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Abstract

The vertex-edge marking game is played between two players on a graph,
G, with one player marking vertices and the other marking edges. The
players want to minimize/maximize, respectively, the number of marked
edges incident to an unmarked vertex. The vertex-edge coloring number
for G is the maximum score achievable with perfect play. Brešar et al.
[Ann. Comb. 25 (2021), 179–194] give an upper bound of 5 for the vertex-
edge coloring number for finite planar graphs. It is not known whether
the bound is tight. In this paper, in response to questions in Brešar et
al., we show that the vertex-edge coloring number for the infinite regular
triangularization of the plane is 4. We also give two general techniques
that allow us to calculate the vertex-edge coloring number in many related
triangularizations of the plane.
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1 Introduction

Combinatorial questions regarding colorings of maps and graphs go back to the 19th
century, where Francis and Frederick Guthrie, under the advisement of De Morgan
[6], posed the four-color conjecture. It was not until over a century later, in 1976,
that a computer-assisted proof was presented by Appel and Haken [1]. Since that
time, many variations of coloring problems have arisen. In particular, in 1981, Brams
and Gardner [5, Chapter 16, p. 253] posed a coloring game on maps as a dynamical
version of the map-coloring problem. As we neared the 21st century, Bodlaender [3],
along with a number of other authors, began investigating similar coloring games.
As introduced by Bartnicki et al. [2], the vertex-edge marking game is one of the
many different coloring games that can be played on graphs.

The vertex-edge marking game involves two competing players: Alice marks ver-
tices and Bob marks edges. Bob seeks to surround any unmarked vertex with as
many marked edges as possible. Alice is competing against Bob and tries to limit
the number of marked edges incident to any unmarked vertex. Starting with Alice,
players alternate turns. On any turn of the game, the vertex score at a vertex v ∈ V
is the number of marked edges incident to v if v is unmarked and 0 otherwise. The
final score of the game is the maximum over all turns and vertices of the vertex
score. For a given graph G = (V,E), 1 plus the final score of a game in which Alice
and Bob each play optimally is called the vertex-edge coloring number of G, denoted
colve(G).

Brešar et al. [4] investigated many properties of the vertex-edge coloring number,
including determining the upper bound colve(G) ≤ 5 for all finite planar graphs.
Multiple finite and infinite planar graphs have been found with colve(G) = 4, but it
remains unknown whether any exist with colve(G) = 5.

Brešar et al. [4] expressed hope that possibly the infinte regular triangular lattice
T might give an example of a graph G with colve(G) = 5. However, in Corollary
3.3, we show that colve(T ) = 4. This follows from a more general result to bound
colve(G) ≤ 4 in Theorem 3.1 that depends on 2-colorability and angle markings. This
result is applied to other triangular tilings of the plane in Corollaries 4.1 and 4.2.
A further technique for bootstrapping the calculation of colve(G) from a subgraph
is given in Theorem 4.3 and applied to graphs in Corollaries 4.4 and 4.5. Section 5
ends with a technique to facilitate establishing higher lower bounds for colve(G) and
some conjectures.

2 Initial Definitions and Results

The vertex-edge marking game is played on a graph G = (V,E) by two players who
alternate turns each round of the game. At the beginning of the game, nothing on the
graph is marked. The first player, known as Alice, marks vertices on her turn. The
second player, known as Bob, marks edges on his turn. Alice’s goal is to minimize the
maximum number of marked edges adjacent to an unmarked vertex. Bob’s goal is to
maximize the maximum number of marked edges adjacent to an unmarked vertex.
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More precisely, a game, G, of the vertex-edge marking game played on the graph
G = (V,E) consists of a series of rounds, starting with round r = 1, in which Alice
and Bob each take a turn with Alice always going first. Alice always marks one of the
remaining unmarked vertices and Bob always marks one of the remaining unmarked
edges. At the end of round r, r ≥ 1, write MV(r) and UMV(r) for the set of marked
and unmarked vertices of G, respectively, and write ME(r) for the set of marked
edges of G. For finite graphs, the game is played until either player runs out of
moves, i.e., until either all vertices or all edges are marked. For an infinite graph,
the game continues forever.

For v ∈ V , the vertex score of v after round r is

score(v, r) =

{
0 if v ∈ MV(r),

|{e ∈ ME(r) : e is incident to v}| if v ∈ UMV(r).

The r-round score after round r is

score(r) = sup{score(v, r) : v ∈ V }.
The final score of the game G is

score(G) = sup{score(r) : all rounds r}.
We say that Bob has a winning strategy for the score s if, regardless of Alice’s

moves each turn in a game G, Bob can choose his moves to force score(G) ≥ s.
Finally, the vertex-edge coloring number of G is

colve(G) = sup{s : Bob has a winning strategy for the score s}+ 1.

Note that, as long as G has an edge, colve(G) ≥ 2. Clearly, colve(G) ≤ Δ(G) + 1
where Δ(G) is the maximum degree of a vertex.

If H is a subgraph of G, then [4, Lemma 1]

colve(H) ≤ colve(G). (2.1)

A graph, G, has a d-bounded orientation if the edges can be oriented so that each
vertex has a maximal out-degree of d. In such a case, it is known [4, Lemma 3] that

colve(G) ≤ d+ 2. (2.2)

From this it follows, [4, Proposition 6], that for every finite planar graph, G,

colve(G) ≤ 5.

In a vertex-edge marking game, G, on a graph G, a free path is a path P of G
with vertex sequence v0, . . . , vk with k ≥ 2 so that

• the first and last edges of P , v0v1 and vk−1vk, are marked,
• the interior vertices, v1, . . . , vk−1, are not marked, and
• each interior vertex is incident to at least one edge not in P .

If there is a round in which it is Bob’s turn and there is a free path in the game,
then, [4, Lemma 7], Bob has a strategy to force

score(G) ≥ 3. (2.3)
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3 The Triangular Lattice

Write T for the infinite regular triangular lattice in the plane. In [4, Question 3],
the question was raised whether colve(T ) is 4 or 5. In this section, we show that the
answer is colve(T ) = 4.

Theorem 3.1. Let L be a plane graph so that

• the bounded faces of L are 2-colorable, gray and white,

• all gray faces of L are triangles,

• every edge of L belongs to precisely one gray triangle,

• exactly one angle from each gray triangle is marked, and

• each vertex of L is incident to at most two unmarked angles in gray triangles.

Then
colve(L) ≤ 4.

Remark 3.2. See Figures 1, 2, and 5 for examples of infinite graphs that satisfy the
conditions imposed on L here. Note that the white faces are not required to be
triangles.

Proof. Note that each edge of L belongs to exactly one gray triangle that we will
call the corresponding triangle. Therefore, as Bob marks edges, each marked edge is
either the first, second, or third marked edge of its corresponding triangle.

To prove this theorem, we construct a strategy for Alice that only allows Bob to
obtain a score of at most 3 on any vertex. Alice begins by marking any vertex on
her first turn. Alice’s subsequent plays are determined by the edge marked by Bob
in the previous round and whether it was the first, second, or third marked edge of
its corresponding triangle, T . The rules are as follows.

R1: If Bob marked the first edge of T , Alice marks the vertex incident to the marked
angle in T , if the vertex is unmarked.

If that vertex is already marked, Alice marks any other unmarked vertex in T ,
if one exists.

Otherwise, Alice marks any unmarked vertex in L.

R2: If Bob marked the second edge of T , Alice marks the vertex incident to both
marked edges of T , if it is unmarked.

If that vertex is already marked, Alice marks any other unmarked vertex in T ,
if one exists.

Otherwise, Alice marks any unmarked vertex in L.

R3: If Bob marked the third edge of T , Alice marks the remaining unmarked vertex
in T , if one exists.

Otherwise, Alice marks any unmarked vertex in L.
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We now show that this strategy prevents Bob from ever getting a score of 4 or
more on a vertex. We do this by showing that every vertex incident to (exactly)
three marked edges at the end of Bob’s turn is already marked or will be marked by
Alice at the start of the next round.

Suppose v is an unmarked vertex incident to three marked edges at the end of a
round (after Bob’s turn). In the order that Bob played them, label these three edges
e1, e2, e3.

Consider first the case where there is an ei whose corresponding gray triangle, S,
has a marked angle incident to v. As v is unmarked, rule R1 implies that i = 3, that
Bob just played e3, and that Alice will mark v on her next turn.

We may now assume that all marked edges belong to corresponding gray triangles
whose marked vertices are not incident to v. As there are at most two gray triangles
with unmarked angles incident to v, at least two of the marked edges belong to the
same corresponding triangle, S. If all three edges of S are marked after Bob’s turn,
then rule R3 implies that e3 is an edge of S, that Bob just played e3, and that Alice
will mark v on her next turn. However, if the third edge of S is unmarked, then rule
R2 implies that e3 is an edge of S, that Bob just played e3, and that Alice will mark
v on her next turn.

Corollary 3.3. Let T be the infinite regular triangular lattice in the plane. Then

colve(T ) = 4.

Proof. Since it is known that colve(H) = 4 for the infinite regular hexagonal lattice
H, [4, Theorem 10], the lower bound, colve(T ) ≥ 4, follows from Inequality (2.1).

We use Theorem 3.1 to obtain the upper bound. Begin by 2-coloring the faces of
T as in Figure 1 so that the gray triangles point to the right and the white triangles
point to the left. Mark the unique rightmost angle of each gray triangle, the one
pointing to the right. Theorem 3.1 shows that colve(T ) ≤ 4.

Figure 1: T with Marked Angles
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4 Other Triangularizations

Theorem 3.1 applies to many graphs. For example, write R for the infinite triangular
lattice obtained by adding a vertex to the center of each face of the infinite regular
square lattice with added edges between each new vertex and each vertex in the
corresponding face. See Figure 2.

Figure 2: Triangularization R

Corollary 4.1. colve(R) = 4.

Proof. Since the infinite square lattice S has colve(S) = 4, [4, Proposition 11], the
lower bound, colve(R) ≥ 4, follows from Inequality (2.1).

Figure 3: Vertical Triangles

Figure 4: Horizontal Triangles

To get the upper bound, begin by 2-coloring the faces of R as in Figure 2.
Notice the gray triangles are either vertical, as in Figure 3, or horizontal, as in
Figure 4. Mark the vertical and horizontal gray triangles as pictured in Figures 3
and 4, respectively, with vertical triangles marked to the right and horizontal triangles
marked upwards. Theorem 3.1 shows that colve(R) ≤ 4.

As another example, write C for the infinite triangular lattice C obtained from
the regular square-octagon lattice by adding a vertex in the center of each face and
edges from each new vertex to the vertices of the corresponding face. See Figure 5.
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Figure 5: Triangularization C

Corollary 4.2. colve(C) = 4.

Proof. As in Corollary 4.1, the infinite square lattice S is a subgraph of C, and
colve(C) ≥ 4 holds. For an upper bound, color the faces of C and mark angles as in
Figure 5. Then Theorem 3.1 shows that colve(C) ≤ 4.

Certain geometric structures permit the extension of a bound for colve(G) to a
larger graph G′ if we know enough about Alice’s strategy. As a starting illustration,
let T ′ be T with a vertex added to the center of each face and edges connecting each
new vertex to the vertices of the corresponding face. See Figure 6. Note that the
resulting graph is not 2-colorable.

Figure 6: Triangularization T ′

Theorem 4.3. Let G′ = (V ′, E ′) be a graph with a vertex-induced subgraph G =
(V,E) so that

• for v ∈ V ′ − V , deg(v) < n in G′,
• colve(G) = n, and
• Alice has a strategy on G able to leave no unmarked vertices with n−1 marked
incident edges at the end of her turn.

Then
colve(G

′) = n.
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Proof. We begin with a note on the third requirement. To prevent Bob from getting
a score of n on G, Alice can ignore vertices in G that only have degree n − 1. In
other words, she only needs a strategy able to mark any vertex with n − 1 marked
incident edges and at least one other unmarked incident edge at the end of her turn.
Therefore, the third requirement demands more of Alice since she can no longer
ignore any vertices of degree n− 1.

Turning to the proof, as usual, the lower bound follows from Inequality (2.1). For
the upper bound, note that vertices in V ′ − V have degree at most n− 1. Therefore
those vertices cannot help Bob get a score of n or higher. Now in G, Alice has a
strategy that allows her to mark any vertex with n− 1 incident marked edges at the
end of her turn.

Alice’s strategy for the game on G′ is as follows. If Bob marks an edge e ∈ E ′−E
with both incident vertices in V ′ − V , Alice is free to mark any vertex of G′. If e
has one incident vertex in V and it is unmarked, Alice marks that vertex. Otherwise
she is free to mark any other vertex. If Bob marks an edge in E, then Alice uses her
strategy on G to play in G, leaving no unmarked vertices with n−1 marked incident
edges in G at the end of her turn.

To see this strategy forces a final score < n, first note that vertices in V ′ − V
cannot help Bob get a score of n. Now if Bob were able to get n edges marked in
G′ incident to an unmarked vertex v ∈ V , the edges cannot all be in E by Alice’s
original strategy. Therefore at least one of the edges must be in E ′ − E. But by
the strategy in the preceding paragraph, there must be exactly one such edge and
it must have been marked last. However, that means that in the previous round,
before this edge was marked, Bob had n − 1 marked edges in E incident to v. But
in that case, Alice’s original strategy would have marked v already.

Corollary 4.4. colve(T ′) = 4.

Proof. This follows by examining the proof in Corollary 3.3 to see that the conditions
of Theorem 4.3 are met.

The same technique gives the following result.

Corollary 4.5. For a triangular lattice, D, obtained from any of the lattices from
Corollaries 3.3, 4.1, and 4.2 by adding a vertex to the center of every triangular face
and connecting it to each corner of the triangle, colve(D) = 4.

5 Futher Results and Conjectures

Although this paper has so far focused on bounding colve(G) from above, there is
no absolute upper bound for all graphs. For example, it is known that colve(Kn) is
unbounded, where Kn is the complete graph on n vertices [4, Theorem 17]. Bounding
the vertex-edge coloring number from below often involves free paths and Inequal-
ity (2.3). However, this is only useful for obtaining a lower bound of 4 for colve(G).
Higher lower bounds can be obtained by generalizing the notion of free paths.
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Definition 5.1. In a vertex-edge marking game, G, on a graph G, an n-free path is
a path P of G with vertex sequence v0, . . . , vk with k ≥ 2 so that

• the first and last edges of P , v0v1 and vk−1vk, are marked,

• the interior vertices, v1, . . . , vk−1, are not marked, and

• each interior vertex is incident to at least n + 1 edges not in P and at least n
of those edges are marked.

Note that a 0-free path coincides with a free path. See Figure 7 for an example
of a 3-free path of length 5.

Figure 7: A 3-Free Path of Length 5

Theorem 5.2. Let G be a graph on which a vertex-edge marking game, G, is being
played. If there is a round in which there is an n-free path, P , and it is Bob’s turn,
then Bob has a strategy to force

score(G) ≥ n + 3.

Proof. The proof follows immediately by induction on the length k of P . The length
k = 2 case is trivial. For the inductive step, if the edge v1v2 is already marked, we
have a shorter n-path and Bob wins. If v1v2 is unmarked, then Bob marks v1v2 in
his first move. If Alice does not mark v1, Bob marks the unmarked edge incident to
v1 and wins. Otherwise, we have a shorter n-path and Bob wins.

Actually, the existence of an n-free path is both sufficient and necessary for
colve(G) ≥ n+ 4.

Corollary 5.3. Let G be a graph. Then

colve(G) ≥ n+ 4

if and only if Bob has a strategy able to provide him with having an n-free path on
one of his turns.

Proof. For the only if part, note that Alice must attempt the strategy to leave no
unmarked vertices of degree > n+ 2 with n+ 2 marked incident edges at the end of
her turn if she wants to avoid the final score n+3. This attempt can only fail if Bob
has a strategy that allows him to mark the edge v1v2 between two unmarked vertices
v1, v2 of degree > n+ 2 which have n+ 1 marked incident edges each. However, this
means that Bob has a strategy to force an n-free path of length 3 on one of his turns.

The converse direction is immediate from Theorem 5.2.
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The focus of this paper was determining the vertex-edge coloring number for
specific triangular graphs. We have a number of conjectures for related results.
First, the fact that T was 2-colorable played a major role in the proof of Corollary
3.3. We conjecture that, in fact, this was the key necessary hypothesis.

Conjecture 5.4. For any face 2-colorable planar graph G, colve(G) ≤ 4.

It is natural to try to generalize many of these results to Apollonian networks.
Unfortunately, we do not have a sufficiently robust strategy for Alice to permit an
inductive application of Theorem 4.3. However, we still believe that the upper bound
is 4.

Conjecture 5.5. For any Apollonian network G, colve(G) ≤ 4.

It feels as if adapted techniques from [7] and Inequality (2.2) should give results
on Apollonian networks. However, it turns out that Inequality (2.2) is not, by itself,
able to prove Conjecture 5.5. For example, note that if (V,E) is an Apollonian
network with |V | = n vertices, then the number of edges is |E| = 3n−6. So for large

n, |E|
|V | tends to 3 with |E|

|V | > 2 for n > 6. Therefore, orienting the edges of the graph
such that each vertex has at most two outgoing edges is not possible as the average
out-degree equals |E|

|V | . With that said, switching to the dual graph on an Apollonian
network may be a more useful technique.
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