
AUSTRALASIAN JOURNAL OF COMBINATORICS
Volume 84(2) (2022), Pages 325–340

Set partitions and non-crossing partitions with
�-neighbors and �-isolated elements
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Abstract

In this paper we introduce the notion of an �-neighbor element of set
partitions, that is, an element a in a block that contains �+1 consecutive
elements, among which is a. Elements that are not �-neighbors are called
�-isolated elements. We explore combinatorial results to study these new
statistics over the set partitions. In particular, we use combinatorial
arguments, recurrence relations, and generating functions to describe our
results. We also discuss possible relations with ribonucleic acids (RNA)
structures.

1 Introduction

A set partition of a set [n] := {1, 2, . . . , n} is a collection of non-empty disjoint
subsets, called blocks, whose union is [n]. Let

{
n
k

}
denote the number of set partitions

of [n] into k non-empty blocks. This sequence is called the Stirling numbers of the
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second kind. Let Π(n, k) denote the set of partitions of [n] having k blocks. Suppose
π ∈ Π(n, k) is represented as π = B1/B2/ · · ·/Bk, where Bi denotes the i-th block,
with min(B1) < min(B2) < · · · < min(Bk). The graph on the vertex set [n] whose
edge set consists of arcs connecting the elements of each block in numerical order is
called the graph representation of π. For example, in Figure 1 we depict the graph
representation of the set partition

π = {1, 2, 3} / {4} / {5} / {6, 7, 8, 9} / {10, 11, 13} / {12, 14}. (1)

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 1: Graph representation of π.

Let π = B1/B2/ · · · /Bk be a partition of [n] and a ∈ Bi, 1 ≤ i ≤ k. If � is a
positive integer then we say that a is an �-neighbor if there is a subset of Bi, with
� + 1 consecutive elements that contain the element a. For example, the partition
π defined in (1) contains nine 1-neighbors, namely, 1, 2, 3, 6, 7, 8, 9, 10, 11, seven
2-neighbors, 1, 2, 3, 6, 7, 8, 9, four 3-neighbors, 6, 7, 8, 9, and does not contain
�-neighbors for � ≥ 4.

Note that if an element is an �-neighbor then it is an �′-neighbor for all �′ ≤ �.
The (maximal) sequence of consecutive elements contained in the same block is called
chain. The length of the chain is the number of its elements. Let �∗ denote the length
of the longest chain in a partition. For example, for the partition π defined in (1)
�∗ = 4?. Another easy observation is that a partition contains at least �∗ �-neighbors
for all � < �∗ and no �-neighbors for � ≥ �∗.

If an element a is not a 1-neighbor, then we say that a is an isolated singleton.
This definition was recently studied by Munagi [10]. For example, the elements
4, 5, 12, 13, 14 are isolated singletons. In general an element a is �-isolated if it is not
an �-neighbor. Elements that are contained in a block of size less than � + 1 are
�-isolated in an obvious sense. The partitions of [n] into k non-empty blocks, each of
size less than or equal to �, are counted by the

{
n
k

}
≤�

numbers (cf. [1]), this is the
number of partitions having only trivial �-isolated elements. This definition was also
considered by Mansour and Munagi in [9]. In this paper we find additional results,
in particular we consider the notion of �-neighbors for non-crossing partitions, and
we also give different proofs and interpretations to many of the results.

Let N�,r(n, k) denote the number of partitions of [n] into k blocks containing r
�-neighbors. Analogously, let L�,r(n, k) denote the number of partitions of [n] into k
blocks containing r �-isolated elements. The sequence L1,r(n, k) coincides with the
sequence gr(n, k) studied by Munagi in [10]. Since for a fixed � an element a is either
an �-neighbor or �-isolated, the relation N�,r(n, k) = L�,n−r(n, k) holds. By definition
we take L0,0(n, k) =

{
n
k

}
. If there is an �-neighbor a in the partition then there are
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at least � other �-neighbors in the partitions since an �-neighbor is contained in a
chain of length �+ 1. Hence, N�,r(n, k) = 0, if r ≤ �.

In the present article, we use combinatorial arguments, generating functions, and
recurrence relations to calculate the sequence L�,r(n, k). Afterward, we find explicit
combinatorial formulas in terms of this new sequence. Finally, we give analogous
results in the context of non-crossing partitions, that is, set partitions such that
none of the edges in the graph representation cross. We also give a connection
between the �-neighbor elements and the ribonucleic acids (RNA) structures.

2 Set partitions with no �-isolated singletons

This section discusses the sequence L�,0(n, k), which enumerates set partitions with
no �-isolated singletons. In particular, Theorem 2.1 and Theorem 2.2 give recurrence
relations to calculate this sequence, and Theorem 2.3 gives an explicit expression in
terms of Stirling numbers of the second kind. We provided three different proofs for
this expression.

Theorem 2.1. If n ≥ �+ 3 and 2 ≤ k < n, then

L�,0(n, k) = L�,0(n− �− 1, k − 1) + L�,0(n− 1, k) + (k − 1)L�,0(n− �− 1, k),

with the initial values L�,0(n, k) = 0 for 1 ≤ k, n ≤ �, L�,0(n, k) = δk,1 for � + 1 ≤
n ≤ 2�+ 1, L�,0(n, 1) = 1 for n > �.

Proof. The left-hand side counts the number of set partitions of [n] into k blocks
with no �-isolated singletons. Now we consider the right-hand side. Let π be any
set partition in Πn,k with no �-isolated singletons. There are three options. The
first case is that {n − �, . . . , n − 1, n} is a block of π. The remaining n − � − 1
elements create a partition with k − 1 blocks, hence, there are L�,0(n− �− 1, k − 1)
such partitions. The second case is when n is contained in a block in that all the
elements n− (�+1), n− �, . . . , n− 1 are also contained. In this case, if we delete the
element n, the remaining partition of the n−1 elements have any �-isolated elements,
hence, there are L�,0(n− 1, k) such partitions. The third case is when the block that
contains n, does not contain the element n − (� + 1). We count these partition as
follows. The number of partitions of the elements [n−(�+1)] is L�,0(n−�−1, k). We
can add now the chain n − �, . . . , n to any block that does not contain the element
n − (� + 1) in order to obtain a partition with the required property. This gives
(k − 1)L�,0(n− �− 1, k) possibilities.

Theorem 2.2. If n ≥ �+ 3 and 2 ≤ k < n, then

L�,0(n, k) =
∑
i≥0

L�,0(n− �− i− 1, k − 1) + (k − 1)L�,0(n− �− i− 1, k),

with the initial values L�,0(n, k) = 0 for 1 ≤ k, n ≤ �, L�,0(n, k) = δk,1 for � + 1 ≤
n ≤ 2�+ 1, L�,0(n, 1) = 1 for n > �.
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Proof. Assume that the length of the chain having the last element n is of length
�+ 1+ i (i ≥ 0), i.e, the consecutive elements n− (�+ i), . . . , n are contained in the
same block. This chain is itself a block, or there are other elements in its block. In
the first case, the remaining n− �− i−1 elements create a partition with k−1 block
(in L�,0(n− �− i− 1, k− 1) ways), while in the second case we can add this chain to
any of the blocks in a partition of Πn−�−i−1,k without �-isolated elements that does
not contain n− �− i− 1 itself. There are (k− 1)L�,0(n− i− �− 1, k) possibilities in
this case.

Next we generalize the explicit expression Munagi [10] provided for the number
of partitions without isolated elements.

L1,0(n, k) =
∑
j≥1

(
n− j − 1

j − 1

){
j − 1

k − 1

}
.

We present three different proofs for Theorem 2.3.

Theorem 2.3. We have the combinatorial identity

L�,0(n, k) =

�n/(�+1)�∑
j=k

(
n− 1− j�

j − 1

){
j − 1

k − 1

}
.

First proof of Theorem 2.3. We will prove that the combinatorial sum satisfies the
recurrence of Theorem 2.1 and the same initial values. In fact, from the recurrence
relation for the Stirling numbers

{
n
k

}
=
{
n−1
k−1

}
+ k
{
n−1
k

}
, with the initial conditions{

0
0

}
= 1 and

{
n
0

}
= 0 for n > 0, we obtain that

L�,0(n− 1, k) + L�,0(n− �− 1, k − 1) + (k − 1)L�,0(n− �− 1, k)

=
∑
j≥1

(
n− 2− j�

j − 1

){
j − 1

k − 1

}
+
∑
j≥1

(
n− 2− (j + 1)�

j − 1

){
j − 1

k − 2

}

+ (k − 1)
∑
j≥1

(
n− 2− (j + 1)�

j − 1

){
j − 1

k − 1

}

=
∑
j≥1

(
n− 2− j�

j − 1

){
j − 1

k − 1

}
+
∑
j≥1

(
n− 2− (j + 1)�

j − 1

){
j

k − 1

}

=
∑
j≥0

(
n− 2− (j + 1)�

j

){
j

k − 1

}
+
∑
j≥1

(
n− 2− (j + 1)�

j − 1

){
j

k − 1

}

=
∑
j≥0

(
n− 1− (j + 1)�

j

){
j

k − 1

}

= L�,0(n, k).
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Second proof of Theorem 2.3. Define Lk
� (x) =

∑
n≥0 L�,0(n, k)x

n. Then Theorem 2.1

gives that L1
�(x) =

x�+1

1−x
, L2

�(x) =
x2�+2

(1−x)(1−x−x�+1)
, and

Lk
� (x) =

x�+1

1− x− (k − 1)x�+1
Lk−1
� (x),

for all k ≥ 3. Hence, by induction on k, we have

Lk
� (x) =

xk(�+1)∏k
j=1(1− x− (j − 1)x�+1)

=
(x�+1/(1− x))k∏k−1

j=1(1− jx�+1/(1− x))
.

Using the fact xk
∏k

j=1(1−jx)
=
∑

n≥k

{
n
k

}
xn, we obtain

Lk
� (x) =

∑
j≥k

{
j − 1

k − 1

}
xj(�+1)

(1− x)j
,

which, by 1
(1−x)j

=
∑

i≥0

(
j−1+i
j−1

)
xi, implies

Lk
� (x) =

∑
j≥k

∑
i≥0

(
j − 1 + i

j − 1

){
j − 1

k − 1

}
xj(�+1)+i.

Hence, by comparing the coefficient of xn in both sides, we obtain

L�,0(n, k) =

n/(�+1)∑
j=k

(
n− 1− j�

j − 1

){
j − 1

k − 1

}
.

Third proof of Theorem 2.3. Let us consider first an example. Within the summand,
for j = k, we have

(
n−1−k�
k−1

)
. This is the number of �-isolated partitions into k blocks

such that each block is a chain.

How can we get the formula
(
n−1−k�
k−1

)
? First, consider the subsets of consecutive

� elements:

H1 = {1, 2, . . . , �}, H2 = {�+ 1, . . . , 2�}, . . . , Hk = {(k − 1)�+ 1, . . . , k�}.

Now we modify these blocks by sliding the limits in the following way: consider the
sequence of the remaining n− k� elements and separate the sequence into k sections
by inserting k − 1 bars between the elements. In other words, take a composition of
the n−k� elements into k parts, (the order of the parts matters) C = c1+c2+· · ·+ck.
For example,

· · | · · · | · | · · = 2 + 3 + 1 + 2
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Then define the new blocks as

H ′
1 = H1 ∪ {�+ 1, . . . , �+ c1} = {1, 2, . . . , �, �+ 1, . . . �+ c1}

H ′
2 = H→c1

2 ∪ {2�+ c1 + 1, . . . , 2�+ c1 + c2} = {�+ c1 + 1, . . . , 2�+ c1 + c2}
... =

...

H ′
i = H

→c1+···+ci−1

i ∪ {i�+ c1 + · · ·+ ci−1 + 1, . . . , i�+ c1 + · · ·+ ci}
= {(i− 1)�+ c1 + · · ·+ ci−1 + 1, . . . , i�+ c1 + · · ·+ ci},

where H→p denotes the set where we add to each element of the set H the value p.

Note that since there are k parts in the composition, (there are dots between the
bars and before and after), each set Hi contains at least �+ 1 consecutive elements,
hence, in the partition H ′

1, . . . , H
′
k there are no �-isolated elements.

Next, let j be the number of chains in the partition. Since the partition is �-
isolated each chain has to be of length at least �+ 1. Consider again first the blocks
Hi = {(i− 1)�, . . . , i�} (as they would be distinct elements) and partition these into
j blocks such that two consecutive Hi do not come into the same block (a, b ∈ Bi

implies that |a − b| > 1). It is known [12] that the number of such partitions is{
n−1
j−1

}
.

Denote by L�,0(n) the total number of partitions of [n] that contain no �-isolated
elements, that is, L�,0(n) =

∑
k≥1L�,0(n, k). The total number of set partitions of

[n] is counted by the Bell numbers Bn, that is, Bn =
∑n

k=0

{
n
k

}
.

Corollary 2.4. For � ≥ 0

L�,0(n) =
∑
j≥1

(
n− 1− j�

j − 1

)
Bj−1,

where Bn are the Bell numbers.

In Table 1 we show the first few values of the sequence L�,0(n).

�\n−� 1 2 3 4 5 6 7 8 9 10 11 12

� = 0 1 2 5 15 52 203 877 4140 21147 115975 678570 4213597
� = 1 1 1 2 3 6 11 23 47 103 226 518 1200
� = 2 1 1 1 2 3 4 7 12 19 33 59 102
� = 3 1 1 1 1 2 3 4 5 8 13 20 29
� = 4 1 1 1 1 1 2 3 4 5 6 9 14

Table 1: Values of L�,0(n) for � + 1 ≤ n ≤ 12 + �, � = 0, 1, . . . , 4.

Notice that the array [L�,0(n)]0≤�,�+1≤n coincides with the array A211700 in [15].
The interpretation given there is the corresponding set of words, that we obtain by the
trivial encoding of our partitions by words: wi is the index of the block that contains i
(taking the canonical order of the blocks). Example: {1, 4, 5} / {2, 3, 9} / {6, 8} / {7}
= 01100232.

http://oeis.org/A211700
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3 Set partitions with only �-isolated singletons

We consider now the other extreme case, partitions in which all the elements are �-
isolated. We also give the recurrence relation and the explicit formula for L�,n(n, k).

Proposition 3.1. Let n, k, � be integers with n ≥ �+ 1, 2 ≤ k < n. Then

L�,n(n, k) =

�∑
i=1

L�,n−i(n− i, k − 1) + (k − 1)

�∑
i=1

L�,n−i(n− i, k),

where L�,n(n, k) =
{
n
k

}
for 1 ≤ n, k ≤ � and L�,n(n, 1) = 0 for n > �.

Proof. The left-hand side counts the number of set partitions of [n] into k block
with exactly n �-isolated elements. Now we consider the right-hand side. Let π be
any set partition in Πn,k with n �-isolated elements. So, we can do the following
construction: either n (the last element) forms a block (possibly a singleton) with
the elements n − i, . . . , n− 2, n− 1, for i = 1, . . . , �− 1 or n is in a block of size at
least 2 with the elements n− i+1, . . . , n−2, n−1 but not with the element n− i, for
i = 1, . . . , �− 1. In the first case, it is clear that there are

∑�
i=1 L�,n−i(n− i, k − 1),

while in the second case, have k − 1 blocks that do not contain the element n − i.
Therefore, there are (k − 1)

∑�
i=1 L�,n−i(n− i, k) options.

For example, for � = 5 we obtain the following values

[L5,n(n, k)]n,k≥1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
1 3 1 0 0 0 0 0 0
1 7 6 1 0 0 0 0 0
1 15 25 10 1 0 0 0 0
0 31 90 65 15 1 0 0 0
0 61 301 350 140 21 1 0 0
0 120 963 1701 1050 266 28 1 0
0 236 3004 7766 6951 2646 462 36 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Munagi [10] noted that the case � = 1 gives L1,n(n, k) =
{
n−1
k−1

}
. In Theorem 3.2 we

generalize this result.

Theorem 3.2. For � ≥ 1, we have

L�,n(n, k) =
∑
j≥1

f�(n, j)

{
j − 1

k − 1

}
,

where f�(n, j) counts the number of compositions of n with j parts in {1, 2, . . . , �}.

Proof. The sequence L�,n(n, k) counts the number of partitions into k blocks where
each element is �-isolated, i.e., each chain is at most of length �. To obtain such a



B. BÉNYI ET AL. /AUSTRALAS. J. COMBIN. 84 (2) (2022), 325–340 332

partition, take a composition of n with j parts in {1, 2, . . . , �}, denoted it by σ1 · · ·σj .
By definition these compositions are counted by f�(n, j). Then, take a set partition
of [j] into k blocks such that no two consecutive elements are in the same block. This
can be done in

{
j−1
k−1

}
ways. Summing over j ≥ 1, we obtain the desired result.

It is well-known that the generating function of the sequence f�(n, j) is given by
(cf. [8]) ∑

n≥0

f�(n, j)x
n =

(
�∑

i=1

xi

)j

.

In particular, f2(n, j), the number of compositions with parts 1 or 2 is
(

j
n−j

)
. Hence,

the number of partitions where there are at most 2 consecutive elements in each
block is L2,n(n, k) =

∑
j≥1

(
j

n−j

){
j−1
k−1

}
.

4 The general case

In this section we give a recurrence relation for the sequence L�,r(n, k), i.e., for the
number of partitions of [n] into k non-empty blocks with exactly r �-isolated elements.

Theorem 4.1. Let n, k, r, � be integers with n ≥ �+ 2, 2 ≤ k < n, 1 ≤ r < n. Then

L�,r(n, k)

= L�,r(n− 1, k)−
(

�∑
j=1

L�,r−j(n− 1− j, k − 1) + (k − 1)

�∑
j=1

L�,r−j(n− 1− j, k)

)

+ L�,r(n− �− 1, k − 1) + (k − 1)L�,r(n− �− 1, k)

+

�∑
j=1

L�,r−j(n− j, k − 1) + (k − 1)

�∑
j=1

L�,r−j(n− j, k),

where L�,r(n, 1) = 0 for � < r and L�,r(n, 1) = δn,r for r ≤ �, L�,r(n, k) = 0 if
1 ≤ n ≤ � + r and n �= r, L�,r(n, n) = δn,r, L�,n(n, k) is as in Proposition 3.1,
L�,0(n, k) is as in Theorem 2.1, and L�,r(n, k) = 0 for r, � < 0.

Proof. The left-hand side counts the number of set partitions of [n] into k block with
r �-isolated elements. Now we consider the right hand side. Let π be any set partition
in Πn,k with r �-isolated singletons. We have two options: either n (the last element)
is not an �-isolated element or n is one of the r �-isolated elements. In the first case
we can do the following construction: if the elements n− 1− �, . . . , n− 2, n− 1 are
in the same block, then we put the element n into this block, so by counting the
complement we obtain the the following enumeration

L�,r(n− 1, k)−
(

�∑
j=1

L�,r−j(n− 1− j, k − 1) + (k − 1)

�∑
j=1

L�,r−j(n− 1− j, k)

)
.
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We can also have {n−�, . . . , n−1, n} as a block of π, then we have L�,r(n−�−1, k−1)
options, or a block that contains the elements n− �, . . . , n−1, n but not the element
n− �− 1. In this case we have (k − 1)L�,r(n− �− 1, k) ways.

On the other hand, if n is one of the r �-isolated elements, then by a similar
argument as in Proposition 3.1 we obtain that there are

�∑
j=1

L�,r−j(n− j, k − 1) + (k − 1)
�∑

j=1

L�,r−j(n− j, k)

options. Summing the different options we obtain the desired result.

Munagi gave the following closed formula for the case � = 1

L1,r(n, k) =
∑
j≥1

(
j

r

)(
n− j − 1

j − r − 1

){
j − 1

k − 1

}
.

In Theorem 4.2 we generalize this result.

Theorem 4.2. We have

L�,r(n, k) =
∑
j≥1

g�(n, j; r)

{
j − 1

k − 1

}
,

where g�(n, j; r) counts the number of compositions of n with j parts, where the sum
of parts that are greater than � is equal to n− r.

Proof. The sequence L�,r(n, k) is the number of partitions of [n] into k non-empty
blocks such that there are r �-isolated elements, i.e., n − r �-neighbors. Take a
composition n = c1 + · · ·+ cj , and form from the first c1 consecutive elements a set
P1, from the second c2 consecutive elements a set P2 etc. Take now a set partition π
of [j] into k non-empty blocks such that no two consecutive elements are in the same
block. Finally, exchange each element i in the partition by the sets of consecutive
elements Pi, obtaining the partition π′ of [n]. The number of �-neighbors in the so
obtained partition π′ is equal to the number of the elements in all Pi’s that have size
greater than �. From definition of g�(n, j; r), the statement follows.

In Lemma 5.1 we give a generating function C�(x, t, w), such that

g�(n, j; r) = [xntn−rwj−1]C�(x, t, w).

5 Non-crossing partitions with a given number of �-neighbors

A set partition is called non-crossing if none of the edges on the graph representation
cross. In other words if i, j with i < j is contained in a block and s, t with s < t is
contained in another block and i < s < j then i < t < j.
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Let NC(n) denote the set of non-crossing set partitions of [n]. It is well-known
that |NC(n)| = Cn, where Cn = 1

n+1

(
2n
n

)
is the n-th Catalan number. In this

section we study the distribution of the neighbors in the non-crossing partitions. Let
H�,r(n, k) denote the number of non-crossing partitions of [n] into k blocks containing
r �-neighbors.

We define the multivariate generating function

H�(x, y, z) :=
∑

π∈NC(n,k)
xnykzη�(π) =

∑
n,k,r≥0

H�,r(n, k)x
nykzr,

where η�(P ) is the number of �-neighbors in π and NC(n, k) is the set of non-crossing
set partitions of [n] into k blocks.

In order to obtain a functional equation for this generating function, we translate
our problem into the language of Dyck paths. Recall that a Dyck path of semi-length
n is a lattice path in the first quadrant of the xy-plane that starts at the point (0, 0),
ends on the point (2n, 0), and consists of the same number of up-steps X = (1, 1)
and down-steps Y = (1,−1).

There is a well-known bijection between NC(n) and the Dyck paths of semi-length
n [14]. The bijection works as follows. First, label with positive integers, from 1 to n,
the up-steps left to right. Second, label each down-step with the number on its match-
ing up-step. Finally, define the partition of [n], whose blocks are the labels on the de-
scents (maximal number of Y ’s). For example, the Dyck path X4Y 2X4Y 3XY 4X2Y 2

corresponds to the non-crossing partition {1, 2, 5, 9}, {3, 4}, {6, 7, 8}, {10, 11}, see
Figure 2. A peak is a subpath of the form XY and a valley is a subpath of the
form Y X. A pyramid of height h in a Dyck path is a subpath of the form XhY h; it
is called maximal if it can not be extended to a pyramid Xh+1Y h+1. We use Δh to
denote a maximal pyramid of the form XhY h.

1

2

3

4

5

6

7

3

2

5

1

7

64

8

9

10

8

9

10

1111

1 2 3 4 5 6 7 8 9 10 11

Figure 2: Bijection between non-crossing partitions and Dyck paths.

Let D denote the family of Dyck paths. We have

H�(x, y, z) :=
∑
P∈D

x|P |yρ(P )zη�(P ),
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where |P | is the semi-length of P , ρ(P ) is the number of peaks contained in P . We
explain the definition of η�(P ) later since the correspondence of the �-neighbors in
the case of the Dyck paths is a little more complicated. From the symbolic method
[6], in Theorem 5.2 we give a functional equation satisfied by H�(x, y, z). Before, we
need an auxiliary generating function.

Let C(n) denote the set of compositions of n. We introduce the generating func-
tion

C�(x, t, w) = 1 +
∑
n≥1

xn
∑

σ∈C(n)
tPart�(σ)wPart(σ)−1,

where Part(σ) denotes the number of parts of σ and Part�(σ) denotes the sum of
the parts of σ strictly greater than �.

Lemma 5.1. We have

C�(x, t, w) = 1 +
P�(x, t)

1− wP�(x, t)
,

where P�(x, t) =
∑�

k=1 x
k +

∑
k≥�+1(xt)

k.

Proof. Let σ = σ1 · · ·σm be a non-empty composition having m parts. If σj = k
with k > �, then σj contributes to the generating function with the term xktk, while
if k ≤ �, then it contributes with the term xk. Therefore,

C�(x, t, w) = 1 +
∑
m≥1

wm−1

(
�∑

k=1

xk +
∑

k≥�+1

(xt)k

)
= 1 +

P�(x, t)

1− wP�(x, t)
.

Theorem 5.2. The generating function H�(x, y, z) satisfies the functional equation

H�(x, y, z) = 1 + y(C�(x, z,H�(x, y, z)− 1)− 1)H�(x, y, z).

Proof. A Dyck path P is either empty or has the form P = XnY P1Y P2 · · ·Y Pn,
where Pi are Dyck paths (possible empty) for 1 ≤ i ≤ n. This decomposition
is equivalent to P = XnY i1P+

1 Y i2P+
2 · · ·Y ir−1P+

r−1Y
irPr, where P+

k are non-empty
Dyck paths, for 1 ≤ k < r ≤ n, and i1 + i2 + · · · + ir = n, with ik ≥ 1. Figure 3
illustrates this decomposition.

P+
kY ik−1

Pr

Xn

Figure 3: Decomposition of a Dyck path.



B. BÉNYI ET AL. /AUSTRALAS. J. COMBIN. 84 (2) (2022), 325–340 336

Notice that the number of �-neighbors in a non-crossing partition corresponds
to the sum

∑
ik>�

1≤k≤r
ik in the decomposition of the path plus the total number of �-

neighbors associated with the Dyck path Pr in the decomposition. For example, for
� = 1 and n = 4 we have the decompositions given in Figure 4 with the corresponding
compositions of n = 4. Therefore, from Lemma 5.1 we obtain the desired result.

x4yz4H1(x, y, z) 4 x4z3y(H1(x, y, z)− 1)H1(x, y, z) 3 + 1

x4yz4(H1(x, y, z)− 1)H1(x, y, z) 2 + 2 x4yz3(H1(x, y, z)− 1)H1(x, y, z) 1 + 3

x4yz2(H1(x, y, z)− 1)2H1(x, y, z) 2 + 1 + 1 x4yz2(H1(x, y, z)− 1)2H1(x, y, z) 1 + 2 + 1

x4yz2(H1(x, y, z)− 1)2H1(x, y, z) 1 + 1 + 2 x4y(H1(x, y, z)− 1)3H1(x, y, z) 1 + 1 + 1 + 1

Figure 4: Decomposition of the Dyck paths for n = 4.

The solution of the functional equation in Theorem 5.2 produces an algebraic
generating function of degree 2. For example, for � = 1 we have the explicit expression

H1(x, y, z) =
1− x2(2− y)(1− z)z + x(2− y − z)−√p(x, y, z)

2x(1 − x(1− z)z)
,

where

p(x, y, z)

= 1−xz(2−xz)+(xy−x2y(1−z)z)2−2yx(1−x(1−z)z)(1+x(2−z)−2x2(1−z)z).

As a series expansion, the generating function H1(x, y, z) begins with

H1(x, y, z) = 1 + yx+ (y2 + yz2)x2 + (y2 + y3 + 2y2z2 + yz3)x3

+ (3y3 + y4 + 3y2z2 + 3y3z2 + 2y2z3 + yz4 + y2z4)x4 + · · ·
Example 5.3. Figure 5 shows the non-crossing partitions of [3] corresponding to
the bold coefficient in the above series. The red vertices represent the 1-neighbors.
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1 2 3

x3y2z2

1 2 3

x3y2z2

1 2 3

x3yz3

1 2 3

x3y3

1 2 3

x3y2

Figure 5: Non-crossing partitions of [3] and the 1-neighbors.

6 An application: RNA shapes

In this section we investigate the non-crossing partitions with only �-singletons. In
particular, we point out an interesting connection to the RNA shapes, an abstract
object that are defined in molecular biology, and we provide an explicit formula for
H�,0(n) involving the Motzkin numbers.

Denote by H�,0(n) the total number of non-crossing partitions of [n] that con-
tain no �-neighbors. Let H�(x, y) be the bivariate generating function H�(x, y) =∑

n,k≥0H�,0(n, k)x
nyk. By setting z = 0 in Theorem 5.2 we obtain Corollary 6.1.

Corollary 6.1. The generating function H�(x, y) is given by

1 + x(1− y)− x�+1(2− y)−√(1+x(1−y)− x�+1(2−y))2 − 4x(1−x�)(1−x�+1)

2x(1− x�)
.

In particular, the generating function of the sequence H�,0(n) =
∑

k≥1H�,0(n, k) is
given by

H�(x) :=
∑
n≥0

H�,0(n)x
n = H�(x, 1)

=
1 + x− x�+1 −√(1− x�+1)2 − 4x(1− x�)(1− x�+1)

2x(1− x�)
.

In Table 2 we show the first few values of the sequence H�,0(n).

�\n 1 2 3 4 5 6 7 8 9 10

� = 1 1 1 2 4 9 21 51 127 323 835
� = 2 1 2 4 11 31 92 283 893 2875 9407
� = 3 1 2 5 13 39 121 388 1277 4288 14630
� = 4 1 2 5 14 41 129 418 1389 4708 16215
� = 5 1 2 5 14 42 131 426 1419 4821 16642

Table 2: Values of the sequence H�,0(n).
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Note that H1,0(n), the number of non-crossing partitions such that two con-
secutive elements cannot be included in the same block, are the Motzkin numbers
A001006. Using the correspondence between non-crossing partitions and Dyck paths
as above and the classical translation of Dyck paths into bracketings, we have that
H1,0(n) is the number of bracketings with no occurrence of ((∗)), where ∗ is itself
any (possibly vacuous) bracketings.

Example 6.2. For n = 5 the H1,0(5) = 9 bracketings are

()()()()(), (()())()(), ()(()())(), ()()(()()), (()()())(),

()(()()()), (()()()()), ((()())()), (()(()())).

It is known that these objects are counted by the Motzkin numbers [4]. Here we
point out an application in molecular biology where these sequences occur.

RiboNucleic Acids (RNAs) are a category of bio-molecules. RNA may be de-
scribed by its sequence of bases, nucleotides Adenine (A), Cytosine (C), Guanine
(G), and Uracil (U). The sequence of bases is known to be the primary structure of
the molecule. The RNA is folded then into a helical 3D structure. In the folding
process, the secondary structure plays a crucial role, which is completed by com-
plex topological motifs, including pseudoknots and non-canonical pairs and motifs,
in reaching the final 3D form of the molecule. Hence, the secondary structure is used
to predict the 3D structure [5, 13, 16].

The experimental determination of RNA structure is time-consuming and expen-
sive. Therefore, computational prediction is of great interest; however, the users are
often only interested in structures with fundamental differences. For this reason, the
consideration of classes comprising similar structures in a reasonable way is useful.
RNA shapes [7] represent a hierarchy of abstract representations for the secondary
structures of RNA. The coarsest shape [11, p. 119] is defined so that the unpaired
nucleotides are ignored and consecutive helices separated only by an internal loop
are contracted. One of the visualizations of such a class (and its representative) is
by bracketing as described above.

In terms of bracketings, H�,0(n) count those bracketings, where ((· · · (∗) · · · )) with
direct nestings of length more than � + 1 collapse to �, or in other words the depth
of direct nestings is at most �. Such bracketings are in one-to-one correspondence
with ordered trees with branch lengths at most �. (In the special case, when � = 1,
these trees are called branch-reduced plane trees [3] or bushes [4, (M8)], and are in
bijection with the bracketings without ((∗)), by the well-known “walking around the
tree”–transformation.)

We recall briefly some facts from Deutsch [2]. If T denotes the generating function
of all ordered trees according to size and P the generating function of all paths, then
we have

T = 1 + P + PT (T − 1) = 1 + P (1− T + T 2),

which in turn implies that the generating function of trees with branches of length

http://oeis.org/A001006
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at most � satisfies

T = 1 + (z + z2 + · · ·+ z�)(1− T + T 2).

By extracting the coefficient of zn we obtain

1 +M0(z + z2 + · · ·+ z�) +M1(z + z2 + · · ·+ z�)2 +M2(z + z2 + · · ·+ z�)3 + · · · ,

where Mi is the ith Motzkin number. Hence,

H�,0(n) =
∑
j≥1

f�(n, j)Mj−1,

where f�(n, j) counts the number of compositions of n with j parts in {1, 2, . . . , �}.
The combinatorial explanation is as follows: take a composition n = c1+ · · ·+ cj

of n into j parts from the set {1, 2, . . . , �}, in other words with parts at most � and a
branch-reduced plane tree with j edges. Cut the ith edge of the tree into a path of
ci edges by inserting ci − 1 new vertices. Since the number of compositions is given
by f�(n, j) and the number of branch-reduced trees is given by the Motzkin numbers
we have the above formula. For � = 2 and � = 3 the sequences are A247333 and
A239106 in [15].

H2,0(n) =
n∑

k=1

(
k

n− k

)
Mk−1 and H3,0(n) =

n∑
k=n/3

(
k

n− k

)
3

Mk−1,

where
(
n
k

)
3
denotes the trinomial coefficient.
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