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Abstract

The odd chromatic number and the conflict-free chromatic number are
new graph parameters introduced by Petruševski and Škrekovski (2022)
and Fabrici, Lužar, Rindošová and Soták (2023) respectively. In this
paper, we show that graphs with bounded 2-strong colouring number
have bounded odd chromatic number and bounded conflict-free chro-
matic number. This implies that graph classes with bounded expansion
have bounded odd chromatic number and bounded conflict-free chromatic
number which is one of the broadest known classes to have these proper-
ties. As an example, it follows by known results that the odd chromatic
number and the conflict-free chromatic number of k-planar graphs is O(k),
which improves a recent result of Dujmović, Morin and Odak (2022).

1 Introduction

All graphs in this paper are finite, simple, and undirected. For m,n ∈ Z with m � n,
let [m,n] := {m,m + 1, . . . , n} and [n] := [1, n]. Let G be a graph. A (vertex)
c-colouring of G is any function ψ : V (G) → C where |C| � c. If ψ(u) �= ψ(v) for all
uv ∈ E(G), then ψ is a proper colouring. If N(v) := {w ∈ V (G) : vw ∈ E(G)} is the
neighbourhood of a vertex v, then ψ is an odd colouring if for each v ∈ V (G) with
|N(v)| > 0, there exists a colour α ∈ C such that |{w ∈ N(v) : ψ(w) = α}| is odd.
Similarly, ψ is a conflict-free colouring of G if for each v ∈ V (G) with |N(v)| > 0,
there exists a colour α ∈ C such that |{w ∈ N(v) : ψ(w) = α}| = 1. The (proper) odd
chromatic number χo(G) of G is the minimum integer c such that G has a (proper)
odd c-colouring. Likewise, the (proper) conflict-free chromatic number χpcf(G) of G
is the minimum integer c such that G has a (proper) conflict-free c-colouring. Clearly
χo(G) � χpcf(G) since a conflict-free colouring is an odd colouring.
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Motivated by connections to hypergraph colouring, the odd chromatic number
and the conflict-free chromatic number were recently introduced by Petruševski and
Škrekovski [20] and Fabrici, Lužar, Rindošová, and Soták [10] respectively. These
parameters have gained significant traction with a particular focus on determining a
tight upper bound for planar graphs. Petruševski and Škrekovski [20] showed that
the odd chromatic number of planar graphs is at most 9 and conjectured that their
odd chromatic number is at most 5. Petr and Portier [19] improved this upper
bound to 8. For conflict-free colourings, Fabrici et al. [10] proved a matching upper
bound of 8 for planar graphs. For proper minor-closed classes, a result of Cranston,
Lafferty, and Song [5] implies that the odd chromatic number of Kt-minor free graphs
is O(t

√
log t). For non-minor closed classes, Cranston et al. [5] showed that the odd

chromatic number of 1-planar graphs is at most 23 (A graph G is k-planar if it has
an embedding in the plane such that each edge is involved in at most k crossings).
Dujmović, Morin, and Odak [6] proved a more general upper bound of O(k5) for the
odd chromatic number of k-planar graphs. See [1, 2, 4] for other results concerning
these new graph parameters.

In this note, we bound the conflict-free chromatic number of a graph by its 2-
strong colouring number. For a graph G, a total order � of V (G), a vertex v ∈ V (G),
and an integer s � 1, let R(G,�, v, s) be the set of vertices w ∈ V (G) for which
there is a path v = w0, w1, . . . , ws′ = w of length s′ ∈ [0, s] such that w � v and
v ≺ wi for all i ∈ [s − 1]. For a graph G and integer s � 1, the s-strong colouring
number scols(G) is the minimum integer c such that there is a total order � of V (G)
with |R(G,�, v, s)| � c for every vertex v of G.

Colouring numbers provide upper bounds on several graph parameters of interest.
First note that scol1(G) equals the degeneracy of G plus 1, implying χ(G) � scol1(G).
A proper graph colouring is acyclic if the union of any two colour classes induces a
forest; that is, every cycle is assigned at least three colours. The acyclic chromatic
number χa(G) of a graph G is the minimum integer c such that G has an acyclic
c-colouring. Kierstead and Yang [13] proved that χa(G) � scol2(G) for every graph
G. Other parameters that can be bounded by strong colouring numbers include
weak colouring numbers [24], game chromatic number [12, 13], Ramsey numbers [3],
oriented chromatic number [14], arrangeability [3], and boxicity [9].

Our key contribution is the following:

Theorem 1. For every graph G, χpcf(G) � 2 scol2(G)− 1.

Note that Theorem 1 is best possible in the sense that the conflict-free chro-
matic number is not bounded by the 1-strong colouring number [2]. Before proving
Theorem 1, we highlight several noteworthy consequences.

First, Theorem 1 implies that graph classes with bounded expansion have bound-
ed conflict-free chromatic number and bounded odd chromatic number. Let G be a
graph and r � 0 be an integer. A graph H is an r-shallow minor of G if H can be
obtained from a subgraph of G by contracting disjoint subgraphs each with radius at
most r. Let G� r be the set of all r-shallow-minors of G. For an integer r � 0 and
graph G, let ∇r(G):= max{|E(H)|/|V (H)| : H ∈ G� r}. A hereditary graph class
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G has bounded expansion with expansion function fG : N∪{0} → R if ∇r(G) � fG(r)
for every r � 0 and graph G ∈ G. Bounded expansion is a robust measure of sparsity
with many characterisations [16, 17, 24]. Examples of graph classes with bounded
expansion includes classes that have bounded maximum degree [17], bounded stack
number [18], bounded queue-number [18], bounded nonrepetitive chromatic number
[18], or strongly sublinear separators [8], as well as proper-minor closed classes [17].
See the book by Nešetřil and Ossona de Mendez [16] for further background on
bounded expansion and strong colouring numbers.

Zhu [24] showed that a graph class G has bounded expansion if and only if there
exists a function f : N → N such that scols(G) � f(s) for every graph G ∈ G. In
particular, his results imply that scol2(G) � 8(∇1(G))

3+1 for every graph G. Thus,
we have the following consequence of Theorem 1.

Corollary 2. For every graph G, χpcf(G) � 16(∇1(G))
3 + 1.

Thus Theorem 1 implies that each of the aforementioned graph classes have
bounded conflict-free chromatic number and bounded odd chromatic number.

Second, Theorem 1 implies a stronger bound for the odd chromatic number and
the conflict-free chromatic number of k-planar graphs. Van den Heuvel and Wood
[22, 23] showed that scol2(G) � 30(k+1) for every k-planar graph G. Thus we have
the following consequence of Theorem 1:

Theorem 3. For every k-planar graph G, χpcf(G) � 60k + 59.

Theorem 3 is the first known upper bound for the conflict-free chromatic number
of k-planar graphs. For the odd chromatic number, the previous best known upper
bound for k-planar graphs was χo(G) ∈ O(k5) due to Dujmović et al. [6].

Finally, Theorem 1 gives the first known upper bound for the conflict-free chro-
matic number of Kt-minor free graphs. Van den Heuvel, Ossona de Mendez, Quiroz,
Rabinovich and Siebertz [21] showed that scol2(G) � 5

(
t−1
2

)
for every Kt-minor free

graph G. Thus Theorem 1 implies the following:

Theorem 4. For every Kt-minor free graph G, χpcf(G) � 5(t− 1)(t− 2)− 1.

See [7, 11, 21, 22] for other graph classes to which Theorem 1 applies.

2 Proof

Proof of Theorem 1. We may assume that G has no isolated vertices. Let � be the
ordering (v1, . . . , vn) of V (G) where |R(G, vi,�, 2)| � scol2(G) for every vertex vi
of G. For each vertex vi ∈ V (G), let N−(vi) := R(G, vi,�, 1) \ {vi} be the left
neighbours of vi, and let vj ∈ N(vi) where j = min{� ∈ [n] : v� ∈ N(vi)} be the
leftmost neighbour of vi. Let π(vi) denote the leftmost neighbour of vi.

We now specify the conflict-free colouring ψ : V (G) → [2 scol2(G)+1] by colouring
the vertices left to right. For i = 1, let ψ(v1) = 1. Now suppose i > 1 and that
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v1, . . . , vi−1 are coloured. Let Xi := {ψ(vj) : vj ∈ R(G, u,�, 2) \ {vi}} and Yi :=
{ψ(π(vj)) : vj ∈ N−(vi)}. Observe that |Xi| � |R(G, u,�, 2) \ {vi}| � scol2(G) − 1
and |Yi| � |R(G, vi,�, 1) \ {vi}| � scol2(G)− 1 and so |Xi ∪ Yi| � 2 scol2(G)− 2. As
such, there exists some colour α ∈ [2 scol2(G)− 1] \ (Xi ∪ Yi). Let ψ(vi) := α.

Now ψ is proper as each vertex receives a different colour to its left neighbours.
We now show that it is conflict-free. Let vi ∈ V (G) and let vj = π(vi). We claim
that ψ(vj) �= ψ(v�) for every v� ∈ N(vi) \{vj}. Since vj is the leftmost neighbour of
vi, j < �. If � < i, then vj ∈ R(G,�, v�, 2) (by the path v�, vi, vj) and so ψ(vj) ∈ X�.
Otherwise i < � so vi ∈ N−(v�) and thus ψ(vj) ∈ Y�. As such, ψ(vj) ∈ X� ∪ Y� and
hence ψ(vj) �= ψ(v�), as required.
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that graphs with layered treewidth k have conflict-free chromatic number O(k) and
odd chromatic number O(k). Liu [15] also proved a quantitative strengthening of
Theorem 4 showing that χpcf(G) ∈ O(t

√
log(t)) for every Kt-minor-free graph G.
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