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Abstract

A subset T of vertices in a hypergraph H is a transversal if T has a
nonempty intersection with every edge of H . The transversal number of
H is the minimum size of a transversal in H . A subset S of vertices in a
graph G with no isolated vertex is a total dominating set if every vertex
of G is adjacent to a vertex of S. The minimum cardinality of a total
dominating set in G is the total domination number of G. In this note,
we improve previous probabilistic upper bounds given for the transversal
number of a hypergraph and the total domination number of a graph
given by the first two authors in [Discrete Math. Algorithms Appl. 11 (1)
(2019), 1950004, 6 pp.].
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1 Introduction

A subset T of vertices in a hypergraph H is a transversal (also called vertex cover or
hitting set in many papers) if T has a nonempty intersection with every edge of H .
The transversal number τ(H) is the minimum size of a transversal in H . The notion
of transversal is fundamental in hypergraph theory and has been studied extensively.
Two of the five chapters in the classical 1989 monograph on hypergraph theory by
Berge [5] are on transversals. For a more recent book on transversals in hypergraphs
we refer the reader to [18]. We refer to [3, 6, 7, 15, 16, 21–24] for recent results and
further references. In this paper, we obtain a new (improved) probabilistic upper
bound for the transversal number of a hypergraph. As a consequence of this result,
we obtain a new (improved) probabilistic upper bound for the total domination
number of a graph.

A hypergraph H = (V,E) is a finite set V = V (H) of elements, called vertices,
together with a finite multiset E = E(H) of subsets of V (H), called hyperedges or
simply edges. A k-edge in H is an edge of size k. The hypergraph H is k-uniform
if every edge of H is a k-edge. We assume throughout this paper that |e| ≥ 2
holds for every edge e ∈ E. The degree of a vertex v in H , denoted by dH(v), is
the number of edges of H which contain v. The minimum and maximum degrees
among the vertices of H is denoted by δv(H) and Δv(H), respectively. We also
denote the minimum and maximum size among the edges of H by δe(H) and Δe(H),
respectively. If X is a subset of vertices of a hypergraph H , then the sub-hypergraph
of H induced by X, denoted by H [X], is the hypergraph on the vertex set X with
edge set {e ∈ E(H) : e ⊆ X}.

A graph without an isolated vertex is called an isolate-free graph. A total domi-
nating set in an isolate-free graph G is a set S of vertices of G such that every vertex
is adjacent to a vertex in S. The total domination number of G, denoted by γt(G), is
the minimum cardinality of a total dominating set of G. Total domination in graphs
is now well studied in graph theory. The literature on this subject has been surveyed
and detailed in the 2013 book on this topic that can be found in [19]. A survey of
total domination in graphs can be found in [13]. For a state of the art on domination
in graphs we refer the reader to the recent books [10, 11, 12].

For a graph G, the open neighborhood hypergraph, abbreviated ONH, of G is the
hypergraph HG with vertex set V (HG) = V (G) and with edge set E(HG) = {NG(x) |
x ∈ V (G)} consisting of the open neighborhoods of vertices in G. As first observed
in [23] (see also [19]), the transversal number of the ONH of a graph is precisely the
total domination number of the graph.

Observation 1.1 (Thomassé, Yeo [23]). If G is a graph with no isolated vertex and
HG is the ONH of G, then γt(G) = τ(HG).

A subset of vertices in a hypergraph H is an independent set if it contains no
edge of H . Equivalently, a set of vertices S is an independent set in H if and only if
V (H)\S is a transversal in H . The independence number α(H) ofH is the maximum
cardinality of an independent set in H .
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We note that n(H) = τ(H)+α(H). Independence in hypergraphs is very well studied
(see, for example, [1, 4, 8, 9, 17, 20]).

For the probabilistic methods notation and terminology we refer the reader to [2].

2 Known results

Alon [3] established the following important upper bound on the transversal number
of a uniform hypergraph.

Theorem 2.1 ([3]). If H is a k-uniform hypergraph with n vertices and m edges,
where k > 1, then for any positive real α,

τ(H) ≤
(
α ln(k)

k

)
n +

m

kα
.

Eustis [8] proved the following lower bound on the independence number of a
uniform hypergraph.

Theorem 2.2 ([8]). If H is a k-uniform hypergraph with average degree d ≥ 1, then

α(H) ≥
(
1− 1

k

)
n

d
1

k−1

.

Henning and Yeo [19] gave a simple heuristic that finds a total dominating set
in a graph. As a consequence of this heuristic, they established the following upper
bound on the total domination number of a graph in terms of its minimum degree.

Theorem 2.3 ([19]). If G is a graph with δ = δ(G) ≥ 2, then

γt(G) ≤
(
1 + ln δ

δ

)
n.

Henning and Jafari Rad [14] generalized Theorem 2.2.

Theorem 2.4 ([14]). If H is a hypergraph on n vertices with m edges and with
maximum vertex degree Δv = Δv(H) such that every edge of H has size at least
δe = δe(H) > 2, then

α(H) ≥
(
1− 1

δe

)(
1

Δv

) 1
δe−1

n.

The authors in [14] also presented a slight improvement of Theorem 2.1.

Theorem 2.5 ([14]). If H is a hypergraph with n vertices, m edges and maximum
vertex degree Δv = Δv(H) such that every edge of H has size at least δe = δe(H) > 1,
then for any positive real α,

τ(H) ≤ n

(
α ln δe
δe

)
+

m

δαe
− n

(
1− 1

δe(H)

)(
1

Δv(H)

) 1
δe(H)−1

(
α ln δe
δe

)1+Δv(Δe−1)

.
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As consequences of Theorem 2.5 they obtained the following.

Corollary 2.6 ([14]). If H is a k-uniform hypergraph with n vertices and m edges,
where k > 1, with maximum vertex degree Δ, then for any positive real α,

τ(H) ≤ n

(
α ln k

k

)
+

m

kα
− n

(
1− 1

k

)(
1

Δ

) 1
k−1

(
α ln k

k

)1+Δ(k−1)

.

Corollary 2.7 ([14]). If G is a graph with minimum degree δ ≥ 2 and maximum
degree Δ, then

γt(G) ≤ n

(
1 + ln δ

δ

)
− n

(
1− 1

δ

)(
1

Δ

) 1
δ−1

(
ln δ

δ

)1+Δ(δ−1)

.

Our main aim in this paper is to present an improvement of Theorem 2.5, which
will enable us to improve the upper bounds given in both Corollaries 2.6 and 2.7.

3 Main result

We will prove the following new probabilistic upper bound for the transversal number
in a hypergraph.

Theorem 3.1. If H is a hypergraph with n vertices, m edges and maximum vertex
degree Δv = Δv(H) such that every edge of H has size at least δe = δe(H) > 1, then
for any integer k ≥ 0 and reals 0 < p, q < 1,

τ(H) ≤ np +m(1− p)δe − np1+Δv(Δe−1)

(
q − Δv

δe
qδe

) k∑
i=0

(1− q)i(Δv(Δe−1)+1).

3.1 Preliminary result

In order to prove our main result, namely Theorem 3.1, we first present the follow-
ing lower bound for the independence number of a hypergraph. We remark that
our proof of Theorem 3.2 below initially follows the proof of Theorem 2.4 before a
deeper analysis enables us to improve the bound given in this theorem. In what fol-
lows, we assume that no two edges in a hypergraph are equal since duplicated edges
play no role in determining the independence number (and transversal number) of a
hypergraph.

Theorem 3.2. Let H be a hypergraph on n vertices with m distinct edges and with
maximum vertex degree Δv = Δv(H) and minimum vertex degree δv = δv(H) ≥ 1
such that every edge of H has size at least δe = δe(H) ≥ 2 and at most Δe = Δe(H).
For each real 0 < p < 1 and each integer k ≥ 0,

α(H) ≥ n

(
p− Δv

δe
pδe

) k∑
i=0

(1− p)i(Δv(Δe−1)+1).
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Proof. The proof is by induction on k. For the base step of the induction assume
that k = 0. We follow initially the proof of Theorem 2.4 given in [14]. Create a
subset X ⊆ V (H) by choosing each vertex v ∈ V (H) independently with probability
p. Let H [X] be the sub-hypergraph induced by X , and mH[X] be the number of
edges in H [X]. We compute the expectation of the random variable |X| − mH[X].
Clearly,

E(|X|) = np and E(mH[X]) ≤ mpδe .

The number m of edges in H is bounded above by the following inequality.

m ≤ nΔv

δe
.

Thus,

E(|X| −mH[X]) = E(|X|)− E(mH[X]) ≥ np−mpδe ≥ np− n

(
Δv

δe

)
pδe .

We remove one vertex from each edge of H [X] to obtain an independent subset
IX of vertices in X, implying that

α(H) ≥ |IX | ≥ np− n

(
Δv

δe

)
pδe = n

(
p− Δv

δe
pδe

) k∑
i=0

(1− p)i(Δv(Δe−1)+1).

This establishes the base case when k = 0. Let k ≥ 1 and assume the result
holds for all integers k′ where 0 ≤ k′ < k. As in the base case, we create a subset
X ⊆ V (H) by choosing each vertex v ∈ V (H) independently with probability p, and
let H [X] be the sub-hypergraph induced by X. As it was seen in the base step, there
is an independent set IX of vertices in X satisfying

|IX | ≥ np− n

(
Δv

δe

)
pδe .

Let Y = V (H) \NH [X], that is,

Y = {y ∈ V (H) \X : no edge of H containing y intersects X}.

Let H [Y ] be the sub-hypergraph induced by Y . By the inductive hypothesis,

α(H [Y ]) ≥ |Y |
(
p− Δv

δe
pδe

) k−1∑
i=0

(1− p)i(Δv(Δe−1)+1).

Thus

E(α(H [Y ])) ≥
k−1∑
i=0

(1− p)i(Δv(Δe−1)+1)

(
p− Δv

δe
pδe

)
E(|Y |).
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We next compute a lower bound on E(|Y |). Let v be an arbitrary vertex of
H . The vertex v has degree at most Δv, and therefore there are at most Δv edges
incident with v in H . Each such edge incident with v contains at most Δe − 1
vertices different from v. Hence, |NH [v]| ≤ Δv(Δe − 1) + 1. We note that v ∈ Y if
and only if NH [v] is disjoint from X . Hence, the probability that v belongs to Y is
(1− p)|NH [v]| ≥ (1− p)Δv(Δe−1)+1. Since there are n vertices in H , we therefore infer
that

E(|Y |) ≥ n(1 − p)Δv(Δe−1)+1.

Hence,

E(α(H [Y ])) ≥
k−1∑
i=0

(1− p)i(Δv(Δe−1)+1)

(
p− Δv

δe
pδe

)
n(1− p)Δv(Δe−1)+1.

Thus there is an independent set IY in Y such that

|IY | ≥
k−1∑
i=0

(1− p)i(Δv(Δe−1)+1)

(
p− Δv

δe
pδe

)
n(1− p)Δv(Δe−1)+1.

The set IX ∪ IY is an independent set in H , implying that

α(H) ≥ |IX |+ |IY |

≥ np−n

(
Δv

δe

)
pδe +

k−1∑
i=0

(1−p)i(Δv(Δe−1)+1)

(
p− Δv

δe
pδe

)
n(1−p)Δv(Δe−1)+1

= n

(
p− Δv

δe
pδe

)
+ n

(
p− Δv

δe
pδe

) k−1∑
i=0

(1− p)(i+1)(Δv(Δe−1)+1)

= n

(
p− Δv

δe
pδe

)(
1 +

k∑
i=1

(1− p)(i+1)(Δv(Δe−1)+1)

)

= n

(
p− Δv

δe
pδe

) k∑
i=0

(1− p)i(Δv(Δe−1)+1).

This completes the proof of Theorem 3.2.

3.2 Proof of main result

In this section, we present a proof of our main result, namely Theorem 3.1. Recall
its statement.

Theorem 3.1. If H is a hypergraph with n vertices, m edges and maximum vertex
degree Δv = Δv(H) such that every edge of H has size at least δe = δe(H) > 1, then
for any integer k ≥ 0 and reals 0 < p, q < 1,

τ(H) ≤ np +m(1− p)δe − np1+Δv(Δe−1)

(
q − Δv

δe
qδe

) k∑
i=0

(1− q)i(Δv(Δe−1)+1).
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Proof. Our proof initially follows the proof of Theorem 2.5 given in [14]. Create a
subset X ⊆ V (H) by choosing each vertex v ∈ V (H) independently with probability
p. Let F = FX ⊆ E(H) be the set of all edges e ∈ E(H) that do not intersect X.
For every edge e ∈ E(H) of size k, we have

Pr(e ∈ FX) = (1− p)k ≤ (1− p)δe .

Let XF be a set obtained by picking, arbitrarily, a vertex from each edge in FX .
Thus, |XF | ≤ |FX |. Let X∗ be the set of all vertices v of X such that V (e) ⊆ X
for every edge e that contains the vertex v. Let H∗ = H [X∗] be the sub-hypergraph
induced by X∗, that is, the hypergraph with vertex set V (H∗) = X∗ and E(H∗) =
{e ∈ E(H) : V (e) ⊆ X∗}.

Recall that δv = δv(H), Δv = Δv(H), δe = δe(H), and Δe = Δe(H). For
notational simplicity, let δ∗v = δv(H

∗), Δ∗
v = Δv(H

∗), δ∗e = δe(H
∗), and Δ∗

e = Δe(H
∗).

By construction of the hypergraph H∗, we note that δ∗e ≥ δe, Δ
∗
e ≤ Δe, and Δ∗

v ≤ Δv.
Let I∗ be a maximum independent set of H∗, and so |I∗| = α(H∗). Applying
Theorem 3.2 to the hypergraph H∗ we have

|I∗| ≥ |X∗|
(
q − Δ∗

v

δ∗e
qδ

∗
e

) k∑
i=0

(1− q)i(Δ
∗
v(Δ

∗
e−1)+1)

≥ |X∗|
(
q − Δv

δe
qδe

) k∑
i=0

(1− q)i(Δv(Δe−1)+1).

Now, T = (X \ I∗) ∪XF is a transversal for H . We calculate the expectation of
|T | as follows. We note that

E(|X|) = np and E(|XF |) ≤ E(|FX |) ≤ m(1− p)δe ,

as e ∈ FX if and only if V (e) ∩ X = ∅ for arbitrary edge e ∈ E(H). Furthermore,
since v ∈ X∗ if and only if NH [v] ⊆ X and |NH [v]| ≤ 1 + Δv(Δe − 1) for any vertex
v ∈ V (H), it follows that

Pr(v ∈ X∗) ≥ p1+Δv(Δe−1).

Thus by linearity of expectation,

E(|I∗|) ≥ E

(
|X∗|

(
q − Δv

δe
qδe

) k∑
i=0

(1− q)i(Δv(Δe−1)+1)

)

=

((
q − Δv

δe
qδe

) k∑
i=0

(1− q)i(Δv(Δe−1)+1)

)
E(|X∗|)

≥
((

q − Δv

δe
qδe

) k∑
i=0

(1− q)i(Δv(Δe−1)+1)

)
np1+Δv(Δe−1).
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We deduce that

τ(H) ≤ E(|T |) ≤ np+m(1−p)δe−np1+Δv(Δe−1)

(
q−Δv

δe
qδe
) k∑

i=0

(1−q)i(Δv(Δe−1)+1),

as desired, completing the proof of Theorem 3.1.

4 Consequences of main result

In the statement of Theorem 3.1, we let

p =
α ln δe
δe

and q =

(
1

Δv

) 1
δe−1

,

noting that
(
1− α ln δe

δe

)δe ≤ 1
δαe
, to obtain the following result which is an improve-

ment of Theorem 2.5.

Theorem 4.1. Let H be a hypergraph with n vertices, m edges and maximum vertex
degree Δv = Δv(H) such that every edge of H has size at least δe = δe(H) > 1 and
let α be a positive real. For any integer k ≥ 0,

τ(H) ≤ n

(
α ln δe
δe

)
+

m

δαe

−n

(
α ln δe
δe

)1+Δv(Δe−1)((
1

Δv

)
1

δe−1

(
1− 1

δe

)) k∑
i=0

(
1−

(
1

Δv

)
1

δe−1

)i(Δv(Δe−1)+1)

.

As a consequence of Theorem 4.1, we obtain the following improvement of Corol-
lary 2.6.

Corollary 4.2. If H is a k-uniform hypergraph with n vertices and m edges, where
k > 1, with maximum vertex degree Δ and minimum vertex degree δ, then for any
positive real α and any integer � ≥ 0,

τ(H) ≤ n

(
α ln k

k

)
+

m

kα

−n

(
α ln k

k

)1+Δ(k−1)((
1

Δ

) 1
k−1

(
1− 1

k

)) �∑
i=0

(
1−

(
1

Δ

) 1
k−1

)i(Δ(k−1)+1)

.

From Observation 1.1 and Corollary 4.2 (letting α = 1) we obtain the following
improvement of Corollary 2.7.

Corollary 4.3. If G is a graph with minimum degree δ ≥ 2 and maximum degree
Δ, then

γt(G) ≤ n

(
1+ln δ

δ

)
−n

(
1−1

δ

)(
1

Δ

) 1
δ−1

(
ln δ

δ

)1+Δ(δ−1) �∑
i=0

(
1−

(
1

Δ

) 1
δ−1

)
i(Δ(δ−1)+1).
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