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Abstract

A 2-tone coloring of a graph assigns two distinct colors to each vertex
with the restriction that adjacent vertices have no common colors, and
vertices at distance two have at most one common color. The 2-tone chro-
matic number of a graph is the minimum number of colors in any 2-tone
coloring. We determine bounds and some exact formulas for the 2-tone
chromatic number of powers of graphs, chordal graphs, and outerplanar
graphs. We also determine an exact formula for the 2-tone chromatic
number of maximal outerplanar graphs.

1 Introduction

There are many generalizations of classical vertex coloring of graphs. (See [3] for basic
terminology and notation.) Some assign each vertex a set of colors, while others
impose restrictions on colors of vertices at distance at least 2. These definitions
have been generalized to define a coloring that assigns k colors to each vertex with
restrictions on which sets may appear within distance k of each other.

Definition 1.1. [13] Let G be a graph, k, t ∈ N, [k] = {1, 2, . . . , k}, and let
(
[k]
t

)
denote the set of t-element subsets of [k]. A function f : V (G) → (

[k]
t

)
is called a

proper t-tone k-coloring (or sometimes just a t-tone coloring) of G if |f(u) ∩ f(v)| <
d(u, v) for all distinct vertices u and v of G. A graph is t-tone k-colorable if it has
a proper t-tone k-coloring. The t-tone chromatic number of G, denoted by τt(G), is
the smallest positive integer k for which G has a proper t-tone k-coloring.

This definition was first studied in a class project [13] in 2009. The 2-tone chro-
matic number has been determined for complete multipartite graphs, trees [13], cy-
cles, theta graphs [7], Mobius ladders, wheels, fans, products of complete graphs,
some products of cycles [2], Sierpinski triangle graphs, Hanoi graphs [4], and most
cactus graphs [5]. General upper bounds were found in [2, 9, 10, 11, 12], and lower
bounds were studied in [16].
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One group [1] considered the 2-tone chromatic number of the random graph. Sev-
eral authors [2, 14, 8] have studied 2-tone coloring for graph products. For general
t, t-tone coloring has been studied for cycles [18, 10], grids [10], and some hyper-
cubes [19].

Note that for t = 1, τ1 (G) = χ (G), the usual chromatic number of a graph G.
This paper is solely concerned with the 2-tone chromatic number.

We shall often call f(v) the label associated with the vertex v of the coloring
f , and the elements of f(v) will be called colors. Thus, in a 2-tone coloring, each
vertex has a label of 2 distinct colors. Adjacent vertices have no common colors,
and vertices distance two apart have at most one common color. When the context
is clear, the label {a, b} will be denoted ab. Vertices distance two apart are called
second-neighbors.

A color class is the set of all vertices with the same color in some coloring of the
graph. A k-chord of a cycle is a pair of vertices of the cycle distance k ≥ 2 apart.
If a k-chord has its pair of vertices appear in a color class of a 2-tone coloring, we
say the color class (and the coloring) uses the k-chord. The center of a 2-chord is a
vertex adjacent to its two vertices.

Some basic results are immediate. The 2-tone chromatic number exists for all
graphs. If H is a subgraph of G then τ2(H) ≤ τ2(G). We have τ2(Kn) = 2n. If G
has components Gi, then τ2(G) = max τ2(Gi). Also, we see 2n (G) ≤ α (G) · τ2 (G)

since each color class is an independent set, so τt (G) ≥ 2·n(G)
α(G)

.

For a nontrivial tree T with maximum degree Δ, τ2 (T ) =
⌈
5+

√
1+8Δ
2

⌉
[13], so for

stars, τ2 (K1,s) =
⌈
5+

√
1+8s
2

⌉
. For the cycle Cn, τ2 (Cn) =

{
6 n = 3, 4, 7
5 n �= 3, 4, 7

[7].

If τ2 (G) = k, we call a 2-tone k-coloring of G a minimum coloring. Two colorings
of a graph are distinct if they cannot be made the same by a permutation of the
colors and an automorphism of the graph. A 2-tone k-coloring is unique if there
are no two distinct k-colorings. The minimum colorings of Cn are unique for n ∈
{3, 4, 5, 6, 8, 9} [7].

The Kneser graph KG (r, k) has as its vertices all k-element subsets of [r], with
edges joining disjoint sets. A graph G is 2-tone r-colorable if and only if it has a
homomorphism f from G to a graph KG (r, 2) with the property that adjacent edges
of G do not map onto the same edge of KG (r, 2). Note that KG (5, 2) is the Petersen
graph (see below).
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Definition 1.2. A pair k-coloring of a graph G is a 2-tone k-coloring in which every
label is distinct. A graph is pair k-colorable if it has a pair k-coloring. The pair
chromatic number of G, pc (G), is the smallest k for which it has a pair k-coloring.

Some results on the pair chromatic number are immediate. We have pc (G) ≥
τ2 (G), and if diam (G) ≤ 2, then this is an equality. This implies that for a join
G +H , τ2 (G +H) = pc (G+H) = pc (G) + pc (H). If H is a subgraph of G, then
pc (H) ≤ pc (G). A graph G is pair r-colorable if and only if it is a subgraph of

KG (r, 2). Thus if n (G) >
(
k
2

)
, pc (G) > k. Equivalently, pc (G) ≥ 1+

√
1+8n(G)

2
.

Theorem 1.3. [2] We have

pc (Pn) =

{
5 3 ≤ n ≤ 10⌈

1+
√
1+8n
2

⌉
n ≥ 11

.

Definition 1.4. A graph G is k-degenerate if the vertices of G can be successively
deleted, so that when each vertex v is deleted, it has degree at most k in the remaining
graph. The degeneracy D (G) is the smallest k such that G is k-degenerate. A
deletion sequence of a graph G is an ordering v1, . . . , vn of V (G) such that each vi
has minimum degree in the induced subgraph G[{vi, vi+1, . . . , vn}].

Cranston et al. [9] found an upper bound for 2-tone coloring based on degeneracy
and maximum degree. The following bound is a slight improvement proved using
the same technique.

Theorem 1.5. [2] Let G be a graph with degeneracy k and maximum degree Δ =
Δ(G). Then

τ2 (G) ≤ 2k +

⌈
1 +

√
9 + 8 (2Δk −Δ− k2)

2

⌉
.

In Section 2, we prove an upper bound for the 2-tone chromatic number of chordal
graphs, and for the class of simple k-trees. In Section 3, we prove an exact formula
for maximal outerplanar graphs, and use this to find an improved upper bound for
all outerplanar graphs. In Section 4, we consider powers of paths, cycles, and trees,
some of which are chordal.

2 Chordal Graphs

Cranston et al. [9] found a bound on the 2-tone chromatic number of chordal graphs.
In this section, we prove a bound that is usually stronger than theirs. We also prove
a better bound for a special class of chordal graphs, the simple k-trees.

Definition 2.1. A graph G is chordal if every cycle of length more than three has
a chord, that is, G contains no induced cycle other than C3. A simplicial vertex is a
vertex whose neighbors induce a clique. A simplicial elimination ordering is formed
by successively deleting a simplicial vertex of G until none remain.
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Any chordal graph has a simplicial elimination ordering.

Proposition 2.2. (Cranston et al. [9]) a. If G is a chordal graph, then τ2 (G) ≤⌈(
1 +

√
6
2

)
Δ
⌉
+ 1.

b. For every ε > 0, there exists an r0 such that whenever r > r0, if G is a chordal
graph with maximum degree r, then τ2 (G) ≤ (2 + ε) r.

Since D (G) ≤ Δ(G), the following result is almost always better.

Theorem 2.3. Let G be a chordal graph with Δ = Δ(G) and degeneracy k ≤ 9
10
Δ.

Then

τ2 (G) ≤ 2k +

⌈
1 +

√
5 + 8k (Δ− k)

2

⌉
.

Proof. We color G using the reverse of a simplicial elimination ordering. Let v be
a vertex and S be the set of its previously colored neighbors. Let r = |S|, r ≤ k,
so S requires 2r colors. Each u ∈ S has at most Δ − r neighbors outside S ∪ {v}.
Thus v has at most r (Δ− r) second-neighbors. Thus we need s extra colors, where(
s
2

)
> r (Δ− r). Thus s2 − s− 2r (Δ− r)− 1 ≥ 0, so s ≥ 1+

√
5+8r(Δ−r)

2
. We need at

least f (r) = 2r +
1+
√

5+8r(Δ−r)

2
colors to guarantee a label for v. Using calculus, it

is easily verified that f (r) is increasing when r ≤ 9
10
Δ, so it is maximized by r = k.

Thus G can be colored using at most 2k +

⌈
1+
√

5+8k(Δ−k)

2

⌉
colors.

The bound is also true when k = Δ (and G is complete). The assumption
k ≤ 9

10
Δ is almost always true for chordal graphs of interest. For example, any

k-tree with order n ≥ 2k + 1 has k ≤ 1
2
Δ.

Definition 2.4. A k-tree is a graph that can be formed by starting with Kk+1 and
iterating the operation of adding a new vertex adjacent to all the vertices of a k-
clique of the existing graph. A k-leaf is a degree-k vertex of a k-tree. A simple k-tree
is defined recursively by starting with Kk+1 and iteratively adding a vertex adjacent
to all vertices of a k-clique not previously used as the neighborhood of a k-leaf.

Thus Kk+1 is the only k-tree of order k + 1, and Kk+2 − e is the only k-tree of
order k + 2. A survey of k-trees, simple k-trees, and related graphs is in [6].

Theorem 2.5. Let G be a simple k-tree with maximum degree Δ = Δ(G). Then

τ2 (G) ≤ 2k +

⌈
1 +

√
1 + 8 ((k − 1) (Δ− k) + 2)

2

⌉
.

Proof. Let G be a simple k-tree, and hence k-degenerate. The result is obvious for
order n = k + 1.



A. BICKLE /AUSTRALAS. J. COMBIN. 87 (1) (2023), 182–197 186

Note that deleting all k-leaves of G produces another k-tree, or Kk. Since any
k-leaf is contained in k k-cliques, any simple k-tree with order n ≥ k+2 has a k-leaf
adjacent to a vertex u with degree at most 2k.

Form a deletion sequence by successively deleting a k-leaf adjacent to a vertex
with degree at most 2k, and then the final k vertices. Let S : v1, . . . , vn be the
reverse of this sequence, and color G using S. The first k + 1 vertices all receive
mutually disjoint labels.

When colored, vi, i ≥ k+2, has a set R of k mutually adjacent neighbors already
colored, one of which has at most 2k − 1 colored neighbors. The set R excludes 2k
colors. The vertices in R have a common neighbor other than vi, since any k-clique
of a k-tree is contained in a k + 1-clique. Thus vi has at most (k − 1) (Δ− k) +
(2k − k) − (k − 1) = (k − 1) (Δ− k) + 1 second-neighbors already colored. Thus
we need r extra colors, where

(
r
2

) ≥ (k − 1) (Δ− k) + 2. Solving, we find r ≥
1+
√

1+8((k−1)(Δ−k)+2)

2
.

This theorem is not sharp. Simple 2-trees are equivalent to maximal outerplanar
graphs, for which we prove an exact formula for τ2 in the next section. Simple 3-trees
are also known as Apollonian networks, a class of maximal planar graphs. For them,

the bound becomes τ2 (G) ≤ 6 +
⌈
1+

√
16Δ−31
2

⌉
.

3 Outerplanar Graphs

In this section, we prove an exact formula for the 2-tone chromatic number of max-
imal outerplanar graphs. We then use this, along with some structural results on
outerplanar graphs, to prove an improved bound on the 2-tone chromatic number of
outerplanar graphs.

Since every outerplanar graph is 2-degenerate, Theorem 1.5 implies that for
any outerplanar graph G with maximum degree Δ = Δ(G) ≥ 1, τ2 (G) ≤ 4 +⌈
1+

√
24Δ−23
2

⌉
. Cranston and LaFayette [10] improved on this by using information

about the structure of outerplanar graphs.

Theorem 3.1. [10] Let G be an outerplanar graph with maximum degree Δ = Δ(G).
Then τ2 (G) ≤ ⌊√

2Δ + 4.25 + 5.5
⌋
.

A maximal outerplanar graph (MOP) cannot have any edge added while remain-
ing outerplanar. The previous bound is not sharp, even for MOPs, as we will see in
Theorem3.4. One special class of MOPs are the fans, Pn +K1. By Theorem 1.3,

τ2 (Pn +K1) =

{
7 3 ≤ n ≤ 10⌈

5+
√
1+8n
2

⌉
n ≥ 11

.

Note that greedy coloring need not be optimal for MOPs, or even for fans. For
example, τ2 (K1 + P10) = 7. However, coloring the center (the K1) with 67 and
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greedily coloring the path starting at one end produces 12-34-15-23-14-25-13-24-35-,
and then the only remaining label from {1, 2, 3, 4, 5}, 45, cannot be used on the last
vertex.

To optimally color MOPs, we successively color fans, coloring the vertices of each
fan simultaneously. We need a way to construct a MOP by adding fans so that each
does not overlap with the existing graph too much.

Lemma 3.2. Any MOP can be constructed by starting with a fan and iteratively
adding another fan overlapping on K1 + P3 or K1 + P4.

Call this process a fan construction of the MOP.

Proof. Let G be a MOP, and consider sequence S, the reverse of a deletion sequence
for G. We start with a fan centered at the first vertex in S, and iteratively add all
remaining vertices of a fan Fv when its center v appears in S. Now v is adjacent to at
most two previous vertices in S, and so is contained in at most two fans whose centers
already appeared in S. Now v can have at most one extra neighbor in each fan, so
it has at most four neighbors before Fv is completed. Thus when Fv is completed, it
overlaps the existing graph on K1 + P3 or K1 + P4.

For example, consider the graph below, for which 12, 11, . . . , 1 is a deletion se-
quence. A fan construction starts with the fan F1, which includes vertices {7, 6, 2, 3,
5, 11}. Next we add F2, which includes vertices {8, 6, 1, 3, 4, 10}, and overlaps F1 on
K1+P3. Then add F3, which includes vertices {9, 5, 1, 2, 4, 12}, and overlaps F1∪F2

on K1+P4. Now F4 overlaps the existing graph on K1+P4, and no new vertices are
added. The same is true for all remaining vertices.

9 12

5 3 4

11 1 2 10

7 6 8

To show that it is possible to color each fan in order, we prove a slightly stronger
lemma.

Lemma 3.3. When r ≥ 6, there is a pair r-coloring of a cycle with
(
r
2

)
vertices that

extends any possible coloring of a copy of P4 (denoted H) in the cycle so that the
ends of H are the centers of 2-chords used in the pair k-coloring.

Proof. Suppose the cycle contains vertices abcdef in order, and bcde are the vertices
of H . There are multiple distinct colorings for H . They may use 2, 1, or 0 2-chords
centered on c or d. There may also be a common color on b and e, or not. With
symmetry, there are six possible cases, which we denote A-F (see below).
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A −34− 15− 27− 68−
B −34− 15− 23− 67−
C −34− 15− 23− 56−
D −34− 15− 27− 46−
E −34− 15− 23− 46−
F −34− 15− 23− 45−

With 6 colors on the path, there are three possible colorings (cases C, E, and
F). We align vertices 2 through 5 of the 15-cycles below with the existing path of
length 4.

−12− 34− 15− 23− 56− 24− 16− 25− 46− 13− 45− 36− 14− 26− 35−
−12− 34− 15− 23− 46− 25− 16− 24− 56− 13− 45− 36− 14− 26− 35−
−12− 34− 15− 23− 45− 36− 24− 35− 16− 25− 46− 13− 26− 14− 56−
With 7 colors on the path, there are five possible colorings (cases B-F). We align

vertices 2 through 5 of the 21-cycles below with the existing path of length 4.

−12− 34− 15− 23− 67− 25− 37− 24− 17− 46− 27− 16− 47− 56− 13− 45−
36− 57− 14− 26− 35−

−12− 34− 15− 23− 56− 24− 37− 16− 47− 25− 17− 46− 27− 13− 67− 45−
36− 57− 14− 26− 35−

−12− 34− 15− 27− 46− 25− 37− 16− 47− 23− 17− 24− 56− 13− 67− 45−
36− 57− 14− 26− 35−

−12− 34− 15− 23− 46− 25− 37− 16− 57− 24− 17− 56− 27− 13− 67− 45−
36− 14− 26− 47− 35−

−12− 34− 15− 23− 45− 36− 17− 24− 67− 35− 27− 16− 47− 25− 37− 46−
57− 13− 26− 14− 56−

With 8 colors on the path, all six cases are possible. Aligning vertices 2 through 5
of the 28-cycle below covers case A. It is easy to check that this 28-cycle also contains
paths that work for cases B-F, permuting the colors as necessary.

−12− 34− 15− 27− 68− 25− 18− 67− 38− 24− 17− 28− 46− 23− 14− 58−
47− 56− 48− 13− 45− 36− 57− 16− 37− 26− 78− 35−

For larger values of r, we seek a Hamiltonian cycle in the Kneser graph KG (r, 2)
containing the labels of H in order. Note that KG (r, 2) has

(
r
2

)
vertices, each with

degree
(
r−2
2

)
. We delete the vertices with the same labels as {b, c, d, e} fromKG (r, 2).

The new graph G has minimum degree at most four less than before. Now

n (G)

δ (G)
≤

(
r
2

)− 4(
r−2
2

)− 4
=

r(r−1)
2

− 4
(r−2)(r−3)

2
− 4

=
r (r − 1)− 8

(r − 2) (r − 3)− 8
< 2

when r ≥ 9. Then δ (G) > n(G)
2

, so G is Hamiltonian-connected [15] (for every pair of
vertices u, v there is a Hamiltonian u−v path) when r ≥ 9. Thus we can extend bcde
through a spanning path of G to form a Hamiltonian cycle of KG (r, 2) containing
the labels of H in order.
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Theorem 3.4. Let G be a MOP with order n ≥ 4 and Δ = Δ(G). Then τ2 (G) =

max
{
7,
⌈
5+

√
1+8Δ
2

⌉}
.

Proof. Any MOP G with n ≥ 4 contains K4 − e, and so has τ2 (G) ≥ 7. Also, G

contains K1,Δ, so τ2 (G) ≥
⌈
5+

√
1+8Δ
2

⌉
. We show that G has a 2-tone coloring with

max
{
7,
⌈
5+

√
1+8Δ
2

⌉}
colors.

We color a MOP G using a fan construction. Say we color all the vertices of a
fan Fv centered at v. By Lemma 3.2, we may assume that v neighbors c and d, the
centers of previously colored fans. Thus there may be as many as 4 neighbors of v
already colored, and they induce a path bcde (see the example below).

a f

b v e

u c d w

When Δ ≤ 10, we use 7 colors, and there is only one 2-tone 7-coloring of K1+P4

up to permutation of colors. Now any 5-coloring of Pr, 3 ≤ r ≤ 10, uses every
2-chord of the path. Thus Fv can be colored consistently with the existing coloring.
There may be a previously colored vertex u not on Fv that is distance 2 from the
center v of Fv and from a newly colored vertex a of Fv. However, u and v must share
a color, so u and a cannot share a label. Similarly, w and f do not share a label.

Suppose Δ > 10, and let r be so that
(
r−1
2

)
< Δ ≤ (

r
2

)
. Then r ≥ 6, so we need

at least 6 colors on the path of some fan. By Lemma 3.3, there is a cycle with
(
r
2

)
vertices that extends any possible coloring of a copy of P4 in the cycle. Further, there
are common colors on a and c, and hence no common label for u and a. Similarly,
w and f do not share a label. Now Fv can be colored using the pair coloring of
this cycle (deleting an edge, and possibly one or more vertices). Iterating, G can be

colored using max
{
7,
⌈
5+

√
1+8Δ
2

⌉}
colors.

Theorem 3.4 implies a bound on τ2 for any outerplanar graph with the same
maximum degree. Note that not all outerplanar graphs are contained in a MOP with
the same maximum degree (e.g. most paths and cycles). Identifying each edge of Cr,
r ≥ 7, with an edge of a copy of C4 (see below for r = 7) produces an outerplanar
graph that cannot be made into a MOP without increasing its maximum degree by
at least 3. (See figure overleaf.)

Thus it is of interest to determine how much the maximum degree must increase
when an outerplanar graph is made maximal. Note that the problem of determining
τ2 (G) can be reduced to finding τ2 of proper subgraphs of G when G is discon-
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nected or contains a bridge [7]. Thus we can limit our interest to 2-edge-connected
outerplanar graphs.

Lemma 3.5. If G is a 2-edge-connected outerplanar graph containing vertex x, then
G is contained in a MOP H so that dH (x) = dG (x) and dH (v) ≤ dG (v) + 3 for
every vertex v.

Proof. Any 2-edge-connected outerplanar graph can be formed by successively iden-
tifying chordless cycles on copies of K2 or K1 (this can be verified by induction on
order). Note that any cycle can be made into a MOP (triangulated) by adding edges
in its interior that form a path. For an r-cycle, we increase the degrees of r − 4
vertices by 2, 2 vertices 1, and leave two degrees unchanged. When we triangulate a
cycle sharing an edge with a previously triangulated cycle, we triangulate it so that
the two overlapping vertices have their degrees increased by 0 and 1.

We need to avoid adding 1 to the degree of the same vertex more than once unless
its degree was not previously increased by 2. We can do this by orienting each edge
of G. Make the initial cycle C0 one that contains x. When C0 has length at least
4, add a path inside C0 so that the degree of x does not increase. There must be
another vertex y on C0 whose degree does not change. When C0 = K3, make y either
vertex that isn’t x. Orient the edges of the x− y paths of C0 toward y (see example
below).

x y

Say we add a new cycle C overlapping on directed edge uv. When C has length
at least 4, add a path inside C so that v has degree increased by 1 and the degree of
u does not change. Then there must be another vertex w on C whose degree does
not change. Orient the edges of the u − w and v − w paths of C toward w. This
guarantees that no vertex of C other than perhaps w will have its degree increased
by 1 more than once when additional cycles are added, and the degree of w will be
increased by 1 at most twice (see example overleaf).

Suppose we add a new cycle C overlapping only on vertex u. We may assume that
there is a directed edge uv on the exterior region where no cycle will be overlapped
(else we add that cycle first). Also, we may assume that there is a vertex t on C that
immediately precedes u and v on the exterior region, and no cycle with be overlapped
on tu (else we redefine C to be that cycle).
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x

u v

y

w

When C has length at least 4, add a path inside C so that t has degree increased
by 1 and the degree of u does not change. Then there must be another vertex w on
C whose degree does not change. Orient the edges of the u−w paths of C toward w.
Also, add directed edge tv. This guarantees that no vertex of C other than perhaps
w will have its degree increased by 1 more than once when additional cycles are
added, and the degree of w will be increased by 1 at most twice. The degrees of t
and v cannot be increased further (see example below).

x

u v

y

t

w

Thus no vertex has its degree increased by more than 3 no matter how many
cycles are triangulated, and d (x) is unchanged.

When Δ (G) is large (relative to n), H can have the same maximum degree.

Lemma 3.6. Let G be an outerplanar graph with degrees d1 ≥ d2 ≥ . . . ≥ dn. If
d1 =

n+2+r
2

, then d2 ≤ n+2−r
2

.

Proof. Suppose G is outerplanar, d1 =
n+2+r

2
, and to the contrary, d2 >

n+2−r
2

. Then
d1 + d2 > n+2+r

2
+ n+2−r

2
= n + 2. Then two vertices have at least three common

neighbors. Then G contains K2,3, so it is not outerplanar.

Thus when Δ (G) ≥ n+5
2

(and r = 3), G is contained in a MOP H with Δ (G) =
Δ (H). This result is nearly best possible. Let G be formed from P2r = v1 . . . v2r by
adding three vertices u, v, and w, with u adjacent to vi, i ∈ {1, . . . , r}, v adjacent to
vi, i ∈ {r + 1, . . . , 2r}, and add edges uv, uw, and vw (see below for r = 3). Then
Δ (G) = n+1

2
, and any MOP H containing G has Δ (H) = n+3

2
.

u v

w
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Corollary 3.7. Let G be outerplanar with order n ≥ 4 and Δ = Δ(G). Then

τ2 (G) ≤ max

{
7,

⌈
5+
√

1+8(Δ+3)

2

⌉}
.

Proof. The problem of determining τ2 (G) can be reduced to finding τ2 of proper
subgraphs of G when G is disconnected or contains a bridge [7]. When G is 2-
edge-connected, Lemma 3.5 shows that G is contained in a MOP H with Δ (H) ≤
Δ(G)+3. Then by Theorem 3.4, τ2 (G) ≤ τ2 (H) ≤ max

{
7,

⌈
5+
√

1+8(Δ(G)+3)

2

⌉}
.

This bound is superior to Theorem 3.1 for all outerplanar graphs.

Note that although we know τ2 for all MOPs, it may still be difficult to determine
τ2 for an outerplanar graph. A cactus graph has every block a cycle or edge. In
another publication [5], I determined τ2 for all cactus graphs with Δ �= 6. When
Δ = 6, there are some cactus graphs for which determining τ2 is difficult.

4 Powers of Graphs

Since 2-tone coloring has been studied for graph products and other graph operations,
it is natural to consider it for graph powers. In this section, we find exact formulas
for the 2-tone chromatic number of powers of paths and squares of trees and cycles.
The first two classes are chordal, while the last usually is not.

Definition 4.1. The kth power Gk of a graph G adds all edges between pairs of
vertices with distance at most k. The graph G2 is the square of G.

We can determine the 2-tone chromatic number of some powers of graphs.

Proposition 4.2. For n ≥ k + 2, we have τ2
(
P k
n

)
= 2k + 3.

Proof. For n ≥ k + 2, τ2
(
P k
n

) ≥ τ2 (Kk+2 − e) = 2k + 3. Repeating the coloring
12− 34− 56− · · · − {2k + 3, 1} − 23− · · · − {2k + 2, 2k + 3}− as long as necessary
on the path provides a 2-tone 2k + 3-coloring.

For sufficiently long cycles, the same formula holds.

Theorem 4.3. For n ≥ (2k + 2) (k2 + 3k + 1), we have τ2
(
Ck

n

)
= 2k + 3.

Before giving a formal proof, we provide an example. When k = 2, we find 2-tone
7-colorings of C7 and C12 that use no 2-chord or 3-chord and have no repeated label.
Expressed as broken cycles, these are:

−12− 34− 56− 71− 23− 45− 67−

−12− 34− 56− 71− 32− 54− 16− 37− 52− 14− 36− 57−
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We “splice” these cycles together to produce the 2-tone 7-coloring C19 below.

−12−34−56−71−23−45−67−12−34−56−71−32−54−16−37−52−14−36−57−

For cycles v1v2 . . . vrv1 and u1u2 . . . usu1, we can splice them together to create the
cycle v1v2 . . . vru1u2 . . . usv1. Note that 2-tone k-colorings of two cycles can produce
a 2-tone k-coloring of the spliced cycle if the first two vertices after the break in both
cycles have the same labels (see also [10]). For the squares of cycles, we need the
first four labels to agree.

Proof. There is a 2-tone (2k + 3)-coloring of C2k+3 which is formed by letting each
pair of vertices at distance k + 1 on the cycle be a distinct color class. There is a
2-tone (2k + 3)-coloring of C(k+1)(k+2) formed by letting k + 1 color classes be k + 2
equally spaced vertices around the cycle and letting k+2 color classes be k+1 equally
spaced vertices around the cycle. These both provide 2-tone (2k + 3)-colorings of the
kth powers of C2k+3 and C(k+1)(k+2). Now these colorings can be made to agree on
the first 2k + 2 vertices, so they can be spliced together to form longer cycles.

Furthermore, the numbers 2k + 3 and (k + 1) (k + 2) are relatively prime since
2k + 3 ≡ 1 mod k + 1 and 2k + 3 ≡ −1 mod k + 2. A theorem on Diophantine
equations [17] guarantees that when a and b are relatively prime, there is a linear
combination ax+ by = N of a and b with nonnegative coefficients x and y whenever
N ≥ (a− 1) (b− 1). Thus when N ≥ (2k + 2) ((k + 1) (k + 2)− 1), cycles of length
2k+ 3 and (k + 1) (k + 2) can be spliced together to obtain a 2-tone 2k+ 3-coloring
of an N -cycle.

The bound on n is definitely not the best possible, since the proof uses only two
cycles.

Hence only for the shorter cycles must the 2-tone chromatic number be deter-
mined. Certainly if n ≤ 2k+1, τ2

(
Ck

n

)
= 2n. If n = 2k+2, τ2

(
Ck

n

)
= τ2

(
n
2
K2

)
= 3

2
n,

and if n = 2k + 3, τ2
(
Ck

n

)
= τ2

(
Cn

)
= n [7]. For C2

n, filling in the rest is not too
difficult.

Theorem 4.4. We have

τ2
(
C2

n

)
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

6 n = 3
7 n = 7, 12, 14, 15, 16, n ≥ 18
8 n = 4, 8, 9, 10, 11, 13, 17
9 n = 6
10 n = 5

Proof. This is obvious for 3 ≤ n ≤ 6. For n ≥ 5, we have τ2 (C
2
n) ≥ τ2 (P

2
n) ≥ 7.

Each color class of C2
n has size at most

⌊
n
3

⌋
. Thus τ2 (C

2
n) ≥ 2n

�n
3 � > 7 for n ∈ {8, 11}.

Any 2-tone coloring of C2
n can use each of the n 3-chords of Cn at most once. For

n = 9, a 7-coloring would require at least four color classes of size 3, which would
use 4 · 3 = 12 3-chords. For n = 10, a 7-coloring would require six color classes of
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size 3, which would use 6 · 2 = 12 3-chords. For n = 13, a 7-coloring would require
at least five color classes of size 4, which would use 5 ·3 = 15 3-chords. For n = 17, a
7-coloring would require at least six color classes of size 5, which would use at least
6 · 3 = 18 3-chords.

The colorings below provide upper bounds. Note that 7-colorings exist for n ∈
{7, 12, 15, 16, 18, 20} and 8-colorings exist for n ∈ {8, 9, 10, 11, 13}. Splicing broken
cycles together works for the larger cycles.

−12− 34− 56− 71− 23− 45− 67−

−12− 34− 56− 78− 13− 24− 57− 68−
−12− 34− 56− 17− 23− 45− 16− 37− 58−

−12− 34− 56− 71− 23− 68− 15− 24− 38− 57−
−12− 34− 56− 17− 24− 36− 58− 14− 26− 38− 57−

−12− 34− 56− 71− 32− 54− 16− 37− 52− 14− 36− 57−
−12− 34− 56− 71− 32− 54− 16− 37− 58− 14− 32− 57− 68−

−12− 34− 56− 17− 32− 46− 15− 37− 24− 16− 35− 27− 14− 36− 57−
−12− 34− 56− 17− 23− 54− 16− 27− 35− 14− 26− 37− 15− 24− 36− 57−

−12− 34− 56− 17− 23− 45− 16− 73− 25− 14− 76− 23− 15− 74− 26− 13− 45− 76−
−12−34−56−17−23−45−16−37−25−14−36−27−45−13−26−47−15−23−46−57−

Analysis of 3-chords shows that the minimum colorings are unique for Cn, n ∈
{3, 4, 5, 6, 7, 12, 15, 16}.

We have seen that τ2 (P
2
n) = 7 for n ≥ 4. Since a tree with Δ = 2 is a path, we

consider trees with Δ ≥ 3.

Theorem 4.5. Let T be a tree with maximum degree Δ = Δ(T ) ≥ 3. Then τ2 (T
2) =

2 (Δ + 1).

Before giving a formal proof, we provide an example. Let T be a tree with all
internal vertices having degree 4. To color T 2, we start with a vertex v and color
all its neighbors and second-neighbors in T . We then iteratively color all second-
neighbors of a given vertex simultaneously. Say v gets label 12, and its neighbors get
labels 34, 56, 78, and 9A (see the graph below). If u gets label 34, its other neighbors
must use disjoint labels from {5, 6, 7, 8, 9, A} without repeating any labels. Similar
statements are true for the other neighbors of v.

A branch of T (with respect to v) is a component of T − v. We make a table
(below left) with (say) the smaller of the two colors of each neighbor of v on the left.
In each column, we list the other color used on a label of each branch of T . (The last
column gives labels 34, 5A, 67, and 89 for the branch containing u.) There are four
branches, so four columns. Each color appears exactly once in each row and column,
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so the table is a Latin square. Further, there must be a selection of four cells, one
in each row and column, so that the four colors in these cells are distinct. (This is
called a transversal of the Latin square.) The Latin square is shown below left with
the squares of the transversal in boxes. The corresponding coloring is shown at right.

3 A 6 8 4
5 4 8 6 A
7 8 4 A 6
9 6 A 4 8

49

7A

38

5A

56

3A

67

34

12

78

45

89

9A

69

47

58

36

Next we extend this coloring to a neighbor of v, say u, which has 9 second-
neighbors that must be colored consistent with the existing coloring. We use the
same Latin square and swap in new colors. In the Latin square below left, we put
9, 7, 1, and 5 on the left, and 8, 6, 2, A in the transversal squares. To complete the
Latin square, we fill in the same pattern as before using the new colors (put 8 in the
same positions as 4 held in the first Latin square, etc.). This extends the coloring to
the second-neighbors of u with no conflicts. A portion of T , now centered at u, is
shown below right.

9 8
7 6
1 2
5 A

9 A 6 2 8
7 8 2 6 A
1 2 8 A 6
5 6 A 8 2

18

27

69

29

5A

56

1A

67

34

12

78

58

89

9A

25

16

7A

Proof. SinceKΔ+1 ⊆ T 2, τ2 (T
2) ≥ 2 (Δ + 1). We may assume that all of T ′s internal

vertices have degree Δ.

Begin coloring T 2 with an internal vertex v. It is well-known that there is an
n × n Latin square with a transversal for all n �= 2. (For all n �/∈ {2, 6}, there are
two mutually orthogonal Latin squares, a stronger property.) Put n = Δ colors to
the left margin of the Latin square, and use n colors to fill the Latin square. Each
label is one color to the left and one from the same row in the Latin square. The
labels in the transversal are used on the neighbors of v, and the labels from a given
column are used on a single branch. Each branch has no common color, and no label
is repeated, so we have a valid coloring so far.
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Next we show how to extend this coloring when T 2 has diameter more than 2. We
choose a neighbor of v, say u, that is an internal vertex of T 2. Then u has at most
(Δ− 1)2 second-neighbors in T that must be colored consistent with the existing
coloring. We use the same Latin square and swap in new colors. Choose one color
from each of the Δ neighbors of u to put on the left margin. For each label of a
neighbor of u, put the other color in the square of the transversal that is in the same
row. To complete the Latin square, replace each old color with the same new color
that it was replaced with in a square of the transversal. This extends the coloring to
the second-neighbors of u with no conflicts. Iterating this process, the coloring can
be extended to all vertices, so τ2 (T

2) ≤ 2 (Δ + 1).
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