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Abstract

A 2-tree is a graph that can be formed by starting with a triangle and
iterating the operation of making a new vertex adjacent to two adjacent
vertices of the existing graph. Leizhen Cai asked in 1995 whether every
maximal planar graph contains a spanning 2-tree. We answer this ques-
tion in the negative by constructing an infinite class of maximal planar
graphs that have no spanning 2-tree.

1 Introduction

We consider the problem of whether every maximal planar graph contains a spanning
2-tree, first proposed by Leizhen Cai [6, 7] in 1995.

Definition 1.1. A k-tree is a graph that can be formed by starting with Kk and
iterating the operation of making a new vertex adjacent to all the vertices of a k-
clique of the existing graph.

Note that a k-tree is a chordal graph. A more general recursive construction of
k-trees is that Kk and Kk+1 are k-trees, and any larger k-tree can be formed by
identifying two k-trees on Kk or Kk+1.

Definition 1.2. A spanning subgraph of a graph has the same vertex set. A Hamil-
tonian cycle of a graph G is a spanning cycle of G. A graph with a Hamiltonian
cycle is called a Hamiltonian graph.

A graph is planar if it has a drawing in the plane that has no crossings. The
regions of a plane drawing are the maximal pieces of the plane surrounded by edges
and vertices. The infinite region is the exterior region. The length of a region is
the length of a walk around it. A graph is maximal planar if no edge can be added
without making it not planar. A graph is outerplanar if it has a plane drawing with
all vertices on the exterior region.
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Definitions of terms and notation not defined here appear in [2]. In particular,
Kn and Cn are respectively the complete graph and cycle of order n, and G +H is
the join of graphs G and H .

Every connected graph has a spanning tree. A spanning 3-tree of a graph with
order n ≥ 3 would have size 3n− 6, so a planar graph has a spanning 3-tree if and
only if it is a 3-tree. The problem of determining whether there is a spanning 2-tree
is more complicated.

Results on k-trees and related topics are surveyed in [3]. Bern [1] showed that
determining whether a graph has a spanning k-tree is NP-complete when k ≥ 2. Cai
and Maffray [8] showed this is true even for planar graphs with Δ (G) ≤ 6 when
k = 2. Cai found several sufficient conditions for a spanning 2-tree and showed
that it is NP-complete to determine whether G has a spanning k-tree even given a
spanning l-tree of G, l < k [6, 7].

Any complete graph has a spanning k-tree. Bern [1] showed that it is NP-complete
to find a minimum spanning 2-tree for weighted complete graphs, and found an
exponential algorithm for this problem. Cai [6] showed that there is no good ap-
proximation algorithm for weighted complete graphs in general, but there is such
an algorithm when they satisfy the triangle inequality. Shangin and Pardalos [17]
considered various heuristics for the spanning k-tree problem.

Ding [9] found applications of spanning k-trees to linguistic grammars, the RNA
3D structure prediction problem, and learning Markov or Bayesian networks. Span-
ning 2-trees have applications in geodesy (geodetic surveying) [13] and logic and
probability [11, 14].

2 Hamiltonian Cycles and 2-Trees

Leizhen Cai [6, 7] asked in 1995 whether every plane triangulation contains a span-
ning 2-tree. Cai did not conjecture an answer, but I will reframe the problem as a
conjecture to simplify discussion of it.

Conjecture 2.1. Every maximal planar graph with order n ≥ 3 contains a spanning
2-tree.

It is easy to show that some special classes of maximal planar graphs have span-
ning 2-trees.

Lemma 2.2. [6] Every Hamiltonian maximal planar graph contains a spanning 2-
tree.

Proof. Adding the edges inside (or outside) a Hamiltonian cycle produces a spanning
2-tree.

Denote a 4-connected maximal planar graph as a 4MP. For these graphs, the
converse is true.
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Proposition 2.3. Every spanning 2-tree of a 4MP has a unique Hamiltonian cycle.

Proof. A 2-tree has a Hamiltonian cycle if and only if it contains noK2+K3 [16]. Let
G be a 4MP with a spanning 2-tree T . If T is not Hamiltonian, it contains K2+K3,
so G has a separating triangle and is not 4-connected. Thus T has a Hamiltonian
cycle C.

A 2-tree with order n ≥ 3 is Hamiltonian if and only if it is outerplanar [15]. It
is easily shown by induction that the cycle is unique, and T can be drawn so that C
is the exterior region.

This shows a correspondence between Hamiltonian cycles and pairs of spanning
2-trees of 4MPs.

Corollary 2.4. Every 4MP has twice as many spanning 2-trees as Hamiltonian
cycles.

Whitney [19] showed that every 4MP is Hamiltonian. Tutte proved a stronger
statement.

Theorem 2.5. [18] Every planar 4-connected graph has a Hamiltonian cycle through
any two edges of a region.

Cai observed the following corollary to Theorem 2.5.

Corollary 2.6. [6] Every 4MP contains a spanning 2-tree.

There is another easy special case. Cai and Maffray [8] showed that every l-tree
contains a spanning k-tree when l ≥ k ≥ 1.

Corollary 2.7. [8] Every 3-tree contains a spanning 2-tree.

3 Path-Tree Partitions

Denote a 4MP or K4 as a 4-block. Every maximal planar graph can be formed by
identifying triangles of 4-blocks. Any 4-block has a spanning 2-tree. The question is
whether a spanning 2-tree for the whole graph can be pieced together from those of
the 4-blocks.

A spanning 2-tree contains 0, 1, 2, or 3 edges of any given triangle. If there were
some 4MP such that for every spanning 2-tree T , there is some triangle with no edge
of T , that would be sufficient to disprove Conjecture 2.1. (We could simply attach
another 4-block at every triangle, and a spanning 2-tree could not extend into all of
them.) We will show that this is the case.

Definition 3.1. A maximal planar graph has a linear Hamiltonian cycle if the
regions inside (or outside) the cycle share edges with at most two other such regions
(that is, the dual of these regions is a path).

Conjecture 3.2. Every 4MP has a linear Hamiltonian cycle.
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The discussion above implies that Conjecture 3.2 is weaker than Conjecture 2.1.
We will show that Conjecture 3.2 is false, so Conjecture 2.1 is false. To study
Conjecture 3.2, it is convenient to look at the dual graph.

Definition 3.3. The Hamiltonian dual of a planar graph with a given Hamiltonian
cycle is formed by deleting any edges that cross the Hamiltonian cycle from the dual
graph.

Denote the dual of a 4MP as a 4MP dual. A 4MP dual is a 3-connected cubic
planar graph with no nontrivial 3-edge cut. (A trivial edge cut has all edges incident
with a common vertex.)

Definition 3.4. A cubic graph has a path-tree partition if its vertices can be par-
titioned into two sets so that one induces a path and the other induces a tree. A
path-path partition and tree-tree partition are defined similarly. A Yutsis graph is a
multigraph in which the vertex set can be partitioned into two parts such that each
part induces a tree.

A tree-tree partition is also known as a Yutsis decomposition. Yutsis graphs have
applications in physics, particularly the quantum theory of angular momenta [20].

A simple degree sum argument shows that the two vertex sets in a tree-tree
partition must have equal size (the same number of edges must be added incident to
each set to make all vertices have degree 3). Theorem 2.5 implies that every 4MP
dual has a tree-tree partition.

Proposition 3.5. A 4MP has a linear Hamiltonian cycle if and only if its dual has
a path-tree partition.

Proof. Necessity: Since all vertices are on a Hamiltonian cycle, no vertex is inside it.
Thus each component of the Hamiltonian dual is acyclic. Each is clearly connected,
so each is a tree. They have the same order since there are the same number of regions
inside and outside the Hamiltonian cycle. To have a linear Hamiltonian cycle, one
of the trees must be a path.

Sufficiency: If a 4MP dual has a path-tree partition, the 4MP clearly has a linear
Hamiltonian cycle.

We can now use Proposition 3.5 to produce graphs Gk that we will show have no
path-tree partition, and thereby disprove Conjecture 3.2.

Let Gk have vertices ai, bi, ci, 1 ≤ i ≤ 2k. The ai and bi induce 2k-cycles, ai ↔ ci,
bi ↔ ci, and c2i−1 ↔ c2i for all i, (all mod 2k). We show G4 below.
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Theorem 3.6. For k ≥ 4, Gk has no path-tree partition.

Proof. Denote the graph formed from C6 by adding a single chord joining opposite
vertices as a brick. Clearly Gk contains k bricks. Assume to the contrary that Gk

has a path-tree partition with path P and tree T . Both P and T must contain at
least one vertex from each cycle.

The ends of P are in one or two bricks, so P must pass through at least two
bricks without ending. It is not possible for P and T to both pass through the same
brick since the two c-vertices would be part of an induced 4-cycle of one of them. If
P enters and exits a brick using two as, it must end at a b in the same brick (or vice
versa).

To pass through a brick without ending there, P must enter at an a-vertex and
exit at a b-vertex (or vice versa). Now P must contain (nonadjacent) a-vertices in
distinct bricks with a b-vertex between them. But then the graph induced by the
vertices not in P is disconnected and hence not a tree, a contradiction.

Essentially the same construction appeared in [5], where it is used to analyze
the number of triangles of certain types in Hamiltonian maximal planar graphs.
Note that G4 has order 24. In fact, a computer search conducted for [5] has shown
that the smallest order of a 4MP dual with no path-tree partition is 24 (personal
communication with Gunnar Brinkmann).

The dual of G4 is a maximal planar graph with order 14. This is shown below,
where the two black vertices must be identified. Adding a degree 3 vertex inside
each of its 24 regions produces a maximal planar graph of order 38 with no spanning
2-tree, thereby disproving Conjecture 2.1.



A. BICKLE /AUSTRALAS. J. COMBIN. 85 (1) (2023), 82–91 87

To produce infinite classes of graphs with and without path-tree partitions, we
need an operation to generate cubic graphs.

Definition 3.7. Let uv and wx be edges of a cubic graph. Let adding a handle
be the operation of subdividing uv and wx and adding a new edge yz between
the new vertices. Let 4-handling be the operation of adding a handle between two
nonadjacent edges of a region of length 4 of a 4MP dual.

Every 4MP dual can be constructed from the cube by adding handles [10, 12].

Proposition 3.8. Let H be formed by 4-handling a 4MP dual G. If G has no
path-tree partition then nor does H.

H

x

u

z

y

w

v

←→
x

u

w

v

G

Proof. (Contrapositive) Let uyvwzx be a 6-cycle of H , and yz be a handle. Let uvwx
be a region of length 4 of G which is 4-handled to produce the 6-cycle. Assume H
has a path-tree partition with path P and tree T . We want to show that G has a
path-tree partition with path P ′ and tree T ′.

First suppose that yz is not in P or T . Then y and z are not both in P or both
in T . If uy and yv are both in P or T , let uv be in P ′ or T ′, respectively. Similarly,
if wz and zx are both in P or T , let wx be in P ′ or T ′, respectively. Else do not put
uv (or wx) in P ′ or T ′. Thus P ′ and T ′ are both connected, acyclic, and have the
same order in G, so we have a path-tree partition of G.

Now suppose that yz is in T . At least one of the other vertices, say x, is in T .
Then u is a leaf of P . Then put ux in T ′ and leave v and w in the same corresponding
sets. Thus P ′ and T ′ are both connected, acyclic and have the same order in G, so we
have a path-tree partition of G. If we exchange the roles of P and T , the argument
is similar.

The statement of this proposition does not hold in general for regions of length
more than 4. Since all graphs formed by 4-handling G4 have no path-tree partition,
we have an infinite class of counterexamples to Conjecture 2.1.

4 Path-Path Partitions

The smallest 4MPs are the double wheels Cn−2 + K2, whose duals are the prisms
Cr�K2, r ≥ 4. Note that any prism can be generated from the cube by adding
handles.

Theorem 4.1. Any 4MP dual constructed from a prism by adding at most two
handles has a path-path partition.
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Proving this requires many tedious cases. We outline a proof and leave the details
to the reader. A prism Cr�K2 has two distinct regions up to symmetry, a 4-cycle
and an r-cycle. Denote the edges joining the two (chordless) r-cycles of a prism as
spokes. A prism has a path-path partition using any two spokes and hence omits any
two given edges of one of the r-cycles (see the example below).

A handle can always be added to maintain a path-path partition when both of
the edges used are in a path-path partition. One way of adding a handle to a 4-cycle
produces a larger prism and need not be considered further. The other way produces
a path-path partition. The other way of adding a handle uses two edges of an r-cycle,
which is always possible (provided they are nonconsecutive).

When two handles are added, they can be added in two separate 4-cycles (adjacent
or nonadjacent), both in the same 4-cycle (two ways), both in the same r-cycle
(independent or not), in two different r-cycles (multiple cases), or one in a 4-cycle
and one in an r-cycle. In each case, a path-path partition is easily found.

Note that G4 can be generated from a prism by adding four handles. Next we
show that there is a 4MP dual of order 22 with no path-path partition. It can be
formed by adding three handles to a prism. Call the graph below H22. Let the
vertices on the exterior 8-cycle be a-vertices, and the vertices on the interior 8-cycle
be b-vertices. Call the two edges joining a- and b-vertices spokes.

Theorem 4.2. The graph H22 has no path-path partition.

Proof. Assume there is a path-path partition with paths P1 and P2. Now H22 has
three bricks and two spokes. It is not possible for P1 and P2 to both pass through the
same brick, and when one does, it must enter at an a-vertex and exit at a b-vertex
(or vice versa).

If a path passes two bricks, two spokes, or one of each, it either induces a cycle
or disconnects the other path, so this is not possible. If a path contains a spoke, it
could have ends in two bricks, but would miss the third, so this is not possible.



A. BICKLE /AUSTRALAS. J. COMBIN. 85 (1) (2023), 82–91 89

Thus each path must go through one brick and have ends in the other two. Thus
each path misses all edges between some consecutive pair of bricks, and this must
be a different pair for each path. Thus one vertex of a spoke cannot be contained in
either path, a contradiction.

A computer search by Gunnar Brinkmann shows that 22 is the smallest order
of a 4MP dual with no path-path partition (personal communication). I also hand-
checked that all 4MP duals of order at most 16 have a path-path partition.

5 Spanning Maximal 2-degenerate Graphs

While Conjecture 2.1 is false, a weaker statement is true.

Definition 5.1. A graph is k-degenerate if its vertices can be successively deleted so
that immediately prior to deletion, each has degree at most k. A graph is maximal
k-degenerate if no edges can be added without violating this condition.

Every k-tree is maximal k-degenerate, but the converse is false when k > 1.
We construct a maximal k-degenerate graph by starting with Kk and successively
adding vertices of degree k. Unlike for a k-tree, the neighbors of a new vertex are
not required to induce a clique.

Theorem 5.2. Every maximal planar graph contains a spanning maximal 2-degen-
erate graph.

Proof. This is obvious for order n ≤ 3. Let G be maximal planar, and construct
it by starting with some 4-block B1 and iteratively adding each new 4-block Br by
identifying a triangle Tr of Br with a triangle T ∗

r of the existing graph. Let G1 = B1

and Gr be the graph after r 4-blocks have been added. We will show that for each
r, Gr has a spanning maximal 2-degenerate subgraph Mr.

If Br is a 4-block containing triangle Tr, then by Theorem 2.5 it has a spanning 2-
tree that contains Tr. Any 2-tree can be constructed starting with any of its triangles.
When identifying Tr and T ∗

r , delete any edges of Tr from the spanning 2-tree of Gr

that are not in Mr−1. Thus the construction of Mr−1 can continue from Tr into Gr,
producing Mr. Iterating this process proves the theorem.

6 Conclusion

There is more work to do on this problem. In a subsequent paper with Gunnar
Brinkmann [4], we construct a maximal planar graph on 29 vertices with no spanning
2-tree. We also show that for each c > 0 there is a maximal planar graph G with
some order n so that each 2-tree that is a subgraph of G contains fewer than cn
vertices. We would like to characterize exactly which maximal planar graphs have a
spanning 2-tree, but that problem seems difficult.
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