies of G. For a graph G, the
graph G(\) is obtained by replacing each edge of G by A parallel edges. The graph
G(\) is called the A-fold copy of the graph G. For disjoint subsets A and B of the
vertex set V(G) of G, let E(A, B) denote the set of all edges of G each having one
end in A and the other end in B. For S C V(G) and E' C E(G), let (S) and (E’)
denote the subgraphs induced by S and E’ respectively. A graph G is said to be
H-decomposable or H|G if the edge set of G can be partitioned into Ey, Es, . .., Ej
such that for each 1 <1i <k, (E;) ~ H; if each (E;) ~ C,, then we say that G has a
C'.-decomposition or an r-cycle decomposition and in this case we write C,|G.

The line graph of a graph G, denoted by L(G), is the graph with vertex set
V(L(G)) = E(G) and e;e; € E(L(G)) if and only if the edges e; and e; in G are
incident at a vertex of G. For a non-empty set S, let Py(S) denote the set of all
two-element subsets of S. The bowtie is a graph with five vertices, six edges, and
having two edge-disjoint 3-cycles with exactly one common vertex, and it is denoted
by B. A kite is the simple graph on four vertices, four edges, and having a triangle
and an edge incident with the triangle, and it is denoted by K. A graph with vertices
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a, b, c,d and edges ab, bc, ca, cd, cd is denoted by Fi; that is, the graph consisting of
a triangle with a double edge attached, on 4 vertices and 5 edges. A graph with
vertices a, b, c,d,e and edges ab, bc, ca, de, de is denoted by Fs; that is, the graph
having a triangle with a disjoint double edge, on 5 vertices and 5 edges. A graph
with vertices a, b, c and edges ab, bc, ca, ca, ca is denoted by Fj.

For graphs G and H, the Cartesian product of G and H, denoted by GUH, has
vertex set V(G) x V(H) in which (g1, h1) is adjacent to (ge, h2) if and only if g; = ¢o
and hihy € E(H), or hy = hy and ¢192 € E(G).

A k-cycle packing of the graph G is a triple (V) E, L), where V' is the vertex set
of G, F is a set of edge-disjoint k-cycles of GG, and L is the set of edges of G not
belonging to any of the k-cycles of E. The collection of edges L is the leave. If |E]
is as large as possible, or equivalently if |L| is as small as possible, then (V, E, L)
is called a mazimum packing of G with k-cycles; see Chapter 4 of [24]. A k-cycle
covering of the graph G is a triple (V, E, P), where V is the vertex set of G, P is a
subset of the edge set of G(\), and F is a set of edge-disjoint k-cycles which partitions
the union of P and the edge set of G. The collection of edges P is called the padding.
If | P| is as small as possible, then (V| E, P) is called a minimum covering of G with
k-cycles; see Chapter 4 of [24]. Definitions which are not given here can be found
in [24, 31].

Maximum packings of K,, with graphs K, and certain graphs on five vertices are
studied in [4, 33]. Maximum packings and minimum coverings of K, with 4-cycles,
5-cycles, 6-cycles, cubes and the graphs having four or fewer vertices are studied
in [1, 18, 19, 20, 26, 27, 28]. Maximum packings and minimum coverings of K, ()
with 4-cycles and K4 are studied in [21]. In [22, 23], the existence of maximum
packings and minimum coverings of Ks,; and K, , with 8-cycles are established.
Maximum packings of the A-fold complete multipartite graph (Ko, 45, a,)(A) with 4-
cycles have been studied in [2, 3]. Also, maximum packings and minimum coverings
of A-fold complete equipartite graphs with triangles or kites are obtained in [16, 32].
Maximum packings and minimum coverings of the complete equipartite graph with
K, —e are studied in [11, 12]. In [17], the existence of a maximum packing of K,,0 K,
with 5-cycles for an odd integer m is established. For k € {6, 2, (g)}, existence of a
k-cycle decomposition of the graph L(K,) has been studied in [6, 7, 14, 30]. In fact,
in [5, 9, 13], the existence of a k-cycle decomposition of L(K,)(\), k € {4,5} has been
obtained. Maximum packings of the graph L(K,) with bowties has been completely
settled in [10]. Also, maximum packings and minimum coverings of L(K,)(\) with
kites have been considered in [25]. In this paper, existence of a maximum k-cycle
packing and a minimum k-cycle covering of L(K,)(\), k € {4,6}, with every possible
leave and padding, is established.

If n > 4 and 4|E(L(K,)(\)), then L(K,)(\) has a 4-cycle decomposition. If
41 E(L(K,)(N)), then we look into a 4-cycle decomposition of L(K,)(\) — E(L) and
L(K,)(A\)UE(P), that is, the minimum number edges whose removal from L(K,)()\)
gives a 4-cycle decomposition, and the minimum number of edges whose addition to
L(K,)()\) gives a 4-cycle decomposition, where L is a leave and P is a padding. Note
that L and P are even graphs as the graph L(K,)(\) has regularity 2A(n — 2). In
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Table 1, for A = 1 and n = 5 (mod 8), |E(L(K,)(A\))| = 6 (mod 8). Since L(K,)
is a simple graph, |F(L)| = 6. The possible leaves are a 6-cycle or B or 2C3, and
|E(P)| = 2 with possible padding K3(2). For A=1 (mod 5) > landn =5 (mod 8),
|E(L(K,)(N)| =6 (mod 8). Since L(K,)(\) is a multigraph, |E(L)| = 2. The only
possible leave is K3(2), and |E(P)| = 2 with possible padding K5(2). It is easy to
observe that the possible leaves and paddings of the remaining n and A are listed in
Table 1.

We prove the following main results.
Theorem 1.1. The graph L(K,)(\) admits a mazimum 4-cycle packing and a mini-

mum 4-cycle covering with every possible leave and padding. The possible leaves and
paddings are shown in Table 1.

A= n>4 and n = Leave Padding
0 (mod 4) all n [ 0
all A 0 (mod 2) or 1 (mod 8) 0 [
0 (mod 2) 5 (mod 8) 0 [
3 (IIlOd 8) 03 C5,F1,FQ,F}5
1 (mod 4) 5 (mod 8) {Cs, B,2C5 if X =1}, {K,(2) if A > 5} K, (2)
7 (HlOd 8) {05 if A= 1}, {05, Fl, F27 F3 if A 2 5} Cg
3 (mod 8) K5(2) K,(2)
2 (mod 4) 5 (mod 8) 0 0
7 (mod 8) K5(2) K5(2)
3 (HlOd 8) C5,F1,F2,F3 03
3 (mod 4) 5 (mod 8) K5(2) K5(2)
7 (mod 8) Cs Cs, F1, Fy, Fy

Table 1: Leaves and paddings of L(K,)()\) with 4-cycle packings and 4-cycle coverings

Theorem 1.2. The graph L(K,)(\) admits a mazimum 6-cycle packing and a mini-
mum 6-cycle covering with every possible leave and padding. The possible leaves and
paddings are shown in Table 2.

A= n>4 Leave | Padding
1 (mod 2) | n# 3 (mod 4) 0 0
n =3 (mod 4) Cs Cs
0 (mod 2) all n 0 0

Table 2: Leaves and paddings of L(K,)()\) with 6-cycle packings and 6-cycle coverings

We state the following known results for our future reference.

Theorem 1.3. [5] The graph L(K,)(\) has a 4-cycle decomposition if and only if n
and A satisfy the following conditions:

(i) n even, or
(ii)) n =1 (mod 4) and A =0 (mod 2), or
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(i) n =3 (mod 4) and A =0 (mod 4), or
(iv) n =1 (mod 8) and A is odd.

Theorem 1.4. [6] The graph L(K,) has a 6-cycle decomposition if and only if
n # 3 (mod 4).

The following lemma is an easy observation.

Lemma 1.5. If H|G, then H|G(X) for any A > 2.

The following corollary is a consequence of Lemma 1.5 and Theorem 1.4.

Corollary 1.6. Ifn # 3 (mod 4), n >4 and A > 1, then the graph L(K,)(\) has a
6-cycle decomposition.

Theorem 1.7. [29] The complete bipartite graph K, ,, has a 2k-cycle decomposition
if and only if m and n are even, m > k,n >k, and 2k divides mn.

Theorem 1.8. [15] The graph K,,00K,, has a 4-cycle decomposition if and only if
one of the following holds.

(i) m,n =0 (mod 2);
(1)) m,n =1 (mod 8);
(#ii) m,n =5 (mod 8).

Theorem 1.9. /8] The graph K,,00K,, has a 6-cycle decomposition if and only if

1. m,n are even, and
(a) 6|m or 6|n, or
(b)) m+n =2 (mod 3); or
2. m,n are odd, and
(a) if m,n #0 (mod 3), then (m +n) =2 (mod 12), or
(b) if m=0 (mod 3) orn =0 (mod 3), then m +n =2 (mod 4).

2 Existence of a maximum packing and a minimum covering
of L(K,)(\) with 4-cycles

In this section, we prove the existence of a 4-cycle packing and a 4-cycle covering of
L(K,)(X\) with every possible leave and padding.

Observation 2.1. Consider k£ > 2 and n > 5. Let V(K,,) = {1,2,...,n}. Then the
vertex set of L(K,) can be given as V(L(K,)) = P2({1,2,...,n—1,n}), that is, the
set of all two-element subsets of {1,2,...,n — 1,n}. We partition the vertex set of
L(K,) into three sets Ay, Ay and Az, where n > k+ 1, Ay = Py({1,2,...,k,n}),
Ay =Po({k+1LEk+2,...,n—1,n})and A3 ={{i,j}1 <i<k, k+1<j<n-—-1}
The subgraphs of L(K,) induced by A;, As and Az are isomorphic to L(Kjyy1),
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L(K,_)) and KyOK, _j_1, respectively, where [J denotes the cartesian product of
graphs. Clearly, (F(A1,As)) = {{i,n}{j,n};1 < i <kk+1<j<n-1})=
Ky n—k—1; we denote the graph (E(A;, As)) by A For 1 <i<k,k+1<j<n-1,
let R; = {{i,k+1},{i,k+2},...,{i,n—1}} and let Q; = {{1,5},{2,4},.... {k,j}}.
Clearly, (E(R;, A1)) = K,—k—1 and (E(Q;, A2)) = Ky n—k—1. The induced subgraph
H = (UL {E(Ri, A1)} Uj 2 {B(Q), A2)}) = Kyt ® -+ @ K jp—g—1. Thus

Jj=

~
(n—1) copies

L(K,) = (A1) @ (As) @ (A3) ® (E(A1, A2)) @ (E(A3, A1) @ (E(As, As))
= L(Kpi1) @ L(Knp) ® (KiOKp 1) ©@ A’ @ (UL E(Ri, A1)®
(Ui 1 E(Qj, As))

~—~

= L(Ky1) ® L(K,—¢) ® (KyOK,, 1) @ A’ @ H,
where H = Ky -1 ® -+ ® Ky n_i_1, as each of the graphs

(n—1) copies

(E(R;, A1)) and (E(Qj, A2)) is isomorphic to Ky ,__1; see Figure 1.

i
A= Kyn—k—1

/
1] {1 k+1} {1, k+2} {1,5} 1,n—1} !
I ° I
R—! .
{2, k+1} {2, k+2} {24} 2,n -1}
[} [} s [} [}
{3, k+1} {3, k+2} {3,5} 3,n—1}
[ ] [ ] e [ ] [ ]
B P ———e b = Az) = KpOKp g1
1| {k+1y {i, k+2} {i, 5} i,n— 1} |
Ri—>| ) ® ' ... P ) :
L I I S N L
i I
L[ {kkt1} {k, k+2} {k, 5} k-1 |
R, —» ° ° ° : J
1
—————— e ——————————— —— e ———— e ————— H

Figure 1: The graph L(K,) = L(Ky41) ® L(K,—k) ® (KxOK,_x_1) ® A’ © H.

Note: This observation, in particular, the notation A" and the decomposition of
L(K,), will be used extensively in the rest of the paper.

Lemma 2.2. The graph L(K5) has a 4-cycle packing with leave L, L € {Cq, B,2C3},
and B denotes the bowtie; also it has a 4-cycle covering with padding K»(2).

Proof. Let V(K5) = {1,2,3,4,5}. Then V(L(K5)) = P2({1,2,3,4,5}).
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(i) A 4-cycle packing of L(K5) with leave Cy is given by the set of 4-cycles in

Fio= {({1,2},{1,3},{2,3},{2,4}), ({1.,2},{1,4},{4,5}.{1,5}),
({1,2},{2,3},{3,5}.{2,5}), ({1.3},{1,4},{2,4},{3.4}),
({14}, {1,5},{3,5}. {3,4}), ({2,3},{2,5},{4,5},{3,4})}

and the 6-cycle ({1,3},{1,5},{2,5},{2,4},{4,5},{3,5}).

(77) A 4-cycle packing of L(Kj) with leave B is given by the set of 4-cycles in

Foo= {({1,2},{1,5},{3,5},{2,3}), ({1,2},{2,4},{2,3},{2,5}),
({1,3},{1,5},{1,4},{3,4}), ({1, 3},{2,3},{3,4},{3,5}),
({1,53,{2,5},{3,5}, {4,5}),  ({2,4},{2,5},{4,5}, {3,4})}

and the two 3-cycles of the bowtie are ({1, 2}, {1,3},{1,4}) and ({1, 4}, {2,4}, {4,5}).

(7i1) A 4-cycle packing of L(K5) with leave 2C is given by the set of 4-cycles in

Fy = {({1,2},{2,4},{2,3},{2,5}), ({1,2},{1,4},{1,3},{1,5}),
({1,3},{3,5},{2,3},{3,4}), ({1, 4},{2,4},{4,5},{3,4}),
({1,5},{2,5},{4,5},{3,5}),  ({2,4},{2,5},{3,5}, {3,4})}

and the 2Cj5 is given by the two 3-cycles ({1,2},{1,3},{2,3}) and ({1,4}, {1,5}, {4,5}).

(1v) A 4-cycle covering of L(Kj) with padding K5(2) is described below:
Clearly, the cycles in F; (described in (i) above) together with the two 4-cycles,

namely, ({1,3},{1,5},{4,5},{3,5}) and ({1,5},{2,5},{2,4},{4,5})}, yield a 4-cycle
covering of L(K;) with padding K5(2) given by the edges in {{1,5}{4,5},{1,5}{4,5}}.
0

Lemma 2.3. The graph L(K7) has a 4-cycle packing with leave Cs; also it has a
4-cycle covering with padding Cs.

Proof. Let V(K7) ={1,2,..., 7}. Then V(L(K7)) = Po({1,2,..., 7}).
(1) A 4-cycle packing of L(K7;) with leave C5 is given by the set of 4-cycles in
Fio= {12} {13}, {1,4},{1,5}), ({1,2},{1,4},{3,4},{2,4}),
({1,2},{1,6},{6,7},{1,7}), ({1,2},{2,3}.{2,4},{2,7})
({1,2},{2,5},{2,3},{2,6}), ({1,3},{1,5},{3,5},{2,3})
({1,3},{1,6},{4,6},{3,6}), ({1,3},{3,4},{2,3},{3,7}),
({131 {1,73,{3,7},{3,5}), ({1,4},{4,6},{5,6},{4,5}),
({1,5},{1,6},{3,6},{5,6}), ({1,5},{2,5},{2,7},{5,7}),
5{1,5}7{1,7}7{477}7{475}3 E{176}7{177}7{577}7{5,6}§
( ) ( )
( ) ( )
( ) ( )
( ), ( )
( )

) I
) J

{1,6},{2,6},{2,4},{1,4} {2,3},{2,7},{6,7},{3,6}
{2,4},{4,5},{5,7},{4,7} {2,5},{5,7},{6,7},{5,6}
{2,5},{2,4},{4,6},{4,5}), ({2,6},{6,7},{3,7},{3,6}),
{2,6},{2,7},{4,7},{4,6}), ({3,4},{3,5},{5,7},{3,7}),
{3,4},{4,6},{6,7},{4,7}), ({3,4},{3,6},{3,5},{4,5}),
{3,5},{2,5},{2,6},{5,6})}

and the 5-cycle ({1,4},{1,7},{2,7},{3,7},{4,7}).

(17) A 4-cycle packing of L(K;) with padding Cj is given by the set of 4-cycles in Fy

(described in (i) above) together with the 4-cycles ({1,4},{1,7},{2,7},{4,7}) and

({2,7},{2,4},{4,7},{3,7}), where the padding C3 = ({2,7},{4,7},{2,4}). O

) Y
) I
) I
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Lemma 2.4. The graph L(K11) has a 4-cycle packing with leave C3; also it has a
4-cycle covering of L(Ky1) with padding Cs, Fy, Fy or Fj.

Proof. Let V(Ky;) ={1,2,...,11}. Then V(L(K1;)) = Po({1,2,...,11}).

(¢) First we obtain a 4-cycle packing of L(K4;) with leave C3. We partition the ver-
tex set of L(Kip) into three sets A;, Ay and As, where A; = Py({1,2,3,4,11}),
Ay = Po({5,6,...,11}) and Ay = {{i,j} | 1 < i < 4,5 < j < 10}. The
subgraphs induced by the vertices in A; and Ay are isomorphic to L(Kj5) and
L(K7), respectively. The graph L(K11) = L(K5) @ L(K7) @ (KyOKg) @ A" & H,
where H = \[(476 OKyg® P K479, by Observation 2.1, where A’ is as defined in

10 copies

Observation 2.1. Lemmixs 2.2 and 2.3 explicitly give a 4-cycle decomposition of
(L(K5) — E(Cg)) and (L(K7) — E(C5)), with Cs = ({1,3},{1,11},{2,11},{2,4},
{4,11},{3,11}) and C5 = ({5, 8}, {5, 11}, {6, 11}, {7, 11}, {8,11}). By Theorems 1.8
and 1.7, Cy|(K4O0Ks) and Cy|H. Let H; be the subgraph of L(K7;) excluding the
edges of the 4-cycles in the decomposition of L(K5)— E(Cs), L(K7) — E(Cs), K,OKg
and H (listed above); clearly Hy = Cs & A’ @ Cs; see Figure 3 in the Appendix. A
4-cycle packing of H; with leave C'5 follows by Item 2 in the Appendix.

(74) From the proof described in (i) above, we have Cy|(L(K11) — E(Hy)). Now a
4-cycle covering of Hy, with padding Cs, Fy, Fb, or Fj follows by the Items 3, 4, 5
and 6 in the Appendix. O

Lemma 2.5. The graph (K30K3)(2) admits a 4-cycle decomposition.

Proof. Let V(G) ={1,2,3} and V(H) = {a, b, c}.
A 4-cycle decomposition of (K300K3)(2) is given by:

((1,a),(1,0),(2,0),(2,a)), ((1,a),(1,¢),(2,¢),(2,a)), ((
((1,a),(1,¢),(3,0),(3,a)), ((1,0),(L,¢),(3,¢),(3,0)), ((
((2,0),(2,0),(3,0),(3,0)), ((2,a),(2,¢),(3,¢),(3,a)), ((

N = =

S S
N—
—~
—_
)
N—
—

Lemma 2.6. The graphs L(K7)(2) and L(K11)(2) admit a 4-cycle packing with leave
K5(2); also they admit a 4-cycle covering with padding K5(2).

Proof. (i) Let V(K7(2)) = {1,2,...,7}. Then V(L(K;)(2)) = Pa({1,2,...,7}).
We partition the vertex set of L(K7)(2) into three sets A;, Ay and Az, where
Al = 7)2({1a273’7})7 AQ = 7)2({4’5’6’7}) and A3 - {{27.]} | 1< < 374 < j < 6}
The graph L(K7)(2) = L(K4)(2) & L(K4)(2) & (K30K3)(2) @ A'(2) @ Hs, by Ob-
servation 2.1, where Hy = \[(3,3(2) DK3352)d---@ K373(2)1, Hy ~ H(2) and A'(2)

g

6 copies
is as in Observation 2.1. The graphs L(K,)(2), (K30K3)(2) and Hs have 4-cycle
decompositions, by Theorem 1.3, Lemma 2.5 and Item 7 in the Appendix. Thus
Cy|(L(K7)(2) — E(Hj)), where A’'(2) = Hs. Now we obtain a 4-cycle packing and a
4-cycle covering of H3 with leave L, and the padding P is {{3,7}{4,7},{3,7}{4,7}};
see Figure 4, as given in Items 8(a) and 9 of the Appendix.
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(i7) Let V(K11(2)) = {1,2,...,11}. Then V(L(K1)(2)) = Po({1,2,...,11}). We
partition the vertex set of L(K;1)(2) into three sets A;, Ay and Aj, where A; =
Pa({1,2,3,4,11}), Ay = Po({5,6,7,8,9,10,11}) and Ay = {{i,j} | 1 <i < 4,5 <
j < 10}, The graph L(K11)(2) = L(Ks)(2)& L(K7)(2) & (KiOKo)(2) & A'(2)@ H(2),
by Observation 2.1, where H(2) = \[(476(2) G Ki6(2)d--- @ K4’6(2Z' By Theo-
10 copies

rems 1.3, 1.8 and 1.7, the graphs L(K5)(2), (K4OKs)(2), A'(2) and H(2) have 4-cycle
decompositions, where A’ is as in Observation 2.1. The required packing and covering
follow by Case (i) above, because L(K7)(2) has a 4-cycle packing and a 4-cycle cov-
ering with leave and padding K5(2) having the edges {{7,11}{8,11},{7,11}{8,11}}.

]

Lemma 2.7. The graph L(K5)(3) admits a 4-cycle packing with leave L = K(2)
and a 4-cycle covering with padding P = K5(2).

Proof. (i) A 4-cycle packing of L(K7)(3) with leave K3(2) is given by:

{1,2},{1,3},{1,4},{1,5}),
{1,2},{2,4},{4,5},{2,5}),
{1,2},{1,3},{2,3},{2,4}),

{1,4},{2,4},{3,4},{4,5}),

({1,2},{2,3},{2,4},{2,5}),
{12}, {1,4},{4,5},{2,5}),
{1,2},{1,4},{3,4},{2,3}),

{1,4},{3,4},{3,5},{4,5}),

{1,2},{1,3},{3,4},{1,4}),
{1,2},{1,5},{3,5},{2,3}),
{1,2},{1,5},{4,5},{2,4}),

{1,3},{1,4},{2,4},{3,4}),
{1,4},{1,5},{2,5},{2,4}),

(
E
2{1,3},{2,3},{3,4},{3,5},
(
(

):

)s

)» ({13}, {1,4}, {1, 5}, {3,5}),
{1,3},{1,5},{3,5},{2,3};, E

)s

( )
). ( )
) ( )
) ({1.3},{1,5},{4,5},{3,4}),
{13}, {15}, (2.5}, {3.5)), ( )
). ( )
) ( )

{1,5},{2,5},{3,5},{4,5}),
({2,3},{2,5},{4,5}, {3,4}),
and the leave K5(2) is given by L = {{2,3}{2,5},{2,3}{2,5}}.
(77) The graph L(K5)(3) = L(K5) ® L(K5)(2). By Theorem 1.3 and Lemma 2.2, the
graph L(K7)(2) has a 4-cycle decomposition and L(K5) has a 4-cycle covering with
padding K5(2). O

Lemma 2.8. Fach of the graphs L(K7)(3), L(K7)(5) and L(K11)(3) admits a 4-cycle
packing and a 4-cycle covering with every possible leave and padding. The leaves L
and paddings P are as follows:

(1)  for L(K7)(3), the leave L = C3 and the padding P, P € {Cs, 1, F», F3};
(i1) for L(K7)(5), the leave L € {Cs, Fy, Fy, F3} and the padding P = Cs;
(i13) for L(K11)(3), the leave L € {Cs, Fy, Fy, F3} and the padding P = Cs.

{2,3},{2,4},{2,5},{3,5}), ({2,4},{3,4},{3,5},{4,5}),

Proof. (i) A 4-cycle packing and a 4-cycle covering of L(K7)(3) with leave C3 and
padding Cs, F, Fy, or Fj are given below.

The graph L(K7)(3) = L(K7) @& L(K7)(2). By Lemma 2.3 and the proof of
Lemma 2.6, Cy|(L(K;)— E(Cs)), where C5 = ({1,4},{1,7},{2,7},{3,7}, {4, 7}) and
Cy|(L(K7)(2) — E(Hs3)); see Figure 4 in the Appendix. Let the graph Hy = Cs & Hs;
see Figure 5. A 4-cycle packing and a 4-cycle covering of H; with leave C3 and
padding C5, Fy, F,, or F3 are given in Items 10, 11, 12, 13 and 14 of the Appendix.

(77) A 4-cycle packing and a 4-cycle covering of L(K7)(5) with leave Cs, Fy, Fy, or
F3, and padding C}3, are given below.
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The graph L(K7)(5) = L(K7) ® L(K7)(4). By Theorem 1.3, Cy4|L(K7)(4) and by
Lemma 2.3, we get a 4-cycle packing and a 4-cycle covering with leave C'5 and padding
Cs. The graph L(K7)(5) = L(K7)(2) @ L(K7)(3). From the proof of Lemma 2.6 and
Case (i) above, the graphs L(K7)(2) and L(K7)(3) have a 4-cycle packing with leave
K3(2) and leave Cj (given in Items 8 and 10 of the Appendix), respectively. From
the leaves K5(2) and Cj, the union of leave K5(2) in Item 8(a) and leave Cj in Item
10(a) gives the leave Fy; the union of leave K5(2) in Item 8(b) and leave Cj in Item
10(b) gives the leave Fy; the union of leave K5(2) in Item 8(a) and leave Cj in Item
10(c) gives the leave Fj.

(7ii) A 4-cycle packing and a 4-cycle covering of L(K7;)(3) with leave C5, Fy, F, or
F3, and padding C5 are given below.

The graph L(K11)(3) = L(Ky1) @ L(K11)(2). From the proof of Lemmas 2.4
and 2.6, we have Cy|(L(K11) — E(Hy)) and Cy|(L(K411)(2) — E(K2(2))), where
E(K5(2)) = {{7,11}{8,11},{7,11}{8,11}}. Define the graph Hs; = H; @& K»(2);
see Figure 6. Now a 4-cycle packing and a 4-cycle covering of H5 with leave C5, F1,
Fy, or F3, and padding Cj, follows by Items 15, 16, 17, 18 and 19 of the Appendix. [

Lemma 2.9. For n > 4, the graph L(K,) has a 4-cycle packing and a 4-cycle
covering with every possible leave and padding. The leaves L and paddings P are as
follows:

(7) if n=3 (mod 8), then the leave L = C3 and padding P € {Cs, Fy, F», F3};

(77) if n=>5 (mod 8), then the leave L € {Cs, B,2C3} and padding P = K5(2);
(7ii) if n =7 (mod 8), then the leave L = C5 and padding P = Cj.

Proof. (i) n =3 (mod 8): Let n =8k+3,k > 1. If k = 1, then the result follows by
Lemma 2.4. Now consider k£ > 2. The graph L(Kgii3) = L(K11) @ L(Ks@—1)4+1) ®
(K10OKg—1y) @ H, by Observation 2.1, where H is as defined in Observation 2.1,
namely, H = A’ @ f(10,8(k—1) ® Kiogk-1) DD Klo’g(k_l)J. By Theorems 1.3, 1.8

-~

(8k+2) copies
and 1.7, Cy|L(Kg(-1)11), Ca|(K10OKsxk-1)) and C4|H. Now the required packing
and covering follow by Lemma 2.4.
(t4) n = 5 (mod 8): Let n = 8k + 5,k > 0. For k = 0, the graph L(Kj) has a
4-cycle packing and a 4-cycle covering, by Lemma 2.2. Now we consider £ > 1. The
graph L(Kgpys5) = L(K5) & L(Ksi1) ® (K4OKgi) @ H, by Observation 2.1, where
H=A® Kys, ® Kygp ® -+ P Ky, Now the result follows by Lemma 2.2 and

(8k+4) copies
Theorems 1.3, 1.8 and 1.7.

(7ii) n = 7 (mod 8): Let n = 8k + 7,k > 0. Because of Lemma 2.3, we consider
k > 1. The graph L(Kgx17) = L(K7)®L(Kgy1)B(K¢OKgr)DH, by Observation 2.1,
where H = A" @ Kggs, @ Ko @ -+ - @ Kggr. The result now follows by Lemma 2.3

(8k+6) copies
and Theorems 1.3, 1.8 and 1.7. O
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Lemma 2.10. For n > 4, the graph L(K,)(2) has a 4-cycle packing and a 4-cycle
covering with every possible leave and padding. The leaves and paddings are as fol-
lows:

(i) L= (K2)(2) and P = K5(2) ifn =3 (mod 8);
(iii) L= (K»)(2) and P = Ky(2) if n =7 (mod 8).

Proof. From the proof of Lemma 2.9, it is enough to show that each of the graphs
L(K5)(2), L(K7)(2) and L(K11)(2) admits a 4-cycle packing and a 4-cycle covering
with every possible leave and padding and the result follows by Theorem 1.3 and
Lemma 2.6. U

Lemma 2.11. For n > 4, the graph L(K,)(3) has a 4-cycle packing and a 4-cycle
covering with every possible leave and padding. The leaves and paddings are as fol-
lows:

(1) Le{Cs F,F;, F3} and P=Cj5 if n =3 (mod 8);

(1) L= K5(2) and P = K3(2) ifn =5 (mod 8);

(17i) L = C3 and P € {C5, Fy, Fy, F3} if n =7 (mod 8).

Proof. As in the proof of Lemma 2.9, it is enough to show that each of the graphs
L(K5)(3), L(K7)(3) and L(K711)(3) has a 4-cycle packing and a 4-cycle covering with
every possible leave and padding, and the result follows by Lemmas 2.7 and 2.8. [

Lemma 2.12. For n > 4, the graph L(K,)(5) has a 4-cycle packing and a 4-cycle
covering with every possible leave and padding. The leaves and paddings are as fol-
lows:

(1) L=C5and P e{Cs, F\, F5, F3} if n =3 (mod 8);
(1) L= K5(2) and P = K3(2) ifn =5 (mod 8);
(ZZZ) Le {C5,F1,F2,F3} and P = 03 Zf?’L =7 (IIlOd 8)

Proof. (i) n = 3 (mod 8): Let n = 8k + 3, k > 1. The graph L(Ksii3)(5) =
L(Kgky3) @& L(Ksk13)(4), and the result follows by Lemma 2.9 and Theorem 1.3.
(t4) n =5 (mod 8): Let n =8k +5, k > 0. The graph L(Ksi15)(5) = L(Ksk15)(2) ®
L(Kgk+5)(3), and the result follows by Theorem 1.3 and Lemma 2.11.

(7ii) n =7 (mod 8): Let n =8k + 7, k > 0. The graph L(Kgxi7)(5) = L(K7)(5) &
L(Kgr41)(5) & (KsOKg)(5) & A'(5) @ H(5), by Observation 2.1, where H(5) =
Ke8t(5) ® Ko s(5) @ - - - @ Kgsr(5). The result now follows by Lemmas 1.5 and 2.8

-~

(8k+6) copies
and Theorems 1.3, 1.8 and 1.7. O

Proof of Theorem 1.1. By Lemmas 2.9, 2.10, 2.11 and 2.12, the proof follows for
A€ {1,2,3,5}. First, we consider the proof for A =0,2,3 (mod 4). Let A\ = 4k + 1,
k> 1,1 € {0,2,3}. For i = 0, the proof follows by Theorem 1.3. For i € {2,3},
let L(K,)(\) = L(K,)(i) & L(K,)(4k). Now the required maximum packing and
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minimum covering with 4-cycles follows by Lemma 2.10 and 2.11 and Theorem 1.3.
Finally, for A = 1 (mod 4) > 5, the graph L(K,,)(4k+1) = L(K,)(5)® L(K,)(4k—4)
and the result follows by Lemma 2.12 and Theorem 1.3. O

3 Existence of a maximum packing and a minimum covering
of L(K,)(\) with 6-cycles

In this section, we prove the existence of a 6-cycle packing and a 6-cycle covering of
L(K,)(X\) with every possible leave and padding.

Observation 3.1. For a graph G, S;(G) denotes the graph that arises out of the
subdivision of each edge of G exactly once; S1(G) is the first subdivision graph of G.
Let G* be the graph obtained from G by adding to each edge e = uv of G a new
vertex {u, v} such that the vertex {u, v} is adjacent to both the vertices u and v,
and {u, v} is a vertex of degree two in G*; see Figure 2. If we delete all the edges of
G in G*, then the resulting graph is isomorphic to S;(G), the first subdivision graph
of G, and hence G* = G & S1(G).

{1,2}
1 2
{2,3}
6 3
{3,4}
5 4
Co
{4,5}
Gs

Figure 2: The graph Cs and C§.

Let V(Ky+1) = {1,2,...,n+ 1}. Then V(L(K,41)) = P2({1,2,...,n + 1}).
We partition the vertex set of L(K,.;) into two sets A; and Ay, where A; =
P>({1,2,...,n}) and Ay = |J;_,{i,n + 1}. The subgraph of L(kK, ;) induced by
A, (respectively, Ay) is isomorphic to L(K,,) (respectively, K,,). Clearly, E(A;, As),
in L(K,41), is {{7,j}H{i,n + 1}, {i,jH{j,n+ 1}}, 1 < i < j < n; note that each
two-element subset represents a vertex in the line graph. Then L(K,11) = (A1) &
(A) & (E(A1, As)) = L(K,) & K.

Lemma 3.2. Each of the graphs L(K7), L(K1,) and L(K5) admits a 6-cycle packing
and a 6-cycle covering with leave C5 and padding Cs.

Proof. (i) Let V(K7) ={1,2,...,7}. Let

c=1{(1,2,3,4,6,5),(1,6,2,5,3,7),(1,3,6,7,2,4), (4,5,7)}
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be a decomposition of K7 into three copies of Cg and a Cj5. Clearly, the graph L(K7)—
E(LC) = (K¢e—1)® (Kg—1)D--- @ (Kg— 1), where I is a perfect matching of

VvV
7 copies

K. As Cg | (Kg—1I), a 6-cycle packing of L(K7) with leave C5 = ({4,5},{5,7},{4,7})
exists. Now the graph L(K7) = L(Kg) & K{, by Observation 3.1, and a required
6-cycle covering follows by Corollary 1.6 and Item 20 of the Appendix.

(17) Let P2({1,2,...,10,11}) = V(L(K711)). We partition the vertex set of L(K7;)
into three sets Ay, Ay and Az, where Ay = P»({1,2,3,4,11}), Ay = P»({5,6,7,8,9,
10,11}) and As = {{4,j} | 1 <i < 4,5 < j < 10}. The subgraphs induced by A;
and A, are L(K35) and L(K7), respectively. The graph L(K;1) = L(K5) ® L(K7) ®
(K,0Kg) @ H, by Observation 2.1, where H = A’ @ Ky6® K46 ® --- & Ky6. By

VvV
10 copies

Corollary 1.6 and Theorems 1.9 and 1.7, the graphs L(K5), K;OKg and H admit
6-cycle decompositions. Then a required 6-cycle packing and a 6-cycle covering of
L(Ky;) with leave C3 and padding C exist by Case (i) above.

(173) Let Po({1,2,...,14,15}) = V(L(K15)). We partition the vertex set of L(Ks5)
into three sets A1 = P»({1,2,3,4,5,6,15}), Ay = Po({7,8,...,14,15}) and A3 =
{{i,j} |1 <i<6,7<j <14} Thegraph L(Ky5) = L(K7)®L(Ko) D (KsLKs) D H,
by Observation 2.1, where H = A’ ® \[(678 D Kes® - P K67§. A required 6-cycle

15 c;,;)ies
packing and a 6-cycle covering of L(K;5) with L = P = Cj5 follows by Corollary 1.6
and Theorems 1.9, 1.7 and Case (i) above. O

Lemma 3.3. The graph K§(2) admits a 6-cycle decomposition.

Proof. Let V(Kg) = {1,2,...,6}. The 6-cycles are

(1,4,{4,5},5,{5,6},6),  (1,2,3,{3,5},5,{1,5}),  (1,{1,4},4,3,6,{1,6}),
(L{1,2},2.42,5},5.6),  (2.42,3}.3,{3.4},4,5).  (1.2.{2,3}.3.4.{1,4}).
(L{12}.2.{2,6}.6.5).  (L.{1.3},3,{3.5},5.{1.5}), (2.4.{4,5}.5.{5,6},6),
(1,5,2,6.3.{1,3}), (1,3,5,{2,5},2,4), (2,{2,4},4.6,{3,6},3).
(2,{2,4}.4,{4,6},6,{2,6}), (3,{3,6},6,{4,6},4,5),  (1,3,{3,4},4,6,{1,6})

Lemma 3.4. Fach of the graphs L(K7)(2), L(K11)(2) and L(K15)(2) admits a 6-
cycle decomposition.

Proof. (i) The graph L(K7)(2) = L(Ks)(2) @ K{(2), by Observation 3.1, and
Cs|L(Kg)(2) and Cg|K§(2), by Corollary 1.6 and Lemma 3.3.

(17) Let V(L(K11)(2)) = P2({1,2,...,10,11}). We partition the vertex set of
L(K11)(2) into three sets Ay = Pa({1,2,3,4,11}), Ay = P»({5,6,7,8,9,10,11}) and
Ay ={{i,j}[1 <i<4,5<j <10} The graph L(K11)(2) = L(K5)(2) @ L(K7)(2) &
(K4,OKs)(2) @ H(2), by Observation 2.1, where

H(2)=A(2) & \[(4,6(2) © Kyp(2)@--- @ K4,6(2)J'

NV
10 copies
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Hence a required decomposition follows by Corollary 1.6 and Theorems 1.9 and 1.7
and Case (i) above.

(1ii) Let V(L(K15)(2)) = Pa2({1,2,...,14,15}). We partition the vertex set of
L(K15)(2) into three sets A1 = Py({1,2,3,4,5,6,15}), Ay = P({7,8,...,14,15})
and Ay = {{i,j}|1 < i < 6,7 < j < 14}, The graph L(K:5)(2) = L(K7)(2) &
L(Ky)(2) ® (KsOKsg)(2) @ H(2), by Observation 2.1, where

H(2) = A'(2) ® Kos(2) ® Kos(2) ® - @ K(2).

NV
14 copies

Now the result follows by Case (i) above, Corollary 1.6 and Theorems 1.9 and 1.7. O

Lemma 3.5. Forn =3 (mod 4),n > 4, the graph L(K,) admits a 6-cycle packing
with leave C3 and a 6-cycle covering with padding C'.

Proof. We consider the following three cases.

Case 1. n = 3 (mod 12). Let n = 12k + 3, kK > 1. For k = 1, the result fol-

lows by Lemma 3.2. So we consider £ > 2. The graph L(K12k+3) = L(Ky5) &

L(Kiok-11) ® (K14OKi24.-1y) ® H, where H = A/@f(14,12(k—1) DD Kig20— 1) , by
(12k+2) copies

Observation 2.1. Thus a 6-cycle packing and a 6-cycle covering follow by Lemma 3.2,
Corollary 1.6 and Theorems 1.9 and 1.7.

Case 2. n =7 (mod 12). Let n = 12k + 7, k > 0. For k = 0, the graph L(K7)
has a 6-cycle packing and a 6-cycle covering, by Lemma 3.2. Next we consider
k > 1. The graph L(Kiogi7) = L(K7) @ L(Kioky1) © (KeOKiox) @ H. Here, H =
A D ;K&lgk DD KG’WE’ by Observation 2.1. Hence by Lemma 3.2, Corollary 1.6,

(12k+g;copies
Theorems 1.9 and 1.7, a required 6-cycle packing and a 6-cycle covering follow.

Case 3. n = 11 (mod 12). Let n = 12k + 11, k£ > 0. Because of Lemma 3.2, we
consider & Z 1. The graph L(K12k+11) = L(KH) D L(K12k+1) D (K10|:|K12k) D H.
Now H = A'®@ Kip12k B - - - © Kig,125, by Observation 2.1. Now a 6-cycle packing and

(12k+;0r) copies
a 6-cycle covering follow by Lemma 3.2, Corollary 1.6 and Theorems 1.9 and 1.7. [

Lemma 3.6. Forn =3 (mod 4), n > 4, the graph L(K,)(2) has a 6-cycle decom-
position.

Proof. From the proof of Lemma 3.5, it is enough to show that each of the graphs in
{L(K7)(2), L(K11)(2), L(K15)(2)} admits a 6-cycle decomposition. Now a required
decomposition follows by Lemma 3.4. U

Proof of Theorem 1.2.
Case 1. First we consider A = 0 (mod 2), and let A = 2k’, ¥/ > 1. The graph
L(K,)2K) = L(K,)(2) ® L(K,)(2) ® - ® L(K,)(2), and a 6-cycle decomposition
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follows by applying Corollary 1.6 if n % 3 (mod 4), and applying Lemma 3.6 if n = 3
(mod 4).

Case 2. Next, A =1 (mod 2), and let A = 2k’+1, ¥’ > 0. The graph L(K,,)(2k'+1) =
L(K,) ® L(K,)(2k"). We obtain a 6-cycle packing and 6-cycle covering of L(K,)(\
by applying Corollary 1.6, and Lemmas 3.5 and 3.6. U

4 Appendix

1. The subgraphs H; of L(Ky1), Hs of L(K7)(2), Hy of L(K7)(3) and Hj of
L(K11)(3) are shown below:

Figure 3: The subgraph H; of L(Ki1). Figure 4: The subgraph Hj of L(K7)(2).

{1.4} {17} {271 {3,7} 1,3} (1,11} (2,11} (2,4} {411 {3,11}

{5.8}

18,11}

{5,11} (6,11}  {7,11 {9,11} {10,11}

Figure 5: The subgraph Hy of L(K7)(3).  Figure 6: The subgraph Hs of L(Ki1)(3).

2. The subgraph H; of L(K71;) has a 4-cycle packing with leave Cj.
({1,3},{1,113,{7,11},{3,11}), ({1,11},{5,11},{6,11},{2,11}),
({1,11},{6,11},{7,11},{8,11}), ({1,11},{9,11},{3,11},{10,11}),
({2,11},{5,11},{4,11},{7,11}), ({2,11},{8,11},{4,11},{9,11}),
({2,11},{2,4},{4,11},{10,11}), ({5,8},{5,11},{3,11},{8,11}) and the leave
L=({4,11},{3,11},{6,11}) .

3. The subgraph Hi of L(Ki1) has a 4-cycle covering with padding Cs.
({1,3},{1,11},{10,11},{3,11}), ({1,11},{5,11},{5,8},{8,11}),
({1,11},{2,11},{7,11},{6,11}), ({1,11},{7,11},{4,11},{9,11}),
({2,11},4{6,11},{3,11},{9,11}), ({2,11},{2,4},{4,11},{10,11}),
{2,11},{2,4},{4,11},{5,11}), ({2,11},{7,11},{3,11},{8,11}),
({4,11},{3,11},{7,113},{8,11}), ({4,11},{3,11},{5,11},{6,11}) and the padding
P=({2,11},{2,4},{4,11},{3,11},{7,11}).

4. The subgraph H; of L(Ki1) has a 4-cycle covering with padding F.
({1,3},{1,11},{10,11},{3,11}), ({1,11},{5,11},{5,8},{8,11}),
({1,11},{2,11},{7,11},{6,11}), ({1,11},{7,11},{4,11},{9,11}),
({2,11},4{6,11},{3,11},{9,11}), ({2,11},{2,4},{4,11},{8,11}),
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({2,11},{4,11},{6,11},{7,11}), ({2,11},{5,11},{4,11},{10,11}),
({3,11},{5,11},{6,11},{7,113), ({3,11},{8,11},{7,11},{4,11}) and the padding
P={{2,11}{4,11},{4,113{7,11},{7,11}3{2,11},{6,11}{7,11}{6,11}3{7,11}}.

The subgraph H; of L(K11) has a 4-cycle covering with padding F5.
({1,3},{1,11},{10,11},{3,11}), ({1,11},{5,11},{5,8},{8,11}),
({1,11},{2,11},{7,11},{6,11}), ({1,11},{7,11},{4,11},{9,11}),
({2,11},4{6,11},{3,11},{9,11}), ({2,11},{4,11},{6,11},{5,113}),
({2,11},{7,11},{3,11},{10,11}), ({2,11},{2,4},{4,11},{8,11}),
({4,11},{5,11},{3,11},{10,11}), ({4,11},{3,11},{8,11},{7,11}) and the padding
P={{2,11}{4,11},{4,11¥{7,11},{7,113{2,11},{3,11}{10,11},{3,11}{10,11}}.

The subgraph H; of L(K11) has a 4-cycle covering with padding F5.
({1,3},{1,11},{10,11},{3,11}), ({1,11},{5,11},{5,8},{8,11}),
({1,11},{2,11},{7,11},{6,11}), ({1,11},{7,11},{4,11},{9,11}),
({2,11},4{6,11},{3,11},{9,11}), ({2,11},{4,11},{6,11},{5,11}),
({2,11},{7,11},{4,11},{10,11}), ({2,11},{2,4},{4,11},{8,11}),
({4,11},{5,11},4{38,113},{7,11}), ({4,11},{3,11},{8,11},{7,11}) and the padding
P={{2,11}{4,11},{4,11{7,11} ,{7,113{2, 11} ,{4,11}{7,11} ,{4,113{7,11}}.

The subgraph H> of L(K7)(2) has a 4-cycle decomposition.

({1,3%},{3,5},{3,7},{3,4}), ({2,3},{3,6},{3,7},{3,5}), ({1,3},{1,6},{1,7},{1,4}),
({1,3},{1,5%,{1,7},{1,6}), ({1,2},{1,4},{1,7},{1,58}), ({1,2},{2,4},{2,7},{2,5}),
({2,3},{2,4},{2,7},{2,6}), ({2,3},{2,5},{2,7},{2,6}), ({1,3},{3,4},{3,7},{3,6}),
({1,2},{1,6},{4,6},{2,6}), ({1,3},{1,4},{4,6},{3,6}), ({2,3},{3,4},{4,5},{2,4}),
({2,3},{3,4},{4,6},{3,6}), ({1,6},{4,6},{2,6},{5,6}), ({1,5},{4,5},{3,5},{5,6}),
({2,5%},{5,6},{3,5},{4,5}), ({1,5},{4,5},{2,5},{5,6}), ({2,3},{2,5},{5,7},{3,5}),
({1,3},{1,5},{5,7},{3,5}), ({1,2},{1,6},{6,7},{2,6}), ({1,4},{4,7},{3,4},{4,51),
({1,4},{4,7},{2,4},{4,5}), ({1,6},{5,6},{3,6},{6,7}), ({2,4},{4,7},{3,4},{4,6}),
({1,2},{1,4},{4,6},{2,4}), ({1,2},{1,5},{5,7},{2,5}), ({2,6},{5,6},{3,6},{6,7}).

Two choices of 4-cycle packing with leave K3(2) from the graph Hsz of L(K7)(2).
(a) The subgraph Hs of L(K7)(2) has a 4-cycle packing with leave K>(2).
({1,7},{4,7},{2,73,{5,71), ({1,7},{5,7},{3,7},{6,7}),
2,7},{5,7},{3,7},{6,7}), ({1,7},{4,7},{2,7},{6,7H
and the leave L={{3,7}{4,7},{3,7}3{4,7}}.

(b) The subgraph Hs of L(K7)(2) has a 4-cycle packing with leave K2(2).
({1,7},{5,7},{3,73,{6,71), ({2,7},{4,7},{3,7},{6,7}),
({1,7},{5,7},{2,7},{6,71), ({2,7},{4,7},{3,7},{5,71H)
and the leave L={{1,7}{4,7},{1,73{4,7}}.

The subgraph Hs of L(K7)(2) has a 4-cycle covering with padding K»(2).
({1,73,{4,7},48,73,{5,7}), ({1,7},{4,7},{3,7},{6,71H),
({1,73,{5,7},{2,7},{6,7}), ({2,7},{4,7},{3,7},{56,71),
{2,7},16,7},{3,7},{4,7}) and the padding P={{3,7}{4,7},{3,7}{4,7}}.

Three choices of 4-cycle packing with leave C3 from the graph Hy of L(K7)(3).
(a) The subgraph H4 of L(K7)(3) has a 4-cycle packing with leave Cs.
{1,7},{2,73,{3,73,{4,71), ({1,7},{5,7},{3,7},{6,7}),
{2,7},{4,7},{3,73,{6,73), ({1,7},{5,7},{2,7},{6,73),
({2,7},{4,7},{3,7},{5,7}) and the leave L=({1,4},{1,7},{4,7}).
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(b) The subgraph Hy of L(K7)(3) has a 4-cycle packing with leave Cs.
({1,4%,{1,73,{2,7},{4,7H), ({1,7},{4,7},{3,7},{6,71),
({1,73,{4,73,43,7},{5,7H), ({1,7},{5,7},{2,7},{6,71),
({2,7},{4,7},{3,7},{6,7}) and the leave L=({2,7},{3,7},{5,7}).

(¢) The subgraph Hy of L(K7)(3) has a 4-cycle packing with leave Cs.
({1,43,{1,73,{2,7},{4,7H), ({1,7},{4,7},{3,7},{6,71),
({1,73,{4,73,43,7},{5,7H), ({1,7},{5,7},{2,7},{6,71),
{2,7},1{5,7},{3,7},{6,7}) and the leave L=({2,7},{3,7},{4,7}H).

The subgraph Hy of L(K7)(3) has a 4-cycle covering with padding Cs.
({1,4},{1,73,{2,7},{4,7}), ({1,7},{4,7},{3,73,{5,71),
{1,7%,{2,73,{3,7},{4,7}), ({1,7},{5,7},{2,73,{6,71),
{2,7},{5,7},{3,73,{6,7}), ({1,7},{5,7},{3,7},{6,71),
({2,7},{4,7},{3,7},{6,7}) and the padding
P=({1,7},{2,7},{6,7},{3,7},{5,7}H).

The subgraph Hy of L(K7)(3) has a 4-cycle covering with padding F7.
({1,43,{1,7},{2,73,{4,7}), ({1,7},{2,7},{3,7},{5,71),
({1,7},{6,7},{3,7},{4,7}), ({1,7},{5,7},{2,73,{6,7}),
({1,7},{6,7},{3,7},{4,7}), ({1,7},{3,7},{2,7},{6,7}),
({2,7},{4,7},{3,7},{5,7}) and the padding
P={1,7}{2,7},{2,7}{3,7},{3,7H1,7},{1,7H6,7},{1,7}{6,7}}.

The subgraph Hy of L(K7)(3) has a 4-cycle covering with padding F>.
({1,43,{1,7},438,73,{4,7}), ({1,7},{4,7},{2,73,{5,7D),
({1,73,{2,7},48,7},{6,7}), ({1,7},{5,7},{3,7},{6,71),
({1,73,{2,7},4{6,73,{4,7}), ({2,7},{4,7},{3,7},{5,71),
({2,7},{3,7},{4,7},{6,7}) and the padding
P={{1,7}{2,7},{2,73{3,7},{3,7H{1,7},{4,7}3{6,7},{4,73{6,7}}.

The subgraph Hy of L(K7)(3) has a 4-cycle covering with padding F3.
({1,4},{1,73,{3,7},{4,71), ({1,7},{2,7},{3,73,{6,7}),
{1,7},{3,73,{5,73,{2,7}), ({1,7},{4,7},{2,73,{3,71),
{1,7},{4,73,{3,73,{5,71), ({1,7},{5,7},{2,7},{6,71),
({2,7},{6,7},{3,7},{4,7}) and the padding
P={{1,7}{2,7},{2,7}{3,7},{3,7H{1,7},{3,73{1,7},{3,73{1,7}}.

The subgraph Hs of L(K11)(3) has a 4-cycle packing with leave Cs.

({1,11},{5,11},{5,8},{8,11}), ({1,11},{2,11},{5,11},{6,11}),
({1,11},4{9,11},{2,11},{10,11}), ({2,11},{2,4},{4,11},{7,11}),
({2,11},4{6,11},{7,11},{8,113}), ({4,11},{3,11},{7,11},{8,11})

({4,11},{5,113},{3,11},{6,11}), ({4,11},{9,11},{3,11},{10,11}) and the leave

L=({1,3},{1,11},{7,11},{8,11},{3,11}).

The subgraph Hs of L(K11)(3) has a 4-cycle packing with leave F.

({1,3},{1,11},{10,11},{3,11}), ({1,11},{2,11},{5,11},{6,113}),
({1,11},{5,11},{5,8},{8,11}), ({1,11},{7,11},{4,11},{9,11}),
({2,11},{2,4},{4,11},{10,11}), ({2,11},{8,11},{3,11},{9,11}),

({4,11},{3,11},{7,11},{8,11}), ({4,11},{5,11},{3,11},{6,11}) and the leave
L={{2,11}{6,11},{6,113{7,11},{7,113{2,11} ,{7,11}3{8,11},{7,11}{8,11}}.
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The subgraph Hs of L(K11)(3) has a 4-cycle packing with leave Fs.
({1,3},{1,11},{10,113,{3,11}), ({1,11},{2,11},{6,11},{7,11}),
({1,11},{8,11},{3,11},{9,11}), ({2,11},{2,4},{4,11},{7,11}),
({2,11},{5,11},{5,8},{8,11}), ({2,11},{9,11},{4,11},{10,11}),
({4,11},{3,11},{7,11},{8,11}), ({4,11},{5,11},{3,11},{6,11}) and the leave
L={{1,11}{5,11},{5,11}{6,11},{6,11}3{1,11},{7,113{8,11},{7,11}{8,11}}.

The subgraph Hs of L(K11)(3) has a 4-cycle packing with leave Fs.
({1,3},{1,11},{9,11},{3,11}), ({1,11},{2,11},{5,11},{6,11}),
({1,11},4{5,11},{3,11},{10,11}), ({2,11},{2,4},{4,11},{10,11}),
({2,11},{6,11},{4,11},{9,11}), ({2,11},{7,11},{3,11},{8,11}),
({4,11},{3,11},{6,11},{7,11}), ({4,11},{5,11},{5,8},{8,11}) and the leave
L={{1,113{8,11},{8,113{7,11},{7,113{1,11},{7,113{8,11},{7,11}{8,11}}.

The subgraph Hs of L(K11)(3) has a 4-cycle covering with padding Cs.
({1,3},{1,11},{10,11},{3,11}), ({1,11},{2,11},{5,11},{6,113}),
({1,11},{3,11},{8,11},{7,11}), ({1,11},{5,11},{5,8},{8,11}),
({1,11},4{8,11},{3,11},{9,11}), ({2,11},{2,4},{4,11},{7,11})
({2,11},{6,11},{7,11},{8,11}), ({2,11},{9,11},{4,11},{10,11})
({4,11},{3,11},{7,113},{8,11}), ({4,11},{5,11},{8,11},{6,11}) and the padding
P=({1,11},{3,11},{8,11}).

The graph K¢ has a 6-cycle covering with padding Cs.

(1,{1,4},4,3,{3,5},5), (1,{1,2},2,{2,3%},3,6), (1,{1,3},3,5,{4,5},4),
(2,{2,5},5,15,6},6,{2,6}), (1,3,{3,4},4,5,{1,5}), (1,{1,6},6,{3,6},3,2),
(2,{2,4},4,{4,6},6,5), (2,4,{4,5},5,3,6) and the padding

P=(2,3,6).
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