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Abstract

We describe computer searches that prove the graph reconstruction con-
jecture for graphs with up to 13 vertices and some limited classes on
larger sizes. We also investigate the reconstructibility of tournaments up
to 13 vertices, digraphs up to 9 vertices, and posets up to 13 points. In
all cases, our results also apply to the set reconstruction problem that
uses the isomorph-reduced deck.

1 Introduction

The late Frank Harary visited the University of Melbourne in 1976, when I was a
Masters student there. I mentioned to him that I had proved the 9-point graphs
to be reconstructible, using a catalogue of graphs obtained on magnetic tape from
Canada [2]. Harary replied, “Send it to the Journal of Graph Theory. I accept it!”.
Impressed by having a paper I hadn’t written yet accepted for a journal that hadn’t
started publishing yet, I quickly wrote it up and did as Harary suggested [11].

We recount the standard definitions. Except when we say otherwise, our graphs
are simple, undirected and labelled, and our digraphs are simple and unlabelled. We
use the standard sloppy terminology that an unlabelled graph is the isomorphism type
of a graph, or a labelled graph with the labels hidden. For an unlabelled graph G
with vertex v, the card G−v is the unlabelled graph obtained from G by removing v.
The full deck of G (usually called just the deck) is the multiset of its cards. The
celebrated Kelly-Ulam reconstruction conjecture says that G can be uniquely
determined from its full deck if G has at least 3 vertices.

We will focus on a stronger version of the conjecture due to Harary [5], since it
is no more onerous for the computer. Define RD(G), called the reduced deck of G,
to be the set of cards of G. That is, RD(G) tells us which unlabelled graphs appear
in the full deck, but not how many of each there are. The set reconstruction
conjecture is that G is uniquely determined by RD(G) if it has at least 4 vertices.
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Many surveys of the reconstruction conjecture have been written; see Lauri [8]
for a fairly recent one.

Twenty years after investigating the 9-point graphs, I extended the search to 11
vertices [12]. Since the number of graphs on 11 vertices is 1,018,997,864, a completely
new computational method was required. Now more than another twenty years have
passed, so it is time for a further extension and that is the purpose of this project.
Despite having more and faster computers, it is sobering that the number of graphs
on 13 vertices is 50,502,031,367,952. Our method will be similar to [12] but with
some improvements to make the task less onerous. The weaker edge-reconstruction
conjecture, which we otherwise will not consider, was meanwhile checked up to 12
vertices by Stolee [23].

2 The method

If X is a structure built from {1, 2, . . . , n}, and φ ∈ Sn where Sn is the symmetric
group on {1, 2, . . . , n}, then Xφ is obtained from X by replacing each i by iφ. For
example, if G is a graph with vertices {1, 2, . . . , n}, then the graph Gφ has an edge
iφjφ for each edge ij of G. The automorphism group of G is Aut(G) = {φ ∈ Sn |
Gφ = G} where “=” denotes equality not isomorphism.

Let C be a non-empty class of labelled graphs that is closed under isomorphism
and taking induced subgraphs, and let Cn be the subset of C containing those with n
vertices. Clearly C1 = {K1}. We will assume that the vertices of G ∈ Cn are
{1, 2, . . . , n}. The special case that C contains all graphs will be denoted by G and
similarly Gn.

For G ∈ G and W ⊆ V (G), let G[W ]v denote the graph obtained from G by
appending a new vertex v and joining it to each of the vertices in W . Define �
to be a preorder (reflexive, transitive order) on labelled graphs, invariant under
isomorphism. (An example would be that G1 � G2 iff G1 has at most as many edges
as G2.) Consider the following possible properties of a function m : G → 2N.

(A) For each H ∈ G, m(H) is an orbit of Aut(H).

(A′) For each H ∈ G, m(H) is the union of all the orbits of Aut(H) such that the
cards H−v for v ∈ m(H) are maximal under � amongst all cards of H .

(B) For each H ∈ Gn and φ ∈ Sn, m(Hφ) = m(H)φ.

Now consider the algorithm shown in Figure 1. When we form H := G[W ]v in
the inner loop, we say that G is a parent of H and H is a child of G. We have the
following theorem.
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algorithm generate(G : labelled graph; n : integer)
if |V (G)| = n then

output G
else

for each orbit A of the action of Aut(G) on 2V (G) do
select any W ∈ A and form H := G[W ]v
if H ∈ G and v ∈ m(H) then

generate(H, n)
endif

endfor
endif

end generate

Figure 1: Generation algorithm

Theorem 2.1. Let C be a non-empty class of labelled graphs that is closed under
isomorphism and taking induced subgraphs. Then:

(a) If m : G → 2N satisfies (A) and (B), then calling generate(K1, n) will cause
output of exactly one member of each isomorphism class of Cn.

(b) Suppose m : G → 2N satisfies (A) and (B) for |V (H)| < n and (A′) for
|V (H)| = n. Let G1, G2 be non-isomorphic members of Cn with the same
reduced deck. Then calling generate(K1, n) will cause G1 and G2 to be output
as children of the same non-empty set of parents.

Proof. Part (a) is proved in [13]. This is the canonical construction path method
which has been widely adopted for isomorph-free generation.

In part (b), it is no longer true that G1 and G2 will be (up to isomorphism) output
only once. However, as we will show, both will be output at least once, and from the
same set of parents. Let G1−v be a card of G1 maximal under �. Since G2 has the
same reduced deck as G1, there is a card G2−w maximal under � and isomorphic
to G1−v. By part (a), the call generate(G′, n−1) is made for some G′ isomorphic
to G1−v and G2−w. During that call we construct (up to to isomorphism) all 1-
vertex extensions of G′ that lie in Cn, so in particular some H1 = G′[W1]v isomorphic
to G1 and H2 = G′[W2]w isomorphic to G2. Since they pass the tests v ∈ m(H1) and
w ∈ m(H2), the calls generate(H1, n) and generate(H2, n) are both made, causing
H1 and H2 to be output.

The great advantage of this method is that most parents only have a small number
of children even if the total number of graphs is huge. So detailed comparison of
reduced decks can be carried out in small batches without the need to store many
graphs at once.

Our code is based on the implementation geng of algorithm generate in the
author’s package nauty [15]. For� we used a hash code based on the number of edges
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and triangles in the cards. For large sizes, most graphs have trivial automorphism
groups and the hash code distinguishes between cards quite well on average, so
the total number of graphs constructed is not much greater than the number of
isomorphism classes. After collecting the children of each parent, we compute an
invariant of the reduced decks based on the degree sequences of the cards, and then
reject any child which is unique. For those remaining, we do a complete isomorphism
check of the cards with the most edges, and for any still not distinguished a complete
isomorphism check of all the cards.

As an example, there are 1,018,997,864 graphs with 11 vertices. The testing
program made 1,131,624,582, an increase of only 11%. The time for testing was only
2.4 times the generation time.

Theorem 2.1 refers to detection of non-reconstructible graphs within a class C, so
it is important to know when membership of the class is determined by the reduced
deck. This eliminates the possibility that a graph in C has the same reduced deck as
a graph not in C.
Lemma 2.2. Let G1 and G2 be graphs on n ≥ 4 vertices with the same reduced
decks. Then the following are true.
(a) G1 and G2 have the same minimum and maximum degrees.
(b) For 3 ≤ k < n, either both or neither G1 and G2 contain a k-cycle.
(c) Either both or neither G1 and G2 are bipartite.

Proof. Part (a) was proved by Manvel [9, 10]. Part (b) is obvious as the cycles of
length less than n are those appearing in the cards. For part (c), note that a non-
bipartite graph G with n vertices either has an odd cycle of length less than n or
G is an n-cycle. The latter situation is uniquely characterised by the reduced deck
being a single path.

3 Results

Theorem 3.1. For at least 4 vertices, all graphs in the following classes are recon-
structible from their reduced decks (and therefore reconstructible).

(a) Graphs with at most 13 vertices.

(b) Graphs with no triangles and at most 16 vertices.

(c) Graphs of girth at least 5 and at most 20 vertices.

(d) Graphs with no 4-cycles and at most 19 vertices.

(e) Bipartite graphs with at most 17 vertices.

(f) Bipartite graphs of girth at least 6 and at most 24 vertices.

(g) Graphs with maximum degree at most 3 and at most 22 vertices.

(h) Graphs with degrees in the range [δ,Δ] and at most n vertices, where (δ,Δ;n)
is (0, 5; 14), (5, 6; 14), (6, 7; 14), (0, 4; 15), (4, 5; 15) or (3, 4; 16).
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This theorem required testing of more than 6 × 1013 graphs and took about 1.5
years on Intel cpus running at approximately 3GHz.

4 Directed graphs

The reconstruction problem is defined for directed graphs in the same way as for
graphs, but in this case many counterexamples are known. Particular attention
has been paid to the case of tournaments. Obviously, for 3 or more vertices, the
reduced deck is enough to determine if a digraph is a tournament. To the best of
our knowledge, no previous work has been done on reconstruction of digraphs from
reduced decks.

Harary and Palmer [6] stated the problem and gave tournament counterexamples
with 3 or 4 vertices, while Beineke and Parker [3] gave one tournament counterex-
ample with 5 vertices and three with 6 vertices. Two pairs of non-reconstructible
tournaments of order 8 were found by Stockmeyer in 1975 [18].

The real breakthrough came in 1977 when Stockmeyer published constructions of
non-reconstructible tournaments on all orders 2t + 1 or 2t + 2 for t ≥ 2 [19] (see also
Kocay [7]). Stockmeyer later extended this result to all orders 2s + 2t for 0 ≤ s < t
and included families of non-tournament digraphs [20]. Namely, for each such order
there are six pairs of non-reconstructible digraphs, including a pair of tournaments.
Applying the same construction when s = t gives three pairs of digraphs but no
tournaments. That gap was filled by Stockmeyer with a pair of non-reconstructible
tournaments for each order 2t for t ≥ 2 [21].

In 1988, Stockmeyer presented some additional small non-reconstructible di-
graphs, including an extra pair of tournaments of order 6 that everyone had hitherto
overlooked [22].

The infinite families and sporadic examples we have now mentioned make up
the complete set of digraphs currently known to be not reconstructible from their
full decks. Finding more would of course be very interesting. We next describe the
searches that have been made.

(a) Beineke and Parker [3] searched all the tournaments up to order 6 by hand but
missed one non-reconstructible pair.

(b) Stockmeyer [18] tested all tournaments with 7 vertices (finding none) and 8
vertices (finding two pairs).

(c) Abrosimov and Dolov [1] tested all tournaments with up to 12 vertices, finding
only Stockmeyer’s examples.

(d) Kocay (unpublished, 2018) tested all tournaments up to 10 vertices, and some
families of digraphs, finding only Stockmeyer’s examples.

(e) For the current project, we tested all tournaments up to 13 vertices, all digraphs
up to 8 vertices, and all digraphs on 9 vertices which have no 2-cycles. We also
tested all semi-regular tournaments (those whose out-degrees are 6 or 7) on 14
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vertices. For reconstruction from full decks, we found no new examples. For
reduced decks, see below.

(f) Stockmeyer’s tournaments of order 2t + 1 are self-complementary. We checked
that the 872,687,552 self-complementary tournaments on 14 vertices have
unique reduced decks. Note that this does not preclude the possibility that
a self-complementary tournament has the same reduced deck as one that is not
self-complementary.

Searches (a)–(d) used the full deck, while (e)–(f) used the reduced deck. There are
48,542,114,686,912 tournaments on 13 vertices, 276,013,571,133 semi-regular tourna-
ments on 14 vertices, 1,793,359,192,848 digraphs on 8 vertices, and 415,939,243,032
2-cycle-free digraphs on 9 vertices. The searches described in (e) took about 4 years
on Intel cpus at approximately 3GHz.

Figure 2: Four sets of digraphs with the same reduced deck.

For convenience we summarize the known digraphs for three or more vertices that
are not reconstructible . When we refer to a “pair”, “triple”, etc., we mean a set of
non-isomorphic digraphs with the same deck. We use “oriented graph” to mean a
non-tournament digraph with no 2-cycles.
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a 0 0 1 0 0 1 0
b 1 0 1 0 0 0 0
c 0 0 0 1 0 1 1
b 1 1 0 0 1 0 0
b 1 1 1 0 0 0 0
d 0 1 0 1 1 0 1
b 1 1 0 1 1 0 0

b 0 1 1 0 0 0 0
d 0 0 1 0 0 0 1
c 0 0 0 0 0 1 1
b 1 1 1 0 0 0 0
b 1 1 1 1 0 0 0
a 1 1 0 1 1 0 0
c 1 0 0 1 1 1 0

d 0 0 0 0 1 1 0
b 1 0 1 0 1 0 0
e 1 0 0 1 0 1 0
d 1 1 0 0 0 1 0
f 0 0 1 1 0 0 1
g 0 1 0 0 1 0 1
e 1 1 1 1 0 0 0

f 0 0 0 1 0 1 0
e 1 0 1 0 0 0 0
f 1 0 0 0 1 1 0
g 0 1 1 0 0 0 1
b 1 1 0 1 0 0 0
g 0 1 0 1 1 0 1
d 1 1 1 0 1 0 0

h 0 0 1 0 0 0 0
h 1 0 0 1 0 0 0
i 0 1 0 1 1 0 0
j 1 0 0 0 1 1 0
k 1 1 0 0 0 0 1
l 1 1 1 0 1 0 0
l 1 1 1 1 0 1 0

l 0 1 0 0 0 0 0
i 0 0 1 1 0 0 0
j 1 0 0 0 1 0 0
j 1 0 1 0 0 1 0
j 1 1 0 1 0 1 0
k 1 1 1 0 0 0 1
h 1 1 1 1 1 0 0

Figure 3: Three pairs of tournaments with the same reduced deck. The letters
indicate card type.

Reconstruction from full deck:

3 vertices: One pair of tournaments, one triple of oriented graphs, one pair and
one triple of digraphs with one 2-cycle.

4 vertices: One pair of tournaments, two pairs of oriented graphs, two pairs of
digraphs with one 2-cycle, three pairs of digraphs with two 2-cycles.

5 vertices: One pair of tournaments, three pairs of oriented graphs, two pairs of
digraphs with one 2-cycle, three pairs of digraphs with two 2-cycles.

6 vertices: Four pairs of tournaments, two pairs of oriented graphs, three pairs of
digraphs with four 2-cycles.

7 vertices: All digraphs are reconstructible .

8 vertices: Two pairs of tournaments, one pair of oriented graphs, two pairs of
digraphs with eight 2-cycles.

9 or more vertices: From this point on, only the infinite families found by Stock-
meyer are known. For tournaments this is the full set up to 13 vertices. For
oriented graphs it is the full set on 9 vertices.
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Reconstruction from reduced deck (excluding those above):

3 vertices: For each of the two triples of digraphs not reconstructible from their
full decks, there is an extra digraph having the same reduced deck.

4 vertices: There is a tournament having the same reduced deck as the two tour-
naments with the same full deck.

5 vertices: A pair of tournaments with the same reduced deck.

6 vertices: No further examples.

7 vertices: Three pairs of tournaments.

8 or more vertices: From this point on, no digraphs are known that are recon-
structible from their full decks but not from their reduced decks. The search
is complete for all the classes mentioned in (e) above.

The known sets of digraphs with the same reduced deck but not the same full
deck are shown in Figures 2 and 3. All of the digraphs mentioned here can be found
at [14].

5 Partially-ordered sets

Figure 4: Three posets with the same reduced deck.

Graph reconstruction problems are special cases of reconstruction problems for
binary relations. See Rampon [16] for a survey. In this paper, the only non-graph
reconstruction problem we will mention is for partially-ordered sets (posets). Note
that removing a point from a poset is the same as removing a vertex from the
corresponding transitive digraph, but not the same as removing a vertex from the
Hasse diagram. For the early history of the problem see [17].

The reader can check that both posets on 2 points have the same full deck and
the first two posets in Figure 4 have the same full deck. All three posets in Figure 4
have the same reduced deck. No further examples of non-reconstructible posets are
known. For 4–13 points, we have checked that every poset has a unique reduced
deck (amongst posets). The number of posets with 13 points is 33,823,827,452. This
was a quick computation of about 2 weeks that used the generator described in [4]
to make all the reduced decks directly. The method of Section 2 would enable the
computation to continue up to 15 points, but we will leave this for another time and
another place (those who knew Paul Erdős will understand this allusion).
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