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Abstract

In this paper we investigate properties of the lattice Ln of subsets of [n] =
{1, . . . , n} that are arithmetic progressions, under the inclusion order.
For n ≥ 4, this poset is not graded and thus not semimodular. We give
three independent proofs of the fact that for n ≥ 2, μn(Ln) = μ(n − 1),
where μn is the Möbius function of Ln and μ is the classical (number-
theoretic) Möbius fnction. We also show that Ln is comodernistic, which
implies that Ln is EL-labelable. Comodernism is then used to prove that
the order complex Δn of the lattice is either contractible or homotopy
equivalent to a sphere.
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1 Introduction

The additive structure of certain subsets of additive groups has long been a topic
of interest in number theory and combinatorics. A class of sets with a great deal of
additive structure is the set of arithmetic progressions. These are sets of the form{

a, a+ r, . . . , a + (k − 1)r
}

where the base point a and step size (or simply step) r are elements of an additive
group and the length k is an integer. In this paper we take our underlying additive
group to be the integers Z. The business of finding arithmetic progressions in sets
of integers goes back to a classical 1927 theorem of van der Waerden [23], which
states that any colouring of the integers with finitely many colours gives rise to
monochromatic arithmetic progressions of arbitrary length. This was generalised by
Szemerédi, who in 1975 proved the existence of arithmetic progressions of arbitrary
length in any set of positive upper density [22]. More recently, Green and Tao showed
that the same conclusion holds in the primes [14].

Set systems consisting of arithmetic progressions have received some attention
in the realm of topology. The topology on Z generated by (infinite) arithmetic
progressions a + kZ was used by Furstenberg to give an alternative proof of the
infinitude of primes [10]. This topology came to be known as Golomb’s topology,
after Golomb, who studied its properties more systematically in a 1959 paper [12].
We will restrict ourselves to a finite subset of Z and study the set of arithmetic
progressions itself, rather than the topology it forms a basis of. As with any set of
subsets, it is partially ordered by inclusion, and in the present paper we investigate
the structure induced by this ordering.

We shall also investigate topological properties of the order complex associated to
this lattice. Several other simplicial complexes related to number-theoretic objects
have recently appeared in the literature. The simplicial complex of squarefree positive
integers less than or equal to n was studied in a 2011 paper by Björner [4], and a
2017 paper [7] of Ehrenborg, Govindaiah, Park and Readdy introduces a simplicial
complex called the van der Waerden complex vdW(n, k), whose facets correspond
to arithmetic progressions of length k in {1, . . . , n}. A subsequent paper of Hooper
and Van Tuyl characterised the pairs (n, k) for which vdW(n, k) is shellable [16].
The simplicial complexes arising from our posets are different in that the vertices are
themselves arithmetic progressions.

For brevity, we let [n] denote the set {1, 2, . . . , n} and we will also sometimes write
sets of integers by concatenating their elements: so, for example, 135 is shorthand
for {1, 3, 5}. For n ≥ 1 we let Ln denote the partially-ordered set (poset) of all
finite integer arithmetic progressions contained in [n] including trivial progressions
of length 1 and 2 as well as the empty set ∅. When it is convenient, we artificially
define L0 = {∅}. Small examples are depicted in Figure 1. In each figure, every
point represents a progression, progressions with the same cardinality are placed on
the same row, and these rows are ordered lexicographically (the reader may find it
instructive to spend a minute or two trying to pencil in labels for L4 and L5).
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L2 L3 L4 L5

Figure 1: Hasse diagrams of Ln for small values of n.

The notation Ln is motivated by the fact that Ln is a lattice. The meet of two
elements is simply the set-theoretic intersection, since the intersection of two integer
arithmetic progressions is a (possibly empty) arithmetic progression. By induction,
one finds that the meet of any finite number of points is well-defined in Ln, and this
as well as the existence of a maximum element 12 · · ·n implies the existence of a join
of two arbitrary elements x1, x2 ∈ Ln.

The poset Ln is not graded for n ≥ 4. To see this, note that

1 < 14 < [4] < [5] < · · · < [n] and 1 < 12 < 123 < 1234 < · · · < [n]

are both maximal chains, but the first has length n− 2 while the second has length
n − 1. Since the posets Ln for n ≥ 4 are not graded, they are also not (upper)
semimodular. Indeed, 12 and 14 both cover 12 ∧ 14 = 1, but 12 ∨ 14 = 1234 does
not cover 12.

For two elements x ≤ y in a poset X , the interval [x, y] is the set of all z ∈ X
satisfying x ≤ z ≤ y. If X has a minimum element 0̂, then we can define the the
principal (order) ideal generated by x, denoted ↓ x, to be the interval [0̂, x]. A poset
is said to be locally finite if every interval is finite. The Möbius function μX of a
locally finite poset X is the function from intervals of the poset to the complex field
C given by the formulas μX(x, x) = 1 for all x ∈ X and

μX(x, y) = −
∑

x≤z<y

μX(x, z) (1.1)

for all x ≤ y in X, where we have abbreviated μX

(
[x, y]

)
by μX(x, y). If the poset

X is a lattice, with minimum element 0̂ and maximum element 1̂, then X = [0̂, 1̂]
and it makes sense to write μX(X) for μ(0̂, 1̂). In the case that X is the set of all
positive integers, ordered by divisibility, then μX(m,n) = μ(n/m), where μ is the
classical Möbius function. Recall that μ(s) = 1 if s = 1 or s is a product of an even
number of distinct primes, μ(s) = −1 if s is a product of an odd number of distinct
primes, and μ(s) = 0 if s is divisible by a perfect square. We centre our discussion
around the following main result.

Theorem 1.1 Let μn = μLn be the Möbius function of the lattice of arithmetic
progressions Ln. We have μ0(L0) = 1, μ1(L1) = −1, and μn(Ln) = μ(n − 1) for
n ≥ 2, where μ is the classical Möbius function.
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We now briefly outline the paper. In Section 2, we develop some properties of the
number pnk of arithmetic progressions of size k in [n] and show that these quantities
arise in a recurrence that proves Theorem 1.1 directly from the definition of the
Möbius function. In Section 3, we count chains in Ln in order to gain information
about the order complex of Ln and derive the same recurrence in a slightly different
manner. We then proceed in Section 4 to study the set of coatoms in Ln in order
to give a general formula for μn, evaluated at an arbitrary interval of Ln. As a
corollary, we obtain a third proof of Theorem 1.1 that is of a rather different nature
than the first two proofs. In Section 5, we explicitly compute the homology groups
of the order complex Δn of Ln. In Section 6, we prove that Ln is comodernistic, a
property recently introduced by Schweig and Woodroofe that in particular implies
that Δn is shellable for all n [21]. Lastly, in Section 7, we use lemmas proved in
previous sections to show that Ln is EL-labelable, that Δn is either contractible or
has the homotopy type of a sphere, and that Ln is complemented if and only if n−1
is squarefree.

2 The number of arithmetic progressions

Our starting point is the number pnk of arithmetic progressions of length k contained
in [n]. It was shown in [11] that for 2 ≤ k ≤ n,

pnk =

�(n−1)/(k−1)�∑
r=1

(
n− (k − 1)r

)
= n

⌊
n− 1

k − 1

⌋
− k − 1

2

(⌊
n− 1

k − 1

⌋2

+

⌊
n− 1

k − 1

⌋)
.

(We have halved their formula here, because we consider arithmetic progressions
as sets and not as ordered sequences.) We also have pn0 = 1 to count the empty
progression as well as pn1 = n to count the n singletons. Values of pnk for small
values of n and k are collected in Table 1. We first derive a formula for the bivariate
generating function of pnk (see, e.g., [8] for an exhaustive reference on generating
functions).

Lemma 2.1 For integers n, k ≥ 0, let pnk denote the number of arithmetic progres-
sions of size k in the interval [n]. We have the formula

f(z, q) =
∞∑
k=0

∞∑
n=0

pnkz
nqk =

1

(1− z)2

(
1− z + zq +

∞∑
k=2

(zq)k

1− zk−1

)
for the bivariate generating function of pnk.

Proof: The sequences
(
pn0

)
n≥0

and
(
pn1

)
n≥0

are (1, 1, 1, . . .) and (0, 1, 2, . . .) re-

spectively, so that the coefficient of q0 in f(z, q) is 1/(1− z) and the coefficient of q
is z/(1− z)2. For k ≥ 2, there are n− 1 possible base points and for each base point
a, the number of possible step sizes is 	(n− a)/(k − 1)
. So

∞∑
n=2

pnkz
n =

∞∑
n=2

n−1∑
a=1

⌊
n− a

k − 1

⌋
zn =

∞∑
n=0

n−1∑
a=1

⌊
a

k − 1

⌋
zn =

1

1− z

∞∑
n=0

⌊
n

k − 1

⌋
zn (2.1)
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n pn0 pn1 pn2 pn3 pn4 pn5 pn6 pn7 pn8 pn9 pn(10) pn(11)

0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 2 1
5 1 5 10 4 2 1
6 1 6 15 6 3 2 1
7 1 7 21 9 5 3 2 1
8 1 8 28 12 7 4 3 2 1
9 1 9 36 16 9 6 4 3 2 1
10 1 10 45 20 12 8 5 4 3 2 1
11 1 11 55 25 15 10 7 5 4 3 2 1

Table 1: The number pnk of arithmetic progressions of size k in {1, 2, . . . , n}

where we have added the empty terms for n = 0 and n = 1 and reversed the order
of summation in the second equality. Note that

∞∑
n=0

⌊
n

k − 1

⌋
zn =

∞∑
i=1

∞∑
n=i(k−1)

zn

=

∞∑
i=1

zi(k−1)

1− z

=
1

1− z
· 1− (1− zk)

1− zk−1

=
zk

(1− zk−1)(1− z)
.

(2.2)

Putting everything together, we find that

∞∑
n=0

∞∑
k=0

pnkz
nqk =

1

1− z
+

z

(1− z)2
q +

∞∑
k=2

zk

(1− zk−1)(1− z)2
qk, (2.3)

which simplifies to the formula we were looking for. �

Because pnk = 0 when k > n, the horizontal generating functions fn(q) are
polynomials

∑n
k=0 pnkq

k. For instance, since L0 through L3 are just Boolean lattices
(consisting of all subsets of a finite ground set), we have fn(q) = (1 + q)n. When
n = 4, we have f4(q) = 1+4q+6q2+2q3+ q4, which is irreducible in Z[q] by Cohn’s
criterion [5], since f4(10) = 12641 is prime. It can also be checked computationally
that fn(q) is irreducible for 5 ≤ n ≤ 10, and there is no reason to suspect that this
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polynomial has a neat factorisation for any larger values of n. As a corollary of the
above lemma, we obtain a nice formula for fn(1) = |Ln|, the number of elements in
the lattice. We use the notation j | k to indicate that k is an integer multiple of j.

Corollary 2.2 For n ∈ N, the poset Ln has

|Ln| = 1 + n +

n−1∑
a=1

a∑
r=1

τ(r)

elements, where τ(r) =
∑

d|r 1 is the divisor function.

Proof: We write

|Ln| = fn(1) = 1 + n+

n−1∑
a=1

a∑
r=1

⌊
a

r

⌋
and then apply the elementary identity

∑n
k=1 τ(k) =

∑n
k=1	n/k
. �

The sequence (|Ln| − 1)n≥1 appears in the On-line Encyclopedia of Integer Se-
quences under the entry A051336. We are almost ready to give the first proof of
Theorem 1.1, which expresses the Möbius function of Ln as a recurrence defined in
terms of pnk. We start with the following observation.

Lemma 2.3 Let n ≥ 1 and let 1 ≤ k ≤ n. For any progression x ∈ Ln of cardinality
k, we have μn(∅, x) = μk(∅, [k]).

Proof: Because x =
{
a, a + r, . . . , a + (k − 1)r

}
is a progression, one obtains an

isomorphism of posets between the ideal ↓x and Lk by relabelling the element a+ ir
with i+ 1 for 0 ≤ i < k. �

The rest of the proof involves setting up and solving a certain recurrence.

First proof of Theorem 1.1. Let Mn = μn(Ln) for short. The case n = 0
is trivial. For n ≥ 1, we must subtract μk(∅, x) for every progression x ∈ L∗

n =
Ln \ {[n]}. By Lemma 2.3 and the fact that there are pnk progressions of size k in
Ln, we have the recurrence

Mn = −
∑
x∈L∗

n

μn(∅, x) = −
n−1∑
k=0

Mkpnk. (2.4)

We can then compute M1 = −1 and M2 = 1 = μ(1). For n > 2 we now proceed by
strong induction; suppose that Mk = μ(k − 1) for all 2 ≤ k < n. We expand the
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above recurrence to

Mn = −
(
M0pn0 +M1pn1 +

n−1∑
k=2

Mkpnk

)

= −
(
1− n+

n−1∑
k=2

μ(k − 1)

�(n−1)/(k−1)�∑
r=1

(
n− (k − 1)r

))

= −
(
1− n− μ(n− 1) +

n−1∑
k=1

μ(k)

�(n−1)/k�∑
r=1

(
n− kr

))
(2.5)

and sum over all possible values of kr by setting m = kr and summing over divisors
d of m, for 1 ≤ m ≤ n− 1. This gives

Mn = −
(
1− n− μ(n− 1) +

n−1∑
m=1

∑
d|m

μ(d)(n−m)

)
. (2.6)

But
∑

d|m μ(d) = 0 when m > 1 and when m = 1, the summation equals n − 1.

After cancellation, we see that the right-hand side equals μ(n−1), which is what we
wanted to show. �

3 Chains and the order complex

An abstract simplicial complex is a set system Δ on a vertex set V containing every
singleton subset of V and with the property that for every set F ∈ Δ, all subsets of
F also belong to Δ. The elements of Δ are called faces, and the dimension of a face
F is defined to be |F | − 1. A face is said to be maximal if it is not strictly contained
in another face, and the dimension of Δ is the maximum dimension of a (maximal)
face in Δ. For our purposes, simplicial complexes will contain the empty set, a face
of dimension −1. We will require various notions from topology in this section. Any
definitions that we do not recall here can be found in any introductory textbook,
such as [19], for example.

A chain of length k in a poset X is a set {x1, x2, . . . , xk+1} ⊆ X such that
x1 < x2 < · · · < xk+1; so a chain of length 0 is a singleton set and we will say that
an empty chain has length −1. One can associate a simplicial complex, called the
order complex, to any lattice (with bottom element 0̂ and top element 1̂) by taking
L \ {0̂, 1̂} as the vertex set and letting the faces be chains in this modified poset.
Let L′

n denote the poset Ln with the minimum element ∅ as well as the maximum
element [n] removed. Note that chains in L′

n of length k − 2 are in bijection with
chains of length k in Ln that contain both ∅ and [n], which we shall count in the
next lemma.
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n bn1 bn2 bn3 bn4 bn5 bn6 bn7 bn8 bn9 bn(10) bn(11)

1 1
2 1 2
3 1 6 6
4 1 12 24 12
5 1 21 68 72 24
6 1 32 144 244 180 48
7 1 47 283 666 764 432 96
8 1 64 486 1510 2436 2164 1008 192
9 1 85 799 3117 6534 8028 5816 2304 384
10 1 109 1232 5860 15368 24524 24516 15040 5184 768
11 1 137 1838 10418 33049 65402 84284 70992 37760 11520 1536

Table 2: The number bnk of chains of length k − 2 in L′
n

Lemma 3.1 The number bnk of chains of length k in Ln that contain ∅ and [n]
satisfies the recurrence

bnk =

n−1∑
i=1

pnibi(k−1), (3.1)

for 2 ≤ k ≤ n, with bn1 = 1 for all n and bnk = 0 whenever k > n.

Proof: The case k = 1 is trivial and it is clear that bnk should be zero for k > n.
In the other cases, we are counting chains ∅ ⊂ x1 ⊂ · · · ⊂ xk ⊂ [n] (we require strict
inclusion here). We split up the cases by the second-greatest element xk of the chain.
It is clear that the subchain {∅, x1, . . . , xk} is a chain containing both the maximum
and minimum element of the ideal ↓ xk, which, by Lemma 2.3, is isomorphic to Li,
where i is the size of xk (as a set). Thus the number of such chains is bm(k−1). There
were pni choices for the element of size i, and summing over all possible i gives the
recurrence above. �

For small values of n and k, the values bnk are displayed in Table 2. As a slight
digression, note for analogy that if in the recurrence (3.1) we replace pnk with

(
n
k

)
, we

obtain the array of numbers k!
{
n
k

}
, where

{
n
k

}
is a Stirling number of the second kind

(see, e.g., [13]). These numbers count the number of ways to partition n numbers
into k nonempty subsets, and for each such partition S1, S2, . . . , Sn, we obtain k!
chains in the Boolean lattice that contain both ∅ and [n] (for each permutation σ in
Sn, we have the chain {∅, Sσ(1), Sσ(1) ∪ Sσ(2), . . . , [n]}).

Returning to our numbers bnk, we see that for −1 ≤ k ≤ n − 2, the number of
k-dimensional faces of Δn is bn(k+2). Hence Δn is an (n − 2)-dimensional simplicial
complex. Let χ̃(Δn) = χ(Δn) − 1 be the reduced Euler characteristic of the order
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complex. We have

χ̃(Δn) =
n∑

k=1

(−1)kbnk (3.2)

for n ≥ 1. Using the fact that the Möbius function of a poset with a maximum and
minimum element artificially adjoined equals the reduced Euler characteristic of its
order complex, we obtain an alternative proof of Theorem 1.1.

Second proof of Theorem 1.1. Let Mn =
∑n

k=1(−1)kbnk. We compute M0 = 1
and M1 = −1 by hand. To complete the proof, it suffices to show that χ̃(Δn) =
Mn = μ(n−1) for all n ≥ 2. The base caseM2 = 1 follows from a direct computation,
and for n > 2, we have

Mn =

n∑
k=1

(−1)kbnk

= −1 +

n∑
k=2

(−1)k
n−1∑
i=1

pnibi(k−1)

= −1 +

n−1∑
i=1

pni

n∑
k=2

(−1)kbi(k−1),

(3.3)

by Lemma 3.1. We can pull out one of the −1 factors and reindex to obtain

Mn = −
(
1 +

n−1∑
i=1

pni

i∑
k=1

(−1)kbik

)
. (3.4)

Note that the upper index in the inner summation has been changed to i, since
bik = 0 when k > i. By the induction hypothesis, this inner sum is Mi, so

Mn = −
(
1 +

n−1∑
i=1

pniMi

)
=

n−1∑
i=0

pniMi, (3.5)

which is the recurrence (2.4) we encountered in the first proof of this theorem. The
rest of the proof proceeds exactly as before. �

4 Coatoms

We now set out to compute μn(x1, x2) for arbitrary progressions x1 and x2 in Ln.
Towards this goal, we will need to study the coatoms of Ln, the elements covered by
[n]. It turns out that we can give an explicit description of the set of coatoms in Ln.

Lemma 4.1 Let An ⊆ Ln be the set of coatoms. We have A1 = {∅}, A2 = {1, 2},
and A3 = {12, 13, 23}. For n ≥ 4, we have An = Bn ∪ Cn, where Bn = {12 · · · (n −
1), 23 · · ·n}, and

Cn =

{
{1n}, if n− 1 is prime;{{1, 1 + p, 1 + 2p, . . . , n} : p prime, p | (n− 1)

}
, otherwise.

(4.1)
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In particular, the size of An is ω(n − 1) + 2, where ω(n) is the number of distinct
prime divisors of n.

Proof: The small cases are easily computed explicitly. When n ≥ 4 there are
only two elements of size n − 1, and the fact that they are coatoms is obvious.
Now any element that does not contain both 1 and n cannot be a coatom, since an
element of Bn would contain it. The progressions that contain 1n are of the form
xd = {1, d+ 1, 2d+ 1, . . . , n} for divisors d of n− 1, but note that if d is composite,
then xd is contained in xd′ for any d′ dividing d. Hence the remaining coatoms are
the progressions with prime steps, implying that Cn is of one of the two forms above.

�

Every non-top element in Ln is contained in some coatom, but when n ≥ 4, not
all elements can be expressed as a meet of coatoms. The next lemma shows that in
Ln, if an element can be expressed as a meet of coatoms, then this representation is
unique.

Lemma 4.2 Let Ln be the lattice of arithmetic progressions and let An ⊆ Ln be the
set of coatoms. If x ∈ Ln can be expressed as x =

∧
s∈S s for some S ⊆ An, then S

is uniquely determined by x.

Proof: If x = ∅, then S must equal An, since omitting one of 12 · · · (n − 1) or
23 · · ·n would cause one of the elements 1 or n to appear in the meet, and omitting
the progression with base point 1, step size p (a prime dividing n−1), and end point
n will cause the p− 1 elements

1 +
n− 1

p
, 1 +

2(n− 1)

p
, . . . , n− n− 1

p

to appear in the meet. This last observation also shows that if x = {1} then we have
omitted only 23 · · ·n and if x = {n}, then we have omitted only 12 · · · (n− 1).

Now suppose that x is nonempty and we can write out the elements of x =
{
a, a +

r, . . . , a + (k − 1)r
}
. We will consider the possible step sizes r. When r = 1, x is

either 12 · · · (n − 1), 23 · · ·n, or 23 · · · (n − 1) and in all three cases it is clear that
there is only one representation of x as the meet of coatoms. For r > 1, we find
that r must be the least common multiple of some primes dividing n− 1, and there
is only one way to express r as a least common multiple of distinct primes, thus
uniquely determining the coatoms with prime step size that are in S. Lastly, note
that 12 · · · (n − 1) is in S if and only if a = 1 and 23 · · ·n is in S if and only if
a + (k − 1)r = n. �

These properties of the set of coatoms in Ln imply a general formula for computing
μn(x, [n]).
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Theorem 4.3 Let x �= [n] be a progression in Ln.

μn(x, [n]) =

{
(−1)k, if x is the meet of k coatoms;

0, if x is not a meet of coatoms.
(4.2)

Proof: We dispense first with the case where x is a coatom, since then it is clear
that μn(x, [n]) = −1. Otherwise, note that x is the minimum element of the interval
L =

[
x, [n]

]
; the subset S ⊆ Ln of coatoms whose meet equals x is contained in this

interval. By the cross-cut theorem [20],

μn(x, [n]) =

|An|∑
k=1

(−1)kNk, (4.3)

where Nk is the number of sets of k coatoms whose meet is x. By Lemma 4.2,
N|S| = 1 and Nk = 0 for all k �= |S|, proving the theorem. �

It is easy to tell if a given progression x is a meet of coatoms, since such x have
a very specific form. In particular, x is a meet of coatoms of Ln if and only if

x ∩ {2, . . . , n− 1} = (1 + dZ) ∩ {2, . . . , n− 1}

for some divisor d of n − 1. One can then work out the number of elements in the
meet representation by taking the prime decomposition of d and checking whether 1
or n (or both or neither) are included in x. Let ω(n) be the number of distinct primes
dividing an integer n and let S denote the set of progressions x with μn(x, [n]) �= 0.
Lemma 4.1 and Theorem 4.3 together imply that there are exactly 2ω(n−1)+2 such
elements x in Ln. Since every squarefree divisor of n − 1 contributes exactly four
progressions to the set S, we can prove the elementary identity

∑
d|n

∣∣μ(d)∣∣ = 2ω(n)

by counting S in two ways.

Since, by Lemma 2.3, the ideal ↓x ⊆ Ln is isomorphic to Lm for any progression
x of size m, Theorem 4.3 immediately implies a general method for computing the
Möbius function of an arbitrary interval.

Corollary 4.4 Let x1 and x2 be elements of Ln with x1 ≤ x2 and let C be the set of
elements covered by x2. We have

μn(x1, x2) =

{
(−1)k, if x1 is the meet of k elements of C;

0, if x1 is not a meet of elements of C.
(4.4)

This corollary tells us that the Möbius function of Ln takes values in {0,±1} no
matter the interval at which it is evaluated. Posets with this property are sometimes
called totally unimodular (see, e.g., [15]). Theorem 4.3 also allows us to give a third
proof of Theorem 1.1.
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Third proof of Theorem 1.1. We take n ≥ 4; smaller cases can easily be
worked out explicitly. First suppose that n − 1 is squarefree, equalling the product
of distinct primes p1, p2, . . . , pk, so that μ(n− 1) = (−1)k. The claim is that for any
nonempty progression x ∈ Ln, there is some coatom that does not contain x. If x
contains either 1 or n, then one of the two progressions in Ln of size n− 1 does not
contain x. Otherwise, x contains some integer 1 + m for 1 ≤ m ≤ n − 2. Since
m < n−1 = lcm(p1, p2 . . . , pk), there is some prime pi that does not divide m, hence
1 +m is not contained in the coatom of step size pi. There are k+ 2 coatoms in Ln,
so Theorem 4.3 can be applied to give μn(Ln) = (−1)k+2 = (−1)k = μ(n− 1).

Now assume that n − 1 is divisible by p2 for some prime p. Since the integer
(n − 1)/p is divisible by every prime dividing n − 1, the element 1 + (n − 1)/p
belongs to every coatom of Ln. So ∅ cannot be expressed as a meet of coatoms and
μn(Ln) = 0. �

5 Homology groups of the order complex

Although less direct than the first two proofs we supplied, the proof of Theorem 1.1
given in the previous section reveals much of the internal structure of Ln. We now
show that it can be reinterpreted to give a complete characterisation of the homology
groups of Δn, a strictly stronger result than Theorem 1.1. A simplicial complex Δ,
as we have defined it, is simply a set system, but Δ can be embedded in Euclidean
space to give rise to a topological space |Δ| called its geometric realisation. We
will sometimes abuse notation and ascribe topological properties of |Δ| to Δ. The
reduced Euler characteristic of an n-dimensional simplicial complex Δ can also be
expressed as the alternating sum

χ̃(Δ) = χ̃(|Δ|) =
n∑

i=0

(−1)i rank H̃i(|Δ|,Z), (5.1)

where H̃i(|Δ|,Z) is the ith reduced homology group of the topological space |Δ|
(whenever we refer to a homology group, we shall understand reduced homology
group).

To derive the homology groups of Ln, we will require the notion of cross-cuts. A
cross-cut C of a lattice L (with maximum 1̂ and minimum 0̂) is a subset of L not
containing either of 1̂ and 0̂ such that no two elements of C are comparable and
every maximal chain in the lattice contains some element of C. A subset S of L is
said to be spanning if the join of all its elements is 1̂ and the meet of all its elements
is 0̂. For a cross-cut C of a lattice L, we can define a simplicial complex Δ(C) whose
vertices are the elements of C and whose faces are given by subsets of C that are
not spanning. A paper of Folkman [9] showed that H̃i

(
Δ(C),Z) ∼= H̃i

(
Δ,Z) for all

i, where Δ is the order complex of L. We use this to derive the homology groups
of Δn.
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Lemma 5.1 For n ≥ 4, let Ln be the lattice of arithmetic progressions and let Δn

be the order complex of L′
n = Ln \{∅, [n]}. Let H̃i(Δn,Z) be the ith reduced homology

group of Δn. If n−1 is squarefree and equal to the product of k distinct primes, then

H̃i(Δn,Z) =

{
Z, if i = k;

0, otherwise.

If n− 1 is not squarefree, then all the homology groups of Δn are trivial.

Proof: Let C be the set of coatoms of Ln, whose explicit construction was given
by Lemma 4.1. Let k = ω(n− 1), so that |C| = k + 2. If n − 1 is squarefree, then
as we saw earlier in the third proof of Theorem 1.1, we can express ∅ as a meet of
elements of C, so C is a spanning set. However, any proper subset C ′ of C is not
spanning, since if ci is the element of C that is not in C ′, then we can build a chain
∅ ⊂ · · · ⊂ ci ⊂ [n] that does not contain an element of C ′. So every subset of C with
cardinality k+1 is an element of the abstract simplicial complex Δ(C), i.e., Δ(C) is
the boundary of a (k + 1)-dimensional simplex, whose kth homology group is Z and
whose other reduced homology groups are all trivial.

When n − 1 is not squarefree, the construction we gave in the third proof of Theo-
rem 1.1 shows that ∅ is not the meet of the elements of C, which means that C itself
does not span. Hence Δ(C) is the (k+1)-dimensional simplex, including its interior,
all of whose reduced homology groups are trivial. �

We will use Lemma 5.1 later on to prove the stronger fact that Δn has the
homotopy type of a sphere when n− 1 is squarefree.

6 Left-modularity and comodernism

An element m in a lattice L is left-modular in L if for all x < y ∈ L, (x ∨m) ∧ y =
x∨(m∧y). A lattice L is comodernistic if every interval [x, y] ⊆ L has a coatom which
is left-modular in [x, y]. The aim of this section is to show that Ln is comodernistic.
To do so, we will make use of two of the lemmas in the paper of Schweig and
Woodroofe that introduced the definition of comodernism.

Lemma A ([21], Lemma 2.12) Let m be a coatom of the lattice L. Then m is
left-modular in L if and only if for every y ∈ L with y �≤ m, y covers m ∧ y.

Lemma B ([21], Lemma 4.1) Let L′ be a sublattice of a lattice L. If m ∈ L′ is a
left-modular coatom in L, then m is also left-modular in L′.

Note that we have modified these lemmas slightly to suit our notation and us-
age; in particular, the original version of Lemma B requires only that L′ be a meet
subsemilattice. We begin with a small lemma.
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Lemma 6.1 For n ≥ 1, the elements 12 · · · (n − 1) and 23 · · ·n are left-modular
in Ln.

Proof: Without loss of generality, letm = 12 · · · (n−1); the case wherem = 23 · · ·n
is symmetric. Let y ∈ Ln be such that y �≤ m, so it must be that n ∈ y; hence
m ∧ y = y \ {n} which is covered by y. By Lemma A, this shows that m is left-
modular. �

We are now able to show that Ln is comodernistic for all n. For brevity of
notation, in the following proof we let ↑k x denote the principal filter of x ∈ Lk; that
is, ↑k x = {y ∈ Lk : x ≤ y}.

Theorem 6.2 For all n ≥ 0, the lattice Ln is comodernistic.

Proof: Let [x, y] be an interval in Ln. We once again employ Lemma 2.3, which
says that ↓ y is isomorphic to Lk where k = |y|. This isomorphism sends [x, y] to the
interval ↑k x ⊆ Lk, so it suffices to show that, for all k ≥ 1 and x ∈ Lk, the principal
filter ↑k x contains a coatom which is left-modular (in the filter). Let Ak = Bk∪Ck be
the coatoms of Lk, with Bk and Ck defined as in Theorem 4.1. Clearly, the coatoms
of ↑k x are a subset of Ak. If ↑k x ∩ Bk �= ∅, then by Lemma 6.1, ↑k x contains a
coatom which is left-modular in all of Lk, and by Lemma B it is also a left-modular
coatom ↑k x. If ↑k x ∩ Bk is empty, then the progression x must contain both 1 and
k, so ↑k x ⊆ ↑k 1k and in particular, every coatom of ↑k x is also a coatom of ↑k 1k.
By another application of Lemma B, we may reduce our proof to showing that every
coatom of ↑k 1k is left-modular in this filter.

The coatoms of ↑k 1k are precisely the elements in Ck. If k − 1 is prime, Lemma 4.1
tells us that 1k is a coatom, so ↑k 1k contains only the two elements 1k and [k],
the former of which is trivially left-modular in this interval. On the other hand, let
k − 1 be composite and let m be a coatom of ↑k 1k; by Lemma 4.1, m is of the form
{1, 1 + p, ..., k} for some p dividing k − 1. If y ∈ ↑k 1k satisfies y �≤ m, then y =
{1, 1+r, ..., k} where r divides k−1 and p does not divide r. Som∧y = {1, 1+s, ..., k}
where s = lcm(r, p) = rp, hence m ∧ y is covered by y and we conclude that m is
left-modular by Lemma A. �

7 EL-labelability, homotopy type, and complements

We now use the lemmas of the previous sections to demonstrate further properties
of Ln. Here we show that Ln is EL-labelable, that Δn is either homotopy equivalent
to a point or a sphere, and that Ln is complemented if and only if n−1 is squarefree.

7.1 EL-labelability

Given a lattice L, let E(L) be the set of all (x, y) ∈ L such that y covers x; thus E(L)
is the edge set of the Hasse diagram of L. We say that a function λ : E(L) → Z is an
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ER-labeling (or edge-rising labeling) if for every interval [x, y] ⊆ L, there is a unique
maximal chain x = x0 < x1 < · · · < xs = y with increasing labels, that is, with

λ(x0, x1) < λ(x1, x2) < · · · < λ(xs−1, xs).

Let Z∗ denote the set of all finite sequences of integers. One defines a lexicographic
partial order � on Z∗ by declaring (a1, . . . , am) � (b1, . . . , bn) if either ai = bi for
1 ≤ i ≤ m and m ≤ n or else ai < bi for the smallest i with ai �= bi. Note that the
function λ defines a map λ from chains in L to tuples of positive integers; namely if
c is the chain formed by x0 < x1 < · · · < xs, then

λ(c) =
(
λ(x0, x1), λ(x1, x2), . . . , λ(xs−1, xs)

)
.

Let λ be an ER-labeling with the further property that for all [x, y], the unique
increasing maximal chain m has λ(m) � λ(m′) for all other maximal chains m′ in
[x, y]. Such an ER-labeling is called an EL-labeling (or edge-lexicographic labeling).
A lattice that admits an ER-labeling is said to be ER-labelable and one that admits
an EL-labeling is EL-labelable.

A paper of Li showed that comodernistic lattices are EL-labelable [18], so in
particular we find that for all n ≥ 0, Ln is EL-labelable. The looser property of ER-
labelability is useful in certain enumerative problems. For example, it has been shown
that the zeta and Möbius transforms for ER-labelable posets P can be computed in
at most |E(P )| elementary arithmetic operations [17].

7.2 Homotopy type

A simplicial complex Δ is nonpure shellable if its facets can be given an order
C1, C2, . . . , Cm such that for all 2 ≤ k ≤ m, the facets in the complex

(⋃k−1
i=1 Ci

)∩Ck

all have dimension dimCk−1. The earliest treatment of nonpure shellable complexes
was carried out by Björner and Wachs in [2] and [3]; Corollary 13.3 of the latter as-
serts that a nonpure shellable complex is homotopy equivalent to a wedge of spheres.
Proposition 2.3 of an earlier paper by the same authors [1] states that EL-labelable
posets are nonpure shellable, so Δn is homotopy equivalent to a wedge of spheres.
In fact, Δn is either contractible or homotopy equivalent to a single sphere, as the
following strengthening of Lemma 5.1 shows.

Theorem 7.1 Let Δn be the order complex of the lattice of arithmetic progressions
Ln. If n − 1 is not squarefree, then Δn is contractible. Otherwise, Δn has the
homotopy type of Sk, where k is the number of distinct primes dividing n− 1.

Proof: We already know, from the above discussion, that Δn is homotopy equiva-
lent to a wedge of spheres. If the wedge product consisted of more than one sphere,
then the sum over the ranks of the reduced homology groups of Δn would be greater
than 1. But by Lemma 5.1, this sum equals 0 when n− 1 is not squarefree, in which
case Δn must have the homotopy type of a point, and when n − 1 is squarefree it
equals 1, meaning that there is exactly one sphere in the wedge product. �
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7.3 Complements

We finish with a miscellaneous result about complements in Ln. A lattice L with
maximum element 1̂ and minimum element 0̂ is said to be complemented if for all
x ∈ L, there exists y ∈ L such that x ∨ y = 1̂ and x ∧ y = 0̂. The elements x
and y are called complements of one another, and if we remove the condition that
x ∧ y = 0̂, then x and y are said to be upper semicomplements. The next theorem
gives a necessary and sufficient condition for Ln to be complemented.

Theorem 7.2 Let n ≥ 2. The lattice Ln is complemented if and only if n − 1 is
squarefree. In particular, if n−1 is not squarefree, there exists an element x /∈ {∅, [n]}
of Ln whose only upper semicomplement is [n].

Proof: For the “if” direction, we note that when n − 1 is squarefree, we have
μn(Ln) �= 0, which, by a result of Crapo (namely, the corollary to Theorem 3 in [6]),
implies that Ln is complemented. For the converse, suppose that n − 1 is divisible
by p2 for some prime p. Consider the progression

x =

{
1 +

n− 1

p
, 1 +

2(n− 1)

p
, . . . , n− n− 1

p

}
,

which has length p − 1 and is thus not empty. Note that any x′ ∈ L satisfying
x′ ∨ x = [n] must contain both 1 and n and the step size r must be coprime to
(n− 1)/p. We also know that r must divide n− 1. But the only such integer r is 1,
in which case we see that x must be [n]. �
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