Packings and coverings of lambda-fold line graphs of the complete graph with k-cycles, for $k=4,6$

R. SRimathi
Department of Mathematics
Idhaya College of Arts and Science for Women
Puducherry-605 008, India
gsrimathi66@gmail.com

Abstract

Let $L\left(K_{n}\right)(\lambda)$ denote the λ-fold line graph of the complete graph K_{n}. In this paper, we obtain a maximum packing of $L\left(K_{n}\right)(\lambda)$ with k-cycles, $k \in\{4,6\}$, with every possible leave, and also obtain a minimum covering of $L\left(K_{n}\right)(\lambda)$ with k-cycles, $k \in\{4,6\}$, with every possible padding.

1 Introduction

For a graph G, let $V(G)$ and $E(G)$ denote the vertex set and edge set of the graph G. A k-cycle is the cycle on k vertices; we denote it by C_{k}. The complete graph on n vertices is denoted by K_{n} and the complete bipartite graph with bipartition (X, Y), where $|X|=m$ and $|Y|=n$, is denoted by $K_{m, n}$. The complete m-partite graph in which each of its partite sets has n vertices is denoted by $K_{m} \circ \bar{K}_{n}$. For a positive integer k, let $k G$ denote k pairwise vertex-disjoint copies of G. For a graph G, the graph $G(\lambda)$ is obtained by replacing each edge of G by λ parallel edges. The graph $G(\lambda)$ is called the λ-fold copy of the graph G. For disjoint subsets A and B of the vertex set $V(G)$ of G, let $E(A, B)$ denote the set of all edges of G each having one end in A and the other end in B. For $S \subseteq V(G)$ and $E^{\prime} \subseteq E(G)$, let $\langle S\rangle$ and $\left\langle E^{\prime}\right\rangle$ denote the subgraphs induced by S and E^{\prime} respectively. A graph G is said to be H-decomposable or $H \mid G$ if the edge set of G can be partitioned into $E_{1}, E_{2}, \ldots, E_{k}$ such that for each $1 \leq i \leq k,\left\langle E_{i}\right\rangle \simeq H$; if each $\left\langle E_{i}\right\rangle \simeq C_{r}$, then we say that G has a C_{r}-decomposition or an r-cycle decomposition and in this case we write $C_{r} \mid G$.

The line graph of a graph G, denoted by $L(G)$, is the graph with vertex set $V(L(G))=E(G)$ and $e_{i} e_{j} \in E(L(G))$ if and only if the edges e_{i} and e_{j} in G are incident at a vertex of G. For a non-empty set S, let $\mathcal{P}_{2}(S)$ denote the set of all two-element subsets of S. The bowtie is a graph with five vertices, six edges, and having two edge-disjoint 3 -cycles with exactly one common vertex, and it is denoted by B. A kite is the simple graph on four vertices, four edges, and having a triangle and an edge incident with the triangle, and it is denoted by K. A graph with vertices
a, b, c, d and edges $a b, b c, c a, c d, c d$ is denoted by F_{1}; that is, the graph consisting of a triangle with a double edge attached, on 4 vertices and 5 edges. A graph with vertices a, b, c, d, e and edges $a b, b c, c a, d e, d e$ is denoted by F_{2}; that is, the graph having a triangle with a disjoint double edge, on 5 vertices and 5 edges. A graph with vertices a, b, c and edges $a b, b c, c a, c a, c a$ is denoted by F_{3}.

For graphs G and H, the Cartesian product of G and H, denoted by $G \square H$, has vertex set $V(G) \times V(H)$ in which $\left(g_{1}, h_{1}\right)$ is adjacent to $\left(g_{2}, h_{2}\right)$ if and only if $g_{1}=g_{2}$ and $h_{1} h_{2} \in E(H)$, or $h_{1}=h_{2}$ and $g_{1} g_{2} \in E(G)$.

A k-cycle packing of the graph G is a triple (V, E, L), where V is the vertex set of G, E is a set of edge-disjoint k-cycles of G, and L is the set of edges of G not belonging to any of the k-cycles of E. The collection of edges L is the leave. If $|E|$ is as large as possible, or equivalently if $|L|$ is as small as possible, then (V, E, L) is called a maximum packing of G with k-cycles; see Chapter 4 of [24]. A k-cycle covering of the graph G is a triple (V, E, P), where V is the vertex set of G, P is a subset of the edge set of $G(\lambda)$, and E is a set of edge-disjoint k-cycles which partitions the union of P and the edge set of G. The collection of edges P is called the padding. If $|P|$ is as small as possible, then (V, E, P) is called a minimum covering of G with k-cycles; see Chapter 4 of [24]. Definitions which are not given here can be found in $[24,31]$.

Maximum packings of K_{n} with graphs K_{4} and certain graphs on five vertices are studied in [4, 33]. Maximum packings and minimum coverings of K_{n} with 4-cycles, 5 -cycles, 6 -cycles, cubes and the graphs having four or fewer vertices are studied in $[1,18,19,20,26,27,28]$. Maximum packings and minimum coverings of $K_{n, n}(\lambda)$ with 4 -cycles and $K_{1,4}$ are studied in [21]. In [22, 23], the existence of maximum packings and minimum coverings of $K_{2 n+1}$ and $K_{m, n}$ with 8-cycles are established. Maximum packings of the λ-fold complete multipartite graph $\left(K_{a_{1}, a_{2}, \ldots, a_{n}}\right)(\lambda)$ with 4cycles have been studied in $[2,3]$. Also, maximum packings and minimum coverings of λ-fold complete equipartite graphs with triangles or kites are obtained in $[16,32]$. Maximum packings and minimum coverings of the complete equipartite graph with $K_{4}-e$ are studied in [11, 12]. In [17], the existence of a maximum packing of $K_{m} \circ \bar{K}_{n}$ with 5 -cycles for an odd integer m is established. For $k \in\left\{6,2^{l},\binom{n}{2}\right\}$, existence of a k-cycle decomposition of the graph $L\left(K_{n}\right)$ has been studied in [6, 7, 14, 30]. In fact, in $[5,9,13]$, the existence of a k-cycle decomposition of $L\left(K_{n}\right)(\lambda), k \in\{4,5\}$ has been obtained. Maximum packings of the graph $L\left(K_{n}\right)$ with bowties has been completely settled in [10]. Also, maximum packings and minimum coverings of $L\left(K_{n}\right)(\lambda)$ with kites have been considered in [25]. In this paper, existence of a maximum k-cycle packing and a minimum k-cycle covering of $L\left(K_{n}\right)(\lambda), k \in\{4,6\}$, with every possible leave and padding, is established.

If $n \geq 4$ and $4 \mid E\left(L\left(K_{n}\right)(\lambda)\right)$, then $L\left(K_{n}\right)(\lambda)$ has a 4 -cycle decomposition. If $4 \nmid E\left(L\left(K_{n}\right)(\lambda)\right)$, then we look into a 4-cycle decomposition of $L\left(K_{n}\right)(\lambda)-E(L)$ and $L\left(K_{n}\right)(\lambda) \cup E(P)$, that is, the minimum number edges whose removal from $L\left(K_{n}\right)(\lambda)$ gives a 4 -cycle decomposition, and the minimum number of edges whose addition to $L\left(K_{n}\right)(\lambda)$ gives a 4 -cycle decomposition, where L is a leave and P is a padding. Note that L and P are even graphs as the graph $L\left(K_{n}\right)(\lambda)$ has regularity $2 \lambda(n-2)$. In

Table 1, for $\lambda=1$ and $n \equiv 5(\bmod 8),\left|E\left(L\left(K_{n}\right)(\lambda)\right)\right| \equiv 6(\bmod 8)$. Since $L\left(K_{n}\right)$ is a simple graph, $|E(L)|=6$. The possible leaves are a 6 -cycle or B or $2 C_{3}$, and $|E(P)|=2$ with possible padding $K_{2}(2)$. For $\lambda \equiv 1(\bmod 5)>1$ and $n \equiv 5(\bmod 8)$, $\left|E\left(L\left(K_{n}\right)(\lambda)\right)\right| \equiv 6(\bmod 8)$. Since $L\left(K_{n}\right)(\lambda)$ is a multigraph, $|E(L)|=2$. The only possible leave is $K_{2}(2)$, and $|E(P)|=2$ with possible padding $K_{2}(2)$. It is easy to observe that the possible leaves and paddings of the remaining n and λ are listed in Table 1.

We prove the following main results.
Theorem 1.1. The graph $L\left(K_{n}\right)(\lambda)$ admits a maximum 4-cycle packing and a minimum 4-cycle covering with every possible leave and padding. The possible leaves and paddings are shown in Table 1.

$\lambda \equiv$	$n \geq 4$ and $n \equiv$	Leave	Padding
$0(\bmod 4)$	all n	\emptyset	\emptyset
all λ	$0(\bmod 2)$ or $1(\bmod 8)$	\emptyset	\emptyset
$0(\bmod 2)$	$5(\bmod 8)$	\emptyset	\emptyset
$1(\bmod 4)$	$3(\bmod 8)$	C_{3}	$C_{5}, F_{1}, F_{2}, F_{3}$
	$5(\bmod 8)$	$\left\{C_{6}, B, 2 C_{3}\right.$ if $\left.\lambda=1\right\},\left\{K_{2}(2)\right.$ if $\left.\lambda \geq 5\right\}$	$K_{2}(2)$
	$7(\bmod 8)$	$\left\{C_{5}\right.$ if $\left.\lambda=1\right\},\left\{C_{5}, F_{1}, F_{2}, F_{3}\right.$ if $\left.\lambda \geq 5\right\}$	C_{3}
$(\bmod 4)$	$3(\bmod 8)$	$K_{2}(2)$	$K_{2}(2)$
	$5(\bmod 8)$	\emptyset	\emptyset
	$7(\bmod 8)$	$K_{2}(2)$	$K_{2}(2)$
	$3(\bmod 8)$	$C_{5}, F_{1}, F_{2}, F_{3}$	C_{3}
$3(\bmod 4)$	$5(\bmod 8)$	$K_{2}(2)$	$K_{2}(2)$
	$7(\bmod 8)$	C_{3}	$C_{5}, F_{1}, F_{2}, F_{3}$

Table 1: Leaves and paddings of $L\left(K_{n}\right)(\lambda)$ with 4-cycle packings and 4-cycle coverings

Theorem 1.2. The graph $L\left(K_{n}\right)(\lambda)$ admits a maximum 6 -cycle packing and a minimum 6-cycle covering with every possible leave and padding. The possible leaves and paddings are shown in Table 2.

$\lambda \equiv$	$n \geq 4$	Leave	Padding
$1(\bmod 2)$	$n \not \equiv 3(\bmod 4)$	\emptyset	\emptyset
	$n \equiv 3(\bmod 4)$	C_{3}	C_{3}
$0(\bmod 2)$	all n	\emptyset	\emptyset

Table 2: Leaves and paddings of $L\left(K_{n}\right)(\lambda)$ with 6 -cycle packings and 6 -cycle coverings

We state the following known results for our future reference.
Theorem 1.3. [5] The graph $L\left(K_{n}\right)(\lambda)$ has a 4-cycle decomposition if and only if n and λ satisfy the following conditions:
(i) n even, or
(ii) $n \equiv 1(\bmod 4)$ and $\lambda \equiv 0(\bmod 2)$, or
(iii) $n \equiv 3(\bmod 4)$ and $\lambda \equiv 0(\bmod 4)$, or
(iv) $n \equiv 1(\bmod 8)$ and λ is odd.

Theorem 1.4. [6] The graph $L\left(K_{n}\right)$ has a 6-cycle decomposition if and only if $n \not \equiv 3(\bmod 4)$.

The following lemma is an easy observation.
Lemma 1.5. If $H \mid G$, then $H \mid G(\lambda)$ for any $\lambda \geq 2$.
The following corollary is a consequence of Lemma 1.5 and Theorem 1.4.
Corollary 1.6. If $n \not \equiv 3(\bmod 4), n \geq 4$ and $\lambda \geq 1$, then the graph $L\left(K_{n}\right)(\lambda)$ has a 6 -cycle decomposition.

Theorem 1.7. [29] The complete bipartite graph $K_{m, n}$ has a $2 k$-cycle decomposition if and only if m and n are even, $m \geq k, n \geq k$, and $2 k$ divides $m n$.

Theorem 1.8. [15] The graph $K_{m} \square K_{n}$ has a 4-cycle decomposition if and only if one of the following holds.
(i) $m, n \equiv 0(\bmod 2)$;
(ii) $m, n \equiv 1(\bmod 8)$;
(iii) $m, n \equiv 5(\bmod 8)$.

Theorem 1.9. [8] The graph $K_{m} \square K_{n}$ has a 6 -cycle decomposition if and only if

1. m, n are even, and
(a) $6 \mid m$ or $6 \mid n$, or
(b) $m+n \equiv 2(\bmod 3)$; or
2. m, n are odd, and
(a) if $m, n \not \equiv 0(\bmod 3)$, then $(m+n) \equiv 2(\bmod 12)$, or
(b) if $m \equiv 0(\bmod 3)$ or $n \equiv 0(\bmod 3)$, then $m+n \equiv 2(\bmod 4)$.

2 Existence of a maximum packing and a minimum covering of $L\left(K_{n}\right)(\lambda)$ with 4-cycles

In this section, we prove the existence of a 4-cycle packing and a 4-cycle covering of $L\left(K_{n}\right)(\lambda)$ with every possible leave and padding.

Observation 2.1. Consider $k \geq 2$ and $n \geq 5$. Let $V\left(K_{n}\right)=\{1,2, \ldots, n\}$. Then the vertex set of $L\left(K_{n}\right)$ can be given as $V\left(L\left(K_{n}\right)\right)=\mathcal{P}_{2}(\{1,2, \ldots, n-1, n\})$, that is, the set of all two-element subsets of $\{1,2, \ldots, n-1, n\}$. We partition the vertex set of $L\left(K_{n}\right)$ into three sets A_{1}, A_{2} and A_{3}, where $n>k+1, A_{1}=\mathcal{P}_{2}(\{1,2, \ldots, k, n\})$, $A_{2}=\mathcal{P}_{2}(\{k+1, k+2, \ldots, n-1, n\})$ and $A_{3}=\{\{i, j\} \mid 1 \leq i \leq k, k+1 \leq j \leq n-1\}$. The subgraphs of $L\left(K_{n}\right)$ induced by A_{1}, A_{2} and A_{3} are isomorphic to $L\left(K_{k+1}\right)$,
$L\left(K_{n-k}\right)$ and $K_{k} \square K_{n-k-1}$, respectively, where \square denotes the cartesian product of graphs. Clearly, $\left\langle E\left(A_{1}, A_{2}\right)\right\rangle=\langle\{\{i, n\}\{j, n\} ; 1 \leq i \leq k, k+1 \leq j \leq n-1\}\rangle=$ $K_{k, n-k-1}$; we denote the graph $\left\langle E\left(A_{1}, A_{2}\right)\right\rangle$ by A^{\prime}. For $1 \leq i \leq k, k+1 \leq j \leq n-1$, let $R_{i}=\{\{i, k+1\},\{i, k+2\}, \ldots,\{i, n-1\}\}$ and let $Q_{j}=\{\{1, j\},\{2, j\}, \ldots,\{k, j\}\}$. Clearly, $\left\langle E\left(R_{i}, A_{1}\right)\right\rangle \cong K_{n-k-1, k}$ and $\left\langle E\left(Q_{j}, A_{2}\right)\right\rangle \cong K_{k, n-k-1}$. The induced subgraph $H=\left\langle\cup_{i=1}^{k}\left\{E\left(R_{i}, A_{1}\right)\right\} \cup_{j=k+1}^{n-1}\left\{E\left(Q_{j}, A_{2}\right)\right\}\right\rangle=\underbrace{K_{k, n-k-1} \oplus \cdots \oplus K_{k, n-k-1}}_{(n-1) \text { copies }}$. Thus

$$
\begin{aligned}
L\left(K_{n}\right) & =\left\langle A_{1}\right\rangle \oplus\left\langle A_{2}\right\rangle \oplus\left\langle A_{3}\right\rangle \oplus\left\langle E\left(A_{1}, A_{2}\right)\right\rangle \oplus\left\langle E\left(A_{3}, A_{1}\right)\right\rangle \oplus\left\langle E\left(A_{3}, A_{2}\right)\right\rangle \\
& =L\left(K_{k+1}\right) \oplus L\left(K_{n-k}\right) \oplus\left(K_{k} \square K_{n-k-1}\right) \oplus A^{\prime} \oplus\left\langle\cup_{i=1}^{k} E\left(R_{i}, A_{1}\right)\right\rangle \oplus
\end{aligned}
$$

$$
=L\left(K_{k+1}\right) \oplus L\left(K_{n-k}\right) \oplus\left(K_{k} \square K_{n-k-1}\right) \oplus A^{\prime} \oplus H
$$

$$
\left\langle\cup_{j=k+1}^{n-1} E\left(Q_{j}, A_{2}\right)\right\rangle
$$

where $H=\underbrace{K_{k, n-k-1} \oplus \cdots \oplus K_{k, n-k-1}}_{(n-1) \text { copies }}$, as each of the graphs $\left\langle E\left(R_{i}, A_{1}\right)\right\rangle$ and $\left\langle E\left(Q_{j}, A_{2}\right)\right\rangle$ is isomorphic to $K_{k, n-k-1}$; see Figure 1.

Figure 1: The graph $L\left(K_{n}\right)=L\left(K_{k+1}\right) \oplus L\left(K_{n-k}\right) \oplus\left(K_{k} \square K_{n-k-1}\right) \oplus A^{\prime} \oplus H$.

Note: This observation, in particular, the notation A^{\prime} and the decomposition of $L\left(K_{n}\right)$, will be used extensively in the rest of the paper.

Lemma 2.2. The graph $L\left(K_{5}\right)$ has a 4-cycle packing with leave $L, L \in\left\{C_{6}, B, 2 C_{3}\right\}$, and B denotes the bowtie; also it has a 4 -cycle covering with padding $K_{2}(2)$.

Proof. Let $V\left(K_{5}\right)=\{1,2,3,4,5\}$. Then $V\left(L\left(K_{5}\right)\right)=\mathcal{P}_{2}(\{1,2,3,4,5\})$.
(i) A 4-cycle packing of $L\left(K_{5}\right)$ with leave C_{6} is given by the set of 4 -cycles in

$$
\begin{aligned}
\mathcal{F}_{1}= & (\{1,2\},\{1,3\},\{2,3\},\{2,4\}), \\
& (\{1,2\},\{1,4\},\{4,5\},\{1,5\}), \\
& (\{1,2\},\{2,3\},\{3,5\},\{2,5\}), \\
& (\{1,4\},\{1,5\}, 3\},\{1,4\},\{2,4\},\{3,4\}), \\
(\{3,5\},\{3,4\}), & (\{2,3\},\{2,5\},\{4,5\},\{3,4\})\}
\end{aligned}
$$

and the 6 -cycle $(\{1,3\},\{1,5\},\{2,5\},\{2,4\},\{4,5\},\{3,5\})$.
(ii) A 4-cycle packing of $L\left(K_{5}\right)$ with leave B is given by the set of 4 -cycles in

$$
\begin{aligned}
\mathcal{F}_{2}= & (\{1,2\},\{1,5\},\{3,5\},\{2,3\}), \\
& (\{1,2\},\{2,4\},\{2,3\},\{2,5\}), \\
& (\{1,3\},\{1,5\},\{1,4\},\{3,4\}), \\
& (\{1,5\},\{2,5\},\{3\},\{2,3\},\{3,4\},\{3,5\}), \\
(\{1,5\},\{4,5\}), & (\{2,4\},\{2,5\},\{4,5\},\{3,4\})\}
\end{aligned}
$$

and the two 3 -cycles of the bowtie are $(\{1,2\},\{1,3\},\{1,4\})$ and $(\{1,4\},\{2,4\},\{4,5\})$.
(iii) A 4-cycle packing of $L\left(K_{5}\right)$ with leave $2 C_{3}$ is given by the set of 4 -cycles in

$$
\begin{aligned}
& \mathcal{F}_{3}=\{(\{1,2\},\{2,4\},\{2,3\},\{2,5\}), \\
&(\{1,2\},\{1,4\},\{1,3\},\{1,5\}), \\
&(\{1,3\},\{3,5\},\{2,3\},\{3,4\}), \\
&(\{1,5\}, 4\},\{2,4\},\{4,5\},\{3,4\}), \\
&(2,5\},\{4,5\},\{3,5\}), \\
&(\{2,4\},\{2,5\},\{3,5\},\{3,4\})\}
\end{aligned}
$$

and the $2 C_{3}$ is given by the two 3 -cycles $(\{1,2\},\{1,3\},\{2,3\})$ and $(\{1,4\},\{1,5\},\{4,5\})$.
(iv) A 4-cycle covering of $L\left(K_{5}\right)$ with padding $K_{2}(2)$ is described below:

Clearly, the cycles in \mathcal{F}_{1} (described in (i) above) together with the two 4 -cycles, namely, $(\{1,3\},\{1,5\},\{4,5\},\{3,5\})$ and $(\{1,5\},\{2,5\},\{2,4\},\{4,5\})\}$, yield a 4 -cycle covering of $L\left(K_{5}\right)$ with padding $K_{2}(2)$ given by the edges in $\{\{1,5\}\{4,5\},\{1,5\}\{4,5\}\}$.

Lemma 2.3. The graph $L\left(K_{7}\right)$ has a 4-cycle packing with leave C_{5}; also it has a 4 -cycle covering with padding C_{3}.

Proof. Let $V\left(K_{7}\right)=\{1,2, \ldots, 7\}$. Then $V\left(L\left(K_{7}\right)\right)=\mathcal{P}_{2}(\{1,2, \ldots, 7\})$.
(i) A 4-cycle packing of $L\left(K_{7}\right)$ with leave C_{5} is given by the set of 4 -cycles in $\mathcal{F}_{1}=\{(\{1,2\},\{1,3\},\{1,4\},\{1,5\}), \quad(\{1,2\},\{1,4\},\{3,4\},\{2,4\})$, $(\{1,2\},\{1,6\},\{6,7\},\{1,7\}), \quad(\{1,2\},\{2,3\},\{2,4\},\{2,7\})$, $(\{1,2\},\{2,5\},\{2,3\},\{2,6\}), \quad(\{1,3\},\{1,5\},\{3,5\},\{2,3\})$, $(\{1,3\},\{1,6\},\{4,6\},\{3,6\}), \quad(\{1,3\},\{3,4\},\{2,3\},\{3,7\})$, $(\{1,3\},\{1,7\},\{3,7\},\{3,5\}), \quad(\{1,4\},\{4,6\},\{5,6\},\{4,5\})$, $(\{1,5\},\{1,6\},\{3,6\},\{5,6\}), \quad(\{1,5\},\{2,5\},\{2,7\},\{5,7\})$, $(\{1,5\},\{1,7\},\{4,7\},\{4,5\}), \quad(\{1,6\},\{1,7\},\{5,7\},\{5,6\})$, $(\{1,6\},\{2,6\},\{2,4\},\{1,4\}), \quad(\{2,3\},\{2,7\},\{6,7\},\{3,6\})$, $(\{2,4\},\{4,5\},\{5,7\},\{4,7\}), \quad(\{2,5\},\{5,7\},\{6,7\},\{5,6\})$, $(\{2,5\},\{2,4\},\{4,6\},\{4,5\}), \quad(\{2,6\},\{6,7\},\{3,7\},\{3,6\})$, $(\{2,6\},\{2,7\},\{4,7\},\{4,6\}), \quad(\{3,4\},\{3,5\},\{5,7\},\{3,7\})$, $(\{3,4\},\{4,6\},\{6,7\},\{4,7\}), \quad(\{3,4\},\{3,6\},\{3,5\},\{4,5\})$, $(\{3,5\},\{2,5\},\{2,6\},\{5,6\})\}$
and the 5 -cycle ($\{1,4\},\{1,7\},\{2,7\},\{3,7\},\{4,7\}$).
(ii) A 4 -cycle packing of $L\left(K_{7}\right)$ with padding C_{3} is given by the set of 4-cycles in \mathcal{F}_{1} (described in (i) above) together with the 4 -cycles ($\{1,4\},\{1,7\},\{2,7\},\{4,7\}$) and $(\{2,7\},\{2,4\},\{4,7\},\{3,7\})$, where the padding $C_{3}=(\{2,7\},\{4,7\},\{2,4\})$.

Lemma 2.4. The graph $L\left(K_{11}\right)$ has a 4-cycle packing with leave C_{3}; also it has a 4 -cycle covering of $L\left(K_{11}\right)$ with padding C_{5}, F_{1}, F_{2} or F_{3}.

Proof. Let $V\left(K_{11}\right)=\{1,2, \ldots, 11\}$. Then $V\left(L\left(K_{11}\right)\right)=\mathcal{P}_{2}(\{1,2, \ldots, 11\})$.
(i) First we obtain a 4 -cycle packing of $L\left(K_{11}\right)$ with leave C_{3}. We partition the vertex set of $L\left(K_{11}\right)$ into three sets A_{1}, A_{2} and A_{3}, where $A_{1}=\mathcal{P}_{2}(\{1,2,3,4,11\})$, $A_{2}=\mathcal{P}_{2}(\{5,6, \ldots, 11\})$ and $A_{3}=\{\{i, j\} \mid 1 \leq i \leq 4,5 \leq j \leq 10\}$. The subgraphs induced by the vertices in A_{1} and A_{2} are isomorphic to $L\left(K_{5}\right)$ and $L\left(K_{7}\right)$, respectively. The graph $L\left(K_{11}\right)=L\left(K_{5}\right) \oplus L\left(K_{7}\right) \oplus\left(K_{4} \square K_{6}\right) \oplus A^{\prime} \oplus H$, where $H=\underbrace{K_{4,6} \oplus K_{4,6} \oplus \cdots \oplus K_{4,6}}_{10 \text { copies }}$, by Observation 2.1, where A^{\prime} is as defined in
Observation 2.1. Lemmas 2.2 and 2.3 explicitly give a 4 -cycle decomposition of $\left(L\left(K_{5}\right)-E\left(C_{6}\right)\right)$ and $\left(L\left(K_{7}\right)-E\left(C_{5}\right)\right)$, with $C_{6}=(\{1,3\},\{1,11\},\{2,11\},\{2,4\}$, $\{4,11\},\{3,11\})$ and $C_{5}=(\{5,8\},\{5,11\},\{6,11\},\{7,11\},\{8,11\})$. By Theorems 1.8 and 1.7, $C_{4} \mid\left(K_{4} \square K_{6}\right)$ and $C_{4} \mid H$. Let H_{1} be the subgraph of $L\left(K_{11}\right)$ excluding the edges of the 4 -cycles in the decomposition of $L\left(K_{5}\right)-E\left(C_{6}\right), L\left(K_{7}\right)-E\left(C_{5}\right), K_{4} \square K_{6}$ and H (listed above); clearly $H_{1}=C_{6} \oplus A^{\prime} \oplus C_{5}$; see Figure 3 in the Appendix. A 4-cycle packing of H_{1} with leave C_{3} follows by Item 2 in the Appendix.
(ii) From the proof described in (i) above, we have $C_{4} \mid\left(L\left(K_{11}\right)-E\left(H_{1}\right)\right)$. Now a 4-cycle covering of H_{1} with padding C_{5}, F_{1}, F_{2}, or F_{3} follows by the Items $3,4,5$ and 6 in the Appendix.

Lemma 2.5. The graph $\left(K_{3} \square K_{3}\right)(2)$ admits a 4-cycle decomposition.
Proof. Let $V(G)=\{1,2,3\}$ and $V(H)=\{a, b, c\}$.
A 4 -cycle decomposition of $\left(K_{3} \square K_{3}\right)(2)$ is given by:

$((1, a),(1, b),(2, b),(2, a))$,	$((1, a),(1, c),(2, c),(2, a))$,	$((1, a),(1, b),(3, b),(3, a))$,
$((1, a),(1, c),(3, c),(3, a))$,	$((1, b),(1, c),(3, c),(3, b))$,	$((1, b),(1, c),(2, c),(2, b))$,
$((2, a),(2, b),(3, b),(3, a))$,	$((2, a),(2, c),(3, c),(3, a))$,	$((2, b),(2, c),(3, c),(3, b))$.

Lemma 2.6. The graphs $L\left(K_{7}\right)(2)$ and $L\left(K_{11}\right)(2)$ admit a 4-cycle packing with leave $K_{2}(2)$; also they admit a 4-cycle covering with padding $K_{2}(2)$.

Proof. (i) Let $V\left(K_{7}(2)\right)=\{1,2, \ldots, 7\}$. Then $V\left(L\left(K_{7}\right)(2)\right)=\mathcal{P}_{2}(\{1,2, \ldots, 7\})$. We partition the vertex set of $L\left(K_{7}\right)(2)$ into three sets A_{1}, A_{2} and A_{3}, where $A_{1}=\mathcal{P}_{2}(\{1,2,3,7\}), A_{2}=\mathcal{P}_{2}(\{4,5,6,7\})$ and $A_{3}=\{\{i, j\} \mid 1 \leq i \leq 3,4 \leq j \leq 6\}$. The graph $L\left(K_{7}\right)(2)=L\left(K_{4}\right)(2) \oplus L\left(K_{4}\right)(2) \oplus\left(K_{3} \square K_{3}\right)(2) \oplus A^{\prime}(2) \oplus H_{2}$, by Observation 2.1, where $H_{2}=\underbrace{K_{3,3}(2) \oplus K_{3,3}(2) \oplus \cdots \oplus K_{3,3}(2)}_{6 \text { copies }}, H_{2} \simeq H(2)$ and $A^{\prime}(2)$ is as in Observation 2.1. The graphs $L\left(K_{4}\right)(2),\left(K_{3} \square K_{3}\right)(2)$ and H_{2} have 4-cycle decompositions, by Theorem 1.3, Lemma 2.5 and Item 7 in the Appendix. Thus $C_{4} \mid\left(L\left(K_{7}\right)(2)-E\left(H_{3}\right)\right)$, where $A^{\prime}(2)=H_{3}$. Now we obtain a 4-cycle packing and a 4-cycle covering of H_{3} with leave L, and the padding P is $\{\{3,7\}\{4,7\},\{3,7\}\{4,7\}\}$; see Figure 4, as given in Items 8(a) and 9 of the Appendix.
(ii) Let $V\left(K_{11}(2)\right)=\{1,2, \ldots, 11\}$. Then $V\left(L\left(K_{11}\right)(2)\right)=\mathcal{P}_{2}(\{1,2, \ldots, 11\})$. We partition the vertex set of $L\left(K_{11}\right)(2)$ into three sets A_{1}, A_{2} and A_{3}, where $A_{1}=$ $\mathcal{P}_{2}(\{1,2,3,4,11\}), A_{2}=\mathcal{P}_{2}(\{5,6,7,8,9,10,11\})$ and $A_{3}=\{\{i, j\} \mid 1 \leq i \leq 4,5 \leq$ $j \leq 10\}$. The graph $L\left(K_{11}\right)(2)=L\left(K_{5}\right)(2) \oplus L\left(K_{7}\right)(2) \oplus\left(K_{4} \square K_{6}\right)(2) \oplus A^{\prime}(2) \oplus H(2)$, by Observation 2.1, where $H(2)=\underbrace{K_{4,6}(2) \oplus K_{4,6}(2) \oplus \cdots \oplus K_{4,6}(2)}_{10 \text { copies }}$. By Theo-
rems 1.3, 1.8 and 1.7, the graphs $L\left(K_{5}\right)(2),\left(K_{4} \square K_{6}\right)(2), A^{\prime}(2)$ and $H(2)$ have 4-cycle decompositions, where A^{\prime} is as in Observation 2.1. The required packing and covering follow by Case (i) above, because $L\left(K_{7}\right)(2)$ has a 4 -cycle packing and a 4 -cycle covering with leave and padding $K_{2}(2)$ having the edges $\{\{7,11\}\{8,11\},\{7,11\}\{8,11\}\}$.

Lemma 2.7. The graph $L\left(K_{5}\right)(3)$ admits a 4-cycle packing with leave $L=K_{2}(2)$ and a 4 -cycle covering with padding $P=K_{2}(2)$.

Proof. (i) A 4-cycle packing of $L\left(K_{5}\right)(3)$ with leave $K_{2}(2)$ is given by:

$$
\begin{array}{lll}
(\{1,2\},\{1,3\},\{1,4\},\{1,5\}), & (\{1,2\},\{2,3\},\{2,4\},\{2,5\}), & (\{1,2\},\{1,3\},\{3,4\},\{1,4\}), \\
(\{1,2\},\{2,4\},\{4,5\},\{2,5\}), & (\{1,2\},\{1,4\},\{4,5\},\{2,5\}), & (\{1,2\},\{1,5\},\{3,5\},\{2,3\}), \\
(\{1,2\},\{1,3\},\{2,3\},\{2,4\}), & (\{1,2\},\{1,4\},\{3,4\},\{2,3\}), & (\{1,2\},\{1,5\},\{4,5\},\{2,4\}), \\
(\{1,3\},\{2,3\},\{3,4\},\{3,5\}), & (\{1,3\},\{1,4\},\{1,5\},\{3,5\}), & (\{1,3\},\{1,5\},\{4,5\},\{3,4\}), \\
(\{1,3\},\{1,5\},\{3,5\},\{2,3\}), & (\{1,3\},\{1,5\},\{2,5\},\{3,5\}), & (\{1,3\},\{1,4\},\{2,4\},\{3,4\}), \\
(\{1,4\},\{2,4\},\{3,4\},\{4,5\}), & (\{1,4\},\{3,4\},\{3,5\},\{4,5\}), & (\{1,4\},\{1,5\},\{2,5\},\{2,4\}), \\
(\{1,5\},\{2,5\},\{3,5\},\{4,5\}), & (\{2,3\},\{2,4\},\{2,5\},\{3,5\}), & (\{2,4\},\{3,4\},\{3,5\},\{4,5\}), \\
(\{2,3\},\{2,5\},\{4,5\},\{3,4\}), & &
\end{array}
$$

and the leave $K_{2}(2)$ is given by $L=\{\{2,3\}\{2,5\},\{2,3\}\{2,5\}\}$.
(ii) The graph $L\left(K_{5}\right)(3)=L\left(K_{5}\right) \oplus L\left(K_{5}\right)(2)$. By Theorem 1.3 and Lemma 2.2, the graph $L\left(K_{5}\right)(2)$ has a 4 -cycle decomposition and $L\left(K_{5}\right)$ has a 4 -cycle covering with padding $K_{2}(2)$.
Lemma 2.8. Each of the graphs $L\left(K_{7}\right)(3), L\left(K_{7}\right)(5)$ and $L\left(K_{11}\right)(3)$ admits a 4-cycle packing and a 4-cycle covering with every possible leave and padding. The leaves L and paddings P are as follows:
(i) for $L\left(K_{7}\right)(3)$, the leave $L=C_{3}$ and the padding $P, P \in\left\{C_{5}, F_{1}, F_{2}, F_{3}\right\}$;
(ii) for $L\left(K_{7}\right)(5)$, the leave $L \in\left\{C_{5}, F_{1}, F_{2}, F_{3}\right\}$ and the padding $P=C_{3}$;
(iii) for $L\left(K_{11}\right)(3)$, the leave $L \in\left\{C_{5}, F_{1}, F_{2}, F_{3}\right\}$ and the padding $P=C_{3}$.

Proof. (i) A 4-cycle packing and a 4-cycle covering of $L\left(K_{7}\right)(3)$ with leave C_{3} and padding C_{5}, F_{1}, F_{2}, or F_{3} are given below.

The graph $L\left(K_{7}\right)(3)=L\left(K_{7}\right) \oplus L\left(K_{7}\right)(2)$. By Lemma 2.3 and the proof of Lemma 2.6, $C_{4} \mid\left(L\left(K_{7}\right)-E\left(C_{5}\right)\right)$, where $C_{5}=(\{1,4\},\{1,7\},\{2,7\},\{3,7\},\{4,7\})$ and $C_{4} \mid\left(L\left(K_{7}\right)(2)-E\left(H_{3}\right)\right)$; see Figure 4 in the Appendix. Let the graph $H_{4}=C_{5} \oplus H_{3}$; see Figure 5. A 4 -cycle packing and a 4 -cycle covering of H_{4} with leave C_{3} and padding C_{5}, F_{1}, F_{2}, or F_{3} are given in Items $10,11,12,13$ and 14 of the Appendix.
(ii) A 4-cycle packing and a 4 -cycle covering of $L\left(K_{7}\right)(5)$ with leave C_{5}, F_{1}, F_{2}, or F_{3}, and padding C_{3}, are given below.

The graph $L\left(K_{7}\right)(5)=L\left(K_{7}\right) \oplus L\left(K_{7}\right)(4)$. By Theorem 1.3, $C_{4} \mid L\left(K_{7}\right)(4)$ and by Lemma 2.3, we get a 4 -cycle packing and a 4 -cycle covering with leave C_{5} and padding C_{3}. The graph $L\left(K_{7}\right)(5)=L\left(K_{7}\right)(2) \oplus L\left(K_{7}\right)(3)$. From the proof of Lemma 2.6 and Case (i) above, the graphs $L\left(K_{7}\right)(2)$ and $L\left(K_{7}\right)(3)$ have a 4 -cycle packing with leave $K_{2}(2)$ and leave C_{3} (given in Items 8 and 10 of the Appendix), respectively. From the leaves $K_{2}(2)$ and C_{3}, the union of leave $K_{2}(2)$ in Item $8(a)$ and leave C_{3} in Item 10(a) gives the leave F_{1}; the union of leave $K_{2}(2)$ in Item $8(b)$ and leave C_{3} in Item $10(b)$ gives the leave F_{2}; the union of leave $K_{2}(2)$ in Item $8(a)$ and leave C_{3} in Item $10(c)$ gives the leave F_{3}.
(iii) A 4-cycle packing and a 4-cycle covering of $L\left(K_{11}\right)(3)$ with leave C_{5}, F_{1}, F_{2}, or F_{3}, and padding C_{3} are given below.

The graph $L\left(K_{11}\right)(3)=L\left(K_{11}\right) \oplus L\left(K_{11}\right)(2)$. From the proof of Lemmas 2.4 and 2.6, we have $C_{4} \mid\left(L\left(K_{11}\right)-E\left(H_{1}\right)\right)$ and $C_{4} \mid\left(L\left(K_{11}\right)(2)-E\left(K_{2}(2)\right)\right)$, where $E\left(K_{2}(2)\right)=\{\{7,11\}\{8,11\},\{7,11\}\{8,11\}\}$. Define the graph $H_{5}=H_{1} \oplus K_{2}(2) ;$ see Figure 6. Now a 4 -cycle packing and a 4 -cycle covering of H_{5} with leave C_{5}, F_{1}, F_{2}, or F_{3}, and padding C_{3}, follows by Items $15,16,17,18$ and 19 of the Appendix.
Lemma 2.9. For $n \geq 4$, the graph $L\left(K_{n}\right)$ has a 4-cycle packing and a 4-cycle covering with every possible leave and padding. The leaves L and paddings P are as follows:
(i) if $n \equiv 3(\bmod 8)$, then the leave $L=C_{3}$ and padding $P \in\left\{C_{5}, F_{1}, F_{2}, F_{3}\right\}$;
(ii) if $n \equiv 5(\bmod 8)$, then the leave $L \in\left\{C_{6}, B, 2 C_{3}\right\}$ and padding $P=K_{2}(2)$;
(iii) if $n \equiv 7(\bmod 8)$, then the leave $L=C_{5}$ and padding $P=C_{3}$.

Proof. (i) $n \equiv 3(\bmod 8)$: Let $n=8 k+3, k \geq 1$. If $k=1$, then the result follows by Lemma 2.4. Now consider $k \geq 2$. The graph $L\left(K_{8 k+3}\right)=L\left(K_{11}\right) \oplus L\left(K_{8(k-1)+1}\right) \oplus$ $\left(K_{10} \square K_{8(k-1)}\right) \oplus H$, by Observation 2.1, where H is as defined in Observation 2.1, namely, $H=A^{\prime} \oplus \underbrace{K_{10,8(k-1)} \oplus K_{10,8(k-1)} \oplus \cdots \oplus K_{10,8(k-1)}}_{(8 k+2) \text { copies }}$. By Theorems 1.3, 1.8
and 1.7, $C_{4}\left|L\left(K_{8(k-1)+1}\right), C_{4}\right|\left(K_{10} \square K_{8(k-1)}\right)$ and $C_{4} \mid H$. Now the required packing and covering follow by Lemma 2.4.
(ii) $n \equiv 5(\bmod 8)$: Let $n=8 k+5, k \geq 0$. For $k=0$, the graph $L\left(K_{5}\right)$ has a 4 -cycle packing and a 4 -cycle covering, by Lemma 2.2. Now we consider $k \geq 1$. The graph $L\left(K_{8 k+5}\right)=L\left(K_{5}\right) \oplus L\left(K_{8 k+1}\right) \oplus\left(K_{4} \square K_{8 k}\right) \oplus H$, by Observation 2.1, where $H=A^{\prime} \oplus \underbrace{K_{4,8 k} \oplus K_{4,8 k} \oplus \cdots \oplus K_{4,8 k}}_{(8 k+4) \text { copies }}$. Now the result follows by Lemma 2.2 and
Theorems 1.3, 1.8 and 1.7.
(iii) $n \equiv 7(\bmod 8):$ Let $n=8 k+7, k \geq 0$. Because of Lemma 2.3, we consider $k \geq 1$. The graph $L\left(K_{8 k+7}\right)=L\left(K_{7}\right) \oplus L\left(K_{8 k+1}\right) \oplus\left(K_{6} \square K_{8 k}\right) \oplus H$, by Observation 2.1, where $H=A^{\prime} \oplus \underbrace{K_{6,8 k} \oplus K_{6,8 k} \oplus \cdots \oplus K_{6,8 k}}_{(8 k+6) \text { copies }}$. The result now follows by Lemma 2.3 and Theorems 1.3, 1.8 and 1.7.

Lemma 2.10. For $n \geq 4$, the graph $L\left(K_{n}\right)(2)$ has a 4-cycle packing and a 4-cycle covering with every possible leave and padding. The leaves and paddings are as follows:
(i) $L=\left(K_{2}\right)(2)$ and $P=K_{2}(2)$ if $n \equiv 3(\bmod 8)$;
(ii) $L=\emptyset$ and $P=\emptyset$ if $n \equiv 5(\bmod 8)$;
(iii) $L=\left(K_{2}\right)(2)$ and $P=K_{2}(2)$ if $n \equiv 7(\bmod 8)$.

Proof. From the proof of Lemma 2.9, it is enough to show that each of the graphs $L\left(K_{5}\right)(2), L\left(K_{7}\right)(2)$ and $L\left(K_{11}\right)(2)$ admits a 4 -cycle packing and a 4-cycle covering with every possible leave and padding and the result follows by Theorem 1.3 and Lemma 2.6.

Lemma 2.11. For $n \geq 4$, the graph $L\left(K_{n}\right)(3)$ has a 4-cycle packing and a 4-cycle covering with every possible leave and padding. The leaves and paddings are as follows:
(i) $L \in\left\{C_{5}, F_{1}, F_{2}, F_{3}\right\}$ and $P=C_{3}$ if $n \equiv 3(\bmod 8)$;
(ii) $L=K_{2}(2)$ and $P=K_{2}(2)$ if $n \equiv 5(\bmod 8)$;
(iii) $L=C_{3}$ and $P \in\left\{C_{5}, F_{1}, F_{2}, F_{3}\right\}$ if $n \equiv 7(\bmod 8)$.

Proof. As in the proof of Lemma 2.9, it is enough to show that each of the graphs $L\left(K_{5}\right)(3), L\left(K_{7}\right)(3)$ and $L\left(K_{11}\right)(3)$ has a 4 -cycle packing and a 4 -cycle covering with every possible leave and padding, and the result follows by Lemmas 2.7 and 2.8.

Lemma 2.12. For $n \geq 4$, the graph $L\left(K_{n}\right)(5)$ has a 4-cycle packing and a 4-cycle covering with every possible leave and padding. The leaves and paddings are as follows:
(i) $L=C_{3}$ and $P \in\left\{C_{5}, F_{1}, F_{2}, F_{3}\right\}$ if $n \equiv 3(\bmod 8)$;
(ii) $L=K_{2}(2)$ and $P=K_{2}(2)$ if $n \equiv 5(\bmod 8)$;
(iii) $L \in\left\{C_{5}, F_{1}, F_{2}, F_{3}\right\}$ and $P=C_{3}$ if $n \equiv 7(\bmod 8)$.

Proof. (i) $n \equiv 3(\bmod 8):$ Let $n=8 k+3, k \geq 1$. The graph $L\left(K_{8 k+3}\right)(5)=$ $L\left(K_{8 k+3}\right) \oplus L\left(K_{8 k+3}\right)(4)$, and the result follows by Lemma 2.9 and Theorem 1.3.
(ii) $n \equiv 5(\bmod 8)$: Let $n=8 k+5, k \geq 0$. The graph $L\left(K_{8 k+5}\right)(5)=L\left(K_{8 k+5}\right)(2) \oplus$ $L\left(K_{8 k+5}\right)(3)$, and the result follows by Theorem 1.3 and Lemma 2.11.
(iii) $n \equiv 7(\bmod 8)$: Let $n=8 k+7, k \geq 0$. The graph $L\left(K_{8 k+7}\right)(5)=L\left(K_{7}\right)(5) \oplus$ $L\left(K_{8 k+1}\right)(5) \oplus\left(K_{6} \square K_{8 k}\right)(5) \oplus A^{\prime}(5) \oplus H(5)$, by Observation 2.1, where $H(5)=$ $\underbrace{K_{6,8 k}(5) \oplus K_{6,8 k}(5) \oplus \cdots \oplus K_{6,8 k}(5)}_{(8 k+6) \text { copies }}$. The result now follows by Lemmas 1.5 and 2.8 and Theorems 1.3, 1.8 and 1.7.

Proof of Theorem 1.1. By Lemmas 2.9, 2.10, 2.11 and 2.12, the proof follows for $\lambda \in\{1,2,3,5\}$. First, we consider the proof for $\lambda \equiv 0,2,3(\bmod 4)$. Let $\lambda=4 k+i$, $k \geq 1, i \in\{0,2,3\}$. For $i=0$, the proof follows by Theorem 1.3. For $i \in\{2,3\}$, let $L\left(K_{n}\right)(\lambda)=L\left(K_{n}\right)(i) \oplus L\left(K_{n}\right)(4 k)$. Now the required maximum packing and
minimum covering with 4 -cycles follows by Lemma 2.10 and 2.11 and Theorem 1.3. Finally, for $\lambda \equiv 1(\bmod 4)>5$, the graph $L\left(K_{n}\right)(4 k+1)=L\left(K_{n}\right)(5) \oplus L\left(K_{n}\right)(4 k-4)$ and the result follows by Lemma 2.12 and Theorem 1.3.

3 Existence of a maximum packing and a minimum covering of $L\left(K_{n}\right)(\lambda)$ with 6 -cycles

In this section, we prove the existence of a 6 -cycle packing and a 6 -cycle covering of $L\left(K_{n}\right)(\lambda)$ with every possible leave and padding.

Observation 3.1. For a graph $G, S_{1}(G)$ denotes the graph that arises out of the subdivision of each edge of G exactly once; $S_{1}(G)$ is the first subdivision graph of G. Let G^{\star} be the graph obtained from G by adding to each edge $e=u v$ of G a new vertex $\{u, v\}$ such that the vertex $\{u, v\}$ is adjacent to both the vertices u and v, and $\{u, v\}$ is a vertex of degree two in G^{\star}; see Figure 2. If we delete all the edges of G in G^{\star}, then the resulting graph is isomorphic to $S_{1}(G)$, the first subdivision graph of G, and hence $G^{\star}=G \oplus S_{1}(G)$.

Figure 2: The graph C_{6} and C_{6}^{\star}.
Let $V\left(K_{n+1}\right)=\{1,2, \ldots, n+1\}$. Then $V\left(L\left(K_{n+1}\right)\right)=\mathcal{P}_{2}(\{1,2, \ldots, n+1\})$. We partition the vertex set of $L\left(K_{n+1}\right)$ into two sets A_{1} and A_{2}, where $A_{1}=$ $\mathcal{P}_{2}(\{1,2, \ldots, n\})$ and $A_{2}=\bigcup_{i=1}^{n}\{i, n+1\}$. The subgraph of $L\left(K_{n+1}\right)$ induced by A_{1} (respectively, A_{2}) is isomorphic to $L\left(K_{n}\right)$ (respectively, K_{n}). Clearly, $E\left(A_{1}, A_{2}\right)$, in $L\left(K_{n+1}\right)$, is $\{\{i, j\}\{i, n+1\},\{i, j\}\{j, n+1\}\}, 1 \leq i<j \leq n$; note that each two-element subset represents a vertex in the line graph. Then $L\left(K_{n+1}\right)=\left\langle A_{1}\right\rangle \oplus$ $\left\langle A_{2}\right\rangle \oplus\left\langle E\left(A_{1}, A_{2}\right)\right\rangle=L\left(K_{n}\right) \oplus K_{n}^{\star}$.

Lemma 3.2. Each of the graphs $L\left(K_{7}\right), L\left(K_{11}\right)$ and $L\left(K_{15}\right)$ admits a 6 -cycle packing and a 6-cycle covering with leave C_{3} and padding C_{3}.

Proof. (i) Let $V\left(K_{7}\right)=\{1,2, \ldots, 7\}$. Let

$$
\mathcal{C}=\{(1,2,3,4,6,5),(1,6,2,5,3,7),(1,3,6,7,2,4),(4,5,7)\}
$$

be a decomposition of K_{7} into three copies of C_{6} and a C_{3}. Clearly, the graph $L\left(K_{7}\right)-$ $E(L(\mathcal{C}))=\underbrace{\left(K_{6}-I\right) \oplus\left(K_{6}-I\right) \oplus \cdots \oplus\left(K_{6}-I\right)}_{7 \text { copies }}$, where I is a perfect matching of K_{6}. As $C_{6} \mid\left(K_{6}-I\right)$, a 6-cycle packing of $L\left(K_{7}\right)$ with leave $C_{3}=(\{4,5\},\{5,7\},\{4,7\})$ exists. Now the graph $L\left(K_{7}\right)=L\left(K_{6}\right) \oplus K_{6}^{\star}$, by Observation 3.1, and a required 6-cycle covering follows by Corollary 1.6 and Item 20 of the Appendix.
(ii) Let $\mathcal{P}_{2}(\{1,2, \ldots, 10,11\})=V\left(L\left(K_{11}\right)\right)$. We partition the vertex set of $L\left(K_{11}\right)$ into three sets A_{1}, A_{2} and A_{3}, where $A_{1}=\mathcal{P}_{2}(\{1,2,3,4,11\}), A_{2}=\mathcal{P}_{2}(\{5,6,7,8,9$, $10,11\})$ and $A_{3}=\{\{i, j\} \mid 1 \leq i \leq 4,5 \leq j \leq 10\}$. The subgraphs induced by A_{1} and A_{2} are $L\left(K_{5}\right)$ and $L\left(K_{7}\right)$, respectively. The graph $L\left(K_{11}\right)=L\left(K_{5}\right) \oplus L\left(K_{7}\right) \oplus$ $\left(K_{4} \square K_{6}\right) \oplus H$, by Observation 2.1, where $H=A^{\prime} \oplus \underbrace{K_{4,6} \oplus K_{4,6} \oplus \cdots \oplus K_{4,6}}_{10 \text { copies }}$. By
Corollary 1.6 and Theorems 1.9 and 1.7, the graphs $L\left(K_{5}\right), K_{4} \square K_{6}$ and H admit 6 -cycle decompositions. Then a required 6 -cycle packing and a 6 -cycle covering of $L\left(K_{11}\right)$ with leave C_{3} and padding C_{3} exist by Case (i) above.
(iii) Let $\mathcal{P}_{2}(\{1,2, \ldots, 14,15\})=V\left(L\left(K_{15}\right)\right)$. We partition the vertex set of $L\left(K_{15}\right)$ into three sets $A_{1}=\mathcal{P}_{2}(\{1,2,3,4,5,6,15\}), A_{2}=\mathcal{P}_{2}(\{7,8, \ldots, 14,15\})$ and $A_{3}=$ $\{\{i, j\} \mid 1 \leq i \leq 6,7 \leq j \leq 14\}$. The graph $L\left(K_{15}\right)=L\left(K_{7}\right) \oplus L\left(K_{9}\right) \oplus\left(K_{6} \square K_{8}\right) \oplus H$, by Observation 2.1, where $H=A^{\prime} \oplus \underbrace{K_{6,8} \oplus K_{6,8} \oplus \cdots \oplus K_{6,8}}_{15 \text { copies }}$. A required 6 -cycle
packing and a 6 -cycle covering of $L\left(K_{15}\right)$ with $L=P=C_{3}$ follows by Corollary 1.6 and Theorems 1.9, 1.7 and Case (i) above.

Lemma 3.3. The graph $K_{6}^{\star}(2)$ admits a 6-cycle decomposition.
Proof. Let $V\left(K_{6}\right)=\{1,2, \ldots, 6\}$. The 6 -cycles are

$(1,4,\{4,5\}, 5,\{5,6\}, 6)$,	$(1,2,3,\{3,5\}, 5,\{1,5\})$,	$(1,\{1,4\}, 4,3,6,\{1,6\})$,
$(1,\{1,2\}, 2,\{2,5\}, 5,6)$,	$(2,\{2,3\}, 3,\{3,4\}, 4,5)$,	$(1,2,\{2,3\}, 3,4,\{1,4\})$,
$(1,\{1,2\}, 2,\{2,6\}, 6,5)$,	$(1,\{1,3\}, 3,\{3,5\}, 5,\{1,5\})$,	$(2,4,\{4,5\}, 5,\{5,6\}, 6)$,
$(1,5,2,6,3,\{1,3\})$,	$(1,3,5,\{2,5\}, 2,4)$,	$(2,\{2,4\}, 4,6,\{3,6\}, 3)$,
$(2,\{2,4\}, 4,\{4,6\}, 6,\{2,6\})$,	$(3,\{3,6\}, 6,\{4,6\}, 4,5)$,	$(1,3,\{3,4\}, 4,6,\{1,6\})$.

Lemma 3.4. Each of the graphs $L\left(K_{7}\right)(2), L\left(K_{11}\right)(2)$ and $L\left(K_{15}\right)(2)$ admits a 6cycle decomposition.

Proof. (i) The graph $L\left(K_{7}\right)(2)=L\left(K_{6}\right)(2) \oplus K_{6}^{\star}(2)$, by Observation 3.1, and $C_{6} \mid L\left(K_{6}\right)(2)$ and $C_{6} \mid K_{6}^{\star}(2)$, by Corollary 1.6 and Lemma 3.3.
(ii) Let $V\left(L\left(K_{11}\right)(2)\right)=\mathcal{P}_{2}(\{1,2, \ldots, 10,11\})$. We partition the vertex set of $L\left(K_{11}\right)(2)$ into three sets $A_{1}=\mathcal{P}_{2}(\{1,2,3,4,11\}), A_{2}=\mathcal{P}_{2}(\{5,6,7,8,9,10,11\})$ and $A_{3}=\{\{i, j\} \mid 1 \leq i \leq 4,5 \leq j \leq 10\}$. The graph $L\left(K_{11}\right)(2)=L\left(K_{5}\right)(2) \oplus L\left(K_{7}\right)(2) \oplus$ $\left(K_{4} \square K_{6}\right)(2) \oplus H(2)$, by Observation 2.1, where

$$
H(2)=A^{\prime}(2) \oplus \underbrace{K_{4,6}(2) \oplus K_{4,6}(2) \oplus \cdots \oplus K_{4,6}(2)}_{10 \text { copies }}
$$

Hence a required decomposition follows by Corollary 1.6 and Theorems 1.9 and 1.7 and Case (i) above.
(iii) Let $V\left(L\left(K_{15}\right)(2)\right)=\mathcal{P}_{2}(\{1,2, \ldots, 14,15\})$. We partition the vertex set of $L\left(K_{15}\right)(2)$ into three sets $A_{1}=\mathcal{P}_{2}(\{1,2,3,4,5,6,15\}), A_{2}=\mathcal{P}_{2}(\{7,8, \ldots, 14,15\})$ and $A_{3}=\{\{i, j\} \mid 1 \leq i \leq 6,7 \leq j \leq 14\}$. The graph $L\left(K_{15}\right)(2)=L\left(K_{7}\right)(2) \oplus$ $L\left(K_{9}\right)(2) \oplus\left(K_{6} \square K_{8}\right)(2) \oplus H(2)$, by Observation 2.1, where

$$
H(2)=A^{\prime}(2) \oplus \underbrace{K_{6,8}(2) \oplus K_{6,8}(2) \oplus \cdots \oplus K_{6,8}(2)}_{14 \text { copies }} .
$$

Now the result follows by Case (i) above, Corollary 1.6 and Theorems 1.9 and 1.7.
Lemma 3.5. For $n \equiv 3(\bmod 4), n \geq 4$, the graph $L\left(K_{n}\right)$ admits a 6-cycle packing with leave C_{3} and a 6-cycle covering with padding C_{3}.

Proof. We consider the following three cases.
Case 1. $n \equiv 3(\bmod 12)$. Let $n=12 k+3, k \geq 1$. For $k=1$, the result follows by Lemma 3.2. So we consider $k \geq 2$. The graph $L\left(K_{12 k+3}\right)=L\left(K_{15}\right) \oplus$ $L\left(K_{12 k-11}\right) \oplus\left(K_{14} \square K_{12(k-1)}\right) \oplus H$, where $H=A^{\prime} \oplus \underbrace{K_{14,12(k-1)} \oplus \cdots \oplus K_{14,12(k-1)}}_{(12 k+2) \text { copies }}$, by
Observation 2.1. Thus a 6 -cycle packing and a 6 -cycle covering follow by Lemma 3.2, Corollary 1.6 and Theorems 1.9 and 1.7.

Case 2. $n \equiv 7(\bmod 12)$. Let $n=12 k+7, k \geq 0$. For $k=0$, the graph $L\left(K_{7}\right)$ has a 6 -cycle packing and a 6 -cycle covering, by Lemma 3.2. Next we consider $k \geq 1$. The graph $L\left(K_{12 k+7}\right)=L\left(K_{7}\right) \oplus L\left(K_{12 k+1}\right) \oplus\left(K_{6} \square K_{12 k}\right) \oplus H$. Here, $H=$ $A^{\prime} \oplus \underbrace{K_{6,12 k} \oplus \cdots \oplus K_{6,12 k}}_{(12 k+6) \text { copies }}$, by Observation 2.1. Hence by Lemma 3.2, Corollary 1.6, Theorems 1.9 and 1.7, a required 6 -cycle packing and a 6 -cycle covering follow.

Case 3. $n \equiv 11(\bmod 12)$. Let $n=12 k+11, k \geq 0$. Because of Lemma 3.2, we consider $k \geq 1$. The graph $L\left(K_{12 k+11}\right)=L\left(K_{11}\right) \oplus L\left(K_{12 k+1}\right) \oplus\left(K_{10} \square K_{12 k}\right) \oplus H$. Now $H=A^{\prime} \oplus \underbrace{K_{10,12 k} \oplus \cdots \oplus K_{10,12 k}}_{(12 k+10) \text { copies }}$, by Observation 2.1. Now a 6 -cycle packing and
a 6 -cycle covering follow by Lemma 3.2, Corollary 1.6 and Theorems 1.9 and 1.7.
Lemma 3.6. For $n \equiv 3(\bmod 4)$, $n \geq 4$, the graph $L\left(K_{n}\right)(2)$ has a 6 -cycle decomposition.

Proof. From the proof of Lemma 3.5, it is enough to show that each of the graphs in $\left\{L\left(K_{7}\right)(2), L\left(K_{11}\right)(2), L\left(K_{15}\right)(2)\right\}$ admits a 6 -cycle decomposition. Now a required decomposition follows by Lemma 3.4.

Proof of Theorem 1.2.

Case 1. First we consider $\lambda \equiv 0(\bmod 2)$, and let $\lambda=2 k^{\prime}, k^{\prime} \geq 1$. The graph $L\left(K_{n}\right)\left(2 k^{\prime}\right)=L\left(K_{n}\right)(2) \oplus L\left(K_{n}\right)(2) \oplus \cdots \oplus L\left(K_{n}\right)(2)$, and a 6 -cycle decomposition
follows by applying Corollary 1.6 if $n \not \equiv 3(\bmod 4)$, and applying Lemma 3.6 if $n \equiv 3$ $(\bmod 4)$.
Case 2. Next, $\lambda \equiv 1(\bmod 2)$, and let $\lambda=2 k^{\prime}+1, k^{\prime} \geq 0$. The graph $L\left(K_{n}\right)\left(2 k^{\prime}+1\right)=$ $L\left(K_{n}\right) \oplus L\left(K_{n}\right)\left(2 k^{\prime}\right)$. We obtain a 6 -cycle packing and 6 -cycle covering of $L\left(K_{n}\right)(\lambda)$ by applying Corollary 1.6, and Lemmas 3.5 and 3.6.

4 Appendix

1. The subgraphs H_{1} of $L\left(K_{11}\right), H_{3}$ of $L\left(K_{7}\right)(2), H_{4}$ of $L\left(K_{7}\right)(3)$ and H_{5} of $L\left(K_{11}\right)(3)$ are shown below:

Figure 3: The subgraph H_{1} of $L\left(K_{11}\right)$.

Figure 5: The subgraph H_{4} of $L\left(K_{7}\right)(3)$.

Figure 4: The subgraph H_{3} of $L\left(K_{7}\right)(2)$.
2. The subgraph H_{1} of $L\left(K_{11}\right)$ has a 4 -cycle packing with leave C_{3}. $(\{1,3\},\{1,11\},\{7,11\},\{3,11\}),(\{1,11\},\{5,11\},\{6,11\},\{2,11\})$, $(\{1,11\},\{6,11\},\{7,11\},\{8,11\}),(\{1,11\},\{9,11\},\{3,11\},\{10,11\})$, $(\{2,11\},\{5,11\},\{4,11\},\{7,11\}),(\{2,11\},\{8,11\},\{4,11\},\{9,11\})$, $(\{2,11\},\{2,4\},\{4,11\},\{10,11\}),(\{5,8\},\{5,11\},\{3,11\},\{8,11\})$ and the leave $L=(\{4,11\},\{3,11\},\{6,11\})$.
3. The subgraph H_{1} of $L\left(K_{11}\right)$ has a 4 -cycle covering with padding C_{5}.
$(\{1,3\},\{1,11\},\{10,11\},\{3,11\}),(\{1,11\},\{5,11\},\{5,8\},\{8,11\})$,
$(\{1,11\},\{2,11\},\{7,11\},\{6,11\}),(\{1,11\},\{7,11\},\{4,11\},\{9,11\})$,
$(\{2,11\},\{6,11\},\{3,11\},\{9,11\}),(\{2,11\},\{2,4\},\{4,11\},\{10,11\})$,
$(\{2,11\},\{2,4\},\{4,11\},\{5,11\}),(\{2,11\},\{7,11\},\{3,11\},\{8,11\})$,
$(\{4,11\},\{3,11\},\{7,11\},\{8,11\}),(\{4,11\},\{3,11\},\{5,11\},\{6,11\})$ and the padding $P=(\{2,11\},\{2,4\},\{4,11\},\{3,11\},\{7,11\})$.
4. The subgraph H_{1} of $L\left(K_{11}\right)$ has a 4-cycle covering with padding F_{1}.
$(\{1,3\},\{1,11\},\{10,11\},\{3,11\}),(\{1,11\},\{5,11\},\{5,8\},\{8,11\})$,
$(\{1,11\},\{2,11\},\{7,11\},\{6,11\}),(\{1,11\},\{7,11\},\{4,11\},\{9,11\})$,
$(\{2,11\},\{6,11\},\{3,11\},\{9,11\}),(\{2,11\},\{2,4\},\{4,11\},\{8,11\})$,

```
({2,11},{4,11},{6,11},{7,11}), ({2,11},{5,11},{4,11},{10,11}),
({3,11},{5,11},{6,11},{7,11}), ({3,11},{8,11},{7,11},{4,11}) and the padding
P}={{2,11}{4,11},{4,11}{7,11},{7,11}{2,11},{6,11}{7,11}{6,11}{7, 11}}.
```

5. The subgraph H_{1} of $L\left(K_{11}\right)$ has a 4 -cycle covering with padding F_{2}.
$(\{1,3\},\{1,11\},\{10,11\},\{3,11\}),(\{1,11\},\{5,11\},\{5,8\},\{8,11\})$,
$(\{1,11\},\{2,11\},\{7,11\},\{6,11\}),(\{1,11\},\{7,11\},\{4,11\},\{9,11\})$,
$(\{2,11\},\{6,11\},\{3,11\},\{9,11\}),(\{2,11\},\{4,11\},\{6,11\},\{5,11\})$,
$(\{2,11\},\{7,11\},\{3,11\},\{10,11\}),(\{2,11\},\{2,4\},\{4,11\},\{8,11\})$,
$(\{4,11\},\{5,11\},\{3,11\},\{10,11\}),(\{4,11\},\{3,11\},\{8,11\},\{7,11\})$ and the padding $P=\{\{2,11\}\{4,11\},\{4,11\}\{7,11\},\{7,11\}\{2,11\},\{3,11\}\{10,11\},\{3,11\}\{10,11\}\}$.
6. The subgraph H_{1} of $L\left(K_{11}\right)$ has a 4 -cycle covering with padding F_{3}.
$(\{1,3\},\{1,11\},\{10,11\},\{3,11\}),(\{1,11\},\{5,11\},\{5,8\},\{8,11\})$,
$(\{1,11\},\{2,11\},\{7,11\},\{6,11\}),(\{1,11\},\{7,11\},\{4,11\},\{9,11\})$,
$(\{2,11\},\{6,11\},\{3,11\},\{9,11\}),(\{2,11\},\{4,11\},\{6,11\},\{5,11\})$,
$(\{2,11\},\{7,11\},\{4,11\},\{10,11\}),(\{2,11\},\{2,4\},\{4,11\},\{8,11\})$,
$(\{4,11\},\{5,11\},\{3,11\},\{7,11\}),(\{4,11\},\{3,11\},\{8,11\},\{7,11\})$ and the padding $P=\{\{2,11\}\{4,11\},\{4,11\}\{7,11\},\{7,11\}\{2,11\},\{4,11\}\{7,11\},\{4,11\}\{7,11\}\}$.
7. The subgraph H_{2} of $L\left(K_{7}\right)(2)$ has a 4-cycle decomposition.
```
({1,3},{3,5},{3,7},{3,4}), ({2,3},{3,6},{3,7},{3,5}), ({1,3},{1,6},{1,7},{1,4}),
({1,3},{1,5},{1,7},{1,6}), ({1,2},{1,4},{1,7},{1,5}), ({1, 2},{2,4},{2,7},{2,5}),
({2,3},{2,4},{2,7},{2,6}), ({2,3},{2,5},{2,7},{2,6}), ({1,3},{3,4},{3,7},{3,6}),
({1,2},{1,6},{4,6},{2,6}), ({1,3},{1,4},{4,6},{3,6}), ({2,3},{3,4},{4,5},{2,4}),
({2,3},{3,4},{4,6},{3,6}), ({1,6},{4,6},{2,6},{5,6}), ({1,5},{4,5},{3,5},{5,6}),
({2, 5},{5,6},{3,5},{4,5}), ({1,5},{4,5},{2,5},{5,6}), ({2, 3},{2,5},{5,7},{3,5}),
({1,3},{1,5},{5,7},{3,5}), ({1,2},{1,6},{6,7},{2,6}), ({1,4},{4,7},{3,4},{4,5}),
({1,4},{4,7},{2,4},{4,5}), ({1,6},{5,6},{3,6},{6,7}), ({2,4},{4,7},{3,4},{4,6}),
({1,2},{1,4},{4,6},{2,4}), ({1,2},{1,5},{5,7},{2,5}), ({2,6},{5,6},{3,6},{6,7}).
```

8. Two choices of 4 -cycle packing with leave $K_{2}(2)$ from the graph H_{3} of $L\left(K_{7}\right)(2)$.
(a) The subgraph H_{3} of $L\left(K_{7}\right)(2)$ has a 4-cycle packing with leave $K_{2}(2)$.
$(\{1,7\},\{4,7\},\{2,7\},\{5,7\}),(\{1,7\},\{5,7\},\{3,7\},\{6,7\})$,
$(\{2,7\},\{5,7\},\{3,7\},\{6,7\}),(\{1,7\},\{4,7\},\{2,7\},\{6,7\})$
and the leave $\mathrm{L}=\{\{3,7\}\{4,7\},\{3,7\}\{4,7\}\}$.
(b) The subgraph H_{3} of $L\left(K_{7}\right)(2)$ has a 4 -cycle packing with leave $K_{2}(2)$.
$(\{1,7\},\{5,7\},\{3,7\},\{6,7\}),(\{2,7\},\{4,7\},\{3,7\},\{6,7\})$, $(\{1,7\},\{5,7\},\{2,7\},\{6,7\}),(\{2,7\},\{4,7\},\{3,7\},\{5,7\})$ and the leave $\mathrm{L}=\{\{1,7\}\{4,7\},\{1,7\}\{4,7\}\}$.
9. The subgraph H_{3} of $L\left(K_{7}\right)(2)$ has a 4 -cycle covering with padding $K_{2}(2)$.
$(\{1,7\},\{4,7\},\{3,7\},\{5,7\}),(\{1,7\},\{4,7\},\{3,7\},\{6,7\})$,
(\{1,7\},\{5,7\},\{2,7\},\{6,7\}), (\{2,7\},\{4,7\},\{3,7\},\{5,7\}),
($\{2,7\},\{6,7\},\{3,7\},\{4,7\}$) and the padding $P=\{\{3,7\}\{4,7\},\{3,7\}\{4,7\}\}$.
10. Three choices of 4-cycle packing with leave C_{3} from the graph H_{4} of $L\left(K_{7}\right)(3)$.
(a) The subgraph H_{4} of $L\left(K_{7}\right)(3)$ has a 4-cycle packing with leave C_{3}.
$(\{1,7\},\{2,7\},\{3,7\},\{4,7\}),(\{1,7\},\{5,7\},\{3,7\},\{6,7\})$,
$(\{2,7\},\{4,7\},\{3,7\},\{6,7\}),(\{1,7\},\{5,7\},\{2,7\},\{6,7\})$, $(\{2,7\},\{4,7\},\{3,7\},\{5,7\})$ and the leave $L=(\{1,4\},\{1,7\},\{4,7\})$.
(b) The subgraph H_{4} of $L\left(K_{7}\right)(3)$ has a 4-cycle packing with leave C_{3}.
$(\{1,4\},\{1,7\},\{2,7\},\{4,7\}),(\{1,7\},\{4,7\},\{3,7\},\{6,7\})$,
$(\{1,7\},\{4,7\},\{3,7\},\{5,7\}),(\{1,7\},\{5,7\},\{2,7\},\{6,7\})$, $(\{2,7\},\{4,7\},\{3,7\},\{6,7\})$ and the leave $L=(\{2,7\},\{3,7\},\{5,7\})$.
(c) The subgraph H_{4} of $L\left(K_{7}\right)(3)$ has a 4-cycle packing with leave C_{3}.
$(\{1,4\},\{1,7\},\{2,7\},\{4,7\}),(\{1,7\},\{4,7\},\{3,7\},\{6,7\})$, $(\{1,7\},\{4,7\},\{3,7\},\{5,7\}),(\{1,7\},\{5,7\},\{2,7\},\{6,7\})$, $(\{2,7\},\{5,7\},\{3,7\},\{6,7\})$ and the leave $\mathrm{L}=(\{2,7\},\{3,7\},\{4,7\})$.
11. The subgraph H_{4} of $L\left(K_{7}\right)(3)$ has a 4 -cycle covering with padding C_{5}.
```
({1,4},{1,7},{2,7},{4,7}), ({1,7},{4,7},{3,7},{5,7}),
({1,7},{2,7},{3,7},{4,7}), ({1,7},{5,7},{2,7},{6,7}),
({2,7},{5,7},{3,7},{6,7}), ({1,7},{5,7},{3,7},{6,7}),
({2,7},{4,7},{3,7},{6,7}) and the padding
P=({1,7},{2,7},{6,7},{3,7},{5,7}).
```

12. The subgraph H_{4} of $L\left(K_{7}\right)(3)$ has a 4 -cycle covering with padding F_{1}.
$(\{1,4\},\{1,7\},\{2,7\},\{4,7\}),(\{1,7\},\{2,7\},\{3,7\},\{5,7\})$, $(\{1,7\},\{6,7\},\{3,7\},\{4,7\}),(\{1,7\},\{5,7\},\{2,7\},\{6,7\})$, $(\{1,7\},\{6,7\},\{3,7\},\{4,7\}),(\{1,7\},\{3,7\},\{2,7\},\{6,7\})$, $(\{2,7\},\{4,7\},\{3,7\},\{5,7\})$ and the padding $P=\{1,7\}\{2,7\},\{2,7\}\{3,7\},\{3,7\}\{1,7\},\{1,7\}\{6,7\},\{1,7\}\{6,7\}\}$.
13. The subgraph H_{4} of $L\left(K_{7}\right)(3)$ has a 4-cycle covering with padding F_{2}.
$(\{1,4\},\{1,7\},\{3,7\},\{4,7\}),(\{1,7\},\{4,7\},\{2,7\},\{5,7\})$, $(\{1,7\},\{2,7\},\{3,7\},\{6,7\}),(\{1,7\},\{5,7\},\{3,7\},\{6,7\})$, $(\{1,7\},\{2,7\},\{6,7\},\{4,7\}),(\{2,7\},\{4,7\},\{3,7\},\{5,7\})$, ($\{2,7\},\{3,7\},\{4,7\},\{6,7\}$) and the padding $P=\{\{1,7\}\{2,7\},\{2,7\}\{3,7\},\{3,7\}\{1,7\},\{4,7\}\{6,7\},\{4,7\}\{6,7\}\}$.
14. The subgraph H_{4} of $L\left(K_{7}\right)(3)$ has a 4 -cycle covering with padding F_{3}.
```
({1,4},{1,7},{3,7},{4,7}), ({1,7},{2,7},{3,7},{6,7}),
({1,7},{3,7},{5,7},{2,7}), ({1,7},{4,7},{2,7},{3,7}),
({1,7},{4,7},{3,7},{5,7}), ({1,7},{5,7},{2,7},{6,7}),
({2,7},{6,7},{3,7},{4,7}) and the padding
P}={{1,7}{2,7},{2,7}{3,7},{3,7}{1,7},{3,7}{1,7},{3,7}{1,7}}
```

15. The subgraph H_{5} of $L\left(K_{11}\right)(3)$ has a 4-cycle packing with leave C_{5}. $(\{1,11\},\{5,11\},\{5,8\},\{8,11\}),(\{1,11\},\{2,11\},\{5,11\},\{6,11\})$, $(\{1,11\},\{9,11\},\{2,11\},\{10,11\}),(\{2,11\},\{2,4\},\{4,11\},\{7,11\})$, $(\{2,11\},\{6,11\},\{7,11\},\{8,11\}),(\{4,11\},\{3,11\},\{7,11\},\{8,11\})$ $(\{4,11\},\{5,11\},\{3,11\},\{6,11\}),(\{4,11\},\{9,11\},\{3,11\},\{10,11\})$ and the leave $L=(\{1,3\},\{1,11\},\{7,11\},\{8,11\},\{3,11\})$.
16. The subgraph H_{5} of $L\left(K_{11}\right)(3)$ has a 4-cycle packing with leave F_{1}. $(\{1,3\},\{1,11\},\{10,11\},\{3,11\}),(\{1,11\},\{2,11\},\{5,11\},\{6,11\})$, $(\{1,11\},\{5,11\},\{5,8\},\{8,11\}),(\{1,11\},\{7,11\},\{4,11\},\{9,11\})$, $(\{2,11\},\{2,4\},\{4,11\},\{10,11\}),(\{2,11\},\{8,11\},\{3,11\},\{9,11\})$, $(\{4,11\},\{3,11\},\{7,11\},\{8,11\}),(\{4,11\},\{5,11\},\{3,11\},\{6,11\})$ and the leave $\mathrm{L}=\{\{2,11\}\{6,11\},\{6,11\}\{7,11\},\{7,11\}\{2,11\},\{7,11\}\{8,11\},\{7,11\}\{8,11\}\}$.
```
17. The subgraph \(H_{5}\) of \(L\left(K_{11}\right)(3)\) has a 4-cycle packing with leave \(F_{2}\). \((\{1,3\},\{1,11\},\{10,11\},\{3,11\}),(\{1,11\},\{2,11\},\{6,11\},\{7,11\})\), \((\{1,11\},\{8,11\},\{3,11\},\{9,11\}),(\{2,11\},\{2,4\},\{4,11\},\{7,11\})\), \((\{2,11\},\{5,11\},\{5,8\},\{8,11\}),(\{2,11\},\{9,11\},\{4,11\},\{10,11\})\), \((\{4,11\},\{3,11\},\{7,11\},\{8,11\}),(\{4,11\},\{5,11\},\{3,11\},\{6,11\})\) and the leave \(\mathrm{L}=\{\{1,11\}\{5,11\},\{5,11\}\{6,11\},\{6,11\}\{1,11\},\{7,11\}\{8,11\},\{7,11\}\{8,11\}\}\).
```

18. The subgraph H_{5} of $L\left(K_{11}\right)(3)$ has a 4-cycle packing with leave F_{3}. $(\{1,3\},\{1,11\},\{9,11\},\{3,11\}),(\{1,11\},\{2,11\},\{5,11\},\{6,11\})$, $(\{1,11\},\{5,11\},\{3,11\},\{10,11\}),(\{2,11\},\{2,4\},\{4,11\},\{10,11\})$, $(\{2,11\},\{6,11\},\{4,11\},\{9,11\}),(\{2,11\},\{7,11\},\{3,11\},\{8,11\})$, $(\{4,11\},\{3,11\},\{6,11\},\{7,11\}),(\{4,11\},\{5,11\},\{5,8\},\{8,11\})$ and the leave $\mathrm{L}=\{\{1,11\}\{8,11\},\{8,11\}\{7,11\},\{7,11\}\{1,11\},\{7,11\}\{8,11\},\{7,11\}\{8,11\}\}$.
19. The subgraph H_{5} of $L\left(K_{11}\right)(3)$ has a 4 -cycle covering with padding C_{3}.
$(\{1,3\},\{1,11\},\{10,11\},\{3,11\}),(\{1,11\},\{2,11\},\{5,11\},\{6,11\})$, $(\{1,11\},\{3,11\},\{8,11\},\{7,11\}),(\{1,11\},\{5,11\},\{5,8\},\{8,11\})$, $(\{1,11\},\{8,11\},\{3,11\},\{9,11\}),(\{2,11\},\{2,4\},\{4,11\},\{7,11\})$
$(\{2,11\},\{6,11\},\{7,11\},\{8,11\}),(\{2,11\},\{9,11\},\{4,11\},\{10,11\})$ $(\{4,11\},\{3,11\},\{7,11\},\{8,11\}),(\{4,11\},\{5,11\},\{3,11\},\{6,11\})$ and the padding $P=(\{1,11\},\{3,11\},\{8,11\})$.
20. The graph K_{6}^{\star} has a 6 -cycle covering with padding C_{3}.
```
(1,{1,4},4,3,{3,5},5), (1,{1,2},2,{2,3},3,6), (1,{1,3},3,5,{4,5},4),
(2,{2,5},5,{5,6},6,{2,6}), (1,3,{3,4},4,5,{1,5}), (1,{1,6},6,{3,6},3,2),
(2,{2,4},4,{4,6},6,5), (2,4,{4,5},5,3,6) and the padding
P=(2,3,6).
```


Acknowledgements

The author is grateful for the valuable corrections of the anonymous referees and also would like to thank Professor P. Paulraja for his valuable suggestions.

References

[1] P. Adams, D. E. Bryant and S. I. El-Zanati, Packing and covering the complete graph with cubes, Australas. J. Combin. 20 (1999), 267-288.
[2] E. J. Billington, H.-L. Fu and C. A. Rodger, Packing complete multipartite graphs with 4-cycles, J. Combin. Des. 9 (2001), 107-127.
[3] E. J. Billington, H.-L. Fu and C. A. Rodger, Packing λ-fold complete multipartite graphs with 4-cycles, Graphs Combin. 21 (2005), 169-185.
[4] A. E. Brouwer, Optimal packing of K_{4} 's into a K_{n}, J. Combin. Theory Ser. A 26 (1979), 278-297.
[5] M. Colby and C. A. Rodger, Cycle decompositions of the line graph of K_{n}, J. Combin. Theory Ser. A 62 (1993), 158-161.
[6] B. A. Cox, The complete spectrum of 6-cycle systems of $L\left(K_{n}\right)$, J. Combin. Des. 3 (1995), 353-362.
[7] B. A. Cox and C. A. Rodger, Cycle systems of the line graph of the complete graph, J. Graph Theory 21 (1996), 173-182.
[8] K. A. Farrell and D. A. Pike, 6-cycle decompositions of the cartesian product of two complete graphs, Util. Math. 63 (2003), 115-127.
[9] S. Ganesamurthy and P. Paulraja, A C_{5}-decomposition of the λ-fold line graph of complete graph, Discrete Math. 342 (2019), 2726-2732.
[10] S. Ganesamurthy, P. Paulraja and R. Srimathi, Multidecompositions of line graphs of complete graphs, Discrete Math. Algorithms Appl. 11 (2019), 1950035.
[11] Y. Gao, Y. Chang and T. Feng, Group divisible ($\left.K_{4}-e\right)$-packings with any minimum leave, J. Combin. Des. 26 (7) (2017), 1-29.
[12] Y. Gao, Y. Chang and T. Feng, Simple minimum ($K_{4}-e$)-coverings of complete multipartite graphs, Acta Mathematica Sinica, English Series, 35 (5) (2019), 632-648.
[13] K. Heinrich and G. Nonay, Exact coverings of 2-paths by 4-cycles, J. Combin. Theory Ser. A 45 (1987), 50-61.
[14] K. Heinrich and H. Verrall, A construction of a perfect set of Euler tours of $K_{2 k+1}$, J. Combin. Des. 5 (1997), 215-230.
[15] D. G. Hoffman and D. A. Pike, 4-cycle decompositions of the cartesian product of two complete graphs, J. Combin. Math. Combin. Comput. 28 (1998), 215-226.
[16] X. Hu, Y. Chang and T. Feng, Group divisible packings and coverings with any minimum leave and minimum excess, Graphs Combin. 32 (4) (2016), 1423-1446.
[17] M.-H. Huang, C.-M. Fu and H.-L. Fu, Packing 5-cycles into balanced complete m-partite graphs for odd m, J. Comb. Optim. 14 (2007), 323-329.
[18] J. A. Kennedy, Maximum packings of K_{n} with hexagons, Australas. J. Combin. 7 (1993), 101-110.
[19] J. A. Kennedy, Maximum packings of K_{n} with hexagons: corrigendum, Australas. J. Combin. 10 (1994), 293.
[20] J. A. Kennedy, Minimum coverings of K_{n} with hexagons, Australas. J. Combin. 16 (1997), 295-303.
[21] H.-C. Lee, Packing and covering the balanced complete bipartite multigraph with cycles and stars, Discrete Math. Theor. Comput. Sci. 16 (2014), 189-202.
[22] M. Li, J. Huo and Z. Gao, Maximum packings and minimum coverings of K_{v} with octagons, Graphs Combin. 25 (2009), 735-752.
[23] Z. Liang, H. Zuo and Y. Miao, Packings and coverings of the complete bipartite graph by octagons, J. Discrete Math. Sci. Cryptogr. 18 (2015), 17-29.
[24] C. C. Lindner and C. A. Rodger, Design Theory, 2nd Ed., CRC Press, Boca Raton, 2009.
[25] P. Paulraja and R. Srimathi, Maximum packing and minimum covering of the line graph of the complete graph with kites, Australas. J. Combin. 76 (1) (2020), 105-127.
[26] A. Rosa and Š. Znám, Packing pentagons into complete graphs: how clumsy can you get?, Discrete Math. 128 (1994), 305-316.
[27] Y. Roditty, Packing and covering of the complete graph with a graph G of four vertices or less, J. Combin. Theory Ser. A 34 (1983), 231-243.
[28] J. Schönheim and A. Bialostocki, Packing and covering of the complete graph with 4-cycles, Canad. Math. Bull. 18 (1975), 703-708.
[29] D. Sotteau, Decomposition of $K_{m, n}\left(K_{m, n}^{*}\right)$ into cycles (circuits) of length $2 k, J$. Combin. Theory Ser. B 30 (1981), 75-81.
[30] H. Verrall, A construction of a perfect set of Euler tours of $K_{2 k}+I$, J. Combin. Des. 6 (1998), 183-211.
[31] D. B. West, Introduction to Graph Theory, 2nd Ed., Prentice-Hall, Upper Saddle River, 2001.
[32] Y. Yang, Y. Chang and L. Wang, Kite-group divisible packings and coverings with any minimum leave and minimum excess, Adv. Math. Comm. 16 (4) (2022), 1121-1142.
[33] S. Zhang and J. Yin, Packing of K_{v} with certain graphs of five vertices, J. Stat. Plann. Inf. 106 (2002), 387-408.

