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Abstract

A vertex cut S of a connected graph G is a subset of vertices of G whose
deletion makes G disconnected. A super vertex cut S of a connected
graph G is a subset of vertices of G whose deletion makes G disconnected
and there is no isolated vertex in each component of G− S. The super-
connectivity of graph G is the size of the minimum super vertex cut of
G. Let KG(n, k) be the Kneser graph whose vertices are the k-subsets of
{1, . . . , n}, where k is the number of labels of each vertex in G. We have
shown in this paper that the conjecture from [G.B. Ekinci and J.B. Gauci,
Discuss. Math. Graph Theory 39 (2019), 5–11] on the super-connectivity
of the Kneser graph KG(n, k) is true when k = 3.
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1 Introduction

Let [n] = {1, . . . , n} be n labels. The Kneser graph G = KG(n, k) is the graph whose
vertices are the k-subsets of [n], and two vertices are adjacent if these two k-subsets
are disjoint, i.e. two vertices do not share labels. Let V (G) be the set of vertices of
G. It is clear that V (KG(n, k)) =

(
[n]
k

)
and KG(n, k) is regular with degree

(
n−k
k

)
.

A vertex cut S of a connected graph G is a subset of vertices of G whose deletion
disconnects G. The connectivity κ of G is the size of the minimum vertex cut of G.
If the deletion of any vertex cut of size κ in G will isolate a vertex, then G is super-
connected. A vertex cut which isolates a single vertex is called a trivial vertex cut of
G. When G is super-connected, it makes sense to determine the size of a minimum
nontrivial vertex cut of G, that is, the super-connectivity κ1 of G. And the smallest
nontrivial vertex cut is called a super-vertex cut of G. A complete graph Kn is a
simple graph with n vertices and an edge between every pair of vertices of Kn.

The concept of the Kneser graph was proposed by Kneser in 1955 [5]. Structural
properties of the Kneser graph have been studied extensively: for example, the hamil-
tonicity, chromatic number and the matchings within the graph. Chen and Lih [2]
proved that the Kneser graph is symmetric, vertex-transitive and edge-transitive.
Using this property, Ekinci and Gauci [3] showed that the connectivity of the Kneser
graph KG(n, k) is

(
n−k
k

)
. Harary [4] proposed the concept of super-connectivity

in 1983. Subsequently, Balbuena, Marcote and Garćıa-Vázquez [1] defined a simi-
lar concept, i.e. restricted connectivity of graphs. In this paper we investigate the
super-connectivity of the Kneser graph.

It is clear that if n < 2k, then KG(n, k) contains no edges, and if n = 2k, then
KG(n, k) is a set of independent edges. The Kneser graph KG(n, 1) is the complete
graph on n vertices. Ekini and Gauci made a conjecture in [3] which states:

Conjecture 1.1 Let n ≥ 2k + 1. Then the super-connectivity κ1 of KG(n, k) is

κ1 =

{
2
((

n−k
k

)− 1
)

if 2k + 1 ≤ n < 3k,

2
((

n−k
k

)− 1
)− (

n−2k
k

)
if n ≥ 3k.

Ekinci and Gauci [3] proved that this conjecture holds when k = 2. In this work we
prove the conjecture for the case when k = 3.

2 Super-Connectivity of KG(n, 3)

In this section we will determine the super-connectivity of KG(n, 3) when n ≥ 7 and
confirm that Conjecture 1.1 is true for k = 3.

Theorem 2.1 The super-connectivity of the Kneser graph KG(n, 3) is

κ1 =

{
2
((

n−3
3

)− 1
)

if 7 ≤ n ≤ 8,
2
((

n−3
3

)− 1
)− (

n−6
3

)
if n ≥ 9.
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Proof.
Let S ⊆ V (G) be a super-vertex cut of G. Suppose n ≥ 9 and |S| < 2

((
n−3
3

)− 1
)

− (
n−6
3

)
; then we have

|G− S| >
(
n

3

)
− 2

[(
n− 3

3

)
− 1

]
+

(
n− 6

3

)
=

54n− 204

6
= 9n− 34.

This means that if κ1 is less than the bound stated in the conjecture, then there will
be more than 9n− 34 vertices in G − S. In the following, we will show that G− S
has to be connected if it contains more than 9n− 34 vertices.

Since S is a super-vertex cut, then G− S has at least two components and each
component has at least 2 vertices. If G − S has a component containing exactly
two vertices, then it is straightforward that |S| = κ1 since S has to contain all the
neighbours of these two vertices, and also it is easy to see that there is no isolated
vertex in G− S.

Now we assume that each component of G − S has at least three vertices. We
also assume that G− S has two components C1, C2, with C2 = G − S − C1. Note,
in here, C2 might not be connected. If C2 is not connected, then C2 is the union of
some connected components with each having at least three vertices. Since C1 has
at least three vertices, let them be v1, v2, v3. These three vertices form possibly two
different graphs, either a complete graph K3 or a path P3 of length 2. If these three
vertices form a path, then there are two possibilities, either the two non-adjacent
vertices share only one common label, which we refer to as Type 1 path or the two
non-adjacent vertices share two common labels, which we refer to as Type 2 path.

We make the following three claims.

Claim 1: If there is a K3 in C1, then there are at most 27 vertices in C2.

Let the three vertices in C1 be v1 = {1, 2, 3}, v2 = {4, 5, 6}, v3 = {7, 8, 9}. Since
C1 and C2 are disconnected, every vertex in C2 has at least one label in common
with every vertex in C1, i.e. any vertex of C2 has to have a label from {1, 2, 3}, a
label from {4, 5, 6} and a label from {7, 8, 9}. Thus the number of vertices in C2 is
at most 33 = 27.

Claim 2: If there is a Type 1 path in C1, then there are at most 3n + 3 vertices
in C2.

Let the three vertices in C1 be v1 = {1, 2, 3}, v2 = {4, 5, 6}, v3 = {1, 7, 8}; the
common label of two end vertices is 1. Then similar to the proof of Claim 1, we
have a maximum of 3(n − 2) vertices in C2 contain label 1, since the vertices of
C2 in this case have to use a label in {4, 5, 6}. In this calculation we have double
counted three vertices {1, 4, 5}, {1, 4, 6}, {1, 5, 6}, and therefore there are at most
3(n− 2)− 3 vertices containing label 1 in C2. And there are at most 2 · 3 · 2 vertices
in C2 which do not contain label 1. Hence the number of vertices in C2 is at most
3(n− 2)− 3 + 12 = 3n+ 3.

Claim 3: If there is a Type 2 path P3 in C1, then there are at most 6n− 18 vertices
in C2.
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Let the three vertices in C1 be v1 = {1, 2, 3}, v2 = {4, 5, 6}, v3 = {1, 2, 7};
the set of common labels of the end vertices are {1, 2}. Similar to the previous
argument, we have a maximum of 3(n − 3) vertices in C2 containing label 1, but
not label 2. Similarly, we have a maximum of 3(n − 3) vertices in C2 containing
label 2, but not label 1. And there are at most three vertices in C2 containing both
labels {1, 2}, and there are at most three vertices in C2 containing neither label 1
nor label 2. Since we have double counted the 6 vertices {1, 4, 5}, {1, 4, 6}, {1, 5, 6},
{2, 4, 5}, {2, 4, 6}, {2, 5, 6}, it follows that the number of vertices in C2 is at most
2 · 3(n− 3) + 6− 6 = 6n− 18.

Next we will show that |C1 ∪ C2| ≤ 9n− 34, which implies that G− S has to be
connected if it contains more than 9n− 34 vertices. We consider the following cases.

Case 1: There are K3s in both C1 and C2.

If the three vertices in C1 form a complete graph K3, let them be v1 = {1, 2, 3},
v2 = {4, 5, 6}, v3 = {7, 8, 9}. Then by Claim 1, we have the number of vertices in
C2 is at most 27. If C2 also contains a K3, for example, {1, 4, 7}, {2, 5, 8}, {3, 6, 9},
then C1 ∪ C2 has at most 54 vertices. In these 54 vertices, we have double counted
the six vertices {1, 5, 9}, {1, 6, 8}, {2, 4, 9}, {2, 6, 7}, {3, 4, 8}, {3, 5, 7}. Additionally,
the vertex {2, 3, 7} can only be in C1 or S, {1, 4, 8} can only be in C2 or S; howeveri,
they are connected, and so one of them must be in S. Similarly for the pairs {5, 6, 7}
and {1, 4, 9}, {2, 3, 4} and {1, 5, 7}, and thus C1 ∪C2 has at most 45 vertices. When
n ≥ 9, 9n− 34 is larger than 45, and thus G− S is connected, i.e. C1 and C2 must
be connected in this case, a contradiction. So we know that C1 and C2 cannot both
contain K3. See Figure 1 for an illustration.

Figure 1: The case in C1 and C2

Case 2: There is a K3 in C1 or C2, but not in both.

Suppose C1 contains a K3 and C2 does not have a K3. Let the three vertices
in C1 be v1 = {1, 2, 3}, v2 = {4, 5, 6}, v3 = {7, 8, 9}. From Claim 1 we know that
there are at most 27 vertices in C2. If all 27 vertices are present in C2, it is easy
to verify that there are 36 K3s in C2, with no two K3s sharing an edge; however,
four K3s will share a vertex, for example, {1, 5, 7}, {2, 4, 8}, {3, 6, 9}, and {1, 5, 7},
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{2, 4, 9}, {3, 6, 8}, and {1, 5, 7}, {2, 6, 8}, {3, 4, 9}, and {1, 5, 7}, {2, 6, 9}, {3, 4, 8}
(see Figure 2). To make sure there is no K3 in C2, at least nine vertices (such as
{1, 5, 7}, {1, 6, 8}) have to be excluded from these 27 vertices. Thus there are at
most 27−9 = 18 vertices in C2. If there are exactly 18 vertices in C2, it implies that
these nine vertices that have been removed all contain a certain label, for example,
label 1. Otherwise, more than nine vertices have to be excluded to make sure there
is no K3 in C2.

Figure 2: The K3s in C2

There must be a path P3 in C2, either Type 1 or Type 2, or otherwise there will
be an isolated vertex or K2 in C2, which contradicts the assumption that the number
of vertices in each component of C2 is at least three.

For the first case, without loss of generality, assume the common label for two
end vertices of the path is 1, and the middle vertex in the path contains label 2.
We could further assume that the three vertices on the path are {1, 4, x}, {2, 5, y},
{1, 6, z} ∈ C2, where x �= y �= z and x, y, z ∈ {7, 8, 9}. From the proof of Claim 2, we
know that there are at most 3n+3 vertices in C1. However, we have double counted
seven vertices {1, 4, y}, {1, 5, 7}, {1, 5, 8}, {1, 5, 9}, {1, 6, y}, {2, 4, z}, {2, 6, x}, which
should be in either C1 or C2 but not in both. Thus, overall, C1∪C2 has no more than
18 + 3n+ 3− 7 = 3n+ 14 vertices, which is less than 9n− 34 when n ≥ 9, and then
C1 and C2 have to be connected, a contradiction. See Figure 3 for an illustration.

For the second case, assume the path consists of three vertices {1, 4, x}, {2, 5, y},
{1, 4, z} ∈ C2, where x �= y �= z and x, y, z ∈ {7, 8, 9}. From the proof of Claim 3, we
know that there are at most 6n − 18 vertices in C1. Since we have double counted
the eight vertices {1, 4, y}, {1, 5, 7}, {1, 5, 8}, {1, 5, 9}, {1, 6, y}, {2, 4, 7}, {2, 4, 8},
{2, 4, 9}, these vertices should be in either C1 or C2 but not in both. Thus, overall,
C1 ∪ C2 has no more than 18 + 6n − 18 − 8 = 6n − 8 vertices, which is less than
9n− 34 when n ≥ 9, and then C1 and C2 have to be connected, a contradiction. See
Figure 4 for an illustration.

Case 3: There is no K3 in either C1 or C2, that is, the components C1 and C2

contain P3s.
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Figure 3: The case in C1 and C2

Figure 4: The case in C1 and C2

We shall consider the following three sub-cases based on the type of the paths.

Suppose there is a Type 1 path in C1, and let the three vertices be v1 = {1, 2, 3},
v2 = {4, 5, 6}, v3 = {1, 7, 8}. Then by Claim 2, we know the number of vertices in
C2 is at most 3n+ 3.

Now look at these vertices in C2; there are at most 12 vertices which do not
contain label 1. If all of them are in C2, i.e. none of them is included in S, then these
12 vertices form two cycles of length 6. Of course, if some of the vertices are in S,
then the rest of the vertices in each cycle form a set of paths. The rest of the vertices
in C2 all contain label 1, and thus are not connected to each other, but they are
connected to the vertices which do not contain label 1. Next, we claim that either
there is a Type 1 path, for example, {1, 4, 7}, {2, 5, 8}, {1, 6, 9}, or there will be no
more than 2n+ 4 vertices in C2. To see this, suppose we have no such desired path,
and there are up to n− 2 vertices containing both labels {1, 4}, and there could be
up to n − 2 vertices in C2 containing both labels {1, 5}. Clearly not all 12 vertices
with no label 1 are in C2, since among those 12 vertices, the ones such as {2, 6, 7},



Y. CHEN ET AL. /AUSTRALAS. J. COMBIN. 82 (2) (2022), 201–211 207

{2, 6, 8}, {3, 6, 7}, {3, 6, 8} will give us a desired path. Thus there are at most eight
among these 12 vertices which could be in C2. Also note that there must be some
vertices from these 12 vertices contained in C2, or otherwise we have a set of singular
vertices in C2. Then the number of vertices in C2 is at most 2(n−2)+8 = 2n+4. If
there are vertices containing both labels {1, 6} in C2, then for sure we see the desired
path.

If we have the desired Type 1 path in C2, let the three vertices be {1, 4, x},
{2, 5, y}, {1, 6, z}, where x �= y �= z and x, z ∈ {3, 7, . . . , n}, y ∈ {7, 8}. Then based
on the proof of Claim 2, C1 has maximum 3n + 3 vertices, and thus C1 ∪ C2 has a
maximum of 6n + 6 vertices. Also note that we have double counted the vertices
of the form {1, 5, a}, where a ∈ {2, 3, 4, 6, . . . , n}, and vertices {1, 2, 4}, {1, 2, 6},
{1, 4, y}, {1, 6, y}, which both appear in C1 and C2 in our calculation. Meanwhile,
{2, 4, 6} is only in C1 or S, and the vertex {3, 5, 7} is either in C2 or S. Depending
on the choice of x, y, z, the vertex {3, 5, 7} could also appear in C1; for example, in
the case x = 3, y = 8, z = 7. If {3, 5, 7} is either in C2 or S, as {2, 4, 6} and {3, 5, 7}
are connected, it follows that one of them must be in S. If {3, 5, 7} is in C1, then
{3, 5, 7} is not in C2, and thus we know the size of C2 has to be one less than the
maximum possible. The same holds for {1, 2, 7} and {3, 5, 8}, {1, 2, 8} and {3, 6, 7}.
Therefore there are no more than 5n − 1 vertices in C1 ∪ C2, and 9n − 34 is larger
than 5n− 1 when n ≥ 9, so then C1 and C2 have to be connected, a contradiction.
See Figure 5 for an illustration.

Figure 5: The case in C1 and C2

If there is no desired Type 1 path, then C2 has at most 2n + 4 vertices, and
we know there is a Type 2 path in C2. Let the two shared labels be {1, 4} and
let the three vertices be {1, 4, x}, {2, 5, y}, {1, 4, z} as shown in Figure 6, where
x �= y �= z and x, z ∈ {3, 6, . . . , n}, y ∈ {7, 8}. Based on the proof of Claim 3,
there is a maximum of 6n − 18 vertices in C1. Since we have double counted the
vertices of the form {1, 5, a}, where a ∈ {2, 3, 4, 6, . . . , n}, and vertices {1, 2, 4},
{1, 2, 6}, {1, 4, y}, {1, 6, y}, {2, 4, 7}, {2, 4, 8}, which both appear in C1 and C2 in
our calculation, therefore, there are no more than 7n − 20 vertices in C1 ∪ C2, and
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9n− 34 is larger than 7n− 20 when n ≥ 9, so then C1 and C2 have to be connected.
This is a contradiction.

Figure 6: The case in C1 and C2

Now assume that there is no Type 1 path in C1. Then there must be a Type 2
path in C1. Let the three vertices on the path be v1 = {1, 2, 3}, v2 = {4, 5, 6},
v3 = {1, 2, 7}. Then by Claim 3 we know that the number of vertices in C2 is at
most 6n− 18.

The case where there is a Type 2 path in C1 and a Type 1 path in C2 is the same
as the case where there is a Type 1 path in C1 and a Type 2 path in C2. The latter
we have considered before, so here we only consider the case where there is a Type 2
path in C1 and there is also a Type 2 path in C2.

Suppose, in C2, that there are vertices containing both labels {1, 4} and vertices
containing both labels {2, 5}. Then there is no vertex containing both labels {1, 6}
and no vertex containing both labels {2, 6}, and furthermore, there is no vertex
containing either label 1 or label 2 in C2. This implies that there is no vertex
containing both labels {1, 2} in C2, since the vertices with both {1, 2} only connect
the vertices with no {1, 2} in C2, or otherwise a Type 1 path or K3 will appear in
C2. Then the number of vertices in C2 is at most 4(n − 3) − 2, i.e. at most n − 3
vertices contain both labels {1, 4}, at most n− 3 vertices contain both labels {1, 5},
at most n− 3 vertices contain both labels {2, 4} and at most n− 3 vertices contain
both labels {2, 5}, and we have double counted the vertices {1, 4, 5} and {2, 4, 5}.
Then the Type 2 path in C2 can be {1, 4, x}, {2, 5, y}, {1, 4, z}, where x �= y �= z
and x, y, z ∈ {3, 6, . . . , n}. Based on the proof of Claim 3, there exist a maximum of
6n−18 vertices in C1. Since we have double counted the vertices of the form {1, 5, a}
and {2, 4, b}, where a ∈ {2, 3, 4, 6, . . . , n} and b ∈ {1, 3, 5, . . . , n}, which both appear
in the C1 and C2 in our calculation, it follows that there is no more than 8n − 28
vertices in C1∪C2. Now G−S = 9n−34 is larger than 8n−28 when n ≥ 9, and thus
C1 and C2 have to be connected, a contradiction. See Figure 7 for an illustration.

So far we have shown that if n ≥ 9, then G−S has to be connected, and therefore
the conjecture is true.
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Figure 7: The case in C1 and C2

When n = 7, only a Type 2 path is possible in the graph. Let the three vertices
in C1 be v1 = {1, 2, 3}, v2 = {4, 5, 6}, v3 = {1, 2, 7}. Then based on the proof
of Claim 3, the number of vertices of C2 is at most 6n − 18 = 24, that is, nine
vertices contain label 1, but not label 2, nine vertices contain label 2, but not label
1, three vertices contain both labels {1, 2} and three vertices contain neither label 1
nor label 2.

Because C2 has at least three vertices, and it only has a Type 2 path, let the three
vertices on the path be {1, 4, x}, {2, 5, y}, {1, 4, z}, where x �= y �= z and {x, y, z} =
{3, 6, 7}; then there are possibly three paths, depending on the choice of y. The three
paths are {1, 4, 3}, {2, 5, 6}, {1, 4, 7} and {1, 4, 6}, {2, 5, 3}, {1, 4, 7} and {1, 4, 3},
{2, 5, 7}, {1, 4, 6}. If the first path is present in C2, based on the proof of Claim 3,
C1 has at most 6n− 18 = 24 vertices, since we have double counted the 16 vertices
{1, 2, 4}, {1, 2, 5}, {1, 2, 6}, {1, 3, 5}, {1, 3, 6}, {1, 4, 5}, {1, 4, 6}, {1, 5, 6}, {1, 5, 7},
{1, 6, 7}, {2, 3, 4}, {2, 4, 5}, {2, 4, 6}, {2, 4, 7}, {3, 5, 7}, {3, 6, 7}. Meanwhile, {4, 5, 7}
can only be in C1 or S, {2, 3, 6} can only be in C2 or S, but they are connected, so
that one of them must be in S, and the same for {3, 4, 5} and {2, 6, 7}, {3, 4, 6} and
{2, 5, 7}, {4, 6, 7} and {2, 3, 5}. Thus, overall, there are no more than 24+24−16−4 =
28 vertices, which is less than |G|−κ1 = 29, so then C1 and C2 have to be connected.
This is a contradiction. We can discuss the second path and the third path in the
same way, to arrive at the same conclusion, i.e. the number of vertices in C1 ∪ C2 is
at most 24 + 24− 16− 4 = 28, which is less than |G| − κ1 = 29, so then C1 and C2

have to be connected, a contradiction.

When n = 8, the three vertices in C1 form a path P3 of length 2, and it is possible
for C1 and C2 to contain a Type 1 path or Type 2 path; thus we have to look into
each case.

First, let C1 have a Type 1 path v1 = {1, 2, 3}, v2 = {4, 5, 6}, v3 = {1, 7, 8}. Then
based on the proof of Claim 2, the number of vertices in C2 is at most 3n+ 3 = 27,
that is, 15 vertices contain label 1 and 12 vertices do not contain label 1.

If we have a Type 1 path in C2, for example, {1, 4, x}, {2, 5, y}, {1, 6, z}, where
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x �= y �= z and x, z ∈ {3, 7, 8}, y ∈ {7, 8}, then there are possibly four paths; they
are {1, 4, 3}, {2, 5, 7}, {1, 6, 8} and {1, 4, 8}, {2, 5, 7}, {1, 6, 3} and {1, 4, 3}, {2, 5, 8},
{1, 6, 7} and {1, 4, 7}, {2, 5, 8}, {1, 6, 3}, respectively. If the first path is present in
C2, based on the proof of Claim 2, C1 has at most 3n+3 = 27 vertices, since we have
double counted the 13 vertices {1, 2, 4}, {1, 2, 5}, {1, 2, 6}, {1, 3, 5}, {1, 4, 5}, {1, 4, 7},
{1, 5, 6}, {1, 5, 7}, {1, 5, 8}, {1, 6, 7}, {2, 4, 8}, {3, 5, 8}, {3, 6, 7}. Meanwhile, {1, 2, 7}
can only be in C1 or S, {3, 4, 8} can only be in C2 or S, but they are connected,
so then one of them must be in S, and the same holds i for the pairs {2, 4, 6} and
{3, 5, 7}, {4, 5, 8} and {2, 6, 7}, {4, 7, 8} and {1, 3, 6}. Thus, overall, there are no
more than 27+27−13−4 = 37 vertices, which is less than |G|−κ1 = 38, so then C1

and C2 have to be connected, a contradiction. We can discuss the second path, the
third path and the fourth path in the same way and arrive at the same contradiction.

If we have a Type 2 path in C2, for example, {1, 4, x}, {2, 5, y}, {1, 4, z}, where
x �= y �= z and x, z ∈ {3, 6, 7, 8}, y ∈ {7, 8}, then based on the proof of Claim 3, C1

has at most 6n − 18 = 30 vertices. We have double counted 13 vertices: {1, 2, 4},
{1, 2, 5}, {1, 2, 6}, {1, 3, 5}, {1, 4, 5}, {1, 4, y}, {1, 5, 6}, {1, 5, 7}, {1, 5, 8}, {1, 6, y},
{2, 4, 7}, {2, 4, 8}, {3, 4, y}. Meanwhile, {1, 2, 7} can only be in C1 or S. The vertex
{3, 5, 8} is either in C2 or S. Depending on the choice of x, y, z, the vertex {3, 5, 8}
could also appear in C1, for example, when x = 3, y = 7, z = 8. If {3, 5, 8} is either
in C2 or S, as {1, 2, 7} and {3, 5, 8} are connected, then one of them must be in S. If
{3, 5, 8} is in C1, then we know the size of C2 has to be one less than the maximum
possible. The same holds for {1, 2, 8} and {3, 5, 7}, {3, 4, 5} and {2, 6, 7}, {4, 5, 7}
and {2, 6, 8}, {4, 5, 8} and {3, 6, 7}, {2, 4, 5} and {3, 6, 8}. Now {4, 7, 8} can only be
in C1 or S, {1, 3, 6} can only be in C2 or S, but they are connected, so then one of
them must be in S. Thus, overall, there are no more than 27 + 30 − 13 − 7 = 37
vertices, which is less than |G| − κ1 = 38, so then C1 and C2 have to be connected,
a contradiction.

Second, let C1 have a Type 2 path v1 = {1, 2, 3}, v2 = {4, 5, 6}, v3 = {1, 2, 7}.
Then based on the proof of Claim 3, the number of vertices of C2 is at most 6n−18 =
30, that is, 12 vertices contain label 1, but not label 2, 12 vertices contain label 2,
but not label 1, three vertices contain both labels {1, 2} and three vertices contain
neither label 1 nor label 2.

The case where there is a Type 2 path in C1 and a Type 1 path in C2 is similar
to the case where there is a Type 1 path in C1 and a Type 2 path in C2. The latter
we have considered already, so here we only need to consider the case where there is
a Type 2 path in C1 and there is also a Type 2 path in C2.

Suppose, in C2, that there are vertices containing both labels {1, 4} and vertices
containing both labels {2, 5} in C2; then there is no vertex containing both labels
{1, 6}, and there is no vertex containing both labels {2, 6} in C2, or otherwise a
Type 1 path will appear in C2. Then the number of vertices in C2 is at most
4 · 5 + 6 − 2 = 24, i.e. at most five vertices contain both labels {1, 4}, at most five
vertices contain both labels {1, 5}, at most five vertices contain both labels {2, 4}
and at most five vertices contain both labels {2, 5}; at most three vertices contain
both labels {1, 2} and at most three vertices contain neither label 1 nor label 2, and
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we have double counted the vertices {1, 4, 5} and {2, 4, 5}. Then the Type 2 path
in C2 can be {1, 4, x}, {2, 5, y}, {1, 4, z}, where x �= y �= z and x, y, z ∈ {3, 6, 7, 8};
based on the proof of Claim 3, there is a maximum of 6n − 18 = 30 vertices in C1.
Note we have double counted the 14 vertices {1, 2, 4}, {1, 2, 5}, {1, 2, 6}, {1, 3, 5},
{1, 4, 5}, {1, 4, y}, {1, 5, 6}, {1, 5, 7}, {1, 5, 8}, {2, 3, 4}, {2, 4, 5}, {2, 4, 6}, {2, 4, 7},
{2, 4, 8}, which all appear in the C1 and C2 in our calculation. Furthermore, {3, 4, 5}
can only be in C1 or S, and the vertex {1, 6, 7} is either in C2 or S. Depending on
the choice of x, y, z, the vertex {1, 6, 7} could also appear in C1, for example, when
x = 6, y = 7, z = 8. If {1, 6, 7} is either in C2 or S, as {3, 4, 5} and {1, 6, 7} are
connected, then one of them must be in S. If {1, 6, 7} is in C1, then we know the
size of C2 has to be one less than the maximum possible. The same holds for pairs
{4, 5, 7} and {1, 6, 8}, {4, 5, 8} and {1, 3, 6}, {1, 2, 8} and {3, 5, 7}. Therefore, there
are no more than 24 + 30 − 14 − 4 = 36 vertices in C1 ∪ C2, and |G| − κ1 = 38 is
larger than 36, so then C1 and C2 have to be connected, a contradiction.

In summary, we have proved that when k = 3 the conjecture is true, and the
bound is achieved only in the case that one of the disconnected components contains
just two vertices linked by an edge.
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