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Abstract

An n× n (partial) Latin array L is an array in which no symbol appears
more than once in any row or column; this differs from a (partial) Latin
square in that L may have up to n2 distinct symbols present. We say
L is k-completable if there exists a partition of the symbols of L into k
parts so that the corresponding induced subarrays are each completable
partial Latin squares. In 2015 Kuhl and Schroeder demonstrated the
existence of n × n partial Latin arrays which are not k-completable for
each k < n, and in this paper, we show that all n×n partial Latin arrays
are n-completable. This addresses a conjecture by Kuhl and Schroeder
and also confirms a special case of a conjecture by Häggkvist.

1 Introduction

In this paper we consider a variation on the intricacy of completing partial Latin
squares, which was introduced by Daykin and Häggkvist [3] in 1981 and formalized
by Opencomb [9] in 1985. Consider the partial Latin square P given in Figure 1.
Observe P cannot be completed to a Latin square, however we can partition the
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Figure 1: The partial Latin square P has a partition into two completable
partial Latin squares P1 and P2, demonstrating that completing partial Latin
squares has intricacy at least 2. Also, P has a partition into three completable
partial Latin squares Q1, Q2, and Q3 whose symbol sets are pairwise disjoint.

entries in P into two partial Latin squares P1 and P2, each of which are completable.
With this in mind, Daykin and Häggkvist [3] posed the following question:

Question. Does there exist a minimal positive integer k such that all partial Latin
squares of any order can be partitioned into k completable partial Latin squares?

Daykin and Häggkvist define this integer k as the intricacy of completing partial
Latin squares. It follows from Ryser’s Theorem [10] that such an integer k does exist
and is at most 4. As evidenced by the partial Latin square in Figure 1, we have that
k ≥ 2, and no examples are known which demonstrate that k > 2. This led Daykin
and Häggkvist [3] to conjecture that k = 2.

Note that P1 and P2 have the symbol 1 in common. In fact, in any partition of P
into two completable partial Latin squares, the symbol 1 must appear in both. If we
now require that P be partitioned into completable partial Latin squares with disjoint
symbol sets, then such a partition must have at least three parts. Furthermore, such
a partition is unique and contains the three partial Latin squares Q1, Q2, and Q3

given in Figure 1. All partial Latin squares of order n have such a partition into n
parts. This modification gives rise to the following question.

Question. Does there exist a minimal positive integer k such that all partial Latin
squares of any order can be partitioned into k completable partial Latin squares which
have pairwise disjoint symbol sets?

The answer to this question is no; a generalization of the partial Latin squares
in Figure 2 demonstrates that there exist partial Latin squares of order n for which
a partition into completable partial Latin squares with pairwise disjoint symbol sets
requires n parts.

A partial Latin square with only one symbol appearing is completable by Hall’s
Theorem, which leads to the following observation.

Observation 1.1. Let n be a positive integer. All partial Latin squares of order n
can be partitioned into n completable partial Latin squares with disjoint symbol sets,
and n is the smallest such partition size.

While the above result is trivial for partial Latin squares, its related question to
(partial) Latin arrays is not.
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Figure 2: A partial Latin square of order n composed of two disjoint subsquares
of orders n− 1 and 1 cannot be partitioned into fewer than n symbol-disjoint,
completable partial Latin squares.
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Figure 3: The Latin array A cannot be partitioned into two completable partial
Latin squares with disjoint symbol sets. However A does has a partition into
three completable partial Latin squares A1, A2, and A3 whose symbol sets are
pairwise disjoint.

Question. Let n be a positive integer. Does there exist a minimal positive inte-
ger k(n), such that all partial Latin arrays of order n can be partitioned into k(n)
completable partial Latin squares which have pairwise disjoint symbol sets?

Consider the Latin array A given in Figure 3. Since A contains P , a partition of
A into symbol-disjoint, completable partial Latin squares must have cardinality at
least 3, and this is possible; again see Figure 3.

Observation 1.1 implies k(n) ≥ n, however, the trivial upper bound does not
resolve the question for Latin arrays; instead we have that k(n) ≤ n2, which is
obtained by using a partition in which each partial Latin square has only one symbol
appear. We can somewhat easily improve the range for k(n). Using Ryser’s Theorem
we see that k(n) ≤ 4n and, if the earlier conjecture by Daykin and Häggkvist is true,
then k(n) ≤ 2n. Using some techniques that are echoed in this paper, Kuhl and
Schroeder [8] proved k(n) ≤ n+ 1, and they conjectured that k(n) = n.

In this paper, we prove Kuhl’s and Schroeder’s conjecture using the following
strategy. If A is a Latin array of order n with associated partition A into n com-
pletable partial Latin squares, then the average number of filled cells in the elements
of A is n. With this in mind, we first find many completable partial Latin squares
in A with disjoint symbol sets that contain more than n filled cells. Then we find an
appropriate partition of the rest of A.

In Section 2, we review notation, definitions, and previous results. We also give
several results highlighting certain families of completable partial Latin squares. In
Section 3 we prove k(n) = n and in Section 4, we apply the result to a problem
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related to another conjecture by Häggkvist.

It does not seem possible to pose the problem of finding partitions of Latin arrays
into symbol-disjoint, completable partial Latin squares as a construction problem,
as defined by Opencomb [9]. The added condition of symbol-disjointness requires
some additional dependency among the parts in a partition, which does not seem
compatible with the framework of a construction problem.

2 Background and completability results

We begin this section with the notation and terminology used in this paper. Then
we highlight several families of completable partial Latin squares.

2.1 Definitions and Notation

Let n be a positive integer and [n] denote the integer set {1, 2, . . . , n}. For a positive
integer k ≤ n, let [k, n] = {k, k + 1, . . . , n}. A partial Latin array of order n (on a
symbol set Σ) is an n×n array for which each cell contains at most one symbol, and
no symbol appears more than once in a row or column. We use PLA(n) to denote
the set of all partial Latin arrays of order n.

Let A ∈ PLA(n). If each cell of A contains a symbol, we say A is a Latin array
of order n. We denote the set of Latin arrays of order n as LA(n). If the cells
of A contain at most n distinct symbols, then A is a partial Latin square and if,
in addition, A ∈ LA(n), then A is a Latin square. We denote the set of partial
Latin squares and Latin squares of order n as PLS(n) and LS(n), respectively. We
often identify A with a set of ordered triples contained in [n] × [n] × Σ given by
A = {(i, j, s) : cell (i, j) of A contains s}. The symbol set of A, denoted as ΣA, is
the set of all symbols which appear in A.

For a subset S ⊆ ΣA, define A(S) = {(i, j, s) ∈ A : s ∈ S}, which we call the
subarray of A induced by S. For a partition S of ΣA, we call {A(S) : S ∈ S} a
partition of A induced by S. If P ⊆ A and there exists a subset S ⊆ ΣA for which
P = A(S), we say P is an induced subarray of A. Similarly, if P is a partition of
A and there exists a partition S of ΣA such that P = {A(S) : S ∈ S}, we say P
is an induced partition of A. In Figure 3, A ∈ LA(3) with ΣA = [5], as well as
induced partial Latin arrays (and in this case, partial Latin squares) A1 = A({1}),
A2 = A({2, 4}), and A3 = A({3, 5}). Note that {A1, A2, A3} is an induced partition
of A corresponding to {{1}, {2, 4}, {3, 5}}.

A partial Latin square P ∈ PLS(n) is completable if there exists L ∈ LS(n) such
that P ⊆ L; in this case L is a completion of P . If no such L exists, then P is
incompletable. For a positive integer k, we say a partial Latin array A ∈ PLA(n) is
k-completable if there exists an induced partition of A consisting of k completable
partial Latin squares. Using this language, we want to show that all A ∈ PLA(n)
are n-completable.
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For subsets R and C of [n], let A(R,C) denote the subarray of A at the in-
tersection of rows and columns of A indexed by R and C, respectively; that is
A(R,C) = {(i, j, s) ∈ A : i ∈ R and j ∈ C}.

Let |A| denote the number of filled cells of A, which is sometimes referred to as
the volume of A. For each x ∈ ΣA, let σA(x) denote the number of times x appears
in A; that is |{(i, j) ∈ [n] × [n] : (i, j, x) ∈ A}|. In particular, we say x is nearly
complete in A, or simply nearly complete, if σA(x) = n−1. We also say x is complete
in A if σA(x) = n and x is incomplete otherwise. Finally we say x is a singleton,
double, or triple in A if σA(x) is 1, 2, or 3, respectively.

Let P ∈ PLA(n). For a symbol x, we say x extends in P if there exist n− σP (x)
empty cells in P which, when filled by x, produce a partial Latin array; we call this
partial Latin array containing P and the additional n− σP (x) cells filled with x an
extension of x in P . Furthermore, for a set of symbols S = {x1, x2, . . . , xk}, we say
S extends in P if there exist kn − (σP (x1) + · · ·+ σP (xk)) empty cells in P which,
when filled with symbols from S, produce a partial Latin array which we similarly
call an extension of S in P . The empty set always extends in P , which is used later
in inductive constructions. Now suppose that x is a nearly complete symbol in P .
Then there exists a row a and a column b in P in which x does not appear. If x
extends in P , then (a, b) must be empty in P . We say x requires (a, b) in P and, if
(a, b) is filled in P with a symbol s distinct from x, we say s blocks x in P .

Now suppose that ΣP ⊆ [n]. Let Sn be the symmetric group acting on [n]. For
π = (πr, πc, πs) ∈ Sn ×Sn ×Sn, let π(P ) denote the array obtained by permuting
the rows, columns, and symbols of P by πr, πc, and πs, respectively. Then π is an
isotopism, and P and π(P ) are isotopic. Observe that π(P ) ∈ PLS(n) and P is
completable if and only if π(P ) is completable.

For α ∈ S3, let α(P ) = {(xα(1), xα(2), xα(3)) : (x1, x2, x3) ∈ P}. Then α is a
conjugation, and P and α(P ) are conjugates. Note that α acts on PLS(n); as such
α(P ) ∈ PLS(n), and P is completable if and only if α(P ) is completable. Finally,
the main class of P is the set of all partial Latin squares which are isotopic to a
conjugate of P . Hence completability (and incompletability) is a property of main
classes of partial Latin squares.

2.2 Completability results for partial Latin squares

Evans [6] conjectured that all partial Latin squares of order n with volume at most
n − 1 are completable. This was proved true independently by Smetaniuk [11] and
Andersen and Hilton [2]. The latter publication also classified the incompletable
elements of PLS(n) with volume n. Additionally, Andersen [1] classified the incom-
pletable elements of PLS(n) with volume n + 1. We begin by introducing these
results.

For n ≥ 2 and k ∈ [n − 1], define Bk,n as the element of PLS(n) with volume n
given by {(i, i, 1) : i ∈ [k]}∪{(i, k+1, i−k+1) : i ∈ [k+1, n]}, and let Bn be the union
of the main classes of B1,n, . . . , Bn−1,n. As an example, we give B2,4 and its conjugates
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Figure 4: The first three partial Latin squares illustrate B2,4 and two of its
conjugates. The next three Latin arrays of order 2 and partial Latin square
of order 4 are used to describe incompletable partial Latin squares of order n
with volume n+ 1, which are summarized in Theorem 2.1.

(13)B2,4 and (23)B2,4 in Figure 4. Let A1, A2, and A3 be the Latin arrays in LA(2)
given in Figure 4. For n ≥ 3 and i ∈ [3], define Ti,n = Ai ∪ {(j, j, 1) : j ∈ [3, n− 1]},
and let T0 ∈ PLS(4) as given in Figure 4. With these objects defined, we may classify
the completable partial Latin squares in PLS(n) with volume at most n+ 1.

Theorem 2.1. Let n ≥ 1 and P ∈ PLS(n).

(a) If P has volume at most n− 1, then P is completable. [11, 2]

(b) If P has volume n, then P is incompletable if and only if P ∈ Bn. [2]

(c) If P has volume n+ 1, then P is incompletable if and only if either

• a subset of P belongs to Bn,

• n = 3 and P is in the main class of T1,3,

• n = 4 and P is in the main class of T0, T1,4, or T2,4, or

• n ≥ 5 and P is in the main class of T1,n, T2,n, or T3,n. [1]

Using the language introduced earlier, we highlight the following two results, each
of which follow as a result of Theorems 2.1(b) and 2.1(c), respectively.

Lemma 2.2. Let P ∈ PLS(n) with volume n+ 1 such that ΣP contains at least one
singleton and one non-singleton. Then there exists a singleton α ∈ ΣP such that
P (ΣP\{α}) is a completable partial Latin square with volume n.

Lemma 2.3. Let n ≥ 4 and P ∈ PLS(n). If ΣP consists of a nearly complete symbol
α and two singletons a and b, then P is completable if and only if a and b do not
block α.

One of the earliest known completion results we use is attributed to Hall [7],
which states that a partial Latin square of order n consisting only of k completed
rows is completable. Recall that a partial Latin square in which each symbol appears
n times is a conjugate of a Latin square consisting of completed rows. With this in
mind, to complete a partial Latin square P , we need only confirm that ΣP extends
in P .
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A partial Latin square with only one symbol appearing is trivially completable.
So we continue with an observation about partial Latin squares with two symbols.
Then we present another observation and two technical lemmas which give sufficient
conditions under which other families of partial Latin squares are completable.

Observation 2.4. Let n ≥ 2 and P ∈ PLS(n) with ΣP = {1, 2}.
(a) Suppose symbols 1 and 2 are both nearly complete in P . Then ΣP extends in

P if and only if neither symbols 1 nor 2 block one another and do not require
the same cell in P .

(b) Suppose only symbol 1 is nearly complete in P . Then ΣP extends in P if and
only if symbol 2 does not block symbol 1.

(c) If neither symbols 1 nor 2 are nearly complete in P , then ΣP extends in P .

The observation below is a direct application of Hall’s Marriage Theorem and
implies the subsequent lemma and corollary.

Observation 2.5. Let P ∈ PLA(n) and suppose that symbol k does not appear in P .
Then symbol k extends in P if and only if P does not contain an a× b filled subarray
with a+ b = n + 1. In particular, symbol k extends in P if

(a) at most half of the cells in each row and column of P are filled,

(b) n is odd (say n = 2m − 1 for an integer m), each row and column of P have
at most m filled cells, and P does not contain an m×m filled subarray,

(c) n is even (say n = 2m− 2 for an integer m) each row and column of P have
at most m filled cells, and P does not contain an m× (m− 1) or (m− 1)×m
filled subarray, or

(d) P has at most one filled cell per column and no row has n− 1 filled cells.

Lemma 2.6. Let r ∈ [n] and P ∈ PLS(n). Suppose that x ∈ ΣP and σP (x) = r.
Then x extends in P if either

(a) |ΣP | ≤ (n− r)/2 + 1, or

(b) |ΣP | ≤ (n− r)/2 + 2 and σP (y) ≤ (n− r − 1)/2 for some y ∈ ΣP\{x}.

Proof. Without loss of generality, assume (1, 1, x), . . . , (r, r, x) ∈ P and define P ′ as
the subarray P ([r + 1, n], [r + 1, n]).

First suppose |ΣP | ≤ (n − r)/2 + 1. Since the number of filled cells in a row or
column of P ′ is at most |ΣP | − 1 ≤ (n − r)/2, it follows that k extends in P ′ by
Observation 2.5(a). Hence x extends in P .

Now suppose |ΣP | ≤ (n − r)/2 + 2 and σP (y) ≤ (n − r − 1)/2 for some y ∈ ΣP

with x �= y. Assume there exists a filled subarray P ′′ in P ′ with a rows and b columns
such that a + b = n − r + 1. Without loss of generality, assume a ≤ b. Since each
row and column of P ′ contains at most |ΣP ′| − 1 ≤ (n− r)/2+ 1 symbols, it follows
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that b = 	(n− r)/2+1
 and a = �(n− r)/2�. Therefore P ′′ is a Latin rectangle over
ΣP . Then σP (y) ≥ (n − r)/2, which is a contradiction. Hence x extends in P ′ by
Observation 2.5, and therefore x extends in P .

The next corollary follows from an iterative application of Lemma 2.6(a).

Corollary 2.7. Let r ∈ [n] and P ∈ PLS(n) with |ΣP | ≤ (n− r)/2+1. If σP (x) ≤ r
for all incomplete x ∈ ΣP , then ΣP extends in P .

We conclude this section with a technical lemma and corollary that, in later
applications, show the completability of some partial Latin squares whose volume
exceeds their order, particularly those whose symbols are only doubles and triples.

Lemma 2.8. Let n ≥ 7 and P ∈ PLS(n). If ΣP consists of 	n/2
 − 1 complete
symbols and two doubles, then P is completable.

Proof. Denote the doubles in ΣP as x and y. By Lemma 2.6(b), there exists an
extension Q of x in P . If y extends in Q, then P is completable. Now suppose
otherwise. In what follows, we produce another extension of x in P through a
modest modification of Q in which y does extend. Without loss of generality, assume
(1, 1, y) and (2, 2, y) belong to P .

First suppose n = 2m+1. Since each row of Q([3, 2m+1], [3, 2m+1]) contains at
most m filled cells, it follows that Q([3, 2m+1], [3, 2m+1]) contains an m×m filled
subarray by Observation 2.5(b). Note that such a subarray, sayQ([m+2, 2m+1], [m+
2, 2m+1]), is a Latin subsquare on ΣP \{y}. It follows that Q([m+2, 2m+1], [m+1])
and Q([m + 1], [m + 2, 2m + 1]) are empty subarrays, and therefore Q([2], [m + 1])
and Q([m+ 1], [2]) are both filled.

Since m ≥ 3, there exist i, j ∈ [m+2, 2m+1] and k, � ∈ [m+1] such that (i, j, x)
and (k, �, x) belong to Q\P . Observe that (i, �) and (k, j) are empty in Q. Define
R = (Q\{(i, j, x), (k, �, x)})∪{(i, �, x), (k, j, x)}, and note that R is also an extension
of x in P . Furthermore, R([m + 2, 2m + 1]\{i}, [3, m + 1]) and R([3, m + 1], [m +
2, 2m+ 1]\{j}) are empty and hence there exist extensions K1 and K2 of y in each,
respectively. So R ∪ K1 ∪ K2 ∪ {(i, j, y)} is an extension of y in R, as well as an
extension of {x, y} in P .

Now suppose n = 2m. Since each row of Q([3, 2m], [3, 2m]) again contains at most
m filled cells, it follows from Observation 2.5(c) that Q([3, 2m], [3, 2m]) contains an
m× (m−1) or (m−1)×m filled subarray; without loss of generality we may assume
Q([m+2, 2m], [m+1, 2m]) is such a filled subarray. Necessarily Q([m+2, 2m], [m+
1, 2m]) is a Latin rectangle in which each symbol of ΣP\{y} appears in each row. It
follows that Q([m + 2, 2m], [m]) is an empty subarray, and therefore Q([m + 1], [2])
is filled. Furthermore each row of Q([m + 1], [m + 1, 2m]) contains at most m − 2
filled cells and each column contains exactly one filled cell.

Since m ≥ 4, there exist i ∈ [m+ 2, 2m] and j ∈ [m+ 1, 2m] such that (i, j, x) ∈
Q\P . Additionally, there exist k, k′ ∈ [m + 1] and �, �′ ∈ [m] such that (k, �, x)
and (k′, �′, x) belong to Q\P . Observe that not both (k, j) and (k′, j) are filled in
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Q; without loss of generality, assume that (k, j) is empty in Q. Furthermore , (i, �)
is also empty in Q. Again define R = (Q\{(i, j, x), (k, �, x)}) ∪ {(i, �, x), (k, j, x)},
which is also an extension of x in P . Note that R([m+ 2, 2m]\{i}, [3, m]) is empty,
which thus has an extension K1 of y. Additionally there exists an extension K2 of y
in R([3, m+ 1], [m+ 1, 2m]\{j}) by Observation 2.5(d). So R ∪K1 ∪K2 ∪ {(i, j, y)}
is an extension of y in R, as well as an extension of {x, y} in P .

This corollary follows from Lemmas 2.6(b) and 2.8.

Corollary 2.9. Let r ∈ [n] and P ∈ PLS(n) with σP (x) ≤ r for all incomplete
x ∈ ΣP . If |ΣP | ≤ (n − r)/2 + 2 and ΣP contains at least two doubles, then ΣP

extends in P .

3 Proofs of n-completability

Many of the results from the previous section (i.e. Lemmas 2.2, 2.6, 2.8, and Corol-
laries 2.7 and 2.9) had hypotheses which required no knowledge on the location of
symbols in a partial Latin square. However, in certain partial Latin squares (in par-
ticular those with singletons and nearly complete symbols) we must pay attention to
the location of symbols, as outlined in Theorem 2.1 and Observation 2.4, for example.

With this in mind, we begin with results involving partial Latin arrays with no
singletons and no nearly complete symbols, then discuss partial Latin arrays which
do contain singletons or nearly complete symbols. We then conclude with the main
result. Before we begin, we give an observation about completability.

Observation 3.1. Let n ≥ 1 and A ∈ PLA(n).

(a) If A is r-completable, then A is also (r + 1)-completable.

(b) Suppose {B,C} is an induced partition of A where B and C are b- and c-
completable, respectively. Then A is (b+ c)-completable.

Lemma 3.2. Let n ≥ 1 and A ∈ PLA(n). Suppose that either

(a) σA(x) > n/2 and σA(x) �= n− 1 for each x ∈ ΣA,

(b) 4 ≤ σA(x) ≤ n/2 for each x ∈ ΣA, or

(c) 2 ≤ σA(x) ≤ 3 for each x ∈ ΣA and n ≥ 7.

If |A| > n, then there exists a completable partial Latin square induced by a subset of
ΣA whose volume exceeds n as well. Furthermore, there exists an integer � and an
induced partition {B,C} of A such that B is �-completable with |B| ≥ (n + 1)� and
C is completable with |C| ≤ n.

Proof. First suppose σA(x) > n/2 and σA(x) �= n − 1 for each x ∈ ΣA. Since
|A| > n, then |ΣA| ≥ 2. Let S be any 2-subset of ΣA. Then A(S) is completable by
Observation 2.4(c) and its volume exceeds n.
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Next suppose 4 ≤ σA(x) ≤ n/2 for each x ∈ ΣA. If |ΣA| ≤ 	n/4
 + 1, then let
S = ΣA. Otherwise, let S be any subset of ΣA with cardinality 	n/4
 + 1. Then
A(S) is completable by Corollary 2.7 and its volume exceeds n.

For part (c), assume n ≥ 7 and 2 ≤ σA(x) ≤ 3 for each x ∈ ΣA. Let S be a subset
of ΣA so that A(S) has volume exceeding n, but the volume of A(S ′) is at most n
for any proper subset S ′ of S. Then either |A(S)| ∈ {n+ 1, n+2} or |A(S)| = n+3
and S contains only triples.

If |A(S)| = n+ 1, A(S) is completable by Theorem 2.1, as A(S) does not belong
to the main class of Ti,n for any i ∈ [3] (since n ≥ 7) and no subset of A(S) belongs
to Bn.

Now suppose |A(S)| = n + 2. If S contains at least two doubles, then A(S) ≤
n/2 ≤ (n− 3)/2+2, so A(S) is completable by Corollary 2.9 and its volume exceeds
n. If S contains exactly one double, then n ≥ 9 and |S| = n/3+1; if S contains only
triples, then |S| = (n+ 2)/3. So |S| ≤ (n− 3)/2 + 1 in these two cases, hence A(S)
is completable by Corollary 2.7 and its volume exceeds n.

Last, suppose that |A(S)| = n+3 and S contains only triples. Then |S| = n/3+1.
Since n ≥ 7, it follows that n/3 + 1 ≤ 	(n − 1)/2
. Therefore A(S) is completable
by Corollary 2.7 and its volume exceeds n.

Through an iterative application of this argument, we may produce an induced
partition {A1, A2, . . . , A�, C} of A for some � ≥ 0 such that each Ai is a completable
partial Latin square with volume exceeding n for each i ∈ [�] and C is a partial Latin
square whose volume does not exceed n. Since C contains no singletons, we have
that C is completable by Theorem 2.1. Furthermore if we let B = A1∪· · ·∪A�, then
{B,C} is an induced partition of A, B is �-completable, and |B| ≥ (n+ 1)�.

Combining the three parts in Lemma 3.2, in conjunction with Observation 3.1(b),
gives the following corollary.

Corollary 3.3. Let n ≥ 7 and A ∈ PLA(n). Suppose that ΣA does not contain nearly
complete symbols nor singletons. Then there exists an integer � ≥ 0 and an induced
partition {B,C1, C2, C3} of A such that B is �-completable and |B| ≥ (n + 1)�, and
C1, C2, and C3 are each completable with volume at most n.

3.1 Managing Singletons and Nearly Complete Symbols

We begin with a graph theoretic lemma which leads to a completability result involv-
ing partial Latin arrays whose symbol sets contain only singletons. Then we present a
method for inducing completable partial Latin squares which include nearly complete
symbols.

Lemma 3.4. Let v ≥ 6 and let G be a simple, bipartite graph with v vertices and v
edges. Then G contains two edge-disjoint, 4-vertex paths.

Proof. Since G is simple, bipartite, and |V (G)| = |E(G)|, it follows that G contains



K. AKERS ET AL. /AUSTRALAS. J. COMBIN. 83 (1) (2022), 20–39 30

(a) (b)

Figure 5: Subgraphs of G in the proof of Lemma 3.4.

a k-cycle with k ≥ 4 and k even. If G contains a k-cycle with k ≥ 6, then the k-cycle
(and hence G) contains two edge-disjoint, 4-vertex paths.

Now assume G does not contain a k-cycle with k ≥ 6, and first suppose G
contains two 4-cycles. Each 4-cycle contains a 4-vertex path, and if the 4-cycles
are edge-disjoint, then G contains two edge-disjoint 4-vertex paths. Otherwise, G
contains a subgraph as given in Figure 5(a), which contains two edge-disjoint 4-vertex
paths.

Now suppose G contains only one 4-cycle. Then G is unicyclic and therefore is
connected. Since v ≥ 6, it follows that G contains a subgraph isomorphic to one of
the graphs given in Figure 5(b), each of which contains two edge-disjoint 4-vertex
paths.

Lemma 3.5. Let n ≥ 3 and A ∈ PLA(n), and suppose that ΣA contains only
singletons. If |A| ≤ 2n, then A is 2-completable. Hence, if |A| > 2n, then there
exists A′ ⊆ A such that |A′| = n and A′ is completable.

Proof. It is sufficient to show that the result holds when |A| = 2n. Define L =
{(1, 1, 1), (1, 2, 2), (2, 1, 3)}. If an element P ∈ PLS(n) has volume n and contains an
isotope of L, then P is completable by Theorem 2.1. Hence, it is sufficient to show
that A contains two disjoint isotopes of L.

Let G be the subgraph of Kn,n with bipartite sets {ai : i ∈ [n]} and {bi : i ∈ [n]}
such that aibj ∈ E(G) if cell (i, j) is filled in A. Then G is simple, bipartite, has
2n vertices, and has 2n edges. Hence G contains two edge-disjoint 4-vertex paths
by Lemma 3.4. Edge-disjoint 4-vertex paths in G correspond to the cell locations of
disjoint isotopes of L contained in A, and so A is 2-completable.

An iterative application of Lemma 3.5 gives the following result.

Lemma 3.6. Let n ≥ 3 and A ∈ PLA(n), and suppose that ΣA contains only
singletons. If |A| ≤ kn for some k ≥ 2, then A is k-completable.

Now we focus on partial Latin arrays with nearly complete symbols. We first
prove a lemma showing that any Latin array of LA(n) in which at least half of
its symbols are nearly complete is n-completable. The subsequent lemma shows
there is some control over how nearly complete symbols may be partitioned to form
completable partial Latin squares with volume exceeding their order.
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Lemma 3.7. Suppose n ≥ 4, and let A ∈ LA(n) and N be the set of nearly complete
symbols in A. If |N | ≥ |ΣA|/2, then A is n-completable.

Proof. Since |N |(n− 1) ≤ n2, it follows that |N | ≤ n+ 1.

First suppose |N | = n+ 1. Then ΣA consists of the n+ 1 symbols in N and one
singleton, which we denote as α. Hence |ΣA| = n+2, and thus it is sufficient to find
two disjoint 2-subsets which induce completable partial Latin squares, as each of the
remaining n− 2 symbols in ΣA induces a completable partial Latin square as well.

Without loss of generality, assume (1, 1, α) ∈ A, and let N ′ ⊆ N be the n − 1
symbols in row 1 of A. Hence there are two symbols in N\N ′, say y and z. Then y
and z both require cells in row 1 of A. Since n− 1 ≥ 3, there exists a symbol x ∈ N ′

which block neither of y and z. As x can only be blocked by one symbol, either y or
z does not block x; without loss of generality suppose y does not block x. Finally,
let w ∈ N ′ be distinct from x. Observe that x and y cannot require the same cell, so
A({x, y}) is completable by Observation 2.4(a). Furthermore, by Theorem 2.1(b),
A({α,w}) is completable. Hence A is n-completable.

Next suppose |N | ≤ n and let N c = ΣA\N . Define k = |N c|, and since |N | ≥
|ΣA|/2, it follows that |ΣA| ≤ n + k and k ∈ [n]. Similar to the previous case, it is
sufficient to find k disjoint 2-subsets of ΣA which induce completable partial Latin
squares and, if |N | < n, it is sufficient to find k − 1 such disjoint 2-subsets.

For each x ∈ N c, define Sx as the set of symbols in N which are not blocked
by x. Further suppose that (Sx : x ∈ N c) has an SDR (sx ∈ Sx : x ∈ N c).
Then {{x, sx} : x ∈ N c} is a set of k disjoint 2-subsets which induce completable
partial Latin squares, by Observation 2.4(b), and hence A is n-completable. For the
remainder of the proof we assume (Sx : x ∈ N c) does not have an SDR.

Observe that Sx ∪ Sy = N for any distinct pair x, y ∈ N c, as every symbol in
N is blocked by exactly one symbol in ΣA. Hence there must be a unique symbol
b ∈ N c for which b blocks all symbols in N (thus Sb = ∅) and therefore Sx = N for
each x ∈ N c\{b}.

Consider the case when |N | < n. Since |N | > |N c\{b}|, it follows that (Sx : x ∈
N c\{b}) has an SDR (sx ∈ Sx : x ∈ N c\{b}). Hence {{x, sx} : x ∈ N c\{b}} is a set
of k − 1 disjoint 2-subsets which induce completable partial Latin squares, again by
Observation 2.4(b), and therefore A is n-completable.

Finally consider the case when |N | = n. Observe that |N c| ≤ n and equality is
achieved if and only if N c is comprised of singletons. Since a cell can only be required
by at most n − 1 symbols in N , there exist two symbols in N , say y and z, which
require different cells. This implies b is not a singleton and therefore |N c| ≤ n − 1.
As y and z are both blocked by b, it follows that A({y, z}) is completable.

For each x ∈ N c\{b}, define S ′
x as the set of symbols in N\{y, z} which are not

blocked by x. Recall that Sx = N for each x ∈ N c\{b} and so S ′
x = N\{y, z} for

x ∈ N c\{b}. Since |N c\{b}| ≤ n− 2 = |N\{y, z}|, it follows that (S ′
x : x ∈ N c\{b})

has an SDR (s′x ∈ S ′
x : x ∈ N c\{b}). Hence {{x, s′x} : x ∈ N c\{b}} ∪ {y, z} is a

set of k disjoint 2-subsets which induce completable partial Latin squares, again by
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Observation 2.4(b), and therefore A is n-completable.

Lemma 3.8. Let n ≥ 4 and A ∈ LA(n). Let N be the set of nearly complete
symbols in A. Suppose that for all N ⊆ S ⊆ ΣA, if A(S) is |N |-completable, then
|A(S)| < (n+ 1)|N |. Then A is n-completable.

Proof. Let N c = ΣA\N . First suppose that |N | ≥ n. Then

|ΣA| − |N | = |N c| ≤ |A(N c)| = n2 − |A(N)| ≤ n2 − (n− 1)n = n ≤ |N |,

so |N | ≥ |ΣA|/2. Therefore A is n-completable by Lemma 3.7. Now assume |N | ≤
n−1. If |N | ≥ |N c|, then again A is n-completable by Lemma 3.7, so in what follows,
we assume |N | ≤ |N c| − 1. Next, we show there exists a set B = {Bx : x ∈ N} of
nonempty disjoint subsets of N c for which A({x} ∪Bx) is completable.

For each x ∈ N , define Cx = {y ∈ N c : y does not block x}, and recall that
exactly one symbol in ΣA blocks x, so |Cx| ≥ |N c| − 1 ≥ |N |. By Hall’s Marriage
Theorem, (Cx : x ∈ N) has an SDR (cx ∈ Cx : x ∈ N). By letting Bx = {cx} for
each x ∈ N , it follows that B meets the conditions outlined above.

Now we select B so that |{x ∈ N : |A(Bx)| = 1}| (which we denote as s) is
minimal; that is, B has a minimum number of subsets consisting of one singleton.
Note that s is positive; otherwise |A(Bx)| ≥ 2 for all x ∈ N and hence

|A(N ∪ (∪B))| =
∑

x∈N
|A({x} ∪ Bx)| =

∑

x∈N
(σA(x) + |A(Bx)|) ≥ (n + 1)|N |,

where ∪B denotes the union of all sets in B; this contradicts one of our original
hypotheses.

Let x ∈ N such that |A(Bx)| = 1, and let Bx = {y}. Now, define R = N c\(∪B).
Note that R and N ∪ (∪B) partition ΣA. Since A(N ∪ (∪B)) is |N |-completable (and
therefore (n− 1)-completable), if A(R) is completable, then A is n-completable.

To that end we now show that A(R) is completable. Assume to the contrary.
If |R| = 1, then A(R) is completable, so |R| ≥ 2. Then there exists a ∈ R which
does not block x. If a is a singleton, then A({x, y, a}) is completable by Lemma 2.3;
otherwise A({x, a}) is completable by Observation 2.4(b). So if we replace Bx with
{y, a} when a is a singleton or {a} otherwise, then B would have one fewer subset
consisting of one singleton, which contradicts the minimality of s. Hence A(R) is
completable and therefore A is n-completable.

3.2 Main Result

To prove the main result, we somewhat greedily produce an induced partition of a
Latin array into completable partial Latin squares with volume exceeding their order,
as well as a partial Latin array induced by the leftover symbols. We first give a series
of lemmas which will be used to handle this leftover partial Latin array. Then we
present the proof of the main theorem.
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The first lemma is straightforward; it results from being able to partition a rela-
tively sparse partial Latin array into two partial Latin squares which are completable
by Theorem 2.1(a).

Lemma 3.9. Let n ≥ 6. If P ∈ PLA(n) and |P | ≤ n+ 2, then P is 2-completable.

Lemma 3.10. Let n ≥ 6 and P ∈ PLA(n). Suppose there exists an induced partition
{P1, P2, P3, S} of P such that Pi is completable and |Pi| ≤ n for each i ∈ [3], and ΣS

is the set of all singletons in P .

(a) If |P | ≤ 2n+ 3, then P is 3-completable.

(b) If |P | ≤ 3n+ 2, then P is 4-completable.

(c) If 4 ≤ k ≤ n and 3n+ 3 ≤ |P | ≤ (k − 1)n+ k, then P is k-completable.

Proof of (a). Without loss of generality, assume n ≥ |P1| ≥ |P2| ≥ |P3|. First
suppose that |P1| = |P2| = n. Then |P3 ∪ S| ≤ 3 and hence P3 ∪ S is completable
by Theorem 2.1(a). Since P1 and P2 are each completable, it follows that P is
3-completable.

Now suppose |P1| = n and |P2| < n. If |S| ≤ n− 1− |P2|, then P2 ∪S and P3 are
completable by Theorem 2.1(a) and hence P is 3-completable. Otherwise let S ′ be a
(n− 1− |P2|)-subset of S. Then P2 ∪ S ′ is completable and, since |P3 ∪ (S\S ′)| ≤ 4,
P3 ∪ (S\S ′) is also completable, each by Theorem 2.1(a). Hence P is 3-completable.

Last, suppose |P1| < n. Since n ≥ 6, we have that |P | ≤ 3(n− 1). Hence there
exist nonnegative integers s1, s2, s3 such that |S| = s1 + s2+ s3 and si ≤ n− 1− |P1|
for each i ∈ [3]. Partition S as {S1, S2, S3} with |Si| = si for each i ∈ [3]. Then Pi∪Si

is completable by Theorem 2.1(a) for each i ∈ [3], and hence P is 3-completable.

Proof of (b). If |S| ≤ n − 1, then P1 ∪ P2 ∪ P3 ∪ S is 4-completable, as S is
completable by Theorem 2.1(a). Now suppose |S| ≥ n. Partition S as S ′ ∪S ′′ where
|S ′| = n − 1. Then S ′ is completable by Theorem 2.1(a) and P1 ∪ P2 ∪ P3 ∪ S ′′ is
3-completable by (a). Hence P is 4-completable.

Proof of (c). Since |P | ≥ 3n+ 3, there exists a partition {S1, S2, S3, S
′} of S (S ′

may be empty) so that |Si| = n + 1 − |Pi| for each i ∈ [3]. Then for each i ∈ [3],
there exists a completable partial Latin square Qi ⊆ Pi ∪ Si which contain Pi and
has volume n by Lemma 2.2. Observe that P\(Q1∪Q2∪Q3) ⊆ S and has volume at
most (k− 4)n+ k; therefore P\(Q1∪Q2 ∪Q3) is (k− 3)-completable by Lemma 3.6.
So P is k-completable.

From Lemmas 3.9 and 3.10, along with the observation that all partial Latin
squares with volume at most 1 are completable, we have the following corollary.

Corollary 3.11. Let n ≥ 6 and P ∈ PLA(n). Suppose there exists an induced
partition {P1, P2, P3, S} of P such that Pi is completable and |Pi| ≤ n for each
i ∈ [3], and ΣS is the set of all singletons in P . If k ≤ n and |P | ≤ (k − 1)n + k,
then P is k-completable.

We now conclude this section with the proof of the main theorem.
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Theorem 3.12. Let n ≥ 1 and A ∈ LA(n). Then A is n-completable.

Proof. The result holds when n ≤ 6; this was confirmed through tedious case-wise
analysis, on which we elaborate in the appendix. So now suppose that n ≥ 7. Let
N ⊆ ΣA be the set of all nearly complete symbols in A.

First suppose there exists an induced partial Latin array Q from A such that
N ⊆ ΣQ, |Q| ≥ (n+1)|N |, and Q is |N |-completable. Let Z be induced from A such
that ΣZ is the set of singletons in A\Q. Let L = A\(Q∪Z). By Corollary 3.3, there
exists an integer � and a partition {L1, L2, L3,M} of L such that Li is completable
with |Li| ≤ n for each i ∈ [3] and M is �-completable with |M | ≥ (n + 1)�. Let
P = L1 ∪ L2 ∪ L3 ∪ Z and k = n− �− |N |. Then

|P | = n2 − |Q ∪M | ≤ n2 − (n+ 1)(n− k) = (k − 1)n+ k.

So P is k-completable by Corollary 3.11. Since {M,P,Q} is an induced partition of
A, it follows that A is n-completable.

Now suppose no such partial Latin array Q exists. We have that for all subsets
S such that N ⊆ S ⊆ ΣA and A(S) is |N |-completable, then |A(S)| < (n + 1)|N |.
So A is n-completable by Lemma 3.8.

4 Applications

In 1980 Häggkvist [4] made the following conjecture:

Conjecture 4.1. Let n and r be positive integers. Any partial nr× nr Latin square
whose filled cells lie in n− 1 disjoint r × r squares can be completed.

If r = 1, this reduces to Theorem 2.1(a). For integers r, n ≥ 1 and a Latin array
A ∈ LS(r), Kuhl and Schroeder [8] define a partial Latin square nA ∈ PLS(rn)
obtained by combining n copies of A in an array of order rn so that the rows, and
similarly the columns, of any two copies of A are disjoint. Without loss of generality,
we assume the copies of A appear on the main block diagonal of nA. In Figure 6, we
give A, 2A, and 3A, where A ∈ LA(3) is the same as was originally given in Figure
3. Observe that (n − 1)A, embedded in an nr × nr array, is a special case of the
partial Latin squares addressed by Häggkvist where the blocks are identical and are
both row- and column-disjoint.

Kuhl and Schroeder [8] prove the following relationship between these partial
Latin squares and their associated Latin arrays.

Lemma 4.2. Let A ∈ LA(n) and n ≥ 1. If A is n-completable, then nA is com-
pletable.

However, this condition is not necessary. Let A ∈ LA(4) as given in Figure 7. If A
is 2-completable, then one of the two parts in a partition of A is induced by a symbol
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1 2 5
2 1 4
5 4 3

1 2 5
2 1 4
5 4 3

1 2 5
2 1 4
5 4 3

1 2 5
2 1 4
5 4 3

1 2 5
2 1 4
5 4 3

1 2 5
2 1 4
5 4 3

A 2A 3A

Figure 6: A Latin array and its associated partial Latin squares.

1 4 6 3
5 2 4 1
4 5 3 2
3 1 2 4

1 4 6 3
5 2 4 1
4 5 3 2
3 1 2 4

1 4 6 3
5 2 4 1
4 5 3 2
3 1 2 4

1 4 6 3 2 7 8 5
5 2 4 1 8 3 7 6
4 5 3 2 7 6 1 8
3 1 2 4 6 8 5 7
2 7 8 5 1 4 6 3
8 3 7 6 5 2 4 1
7 6 1 8 4 5 3 2
6 8 5 7 3 1 2 4

A 2A Completion of 2A

Figure 7: A Latin array A which is not 2-completable, but 2A is completable.

set containing at least two symbols from {1, 2, 3}. However such a configuration
produces an incompletable partial Latin square. Nevertheless 2A is completable.

Using Lemma 4.2 and constructions similar (but weaker) to those found in this
paper, Kuhl and Schroeder [8] prove the following.

Theorem 4.3. Let n ≥ 1. If n ≥ r + 1, then A is n-completable (and hence nA is
completable) for all A ∈ LA(r). If n ≤ r − 1, there exist A ∈ LA(r) such that nA is
incompletable.

The case n = r was left unresolved. However, with the result of this paper, we
can give a full classification.

Theorem 4.4. Let n ≥ 1. If n ≥ r, then nA is completable for all A ∈ LA(r). If
n ≤ r − 1, there exists A ∈ LA(r) which is not n-completable.

Therefore we have resolved the following special case of Conjecture 4.1.

Theorem 4.5. Let n and r be positive integers and n ≥ r. Any partial nr × nr
Latin square whose filled cells lie in n−1 disjoint r× r squares, each of which are in
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disjoint rows and columns and are contained in some common Latin array of LA(r),
can be completed.

Appendix: Small Cases

In this section we describe the manner by which we prove Theorem 3.12 when n ≤ 6.
The result holds when n = 1 trivially. When n = 2, every partial Latin array is
contained in an isotope of one of the three arrays given in Figure 8(a). Observe
that A1 is a Latin square and trivially completable (and hence 2-completable), while
A2 and A3 have induced partitions {A2({1, 2}), A2{3})} and {A3({1, 2}), A3({3, 4})}
into completable partial Latin squares. Hence Theorem 3.12 holds when n = 2.

For the remaining cases, we primarily focus on partitions rather than on Latin
arrays. To each Latin array of order n, we associate a partition of n2 with parts
not exceeding n; each part corresponds to the number of times a particular symbol
appears in the array. For example, the Latin array of order 6 given in Figure 8(b)
has 655443222111 as its associated partition of 36 into parts which do not exceed 6.

1 2
2 1

1 2
3 1

1 2
3 4

A1 A2 A3

1 2 3 4 6 8
9 1 2 3 4 6
6 9 1 2 3 5
5 7 a 1 2 3
4 5 7 b 1 2
3 4 5 8 c 1

(a) (b)

Figure 8: (a) Main class representatives for all Latin arrays of order 2.
(b) A Latin array with associated partition 655443222111.

To demonstrate this we show Theorem 3.12 is true for n = 3 by considering the
12 partitions of 9 into parts of size at most 3. Let P ∈ LA(3), and thus one of the
partitions given in Figure 9 is associated to P . We consider each of the 12 cases. We
show in each case that P has an induced partition with at most 3 parts. For most,
we simply list the partition, while in some cases we need more exposition.

(a) P (as P is a Latin square in this case)

(b) P ({α, β, γ}) and P ({δ})
(c) P ({α, β, γ}) and P ({δ, ε})
(d) First suppose that α can be paired with a double, say β. Then P ({α, β}),

P ({γ}), and P ({δ}) are each completable. Otherwise, α blocks each double,
but since any one cell can be required by at most two doubles, there exist two
doubles, say β and γ, which require different cells. Hence P ({α}), P ({β, γ}),
and P ({δ}) are completable in this case.
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Symbol (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

α 3 3 3 3 3 3 3 2 2 2 2 1
β 3 3 3 2 2 2 1 2 2 2 1 1
γ 3 2 1 2 2 1 1 2 2 1 1 1
δ 1 1 2 1 1 1 2 1 1 1 1
ε 1 1 1 1 1 1 1 1 1
ζ 1 1 1 1 1 1
η 1 1 1 1
θ 1 1
ι 1

Figure 9: The 12 partitions of 9 into parts of size at most 3. Each column
corresponds to a partition, and we identify each part as the number of occur-
rences of symbols in a Latin array. For example, we associate to the partition
in (d) a Latin array with a triple α and doubles β, γ, and δ.

(e) Either δ or ε does not block β; without loss of generality, we may assume δ does
not block β. Hence P ({β, δ}), P ({α, ε}), and P ({γ}) are each completable.

(f) Again without loss of generality, we may assume γ does not block β. Hence
P ({β, γ}), P ({α, δ}), and P ({ε, ζ}) are each completable.

(g) P ({β, γ, δ, ε, ζ, η}) is 2-completable by Lemma 3.6; additionally P ({α}) is com-
pletable.

(h) By considering the doubles which share a row or column with ε, we may as-
sume without loss of generality that one of the following partial Latin arrays
is contained in P :

ε α β
α
β

ε α β
α
γ

ε α β
γ
δ

In the first case, either (2, 2, γ) or (2, 2, δ) belong to P , so without loss of
generality assume (2, 2, γ) ∈ P . Similarly in the third case, either (2, 2, δ) or
(2, 2, β) belong to P , so assume (2, 2, δ) ∈ P . Hence we may assume that P is
one of the following Latin arrays:

ε α β
α γ δ
β δ γ

ε α β
α δ γ
γ β δ

ε α β
γ δ α
δ β γ

In the first and last case, P ({α, β, ε}), P ({γ}), and P ({δ}) are each com-
pletable. In the second case, P ({α, ε}), P ({β, γ}), and P ({δ}) are each com-
pletable.

(i) The result holds if there is a way to pair each double with a singleton to
produce a completable induced partition. Assume to the contrary. Then by
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an argument similar to that given in the proof of Lemma 3.7, without loss of
generality, we may assume δ blocks each of α, β, and γ. But one location can
block at most two doubles, which is a contradiction.

(j) First suppose that α and β induce an intercalate (a subsquare of order 2).
Then we may assume P has the form

α β γ
β α δ
ε ζ η

.

Then P ({α, γ}), P ({β, δ}), and P ({ε, ζ, η}) are each completable. Now sup-
pose α and β do not induce an intercalate. Then an occurrence of α appears
in either a row with two singletons, or a column with two singletons; without
loss of generality, assume an occurrence of α appears in a row with singletons
γ and δ. In addition, either ε or ζ does not block β; without loss of generality,
assume ε does not block β. Hence P ({α, δ, γ}), P ({β, ε}), and P ({ζ, η}) are
each completable.

(k) Without loss of generality, assume β does not block α. Then P ({α, β}) is
completable and additionally, P ({γ, δ, ε, ζ, η, θ}) is 2-completable by Corollary
3.6.

(l) P is 3-completable by Lemma 3.6.

There are 64, 377, and 2432 partitions of n2 into parts of size at most n with
n = 4, 5, and 6, respectively. We confirmed, by analyzing each partition, that any
partial Latin array of order n is n-completable when 4 ≤ n ≤ 6. Thankfully, we found
that many partitions could be argued through similar methods. In some cases, with
the assistance of a computer, we were able to reduce the number of cases we needed
to consider by hand.

We use two additional criteria for building completable partial Latin squares using
only doubles and triples when n = 5 and n = 6. It follows from Theorem 2.1(c) that
if P ∈ PLS(5) is incompletable and ΣP consists of three doubles, then P contains an
intercalate. A double can form an intercalate with at most one other double, so if
P ∈ PLA(5) and ΣP contains at least 5 doubles, then there exist three doubles which
induce a partial Latin square without an intercalate, which is therefore completable.

Similarly, a result of R. Euler and Oleksik [5] implies that if P ∈ PLS(6) is
incompletable and ΣP consists of three triples, then P contains an intercalate. A
triple can form an intercalate with at most 3 other triples, so if P ∈ PLA(6) and ΣP

contains at least 9 triples, then there exist three triples which induce a partial Latin
square without an intercalate, which is therefore completable.
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