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Abstract

The notion of containment and avoidance provides a natural partial or-
dering on set partitions. Work of Sagan and of Goyt has led to enumer-
ative results on avoidance classes of set partitions, which were refined by
Dahlberg et al. through the use of combinatorial statistics. We extend
the work of the latter authors by computing the distribution of the di-
mension index (a statistic arising from the supercharacter theory of finite
groups) across avoidance classes. In doing so we obtain a novel connec-
tion between noncrossing partitions and 321-avoiding permutations, as
well as connections to many other combinatorial objects such as Motzkin
and Fibonacci polynomials.

1 Introduction

Given a finite set S, a set partition of S is a unordered collection of disjoint nonempty
blocks B1, . . . , Bk such that

k⋃
j=1

Bj = S.

We will write a set partition π as

π = B1/ . . . /Bk,

and use the notation π � S to mean π is a partition of S. We will restrict our
attention in this article to set partitions of [n] = {1, 2, . . . , n} for some positive
integer n; in this case we will omit set braces in the blocks of a partition, and write
the blocks in standard order, meaning

min(B1) < · · · < min(Bk).

We let Πn denote the collection of set partitions of [n]; thus Π3 consists of the
partitions

123, 1/23, 12/3, 13/2, and 1/2/3.
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Set partitions form a foundational topic in combinatorics; see the books of Man-
sour [28] or Stanley [34] for a general reference. In addition to having a rich combina-
torial history, the theory of set partitions arises in the study of stochastic processes
[31], algebras [20], Hopf algebras [2], and many other areas.

The combinatorics of set partitions have recently been enhanced through the use
of patterns. Given a set partition π = B1/ . . . /Bk of [n] and a subset S ⊂ [n], let
π ∩ S be the partition of S given by taking the nonempty intersections of the form
Bi∩S, i = 1, 2, . . . , k. We standardize π∩S to obtain a partition st(π∩S) of [|S|] by
replacing the ith smallest entry in π∩S with i. For example, if n = 6, π = 12/345/6,
and S = {2, 3, 5}, then π ∩ S = 2/35 and st(π ∩ S) = 1/23.

Given two set partitions σ � [k] and π � [n], we say that π contains σ as a pattern
if there exists a subset S ⊂ [n] with st(π ∩ S) = σ. If no such subset exists, then
π avoids σ. Continuing our previous example, π = 12/345/6 contains the pattern
σ = 1/23, but π avoids the pattern τ = 1/2/3/4 because π only contains 3 blocks.

The theory of set partition patterns can be traced in part back to work of Krew-
eras [26], and was developed more generally in work of Klazar [22],[23],[24]. A funda-
mental question in the area, mirroring the related question in permutation patterns,
is to enumerate the number of partitions of [n] which avoid a set of fixed patterns.
Namely, given a collection of partitions P , let

Πn(P ) = {π ∈ Πn : π avoids every partition in P}.

Work of Klazar and Marcus [25] has given asymptotic formulae for the sizes of these
sets, and exact enumerative results for small patterns have been provided by Sagan
[32] and Goyt [18].

Again in analogy with permutation patterns, work has been devoted to refining
these enumerative results through the use of combinatorial statistics. Often the
statistic of interest is related to “four fundamental statistics” of Wachs and White
[37]. This can be found in work of Simion [33], Goyt and Sagan [19], Dahlberg et al.
[15], Lin and Fu [27], and Acharyya, Czajkowski, and Williams [1].

The purpose of this paper is to continue the above work using a statistic arising
from the supercharacter theory of finite groups. Building on work of André [3], [4],
[5] and Yan [38], Diaconis and Isaacs have commenced a study of the representation
theory of finite algebra groups through the use of supercharacters and superclasses
[17]. We will not give an introduction to this theory here, but instead will simply
say that often such supercharacters can be indexed by set partitions with additional
data; in particular, the dimension index of such a partition π = B1/ . . . /Bk, given
as a sum

dim(π) =

k∑
i=1

(max(Bi)−min(Bi) + 1),

returns algebraic data regarding the corresponding supercharacter.

As a result of this theory, there has been recent interest in the combinatorics
of the dimension index on set partitions. For instance, Chern, Diaconis, Kane, and



T. GRUBB AND F. RAJASEKARAN/AUSTRALAS. J. COMBIN. 84 (2) (2022), 275–296 277

Rhoades have shown that this statistic satisfies an asymptotic central limit theorem
[14], and that the average of this statistic (taken over Πn) can be expressed quite
cleanly in terms of the Bell numbers [13].

The purpose of this work is to combine the study of the dimension index and
set partition patterns. In doing so, we give numerous refinements of enumerative
results, and also find connections to other combinatorial objects. As a sample of one
such connection, we are able to give a quick alternative proof of Theorem 7.4 of [12]
regarding 321-avoiding permutations (definitions for those unfamiliar may be found
in Section 4):

Theorem. Let In(q, t, x) be the generating function for left-to-right maxima, inver-
sions, and fixed points, taken over the 321-avoiding permutations of length n:

In(q, t, x) =
∑

π∈Avn(321)

qinv(π)tLRM(π)xfix(π).

Then I0(q, t, x) = 1 and, for n ≥ 1,

In(q, t, x) = txIn−1(q, t, x)+

n∑
j=2

qj−1Ij−2(q, t, 1)
(
In−j+1(q, t, x)− t(x−1)In−j(q, t, x)

)
.

Of note is that the proof of this theorem in [12] requires algebraic manipulation
of continued fractions, whereas our proof of this theorem is purely combinatorial. It
relies only on a Catalan recursion and the Inclusion-Exclusion Principle.

To aid our study, we introduce the following generating functions: for a set of
partitions P and a variable q, we define

Dimn(P ; q) =
∑

π∈Πn(P )

qdim(π).

In fact, it will be simpler (and more interesting) to use two related statistics. Namely,
for π = B1/ . . . /Bk a partition of [n], define the spread and block statistics by

sp(π) =
k∑

i=1

(max(Bi)−min(Bi))

bl(π) = k,

so that dim(π) = sp(π)+bl(π). In particular, we will examine the joint distributions
of spread and block by calculating the joint generating function

SBn(P ; q, t) =
∑

π∈Πn(P )

qsp(π)tbl(π),

from which we can obtain the desired information on Dimn(P ; q) by equating the
variables q and t.
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The outline of this paper is as follows. In Section 2, we start by recalling basic
facts on set partitions which will be useful in our proofs, such as the connection
between partitions and restricted growth functions. We then provide several in-
troductory calculations regarding partitions avoiding a single pattern of length 3.
Sections 3 and 4 contain the most prominent of our results. In Section 3 we ex-
amine partitions which avoid the pattern 13/24; these are the so called noncrossing
partitions. We follow this up in Section 4 by connecting noncrossing partitions to
321-avoiding permutations. We end with ideas for future work in Section 5.

2 Background and Introductory Calculations

2.1 Preliminary Notions

We start this section by recalling several preliminary facts which will be useful in
the study of set partition patterns. The first notion is that of a restricted growth
function, or RGF for short; it allows us to frame containment questions in terms of
words and subwords, which simplifies many arguments.

A restricted growth function is a sequence w = a1a2 . . . an of positive integers
such that a1 = 1 and, for i ≥ 2,

ai ≤ 1 + max{a1, . . . , ai−1}.

Let Rn denote the set of length n RGFs. It is straightforward to show that the
following gives a bijection between Πn and Rn. Given π = B1/ . . . /Bk ∈ Πn written
in standard order, we map π to the RGF w(π) = w1 . . . wn with

wi = j

if i ∈ Bj . For example, the partition π = 14/25/378/6 � [8] maps to the RGF
12312433 under this bijection.

Mapping partitions to their associated RGFs often provides a useful characteri-
zation of avoidance classes of set partitions. For a set of partitions P , let

Rn(P ) = {w(π) ∈ Rn : π ∈ Πn(P )}.

Below we collect several results from Sagan’s article [32], which provide characteri-
zations of Rn(P ) where P consists of a single pattern of length 3.

Theorem 2.1 ([32]). We have the following characterizations.

1. Rn(1/2/3) = {w ∈ Rn : w consists of only 1s and 2s}.

2. Rn(1/23) =

{
w ∈ Rn :

w is obtained by inserting a single 1 into a word
of the form 1l23 . . .m for some l ≥ 0 and m ≥ 1

}
.

3. Rn(13/2) = {w ∈ Rn : w is weakly increasing}.
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4. Rn(12/3) = {w ∈ Rn : w has initial run 1 . . .m and am+1 = · · · = an ≤ m}.
5. Rn(123) = {w ∈ Rn : w has no element repeated more than twice}.

With this theorem in hand, we now explain how to read the block, spread, and
dimension statistics of a partition from its RGF. To do so it will help to introduce
the following notation. Given an RGF w and a letter l of w, let first(l) and last(l)
be the indices of the first and last occurrence of l in w, respectively. For example, if
w = 11231, then first(1) = 1, last(1) = 5, and first(3) = last(3) = 4.

Lemma 2.2. Let π ∈ Πn with w = w(π). Then

1. bl(π) = max(w),

2. sp(π) =
max(w)∑
i=1

(last(i)− first(i)),

3. dim(π) =
max(w)∑
i=1

(last(i)− first(i) + 1).

Proof. The first equality follows directly from the bijection between Rn and Πn. The
spread statistic is given by the blockwise sum of the difference between the maximum
and minimum elements in each block. To track the maximum and minimum elements
in a block Bi, we must find the first occurrence of i in the RGF and the last occurrence
of i in the RGF, and take their difference. Hence,

sp(w) =

max(w)∑
i=1

(last(i) − first(i)).

The last statement follows from dim(w) = sp(w) + bl(w).

For example, below we display the partitions of length three together with their
corresponding RGFs and block, spread, and dimension statistics.

π w(π) bl(π) sp(π) dim(π)
1/2/3 123 3 0 3
1/23 122 2 1 3
12/3 112 2 1 3
13/2 121 2 2 4
123 111 1 2 3

In the remainder of this section we will combine Theorem 2.1 and Lemma 2.2 to
study SBn(P ; q, t) and Dim(P ; q) for patterns of length three. To simplify notation
somewhat we will use [n]q to denote the q-analogue of n,

[n]q = 1 + q + q2 + · · ·+ qn−1.
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2.2 Patterns of Length 3

In this subsection we will exhibit several calculations regarding partitions which
avoid a single pattern of length 3. This is meant to provide a mild precursor to
Section 3, which will contain more involved calculations. We start by computing the
distribution of spread, block, and dimension over partitions which avoid the pattern
12/3.

Proposition 2.3. For n ≥ 1 we have

SBn(12/3; q, t) = tn +

n−1∑
i=1

tiqn−i[i]q

and

Dimn(12/3; q) = qn

(
1 +

n−1∑
i=1

[i]q

)
.

Proof. From Theorem 2.1, every RGF in Rn(12/3) is of the form 12 . . .mk . . . k where
1 ≤ k ≤ m. From this, we can then characterize every RGF first by its maximum
element, then by the value of the constant string at the end.

If w is strictly increasing, w = 12 . . . n, then the trailing constant string is empty,
and hence bl(w) = n, sp(w) = 0. Alternatively, suppose an RGF has maximum
value m, and a string of length n−m and value k at the end. Then it is clear that
bl(π) = m and sp(w) = n− k. We have

∑
w∈Rn(12/3)

qsp(w)tbl(w) = tn +
n−1∑
m=1

m∑
k=1

tmqn−k

and simplifying gives the desired result.

Having displayed the approach one takes when calculating these generating func-
tions in Proposition 2.3, we omit the proofs of the following calculations for brevity’s
sake. The proofs pass through Theorem 2.1 and straightforward combinatorial ma-
nipulations, as in Proposition 2.3.

Proposition 2.4. For n ≥ 1 we have

SBn(1/23; q, t) = tn +
n−1∑
i=1

tiqn−i[i]q

and

Dimn(1/23; q) = qn

(
1 +

n−1∑
i=1

[i]q

)
.
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Proposition 2.5. For n ≥ 1 we have

SBn(13/2; q, t) = (q + t)n−1t

and
Dimn(13/2; q) = 2n−1qn.

Proposition 2.6. We have SB1(1/2/3; q, t) = q, Dim1(1/2/3; q) = q, and for n ≥ 2

SBn(1/2/3; q, t) = qn−1t+t2

(
(n−2)qn−1+(n−1)qn−2+

n−2∑
i=2

n−1∑
j=i+1

2j−i−1qj−i(1+qn−1)

)
,

Dimn(1/2/3; q) = (n− 2)qn+1 + nqn +
n−2∑
i=2

n−1∑
j=i+1

2j−i−1qj−i(1 + qn−1).

The last results of this section deal with the pattern 123. RGFs of partitions
avoiding 123 will contain no element more than twice. This restriction is much
less rigid than the restrictions arising from other patterns of length 3, which makes
working with these partitions much more difficult. Accordingly, we only provide
partial information on the individual statistics over this class. Namely, our result
describes the words in Rn(123) which maximize the spread statistic.

Proposition 2.7. Let w be an RGF in Rn(123) which maximizes the spread statistic.
Then

sp(w) =
⌊
n
2

⌋ ⌈
n
2

⌉
and

bl(w) = �n
2
	.

Moreover, w is of the form 12 . . . �n
2
	σ, where σ is a permutation of the set {1, 2, . . . ,


n
2
�}.

Proof. A direct calculation shows any partition of the described form has the statis-
tics listed in the theorem, so it suffices to show that this indeed gives the maximum
spread. Let π ∈ Πn(123) be a partition which maximizes spread. Note that π cannot
contain two singleton blocks; if it did, we could replace the singletons with their
union to increase spread. Translating into RGFs, a spread-maximizing RGF w can
contain at most one unique letter.

Next, suppose w ∈ Rn(123) maximizes spread and that the first �n
2
	 elements

are not strictly increasing. By the definition of RGFs there must exist indices i, j
such that i < j ≤ �n

2
	 but wi = wj. Note that in this scenario this common value is

strictly less than �n
2
	. Importantly, in order for w to be in Rn(123), the letter �n

2
	

must appear in w (a word of length n which can repeat values at most twice must
use at least �n

2
	 distinct letters). Combining this with the fact that w is an RGF,
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we know the value k = max(w1, . . . , wj) + 1 is in w as well. Transposing the first
occurrence of k in w with wj will increase spread, contradicting our assumption.

From the previous two paragraphs, we know that if w maximizes spread then it
must contain at most one unique letter and must strictly increase up to the letter
�n
2
	. The only such words which also avoid the pattern 123 are those described in

our theorem.

As a corollary of the previous result we obtain the following well-known identities:

1 + 3 + · · ·+ 2k − 1 =k2,

2 + 4 + · · ·+ 2k =k(k + 1).

This can be seen by applying Proposition 2.7 to the following partitions:

1(2k)/2(2k − 1)/ . . . /k(k + 1) and 1(2k + 1)/2(2k)/ . . . /k(k + 2)/(k + 1).

We end this section by noting that the calculations in Proposition 2.7 in fact
carry over to all of Πn.

Proposition 2.8. The partitions appearing in the proof of Proposition 2.7 also max-
imize spread over Πn. If n is odd, n = 2k + 1, there is one other class of partitions
which do so. Using the notation from the above proof, they are the partitions whose
associated RGF has the form

w = 12 . . . kjσ1 . . . σk

where 1 ≤ j ≤ k and σ = σ1 . . . σk is a permutation of [k] (note that the letter j will
appear three times in such a word, hence it is not encompassed by Proposition 2.7).

Proof. First note that a block of size at least 4 cannot appear in a set partition which
maximizes spread; indeed if B = {i1, i2, . . . , ij} is a block with i1 < i2 < · · · < ij and
j ≥ 4, we may replace B with two blocks,

B = {i1, ij} ∪ {i2, . . . , ij−1},

in order to strictly increase spread. This reduces the calculation to partitions with
blocks of size at most 3. If we have two blocks of size 3, B1 = {i1, i2, i3} and
B2 = {j1, j2, j3} with i1 < i2 < i3 and j1 < j2 < j3, then we may replace B1 and B2

with the three blocks
{i1, i3}, {i2, j2}, {j1, j3}

to again strictly increase spread. Combining these observations with Proposition 2.7
gives the desired result.
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3 Noncrossing Partitions

Now we consider the set of partitions that avoid the pattern 13/24. These partitions
are called noncrossing and have a rich combinatorial and algebraic history. The size
of the set Πn(13/24) is given by the nth Catalan number,

Cn =
1

2n+ 1

(
2n

n

)
.

See the work of Armstrong [6] for more information on these partitions. We will con-
tinue our analysis of the spread, block, and dimension statistics over this avoidance
class, and in doing so obtain (q, t)-analogs of the standard Catalan recursion. Our
main result is Theorem 3.3; to prove this we need characterizations of Rn(13/24),
which were provided by Campbell et al. in [9]. We restate their results for complete-
ness.

Lemma 3.1 ([9], Proposition 5.1 and Lemma 5.2). For a partition π, the following
are equivalent:

1. π avoids 13/24,

2. the RGF w(π) = w1 . . . wn avoids 1212 (as a subword pattern),

3. there are no xyxy subwords in w(π),

4. if wi = wi′ for some i < i′ then, for all j′ > i′, either wj′ ≤ wi′ or wj′ >
max{w1, . . . , wi′}.

For the next corollary and the following theorem we need the following notation.
For a word w = w1 . . . wn, let 1w denote the word obtained by prepending a 1 to w.
For an integer k, let (w+k) denote the word whose ith letter is wi+k. For example,
if w = 12134, then 1(w + 1) = 123245. Similarly, if u and v are words then uv is u
prepended to v.

Corollary 3.2 ([9], Corollary 5.3). If w is in Rn(13/24) then both 1w and 1(w+ 1)
are in Rn+1(13/24).

The next theorem gives a recursive formula for SBn(13/24; q, t). The structure of
this proof will closely follow that of Theorem 5.4 in [9].

Theorem 3.3. We have

SB0(13/24; q, t) = 1

SB1(13/24; q, t) = t

and for n ≥ 2

SBn(13/24; q, t)= t SBn−1(13/24; q, t)+
n∑

k=2

qk−1SBk−2(13/24;q, t)SBn−k+1(13/24; q, t).
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Similarly, Dim0(13/24; q) = 1, Dim1(13/24; q) = q, and for n ≥ 2

Dimn(13/24; q)=qDimn−1(13/24; q) +

n∑
k=2

qk−1Dimk−2(13/24; q)Dimn−k+1(13/24; q).

Proof. The initial conditions are readily verified; we will focus on proving the recur-
sion. To prove this theorem we divide the set Rn(13/24) into disjoint subsets, then
split our analysis of the block and spread statistics individually over these sets. The
sets of interest are as follows:

X = {w ∈ Rn(13/24) : w1 = 1 and there are no other 1s in w}
and, for k ≥ 2,

Yk = {w ∈ Rn(13/24) : w1 = wk = 1 and wj > 1 for 1 < j < k}.
That these sets partition Rn(13/24) is clear.

We will begin by looking at X. We can describe X as

X = {w ∈ Rn(13/24) : w = 1(u+ 1) for some u ∈ Rn−1(13/24)},
and from this description we obtain a bijection X → Rn−1(13/24).

If w = 1(u+ 1), then bl(w) = bl(u) + 1 and sp(w) = sp(u). Thus∑
w∈X

qsp(w)tbl(w) = t SBn−1(13/24, q, t).

Next, we examine the sets Yk. For w ∈ Yk, we claim that w is of the form
w = 1(u+ 1)1v where u ∈ Rk−2(13/24), st(1v) ∈ Rn−k+1(13/24), and if vi �= 1, then
vi > max(u) + 1.

The first two requirements are clear. For the third, if there exists vi such that
1 < vi ≤ max(u) + 1 then there must exist uj such that uj + 1 = vi. However, then
we will have an xyxy subword with x = 1 and y = uj + 1 = vi, which would then
imply that w /∈ Rn(13/24) by Lemma 3.1.

This establishes a bijection

Yk → Rk−2(13/24)× Rn−k+1(13/24);

the inverse map sends (u, v) → 1(u+ 1)v′, where

v′i =

{
1 if vi = 1

vi +max(u) otherwise.

Now we examine the behaviour of block and spread under this map. Take w =
1(u+1)1v ∈ Yk. If 1v consists solely of 1s, then max(w) = 1+max(u). Alternatively,
the maximum value of w will be found in 1v; in any case,

bl(w) = bl(u) + bl(st(1v)).
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Now consider the spread statistic. Since (u+1) and 1v are disjoint, the spread of
w is almost the sum sp(u)+sp(st(1v)); however, this forgets the impact of prepending
the leading 1. As u has length k− 2, the effect of this is to increase spread by k− 1.
The correct formula is therefore

sp(w) = sp(u) + sp(st(1v)) + k − 1.

Hence summing over Yk results in

∑
w∈Yk

qsp(w)tbl(w) = qk−1

⎛
⎝ ∑

u∈Rk−2(13/24)

qsp(u)tbl(u)

⎞
⎠
⎛
⎝ ∑

st(1v)∈Rn−k+1(13/24)

qsp(v)tbl(1v)

⎞
⎠

= qk−1 SBk−2(13/24; q, t) SBn−k+1(13/24; q, t).

Summing over k, and remembering the contribution of X, gives our desired result.

We end this section by examining Πn(123, 13/24); in doing so we obtain q-analogs
of the Motzkin numbers. By combining Theorem 2.1 and Lemma 3.1, it is easy to
characterize Πn(123, 13/24) as simply the noncrossing partitions in which each block
has size at most 2. Following the proof of Theorem 3.3, we have the following (q, t)-
Motzkin recursion:

Theorem 3.4. We have SB0(123, 13/24; q, t) = 1, SB1(123, 13/24; q, t) = t, and for
n ≥ 2,

SBn(123, 13/24; q, t) = t SBn−1(123, 13/24; q, t)

+
n∑

k=2

tqk−1 SBk−2(123, 13/24; q, t) SBn−k(123, 13/24; q, t).

Proof. We proceed as in Theorem 3.3, partitioning Πn(123, 13/24) into the sets

X = {w ∈ Rn(123, 13/24) : w1 = 1 and there are no other 1s in w}

and, for 2 ≤ k ≤ n,

Yk = {w ∈ Rn(123, 13/24) : w1 = wk = 1 and wj > 1 for 1 < j < k}.

Analyzing these sets using the ideas discussed in Theorem 3.3 shows that X is in
bijection with Rn−1(123, 13/24). Similarly, Yk is in bijection with Rk−2(123, 13/24)×
Rn−k(123, 13/24). Be careful to note the change in the second index compared to
Theorem 3.3; the bijection in this context is 1(u+ 1)1v → (u, st(v)), in other words
the latter 1 is not included in the word v. This is because our partitions now avoid
the pattern 123, so that the second 1 is the last occurrence of 1 in w. Analyzing the
behavior of block and spread under these maps gives the desired recursion.
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Unsurprisingly, the generating function of Theorem 3.4 has many interesting con-
nections to the literature. For instance, it arises by specializing the Motzkin Tunnel
Polynomials of Barnabei, Bonetti, and Castronuovo at z = xi = t, yi = q; see
Theorem 5 of [8]. Alternatively, we may specialize to q = 1 to obtain the Motzkin
polynomials (OEIS A055151) which arise, among other places, in Marberg’s study
of the so called “poor” noncrossing partitions [29]. Specializing to t = 1 gives an
alternate form of Motzkin polynomials which count Motzkin paths by area (OEIS
A129181). It would be interesting to give bijective proofs of these results, in analogy
to Theorem 5.10 of [9].

4 Connections to 321-Avoiding Permutations

In this section we show how the methods of Section 3 can be used to obtain results
on 321-avoiding permutations. To do so, we briefly recall a few notions (for a more
extended introduction to permutation patterns, we refer the reader to a reference
such as [21]).

A permutation of [n] is a bijection π : [n] → [n]. We will write π in one line form
as π = π1 . . . πn, where πi = π(i). Let Sn denote the permutations of length n; for
example,

S3 = {123, 132, 213, 231, 312, 321}.
As with set partitions there is a natural notion of containment in permutations.
Namely, given a permutation π of length n and a permutation τ of length m, we say
π contains τ as a pattern if there is a subword πi1 . . . πim in π with i1 < · · · < im
such that

πij < πik if and only if τj < τk.

We let Avn(π) denote the length n permutations which avoid the pattern π.

This section will concern itself with five statistics on permutations; they are of
combinatorial interest but also arise in the algebraic theory of symmetric groups. Let
π = π1 . . . πn be a permutation. An index i is a left-to-right maximum if πj < πi for
all j < i (this condition is vacuously satisfied by the first index). An index i is a fixed
point if i = πi. A pair of indices (i, j) form an inversion if i < j and πi > πj. Finally,
an index i is a descent if πi > πi+1. We may now define the following statistics:

LRM(π) = #{i : i is a left-to-right maximum }
inv(π) = #{(i, j) : (i, j) is an inversion }
fix(π) = #{i : i is a fixed point }
des(π) = #{i : i is a descent }
maj(π) =

∑
i a descent

i.

Sparked by Conjecture 3.2 and Question 3.4 of [16], Cheng, Elizalde, Kasraoui,
and Sagan have provided (among other things) Catalan recursions for the inversion
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polynomials for 321-avoiding permutations, as well as for the joint generating func-
tions for descents and the major index [12]. Their proofs involve beautiful connections
of 321-avoiding permutations with lattice paths and polyominoes.

The purpose of this section is to give a quick alternative proof of certain results
of [12] using noncrossing partitions. Namely, we will present Catalan recursions for
the generating functions

In(q, t, x) :=
∑

π∈Avn(321)

qinv(π)tLRM(π)xfix(π)

Mn(q, t, x) :=
∑

π∈Avn(321)

qmaj(π)tdes(π)xLRM(π).

To do so, we take advantage of the following characterization of 321-avoiding per-
mutations. Given π ∈ Sn, define binary vectors

pos(π) = (p1, . . . , pn)

val(π) = (v1, . . . , vn)

with

pi =

{
1 if i is a left-right maximum in π

0 otherwise

and

vi =

{
1 if there is a left-to-right maximum j with πj = i

0 otherwise.

In other words, val(π) describes the values of left-right maxima in π, and pos(π)
determines the positions of these maxima.

The following is a folklore lemma, documented in [12]:

Lemma 4.1. [CEKS13, Lemma 2.1] The assignment π → (pos(π), val(π)) induces
a bijection between Avn(321) and the set of pairs of binary vectors (p1 . . . pn, v1 . . . vn)
satisfying

• The number of 1s in p1 . . . pn equals the number of 1s in v1 . . . vn, and

• For any index 1 ≤ i ≤ n − 1, the number of 1s in p1 . . . pi is strictly greater
than the number of 1s in v1 . . . vi−1.

Note that for the second condition to apply for i = 1, we require that p1 = 1.
We will call such a pair of binary sequences a ballot pair. The bijection for n = 3 is
reproduced below:

123 → (111, 111), 132 → (110, 101), 213 → (101, 011), 231→(110, 011), 312 →(100, 001).
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The first step of this section is to establish a bijection between noncrossing par-
titions and ballot pairs; via Lemma 4.1, this will establish a bijection between non-
crossing partitions and 321-avoiding permutations.

Let w = w1 . . . wn be the RGF of a noncrossing partition. Call a letter wi a first
if wj �= wi for j < i and a last if wj �= wi for j > i. With this terminology, we can
define a map T from noncrossing partitions to ballot pairs by sending

w1 . . . wn → (f1 . . . fn, l1 . . . ln),

with

fi =

{
1 if wi is a first,

0 otherwise

and

li =

{
1 if wi is a last,

0 otherwise.

As an example, below we show the action of T on R3(13/24):

111 → (100, 001), 112 → (101, 011), 122 → (110, 101), 121→(110, 011), 123→(111, 111).

Using Lemma 3.1, it is not hard to show the following:

Lemma 4.2. The map T induces a bijection between noncrossing partitions of [n]
and ballot pairs of length n.

Proof. We sketch how to reconstruct a noncrossing partition from its corresponding
ballot pair. Let (p1 . . . pn, v1 . . . vn) be a ballot pair of length n. We construct w =
w1 . . . wn ∈ Rn(13/24) iteratively as follows. Start with the empty RGF, and set
L0 = ∅. Here the sets Lj denote the set of “available” letters at any given step,
i.e. the letters whose first occurrences have been placed but whose last occurrences
have not yet been established. Having constructed w1 . . . wj and the set of available
letters Lj , we determine wj+1 and Lj+1 as follows.

• If pj+1 = vj+1 = 1, set wj+1 = max{w1, . . . , wj} + 1 and Lj+1 = Lj. In this
case, the “first” letter is also a “last,” so our available letters do not change.

• If pj+1 = 1 and vj+1 = 0, set wj+1 = max{w1, . . . , wj}+ 1 and
Lj+1 = Lj ∪ {max{w1, . . . , wj}+ 1}.

• If pj+1 = 0 and vj+1 = 1, set wj+1 = maxLj and Lj+1 = Lj+1 \maxLj .

• If pj+1 = vj+1 = 0, set wj+1 = maxLj and Lj+1 = Lj.

This process is well defined by the definitions of a ballot pair. It is easy to see that
this process yields an RGF with no xyxy patterns, and by Lemma 3.1 this implies
w is noncrossing. That this map is an inverse to T follows from inspection.
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By combining Lemmas 4.1 and 4.2, we have a bijection between noncrossing
partitions of [n] and 321-avoiding permutations of length n. We will call this map T ;
for each n, we will have T : Rn(13/24) → Avn(321). Below we show T (111) = 312:

111 (100, 001) 312
T

T

To keep track of fixed points, descents, and the major index on permutations, we
introduce the following statistics on partitions.

Given a partition π, let w = w1 . . . wn denote its associated RGF. Maintaining
notation as for permutations, call an index i a left-to-right maximum if wj < wi for
all j < i (this condition is vacuously satisfied by the first index). We call an index i
a checkpoint if it is a left-to-right maximum and if wi < wj for all j > i (the second
half of this condition is vacuously satisfied by the last index). Finally, an index i is
an apex if it is a left-to-right maximum in w and if wi ≥ wi+1 (the second half of
this condition is not vacuous; the last index in a word is never an apex).

For example, in the word 12213454 the indices 1, 2, 5, 6, 7 are left-to-right maxima,
the index 5 is a checkpoint, and the indices 2 and 7 are apices.

Lemma 4.3. Let πbe a noncrossing partition with corresponding RGF w = w1 . . . wn.
We have the following relationship between set partition statistics and permutation
statistics:

• sp(w) = inv(T (w)),

• bl(w) = LRM(T (w)),

• i is a checkpoint in w if and only if i is a fixed point in T (w),

• i is an apex in w if and only if i is a descent in T (w).

Proof. Throughout this proof we will write the permutation T (w) as T (w) = a1 . . . an
and we will let T (w) = (p1 . . . pn, v1 . . . vn) denote the corresponding ballot pair of w
and T (w).

For the first assertion, note that a LRM in an RGF is equivalently an index of a
first occurrence of some letter. Thus

sp(w) =
∑

i a LRM of w

(last(wi)− i).

Similarly, as T (w) is a 321-avoiding permutation we have

inv(T (w)) =
∑

i a LRM of T (w)

(ai − i).
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This last equality is not necessarily trivial unless one has experience with permutation
patterns; it follows from the fact that in a 321-avoiding permutation, the letters at
indices which are not LRM must form a strictly increasing sequence.

Since the bijection T exchanges the set of last occurrences in w with the set of
LRM values in T (w), both sums are equal to

(∑
vi=1

i

)
−
⎛
⎝∑

pj=1

j

⎞
⎠ .

For the second assertion, we simply observe that both bl(w) and LRM(T (w))
count the number of 1s in p1 . . . pn.

For the third assertion, we claim that wi is a checkpoint if and only if pi = vi = 1
and the prefix pair (p1 . . . pi−1, v1 . . . vi−1) is a ballot pair. Indeed the first condition
is implied by wi being unique; the condition that wi is a checkpoint is equivalent to
having last(l) < i for every letter l < wi, which implies the second. Translating this
to permutations, the fact that pi = vi = 1 implies that the index i is a LRM in T (w),
and that the letter i is a value of a LRM in T (w). The prefix condition assures us
that these conditions imply ai = i.

Finally, in a 321-avoiding permutation the letters at indices which are not left-
to-right maxima must be strictly increasing. In particular, ai > ai+1 if and only if i
is a left-to-right maximum, but i+1 is not. Thus the descents in T (w) are precisely
the indices i such that pi = 1 and pi+1 = 0. Thus in w, wi is the first occurrence of a
letter, and wi+1 is not. This implies wi+1 ≤ wi by the growth restrictions of RGFs,
i.e. i must be an apex.

We now establish the main results of this section. Theorem 4.4 below should be
compared to Theorem 7.4 of [12], which is proved using continued fractions.

Theorem 4.4 ([12] Theorem 7.4). The polynomials In(q, t, x) satisfy I0(q, t, x) = 1
and, for n ≥ 1,

In(q, t, x) = txIn−1(q, t, x)+
n∑

j=2

qj−1Ij−2(q, t, 1)
(
In−j+1(q, t, x)− t(x−1)In−j(q, t, x)

)
.

Proof. By the previous three lemmas, it suffices to work with the distribution of
spread, block and checkpoints on noncrossing partitions of length n, defining

cp(w) = #{i : i is a checkpoint in w}.

Our goal is to compute the generating function∑
w∈Rn(13/24)

qsp(w)tbl(w)xcp(w).
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To do so, we use the recursive argument developed in Theorem 3.3. Recall the
definition of the sets

X = {w1 . . . wn ∈ Rn(13/24) : wi > 1 for i > 1}
and, for k = 2, 3, . . . , n,

Yk = {w1 . . . wn ∈ Rn(13/24) : wk = 1 and wj > 1 for 1 < j < k}.
As before, X is in bijection with Rn−1(13/24), with the map given by

u = u1 . . . un−1 → 1(u+ 1).

Examining the behavior of the three statistics of interest under this map yields∑
w∈X

qsp(w)tbl(w)xcp(w) = t · x · In−1(q, t, x).

Next, for w ∈ Yk let us write w = 1(u + 1)1v, with u ∈ Rk−2(13/24) and
st(1v) ∈ Rn−k+1(13/24). As in Theorem 3.3, sp(w) = sp(u) + sp(st(1v)) + k − 1
and bl(w) = bl(u) + bl(st(1v)). The checkpoint statistic is slightly more subtle; the
relation of cp(w) to cp(u) and cp(st(1v)) depends on whether or not there is a 1 in
the word v.

We will get around the previous issues by an application of the Inclusion-Exclusion
Principle. Let Vk be the set

Vk = {w ∈ Rn−k+1(13/24) : w contains a single 1 }.
Writing w ∈ Yk as w = 1(u + 1)1v induces a bijection between Yk and the disjoint
union (

Rk−2(13/24)× (Rn−k+1(13/24) \ Vk)
)∐(

Rk−2(13/24)× Vk

)
.

If w = 1(u + 1)1v, then cp(w) = cp(st(1v)) if st(1v) ∈ Rn−k+1(13/24) \ Vk, and
cp(w) = cp(st(1v)) − 1 if st(1v) ∈ Vk. This is because if st(1v) has a unique 1
(necessarily at the first index), then the index 1 will be a checkpoint in st(1v) but
will no longer be a checkpoint in 1(u+ 1)1v.

A variant of Inclusion Exclusion gives that the generating function for the three
statistics over Yk factors as a product of the polynomial

qk−1

⎛
⎝ ∑

u∈Rk−2(13/24)

qsp(u)tbl(u)

⎞
⎠

with⎛
⎝ ∑

st(1v)∈Rn−k+1(13/24)

qsp(st(1v))tbl(st(1v))xcp(st(1v))−(1−x−1)
∑

st(1v)∈Vk

qsp(st(1v))tbl(st(1v))xcp(st(1v))

⎞
⎠.
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In other words, we have taken a naive count over all u ∈ Rk−2(13/24) and st(1v) ∈
Rn−k+1(13/24), and then modified it with the appropriate correction where it is
needed (i.e. with respect to Vk).

But by an argument that is now standard, we can put Vk in bijection with
Rn−k(13/24) by sending w ∈ Rn−k(13/24) to 1(w+1). Examining how our statistics
are affected by this map, we obtain∑

w∈Yk

qsp(w)tbl(w)xcp(w) = qk−1Ik−2(q, t, 1)
(
In−k+1(q, t, x)− t(x− 1)In−k(q, t, x)

)
.

Summing over k completes the proof.

Of course, upon specialization of variables we recover, for instance, Theorem 1.1
of [12] as well, which provides a recursion for inversions and left-to-right maxima.

We end by showing how to mildly generalize part of Theorem 6.2 of [12], which
examines descents and the major index. Cheng, Elizalde, Kasraoui, and Sagan prove
their theorem using the theory of polyominoes.

Theorem 4.5. We have M0(q, t, x) = 1 and, for n ≥ 1,

Mn(q, t, x) = xMn−1(q, qt, x)

+
n∑

k=2

(
Mk−1(q, t, x) + x(qk−1t− 1)Mk−2(q, t, x)

)
Mn−k(q, q

kt, x).

Proof. Define
ap(w) = #{i : i is an apex in w}

and
maj(w) =

∑
i an apex

i.

It suffices to determine the distribution of apices, major index, and block over
Rn(13/24), as by Lemma 4.3 we have∑

w∈Rn(13/24)

qmaj(w)tap(w)xbl(w) = Mn(q, t, x).

This proof is similar in spirit to Theorems 3.3 and 4.4, but requires a different
recursive argument. Partition Rn(13/24) into the sets

Rn(13/24) =

n∐
k=1

Yk,

with

Yk := {w ∈ Rn(13/24) : the last occurrence of the letter 1 in w has index k}.
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Similarly to the proof of Theorem 3.3, Y1 is in bijection with Rn−1(13/24), and∑
w∈Y1

qmaj(w)tap(w)xbl(w) = xMn−1(q, qt, x).

The sets Yk, for k ≥ 2, are in bijection with the Cartesian products

Yk ↔ Rk−1(13/24)× Rn−k(13/24);

the map exhibiting this sends (u, v) ∈ Rk−1(13/24) × Rn−k(13/24) to w = u1(v +
max(u) + 1). Any index which is an apex in u or v will promote to an apex of w;
additionally, if u ends in a unique letter, then this will provide an additional apex of
w which was not an apex of u. Accordingly,

ap(w) =

{
ap(u) + ap(v) + 1 if u ends in a unique letter,

ap(u) + ap(v) otherwise.

Keeping track of the position of these apices gives

maj(w) =

{
maj(u) + maj(v) + k ap(v) + k − 1 if u ends in a unique letter,

maj(u) + maj(v) + k ap(v) otherwise.

Applying the same Inclusion-Exclusion argument as in Theorem 4.4 and summing
over k gives the desired result.

Specializing the variable x = 1 yields the first recursive formula presented in
Theorem 6.2 of [12].

5 Future Directions

As is evident, many interesting connections in combinatorics can be found by study-
ing a combination of combinatorial statistics and combinatorial patterns. We end
with several ideas one could examine in this area.

Longer Patterns: The most obvious extension one could make to this article
is to continue studying the distribution of these statistics over avoidance classes of
longer patterns. For example, Sagan provides closed formulae for the number of
partitions avoiding 12/3/ . . . /m and for the number of partitions avoiding 1/23 . . .m
in [32]. Can one generalize our arguments to those settings?

Other Classes of Partitions: There are several other natural classes of set
partitions, which are not defined via the notion pattern avoidance defined above.
What can one say about the distribution of dimension, spread, and block over these
classes? For example, one could work with the notion of pattern avoidance in terms
of restricted growth functions as is done in [9]. Alternatively, one could work with
other combinatorially defined sets of partitions, such as the nonnesting partitions.
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For an introduction to such objects and their relation to noncrossing partitions, see
[7].

Machine Learning: Can machine learning be used to examine combinatorial
patterns, in any context? Such computations have found use in computational alge-
braic geometry and theoretical physics [10]; analogs in the combinatorial setting could
be useful in further developing combinatorial databases, such as Tenner’s Database
of Permutation Pattern Avoidance [35].

Connections to Permutations: With Section 4 in mind, can one find more
connections between pattern avoidance in set partitions and pattern avoidance in
permutations? Following a comment of Kyle Petersen on OEIS entry A055151, a
potential start would be to connect Theorem 3.3 to descents and peaks in 231-
avoiding permutations. One could also try to relate partitions in Πn(123, 13/24) to
permutations avoiding 321 and the so called barred pattern 3124; see [11] for more
information.
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