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Abstract

In Gallai-Ramsey theory for graphs, one seeks to identify the exact num-
ber of vertices a complete graph must have to guarantee that every col-
oring of its edges, in which rainbow triangles are avoided, necessarily
contains a certain monochromatic subgraph. In this paper, we consider
the analogous problem when subgraphs are sought that use at most two
colors. Our results highlight certain structural properties of Gallai color-
ings and we give some exact evaluations when the subgraphs are complete
graphs or cycles.

1 Introduction

Gallai-Ramsey theory offers an interesting variation on Ramsey theory, in which one
only considers colorings of complete graphs that avoid rainbow triangles. The pur-
pose of this paper is to demonstrate the usefulness of common structural properties of
Gallai colorings by determining the values of several weakened Gallai-Ramsey num-
bers. Here, the word “weakened” implies that instead of monochromatic subgraphs,
the numbers in question guarantee the existence of subgraphs that use at most a
specified number of colors.

In order to describe our results, we must begin with definitions. A t-coloring
of a complete graph K is a map c : E(K) −→ {1, 2, . . . , t}. In general, we do not
assume that such a map is surjective. Given graphs G1, G2, . . . , Gt, the Ramsey
number r(G1, G2, . . . , Gt) is defined to be the least natural number p such that every
t-coloring of Kp (the complete graph of order p) contains a monochromatic subgraph
that is isomorphic to Gi in color i, for some 1 ≤ i ≤ t. When G1 = G2 = · · · = Gt,
we shorten our notation to rt(G1) for the corresponding t-color Ramsey number. For
a current overview of results on Ramsey numbers, the reader is referred to Radzis-
zowski’s dynamic survey [15].
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A Gallai t-coloring of a complete graphK is a t-coloring c : E(K) −→ {1, 2, . . . , t}
that lacks rainbow triangles (i.e., no subset {x, y, z} ⊆ V (K) exists in which
|{c(xy), c(yz), c(xz)}| = 3). For any graph G, the Gallai-Ramsey number grt(G)
is the least natural number p such that every Gallai t-coloring of Kp contains a
monochromatic subgraph that is isomorphic to G. The following structural result
for Gallai colorings appears in [11] as a reinterpretation of a result of Gallai [10] on
transitive orientations of graphs (see [16] for an English translation of [10] by Maffray
and Preissmann).

Theorem 1.1. Every Gallai-colored complete graph can be obtained by substituting
Gallai-colored complete graphs into the vertices of a 2-colored complete graph of order
at least 2.

For a fixed Gallai coloring, the 2-colored complete graph whose vertices are replaced
with Gallai-colored complete graphs is called the base graph, while the substituted
complete graphs are called the blocks. We note that the base graph is not unique for
a given Gallai coloring. One immediate consequence of this theorem is that only the
blocks can contain a color not used in the base graph, forcing such a color to span a
disconnected graph (see [11]). The result is the following corollary.

Corollary 1.2. Every Gallai-colored complete graph using at least three colors has
a color that spans a disconnected graph.

The beauty of Theorem 1.1 is that it provides a means of partitioning the collec-
tion of all Gallai colorings of a complete graph into sets in which specific techniques
of proof can then be used. Typically, this process is employed in the determination
of upper bounds for various Gallai-Ramsey numbers. The equivalence classes of the
resulting partition correspond with the possible cardinalities of the base graphs. The
following lemma will assist us in simplifying the use of Theorem 1.1 for proving upper
bounds for various weakened Gallai-Ramsey numbers. This result is equivalent to
Lemma 3.1 in [14].

Lemma 1.3. Given a Gallai colored complete graph G, if the base graph is chosen
so that its order is minimal, then its order is not equal to 3.

Another useful property of Gallai colorings is described in the next theorem (see
Erdős, Simonovits, and Sós [7]).

Theorem 1.4. Let n ≥ 2. Then every Gallai coloring of Kn uses at most n − 1
colors.

This theorem is easily proved by induction on n. The dynamic survey of Fujita,
Magnant, and Ozeki [9] and the recent book by Magnant and Salehi Nowbandegani
[14] offer thorough overviews of the history and known evaluations of Gallai-Ramsey
numbers for various graphs.

In [1], the authors defined the concept of a weakened Gallai-Ramsey number
grts(G), defined to be the least natural number p such that every Gallai t-coloring
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of Kp contains a subgraph isomorphic to G that is spanned by edges using at most
s colors, where s < t. Throughout this paper, when we say that a Gallai t-colored
complete graph contains an s-colored copy ofH, we mean that there exists a subgraph
isomorphic to H that is spanned by edges using at most s colors. In particular, an
s-colored subgraph may use fewer than s colors. Weakened Gallai-Ramsey numbers
may be viewed as a conglomeration of Gallai-Ramsey numbers and weakened Ramsey
numbers, which were first introduced in [4] and [5], and further developed in [12] and
[13]. We note that the number grt1(G) is just the usual Gallai-Ramsey number grt(G).

In Section 2, we focus on the evaluation of grt2(Kn). In particular, we prove that
grt2(K4) = t + 2 and gr32(K5) = 9 in Theorems 2.1 and 2.3, respectively. Besides
these exact evaluations, we also prove that grt2(K5) ≥ 2t +1 and gr32(Kn) ≥ 2n−1 in
Theorems 2.2 and 2.4, respectively. In Section 3, we turn our attention to weakened
Gallai-Ramsey numbers for cycles. In the case of the cycle C4 of order 4, we prove
that every Gallai colored complete graph of order at least 4 contains a 2-colored C4

(Theorem 3.1). Additionally, we prove that gr32(C5) = t + 3 in Theorem 3.2 and
finish the section with a proof that grt2(Cn+1) ≤ grt(Cn). We conclude in Section 4
with a conjecture and some directions for future research.

2 Complete Subgraphs Spanned by Edges Using at Most
Two Colors

In this section, we focus on the evaluation of grt2(Kn). Before considering these
numbers for specific values of n, note that whenever a Gallai colored complete graph
contains a monochromatic Kn, it necessarily contains a 2-colored Kn+1. This follows
from the fact that with the addition of each new vertex in a Gallai coloring, at most
one new color may be introduced (see Lemma 5 of [1]). It follows immediately that

grt2(Kn+1) ≤ grt(Kn), (1)

although this bound is not particularly strong for most values of t and n.

In [1], it was shown that for all t ≥ 3,

t+ 2 ≤ grt2(K4) ≤ t(grt−12 (K4)− 1) + 2. (2)

In the case t = 3, it was further shown that gr32(K4) = 5, while the range

6 ≤ gr42(K4) ≤ 18

demonstrates how imprecise these bounds become for larger values of t. In fact, by
using Theorem 1.1, we can show that the lower bound in (2) is the exact value for
this weakened Gallai-Ramsey Number.

Theorem 2.1. For all t ≥ 3, grt2(K4) = t+ 2.

Proof. The lower bound grt2(K4) ≥ t + 2 was proved in Theorem 7 of [1] using
induction on t ≥ 3. To prove the upper bound grt2(K4) ≤ t+2, we proceed by strong
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induction on t ≥ 3. The base case gr32(K4) ≤ 5 was proved in Theorem 6 of [1].
Suppose that

gr`2(K4) ≤ `+ 2, for all ` < t.

and consider a Gallai t-coloring of Kt+2. Taking advantage of the structure described
in Theorem 1.1, denote by B a base graph of minimal order. If this Gallai coloring
lacks a K4 spanned by edges using at most two colors, then |V (B)| < 4. By Lemma
1.3, it follows that |V (B)| 6= 3. Hence, |V (B)| = 2. Label the blocks A and B and
without loss of generality, suppose that the edges connecting A and B are red. If
a red edge exists in A or B, then the Gallai coloring being considered contains a
red K3. The vertices of this K3 along with any other vertex necessarily forms a K4

spanned by edges using at most two colors (see Lemma 5 of [1]). Also, if A and B
have edges in a common color, then the endpoints of these edges form a K4 that
uses at most two colors. Hence, the other t− 1 colors are divided between A and B.
Suppose that A has order k1 and uses `1 colors and that B has order k2 and uses `2
colors. Then k1 + k2 = t+ 2 and `1 + `2 = t− 1. By the inductive hypothesis,

gr`12 (K4) ≤ `1 + 2 and gr`22 (K4) ≤ `2 + 2. (3)

If k1 ≥ `1 + 2, then the first Gallai-Ramsey number in (3) implies that there exists
a K4 that uses at most two colors. Otherwise, k1 ≤ `1 + 1 and we find that

k2 = t− k1 + 2 ≥ t− `1 + 1 = (t− `1 − 1) + 2 = `2 + 2.

It follows from the second inequality in (3) that B contains a K4 that uses at most
two colors. We have proved that every Gallai t-colored Kt+2 contains a 2-colored K4,
implying that grt2(K4) ≤ t+ 2, from which the theorem follows.

While grt2(K4) grows linearly with respect to t, in the next theorem, we prove
that grt2(K5) is at least exponential with respect to t.

Theorem 2.2. For all t ≥ 3, grt2(K5) ≥ 2t + 1.

Proof. We proceed by induction on t ≥ 3, to prove that there exists a Gallai t-colored
K2t that lacks a K5-subgraph spanned by edges using at most two colors and in which
every K3-subgraph is spanned by edges using exactly two colors. For the base case,
consider the Gallai 3-colored K8 formed by taking two copies of K4-subgraphs in
which a cycle of length four receives color 1 (red) and the other pair of disjoint edges
receive color 2 (blue), then all edges interconnecting the two K4-subgraphs receive
color 3 (green). See Figure 1 for the resulting K8 and observe that every K3-subgraph
is spanned by edges using exactly two colors. It is also easily confirmed that every
K5-subgraph includes edges in all three colors. Now assume that for k ≥ 3, there
exists a Gallai k-colored K2k that lacks a K5-subgraph spanned by edges using at
most two colors and in which every K3-subgraph is spanned by edges using exactly
two colors. Form a Gallai (k+ 1)-colored K2k+1 by taking a copy of K2 with edge in
color k+ 1 as the base graph and substituting the above K2k for both blocks. Every
K3-subgraph in the resulting K2k+1 is spanned by edges using exactly two colors. No
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Figure 1: A Gallai 3-coloring of K8 that lacks a K5-subgraph spanned by edges using
at most 2 colors.

K5-subgraph contained entirely within one of the blocks is spanned by edges using at
most two colors by the inductive hypothesis. For K5-subgraphs that include vertices
from both blocks, there are two cases. If a K5-subgraph includes two vertices from
one block and three from the other, then the K3-subgraph uses exactly two colors,
with the interconnecting edges adding a third color. If the K5-subgraph includes one
vertex from one block and four vertices from the other, then the K4-subgraph uses
at least two colors while the interconnecting edges add a third color. Thus, we have
proved that for all t ≥ 3, there exists a Gallai t-colored K2t that lacks a K5-subgraph
spanned by edges using at most two colors.

When t = 3, the following theorem shows that the lower bound in Theorem 2.2
is the value of the corresponding weakened Gallai-Ramsey number.

Theorem 2.3. gr32(K5) = 9.

Proof. The inequality gr32(K5) ≥ 9 follows from Theorem 2.2. It remains to be shown
that every Gallai 3-coloring of K9 contains a K5-subgraph spanned by edges using
at most two colors. Consider a Gallai 3-colored K9 and denote its base graph by
B, which is assumed to be of minimal order. Since the base graph is 2-colored (by
Theorem 1.1), if we select a single vertex from each block, we trivially obtain a K5-
subgraph spanned by edges using at most two colors when |V (B)| ≥ 5. By Lemma
1.3, |V (B)| 6= 3, so it remains for us to handle the cases |V (B)| = 2 and |V (B)| = 4
separately.

Case 1 Suppose that |V (B)| = 2. Without loss of generality, assume the edges
connecting the two blocks are red and the other two colors (which only appear in
the blocks) are blue and green.

Subcase 1.1 Suppose that each block contains red edges. Selecting the endpoints of a
single red edge in each block forms a red K4. Adding in any other vertex necessarily
produces a 2-colored K5 (by Lemma 5 of [1]).

Subcase 1.2 Suppose that neither block contains a red edge. By the pigeonhole
principle, one block contains at least five vertices, which form a K5-subgraph that
avoids red edges.
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Subcase 1.3 Suppose that exactly one block contains red edges and the other block
has order at least 2. The blue/green block contains a 2-colored K5 if it has order at
least 5, so assume this block has an order of at most 4. Without loss of generality,
suppose the blue/green block contains a blue edge uv. Since this block contains at
most four vertices, the block containing a red edge has an order of at least 5. Let xy
be a red edge in this block and label three other vertices in this block a, b, and c (see
the image in Figure 2). If the subgraph induced by {a, x, y} is a red/blue K3, then the

u

vy

x

c

a

b

Figure 2: Subcase 1.3 in the proof of Theorem 2.3.

subgraph induced by {a, x, y, u, v} forms a red/blue K5. The same is true for {b, x, y}
and {c, x, y}. Therefore, each of a, b, and c must have a green edge connecting to xy,
and any other edges connecting {a, b, c} to xy must be red. If ab is red or green, then
the subgraph induced by {a, b, x, y, u} is a red/green K5. A similar argument can
be made if either ac or bc is red or green. The only remaining possibility is that the
subgraph induced by {a, b, c} is a blue K3, and this in combination with uv results
in a red/blue K5.

Subcase 1.4 Suppose that one block contains a red edge and the other block consists
of a single vertex u. Label a red edge in the first block xy and the other vertices
a, b, c, d, e, and f (see the first image in Figure 3). If any of a, b, c, d, e, f form
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Figure 3: Subcase 1.4 in the proof of Theorem 2.3.

a red K3 with xy then the inclusion of u yields a red K4, and the addition of any
other vertex produces a 2-colored K5 (by Lemma 5 of [1]). This means that each
of a, b, c, d, e, f must have a blue or green edge connecting to xy (but not both).
Consider the case where at least four of these vertices connect to xy via the same
color (from among blue and green). Without loss of generality, assume that a, b, c,
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and d each connect to xy using at least one blue edge. If there exists any red or
blue edge in the subgraph induced by {a, b, c, d}, then we obtain a 2-colored K5 (e.g.,
if ab is red or blue, then the subgraph induced by {a, b, x, y, u} is a red/blue K5).
The only remaining possibility is that the subgraph induced by {a, b, c, d} forms a
green K4 and including any other vertex in the graph creates a 2-colored K5 (by
Lemma 5 of [1]). Finally, consider the case where exactly three of a, b, c, d, e,
and f connect to xy with at least one blue edge and the other three connect to xy
with at least one green edge. Without loss of generality, suppose a, b, and c each
connect to xy via a blue edge and d, e, and f each connect to xy via a green edge.
If ab is red or blue, then the subgraph induced by {a, b, x, y, u} is a red/blue K5.
The same can be said of ac and bc. The only other possibility is that the subgraph
induced by {a, b, c} is a green K3. Similarly, If de is red or green, then the subgraph
induced by {d, e, x, y, u} is a red/green K5. This is also true for df and ef . The
only other possibility is that the subgraph induced by {d, e, f} is a blue K3. Now
consider these two disjoint K3-subgraphs, one blue, and one green (see the second
image in Figure 3). If there exists a red edge between the two K3 subgraphs, then
a 2-colored K5 must be formed. For example, if ad is red, then ae and af must
be red or blue, which makes the subgraph induced by {a, d, e, f, u} a red/blue K5.
Otherwise, there exists no red edge between the two K3-subgraphs and the subgraph
induced by {a, b, c, d, e, f} is a blue/green K6.

Case 2 Suppose that |V (B)| = 4. If any vertex in B is only incident with edges in
one color, then the other vertices in B can be unioned together to form a block in a
base graph isomorphic to K2, contradicting the assumption that the base graph was
chosen with minimal order. So, without loss of generality, suppose that every vertex
in B is incident with edges in colors red and blue. If any red or blue edge exists
within a block, then choosing its endpoints, along with a single vertex from each of
the other blocks forms a 2-colored K5. So, assume all the blocks contain only green
edges. If any block contains four or more vertices, then selecting four such vertices
along with any other vertex creates a 2-colored K5. Otherwise, each block contains
at most three vertices. Note that some block must contain at least three vertices by
the pigeonhole principle. Also, some block must contain at least two vertices and
the five resulting vertices selected in this way yield a 2-colored K5.

We have now seen that the lower bound given in Theorem 2.2 is the exact value
of the corresponding weakened Gallai-Ramsey numbers when t = 3, but it is not
clear if this bound is exact when t > 3. One can try to prove that this is the case
using a similar approach to the proof of Theorem 2.3. Unfortunately, the Subcases
1.3 and 1.4 in the above proof do not easily extend to larger values of t.

In the following theorem, we make use of the lower bound proved by Chvátal and
Harary [6] for 2-color Ramsey numbers:

r(G1, G2) ≥ (c(G1)− 1)(χ(G2)− 1) + 1,

where c(G1) is the order of the largest connected component in G1 and χ(G2) is the
chromatic number of G2. In particular, applying this bound to complete graphs, we
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have that
r(Km, Kn) ≥ (m− 1)(n− 1) + 1. (4)

Having already proved that gr32(K4) = 5 and gr32(K5) = 9, we now turn to proving a
general lower bound for gr32(Kn) when n ≥ 6.

Theorem 2.4. For all n ≥ 6, gr32(Kn) ≥ 2n− 1.

Proof. We prove this lower bound by constructing a Gallai 3-colored K2(n−1) that
avoids a 2-colored Kn. Our construction involves using a base graph isomorphic to
K2 with a red edge, then replacing each vertex in the K2 with blue/green Kn−1-
subgraphs. We must argue that no 2-colored Kn is formed in our construction, and
it is necessary to handle the cases where n is even or odd separately.

Case 1 Assume that n is even. For the blocks in our construction, we must color the
two Kn−1-subgraphs in blue/green while avoiding a monochromatic Kn/2 in either
color (so that the vertices of a 2-colored Kn cannot be divided between the two
blocks). From Inequality (4), we have that

r(Kn/2, Kn/2) ≥
n2

4
− n+ 2,

which is greater than n − 1 whenever n > 6. For the case n = 6, it is well-known
that r(K3, K3) = 6, which is certainly greater than 5. In all cases, we have shown
that it is possible to color Kn−1 blue and green without producing a monochromatic
Kn/2. Thus, no 2-colored Kn exists.

Case 2 Assume that n is odd. For the blocks in our construction, we must color
the two Kn−1-subgraphs in blue/green while avoiding a monochromatic K(n+1)/2 in
either color (so that the vertices of a 2-colored Kn cannot be divided between the
two blocks). From Inequality (4), we have that

r(K(n+1)/2, K(n+1)/2) ≥
n2

4
− n

2
+

5

4
,

which is greater than n − 1 whenever n > 3. We have shown that it is possible to
color Kn−1 blue and green without producing a monochromatic K(n+1)/2. Thus, no
2-colored Kn exists.

In general, the lower bounds given in Theorem 2.4 are unlikely to be exact as
Inequality (4) is weak for large m and n. A stronger way of expressing the bounds
described in Theorem 2.4 is

gr32(Kn) ≥
{

2r(Kn/2, Kn/2)− 1 if n is even
2r(K(n+1)/2, K(n+1)/2)− 1 if n is odd,

for all n ≥ 6.
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3 Cycles Spanned by Edges Using at Most Two Colors

In this section, we turn our attention to weakened Gallai-Ramsey numbers for cycles.
We use the usual notation Cn to denote a cycle of order n. In the case n = 4, we find
that every Gallai colored complete graph of order at least 4 contains a 2-colored C4.

Theorem 3.1. For n ≥ 4, every Gallai coloring of Kn contains a C4 spanned by
edges using at most two colors.

Proof. Consider a Gallai colored Kn with n ≥ 4 and select four distinct vertices a, b,
c, and d. If the cycle abcda uses only one or two colors, we are done. So suppose it
uses at least three colors. By Theorem 1.4, it uses exactly three colors, exactly one
of which occurs on two edges in the cycle. We must consider cases based on whether
the two edges in the cycle that share a common color are adjacent or not. Without
loss of generality, suppose the color that is repeated is red and we have the cases
given in Figure 4.

a

d c

b a

d c

b

Figure 4: Two cases of 3-colored cycles of order 4.

Case 1 In the first image in Figure 4, avoiding a rainbow triangle forces edge bd to
be red and edge ac to be either blue or green. If ac is blue, then abdca is a red/blue
C4. If ac is green, then acbda is a red/green C4. Either way, we obtain a C4 spanned
by edges using two colors.

Case 2 In the second image in Figure 4, avoiding a rainbow triangle forces edges ac
and bd to be red. Then acdba is a red C4.
In both cases, we have shown that there exists a C4 spanned by edges using at most
two colors.

Of course, if every Gallai colored complete graph contains a 2-colored C4, then
it also contains a 2-colored P4 (a path of order 4). In the proof of the following
theorem, we will need to use the fact that grt(P4) = t + 3, which was proved in
Theorem 7 of [8].

Theorem 3.2. For all t ≥ 3, grt2(C5) = t+ 3.

Proof. First, we construct a Gallai t-colored Kt+2 that avoids a 2-colored C5. Begin
with a K3 in color 1. Add a new vertex, call it x1, and color all edges connecting
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x1 to the existing K3 using color 2. Next, add in a vertex x2 and color all edges
connecting x2 to the existing graph using color 3. At this point, we obtain a Gallai
3-colored K5. If such a coloring includes a 2-colored C5, then the two colors used
must be colors 2 and 3 since these are the only colors used on edges that are incident
with x1. A 2-colored C5 would also require the use of exactly two edges in color 3 as
every such edge is incident with vertex x2. All other edges in the cycle would then
have to use color 2, which is not possible since no monochromatic P4 exists in our
construction. Thus, we have produced a Gallai 3-colored K5 that lacks a 2-colored
C5, from which it follows that gr32(C5) ≥ 6. We use this coloring as the basis for our
general construction. Next, add in vertex x3, and color all edges connecting x3 to the
existing graph using color 4. Continue in this manner, adding in one vertex at a time,
coloring all edges connecting the new vertex to the existing graph using a new color
each time. Label the added vertices x3, x4, . . . , xt−1. Observe that the subgraphs
spanned by colors 2, 3, . . . , t in the resulting Gallai t-colored Kt+2 are all stars and
the subgraph spanned by color 1 is a K3 (see Figure 5). Any C5-subgraph uses at

...

x

x

x

x

1

2

3

t-1

Figure 5: A Gallai t-colored Kt+2 that lacks a 2-colored C5.

most two edges in any given color, and hence, uses at least three colors in total. It
follows that grt2(C5) ≥ t+ 3. To prove the upper bound, consider a Gallai t-colored
Kt+3 and let B be its base graph, chosen to have minimal order. If |V (B)| ≥ 5,
then selecting a single vertex from each block results in a 2-colored KV (B), which
necessarily contains a 2-colored C5. Thus, we only have the cases 2 ≤ |V (B)| ≤ 4
left to consider and Lemma 1.3 implies that |V (B)| 6= 3. So we are left with the two
cases |V (B)| = 2 and |V (B)| = 4.

Case 1 Assume that |V (B)| = 2 and the edges connecting the two blocks are all red.
We divide this case into three subcases.

Subcase 1.1 Assume that each block contains at least two vertices. Since t ≥ 3, our
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graph contains at least 6 vertices, so one block must contain at least 3 vertices. Label
three vertices a, b, and c in one block and two vertices d and e in the other block.
Then adbec is a monochromatic P5, and regardless of what color edge ac receives,
the cycle adbeca is 2-colored.

Subcase 1.2 Assume that one block consists of a single vertex (call it u), the other
block contains t + 2 vertices, and the larger block is assumed to use fewer than t
colors. The larger block is a (t − 1)-colored Kt+2, which contains a monochromatic
P4 since grt−1(P4) = t+ 2. This P4, along with vertex u, forms a 2-colored C5.

Subcase 1.3 Assume that one block consists of a single vertex (call it u), the other
block contains t + 2 vertices, and the larger block has edges in all t colors. In
particular, there exists a red edge in the larger block, which we label xy. Label the
other vertices in this block a1, a2, . . . , at. Suppose that some ai connects to xy via
a red edge. Without loss of generality, suppose that a1x is red. Then a1xyua2a1 is a
2-colored C5. It remains for us to consider the case where no ai connects to xy via
red edges. Note that for each ai, the edges aix and aiy must receive the same color
and the colors for each such pair of edges are chosen from among t − 1 colors (any
color other than red). By the pigeonhole principle, there exists some ai and aj, with
i 6= j, such that aix, ajx, aiy, and ajy all receive the same color (call it blue). Then
aixajyuai is a red/blue C5. o

Case 2 Suppose that |V (B)| = 4 and B has its edges colored red and blue. If any
vertex in the base graph is only incident with edges in a single color, then unioning the
other vertices together produces a base graph of order 2, contradicting the minimal
order of B. So, every vertex in B is incident with both red and blue edges. We have
two subcases to consider.

Subcase 2.1 Suppose that one block (call it A) has order at least 3 and label three
of its vertices a, b, and c. Since there are three other blocks, at least two of them
must be connected to A via the same color (call it red). Select a single vertex from
each of these two blocks and call them x and y. Then axbyca is a 2-colored C5.

Subcase 2.2 Suppose that each block has order at most 2. Since there are only four
blocks, at least two blocks (call them A and B) have order 2. Assume that all edges
connecting A and B are red. If one of A or B is adjacent in B to another block C
via a red edge, then let a and b be in A, w and z be in B, and x be in C. It follows
that abzxwa is a 2-color C5. Otherwise, A and B connect to the other blocks via
only blue edges. Denote the other blocks by C and D and let x ∈ C and y ∈ D. It
follows that abxwya is a 2-colored C5.

In all cases, we find that every Gallai t-coloring of Kt+3 contains a 2-colored C5,
completing the proof of the theorem.

We conclude with a general result on 2-colored cycles, similar to Inequality (1),
which held for complete graphs.

Theorem 3.3. For all t ≥ 3 and n ≥ 4, grt2(Cn+1) ≤ grt(Cn).
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Proof. Let p = grt(Cn) and consider a Gallai t-colored Kp. It follows that there
exists a monochromatic Cn, and we label the vertices in this cycle by x1x2 · · ·xnx1
and assume that all of the edges in the cycle are given color 1. Let y be any other
vertex. Then the edges yx1 and yxn are given color 1 or some other color, say color
2, but they cannot be two distinct colors other than color 1 (as the subgraph induced
by {y, x1, xn} would then be a rainbow triangle). It follows that x1x2 · · · xnyx1 is a
2-colored Cn+1, from which we find that grt2(Cn+1) ≤ p.

4 Conclusion

Besides computing the values of the weakened Gallai-Ramsey numbers grt2(Kn) and
grt2(Cn) that we have not evaluated here, there are several other ways in which this
work can be generalized/varied. First, we conjecture that the lower bound given in
Theorem 2.2 is exact.

Conjecture 4.1. For all t ≥ 3, grt2(K5) = 2t + 1.

Note that for the cases where t ≥ 4, one can use the same approach that was used
in Theorem 2.3, but when considering the parts of the proof that correspond to
Subcases 1.3 and 1.4, similar arguments no longer suffice.

Besides this conjecture, we offer a brief description of some additional topics for
future research.

1. Consider grts(G), where s > 2, and G is complete or a cycle. A good starting
point would be the case s = 3 and t ≥ 4. The techniques used for the upper
bounds of such numbers may resemble the techniques used in this paper. Lower
bounds may present more of an obstacle.

2. Consider grt2(G) for graphs other than complete graphs or cycles. In particular,
fans, paths, stars, and other trees have not yet been studied.

3. Consider grt2(H) where H is an r-uniform hypergraph (see [2] for the definition
of a Gallai-Ramsey hypergraph number and [3] for the definition of a weak-
ened Ramsey hypergraph number). This topic may be more challenging as
there is currently no analogue of Theorem 1.1 for Gallai colorings of r-uniform
hypergraphs.
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