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Abstract

For each nonnegative integer i, let ai be the number of i-subsets of V (G)
that induce an acyclic subgraph of a given graph G. We define A(G, x) =∑

i�0 aix
i (the generating function for ai) to be the acyclic polynomial for

G. After presenting some properties of these polynomials, we investigate
the nature and location of their roots.

1 Introduction

A variety of graph polynomials have been studied, both for applied and theoreti-
cal considerations. Perhaps the best known family, chromatic polynomials, counts
the number of proper colourings of graphs, and was introduced in the study of the
Four Colour Problem, but has morphed over the years into an important field in its
own right (see, for example, [28]). Reliability polynomials are a well-studied model
of network robustness to probabilistic failures, and have attracted interest for both
applied and pure perspectives (see [22]). Other graph polynomials have arisen as
generating functions for subsets of vertex sets or edge sets of a graph, especially
those having certain properties. Such polynomials allow for a finer investigation of
the graph property in question, allowing an encoding of the minimum or minimum
cardinality of such sets and the totality of the number of such sets. For example,
independence polynomials are generating functions for independent sets of a graph,
while domination polynomials enumerate dominating sets. For all these graph poly-
nomials, work has varied from calculation and optimality to analytic properties and
roots.
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Given a (finite, undirected) graph G, we define the acyclic polynomial, A(G, x),
of G to be the generating function for the number of acyclic subsets of V (G) (i.e.,
vertex subsets that induce acyclic subgraphs of G). Specifically,

A(G, x) =
∑
i�0

aix
i

where ai = |{S ⊆ V (G) : |S| = i and G[S] is acyclic}| is the number of acyclic
vertex sets of cardinality i.1 We remark that the collection A(G) of acyclic vertex
subsets (that is, subsets of V (G) that induce an acyclic subgraph) of a graph G
forms a (simplicial) complex, that is, it is closed under containment, and the acyclic
polynomial of G is what is known as the face polynomial, or simply f -polynomial,
of the complex (the (combinatorial) dimension of the complex is the maximum size
of any set in the complex, and we shall say that G has acyclic dimension d if the
acyclic complex of G, A(G), has dimension d).

In the remainder of this first section of the paper we discuss several aspects of
acyclic polynomials such as how they relate to decycling of graphs, how they do (or do
not) encode certain graph invariants, the computational complexity of determining
and/or evaluating them, and showing that they do not arise from evaluations of
Tutte polynomials.

In Section 2 we focus on acyclic roots, namely the roots of acyclic polynomials.
For acyclic polynomials of degree 3 we show that the roots all lie in the left half
of the complex plane, and that arbitrarily large modulus is possible. For acyclic
polynomials more generally (i.e., of any degree) we characterize those graphs for
which the roots are all real as well as which rational numbers are acyclic roots. We
also consider the maximum and minimum growth of the moduli of the roots, and
we show that roots can exist in the right half-plane. In Section 3 we conclude with
several open problems.

1.1 Acyclic Polynomials and Decycling

Any subset S of the vertex set V (G) of a graph G such that G − S (the subgraph
of G that is induced by the vertices of V (G) \ S) is a forest (i.e., acyclic) is known
as a decycling set or feedback vertex set for the graph G. For an introduction to
the topic of decycling of graphs, see [10, 12]. Determining whether an arbitrary
graph G has a decycling set of a given cardinality is an NP-complete problem [39].
Nevertheless, calculating the size ∇(G) of a smallest decycling set for a graph G is
a problem of practical interest as it has several natural applications, such as that
of avoiding short-circuits and other forms of feedback in electrical networks [31].
For certain classes of graphs this problem is tractable, such as for complete graphs,

1Note that the term “acyclic polynomial” already exists within the scientific literature. Histori-
cally, it referred to a polynomial that is now more commonly described as the “matching polynomial”
and which is closely related to the generating function for the number of matchings of size i within
a graph. See [29, page 263] for more details. Given that the term “acyclic polynomial” has fallen
out of use from its original context, we now put the term to new use by defining it as the generating
function for the number of acyclic induced subgraphs of order i that are within a given graph.
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complete bipartite graphs, cubic graphs [44, 54], Cartesian products of cycles [50],
and generalized Petersen graphs [32]. For instance, ∇(Kn) = n− 2 whenever n � 2,
∇(Km,n) = min{m,n} − 1 whenever min{m,n} � 2, and ∇(Cm�Cn) = �mn+2

3
�

whenever m,n ∈ {3, 5, 6, 7, . . .}.
The complement V (G) \ S of a decycling set S in a graph G induces an acyclic

subgraph of G. Let Υ(G) = |V (G)| − ∇(G) denote the acyclic dimension of G and
observe that Υ(G) is also the degree of the acyclic polynomial A(G, x). Hence deter-
mining A(G, x) enables the decycling number ∇(G) to be found. This observation,
and the potential that acyclic polynomials might address some problems involving
decycling of graphs, provided our initial motivation for studying acyclic polynomials.

We note that the acyclic dimension of graphs has itself been an active area of
research. At a conference in 1977, Albertson and Berman posed the still-open con-
jecture that Υ(G) � |V (G)|/2 for any simple planar graph G [2]; a result of Borodin
implies that Υ(G) � 2|V (G)|/5 for every planar graph G [14]. For graphs in general
(not necessarily planar) in 1987, Alon, Kahn and Seymour established a lower bound
of Υ(G) �

∑
v∈V (G) min{1, 2

1+deg(v)
} and hence Υ(G) � 2|V (G)|/(1 + Δ(G)), where

Δ(G) denotes the maximum degree of G [4]. More recently it has been shown that
Υ(G) � (8|V (G)| − 2|E(G)| − 2)/9 for every connected graph G [52] and also that
Υ(G) � 6|V (G)|/(2Δ(G)+ω(G)+2) where ω(G) denotes the order (i.e., the number
of vertices) of a maximum clique in G [40].

1.2 Acyclic Polynomials and Graph Invariants

While determining the degree Υ(G) of A(G, x) is generally intractable, certainly
some individual coefficients of the acyclic polynomial A(G, x) =

∑
i�0 aix

i of a given
graph G can be easily determined. Let σi = σi(G) denote the number of i-cycles in
a graph G of order n and observe:

• Clearly ai �
(
n
i

)
for all i. Moreover, if a non-acyclic graph G has girth g then

ai =
(
n
i

)
for each i ∈ {0, 1, . . . , g − 1} and ag =

(
n
g

) − σg <
(
n
g

)
, whereas if

G is acyclic then ai =
(
n
i

)
for each i � n. In particular, a0 = 1, a1 = n and

a2 =
(
n
2

)
.

• As ai is the number of sets (or faces) of cardinality i in the complex A(G) and
the complex clearly has dimension Υ(G) = n−∇(G), we have ai > 0 for each
i ∈ {0, 1, . . . ,Υ(G)} and ai = 0 for each i > Υ(G).

• There are well known inequalities, known as Sperner bounds (see, for example,
[53]), for the cardinalities of faces of each size in a complex, and these imply
that

ai �
(
n− i+ 1

i

)
ai−1.

We summarize these observations as follows:

Theorem 1.1. If G and H have the same acyclic polynomial, then they have the
same order, girth and decycling number. �
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While the acyclic polynomial encodes the order, girth and decycling number of a
graph, it does not encode some other basic invariants:

• The acyclic polynomial does not encode the number of edges. For example,
any two acyclic graphs of order n share the same acyclic polynomial (1 + x)n,
but they can have a different number of edges if n � 2. Even for connected
graphs that contain cycles, there are examples. Let n be an odd integer, let
G1 denote the graph obtained by adding a single pendant vertex to one of the
vertices of Kn−1, and let G2 denote the graph obtained by removing the n−1

2

edges of a maximum matching from the complete graph Kn. Then A(G1, x) =
A(G2, x) = 1+nx+

(
n
2

)
x2+

(
n−1
2

)
x3. However, for all n � 5, |E(G1)| �= |E(G2)|

and so as n varies we obtain an infinite family of pairs of distinct connected
graphs that share the same acyclic polynomial but have different numbers of
edges.

• The acyclic polynomial does not encode whether a graph is bipartite. To
demonstrate this, it suffices to find two graphs, one bipartite and the other
not bipartite, that share the same acyclic polynomial. Two such graphs are
illustrated in Figure 1. These two graphs both have 1 + 7x + 21x2 + 35x3 +
32x4 + 12x5 as their acyclic polynomial.

• Whereas the acyclic polynomial does encode the girth of a graph, it can be
observed from the graphs shown in Figure 1 that the circumference of a graph
is not encoded (note that the graph on the right is Hamiltonian, but the one
on the left is not Hamiltonian).

Theorem 1.2. The acyclic polynomial does not encode the number of edges, the
bipartiteness or the circumference of a graph. �

Figure 1: A bipartite graph and a non-bipartite graph with identical acyclic polyno-
mials

1.3 The Complexity of Calculating Acyclic Polynomials

For some families of graphs, the entire acyclic polynomial can be determined fairly
easily. For instance, for complete graphs we have A(Kn, x) = 1 + nx +

(
n
2

)
x2 and

for cycles we have A(Cn, x) =
∑n−1

i=0

(
n
i

)
xi = (1 + x)n − xn. As a more interesting

example, cographs are those graphs that can be built recursively from a single vertex
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via disjoint union and join operations. Equivalently, cographs can be characterized as
those graphs that do not contain any path P4 of order 4 as an induced subgraph [24].
Given two graphs G and H , we denote their disjoint union as G ∪H and their join
as G + H (the join of two graphs G and H is formed from their disjoint union by
adding in all edges between a vertex of G and a vertex of H). It is elementary that

A(G ∪H, x) = A(G, x) ·A(H, x) (1.1)

because the union of acyclic vertex sets from disjoint graphs G and H is acyclic in
G ∪ H . The effect of the join operation is more subtle, and it involves one other
graph polynomial. For any graph G, let I(G, x) be the independence polynomial for
G, that is, the generating function of the independent sets of G (a set of vertices
is independent if it contains no edge). Independence polynomials have been well
studied (see, for example, [34, 42]). Their behaviour under disjoint union and join is
quite straightforward:

I(G ∪H, x) = (I(G, x)) · (I(H, x)) (1.2)

and
I(G+H, x) = I(G, x) + I(H, x)− 1. (1.3)

We now address how to calculate the acyclic polynomial of the join of two graphs
from the acyclic and independence polynomials of each of the two graphs being
joined.

Theorem 1.3. For any graphs G and H, of orders nG and nH respectively,

A(G +H, x) = A(G, x) + A(H, x) + nGxI(H, x) + nHxI(G, x)

+

((
n

2

)
− 2nGnH −

(
nG

2

)
−
(
nH

2

))
x2 − nx− 1,

where n = nG + nH .

Proof. Suppose S ⊆ V (G + H) induces an acyclic subgraph of G + H . Let SG =
S ∩ V (G) and SH = S ∩ V (H). Necessarily min{|SG|, |SH|} � 1 for otherwise the
subgraph of G + H induced by S is not acyclic. Hence one of the following four
statements holds:

(i) |SG| = 0 and SH induces an acyclic subgraph of H , or

(ii) |SG| = 1 and SH consists of an independent set in H , or

(iii) |SH | = 0 and SG induces an acyclic subgraph of G, or

(iv) |SH | = 1 and SG consists of an independent set in G.
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By using the notation [xt] f(x) to denote the coefficient of the xt term of the
polynomial f(x), then

[xi]A(G+H, x) =

[xi]A(H, x) + |V (G)|[xi−1] I(H, x) + [xi]A(G, x) + |V (H)|[xi−1] I(G, x)

when i � 3. By summing over all i � 3, it follows that

A(G +H, x)−
(
n

2

)
x2 − nx− 1 =

(
A(H, x)−

(
nH

2

)
x2 − nHx− 1

)

+ nGx (I(H, x)− nHx− 1)

+

(
A(G, x)−

(
nG

2

)
x2 − nGx− 1

)

+ nHx (I(G, x)− nGx− 1) .

Therefore

A(G +H, x) = A(G, x) + A(H, x) + nGxI(H, x) + nHxI(G, x)

+

((
n

2

)
− 2nGnH −

(
nG

2

)
−
(
nH

2

))
x2 − nx− 1.

�

It was observed by one of our referees that the acyclic polynomial of a graph can
be expressed in monadic second-order logic (MSOL). Specifically, note that

A(G, x) =
∑

S⊆V (G) : (V (G),E(G),S)|=ϕ(S)

x|S|

where ϕ(S) is an MSOL expression indicating that S is an acyclic set in G. Equiv-
alently, ϕ(S) indicates that the subgraph of G induced by S has no K3-minor. Sec-
tion 1.3 of [26] shows how to formulate a logical expression to indicate that a graph
has no H-minor, where H is any fixed simple loopless graph. As a consequence of
being able to express A(G, x) in monadic second-order logic, it follows by a theorem
due to Courcelle, Makowsky and Rotics [27] that the evaluation of A(G, x) for graphs
of bounded clique-width is fixed parameter tractable. In the case of cographs (which
have clique-width at most 2) we are able to do much better.

Theorem 1.4. If G is a cograph, then A(G, x) can be calculated in linear time.

Proof. Recall that cographs are graphs that can be constructed through a collec-
tion of disjoint union and join operations. Recognizing that a graph is a cograph
and determining the sequence of operations that comprise its construction can be
accomplished in linear time [25]. For a cograph of order n, this sequence consists of
n − 1 operations. For each disjoint union operation, the acyclic and independence
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polynomials of the graph arising from the operation can be calculated from the poly-
nomials of the two ingredient graphs by using Equations (1.1) and (1.2). For each
join operation, the acyclic and independence polynomials of the graph arising from
the operation can be calculated by using Equation (1.3) and Theorem 1.3. For either
operation these calculations take constant time. �

Since it is, in general, NP-hard to determine the decycling number ∇(G) of a
graph G, it is likewise intractable to determine the acyclic polynomial A(G, x) for a
general graph. However, we can ask whether the task of evaluating the acyclic poly-
nomial for certain choices of x (without actually determining the polynomial itself)
can be performed efficiently. This type of question has been investigated for other
graph polynomials; for the chromatic polynomial see [33, 45], and for the indepen-
dence polynomial see [19]. For us to proceed, observe that Theorem 1.3 enables the
following interesting and important connection between acyclic and independence
polynomials for graphs to be derived.

Corollary 1.5. For any graph G, A(G +K1, x) = A(G, x) + xI(G, x).

In particular note that an oracle for determining (or evaluating) acyclic polyno-
mials therefore enables the calculation (or evaluation) of independence polynomials.
It now follows that the only acyclic polynomial evaluation that is tractable is for
x = 0, for which A(G, 0) = 1 for every graph G.

Theorem 1.6. Evaluating the acyclic polynomial for an arbitrary graph G and
nonzero x is intractable.

Proof. It is known that evaluating I(G, x) is #P-hard for each x ∈ C \ {0} [19].
It therefore follows from Corollary 1.5 that evaluating the acyclic polynomial for an
arbitrary graph G and nonzero x is also intractable. �

It follows immediately that determining A(G, 1), the total number of induced
forests of a graph G, is #P-hard.

1.4 The Acyclic Polynomial is not an Evaluation of the Tutte Polynomial

If one concerns oneself with acyclic edge sets rather than vertex sets, then the cor-
responding complex is in fact a well known matroid, the graphic matroid of graph
G, and its f -polynomial is a simple evaluation of G’s Tutte polynomial. The acyclic
polynomials we propose here do not arise as evaluations of Tutte polynomials, as
can be seen by the following argument (which was provided to us by an anonymous
referee).

The most general edge elimination invariant (the ξ polynomial) was introduced
in [7, 8] as a generalization of the Tutte and matching polynomials. In the definition
below, −e, /e and †e denote the edge deletion, contraction and extraction of e from
G (the extraction is the graph formed from G by removing the endpoints of e and
all incident edges), and G ∪H is the disjoint union of G and H .
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Definition 1.7. Let F be a graph parameter with values in a ring R. F is an
EE-invariant if there exist α, β, γ ∈ R such that

F (G) = F (G−e) + αF (G/e) + βF (G†e),

where e ∈ E(G), with the additional conditions that F (∅) = 1, F (K1) = γ and
F (G ∪H) = F (G) · F (H).

Let ξ(G; x, y, z) be the graph polynomial defined by

ξ(G; x, y, z) =
∑

A,B⊆E(G)

xc(A∪B)−cov(B)y|A|+|B|+c(A∪B)−cov(B)zcov(B),

where the summation is over all subsets A and B of E(G) such that the vertex
subsets V (A) and V (B) covered by A and B, respectively, are disjoint, c(A) is
the number of connected components in (V (G), A), and cov(B) is the number of
connected components of (V (B), B).

Theorem 1.8. [7] Let G be a graph. Then

(i) ξ(G; x, y, z) is an EE-invariant.

(ii) Every EE-invariant is a substitution instance of ξ(G; x, y, z) multiplied by some
factor s(G) which only depends on the number of vertices, edges and connected
components of G.

(iii) Both the matching polynomial and the Tutte polynomial are EE-invariants given
by

T (G; x, y) = (x− 1)−c(E(G))(y − 1)−|V (G)|ξ(G; (x− 1)(y − 1), y − 1, 0),

and
M(G;w1, w2) = ξ(G;w1, 0, w2).

Theorem 1.9. The acyclic polynomial A(G, x) is not an EE-invariant, and hence
not an evaluation (i.e., substitution instance) of the Tutte polynomial (or the match-
ing polynomial).

Proof. Assume, to reach a contradiction, that the acyclic polynomial A(G, x) is an
EE-invariant for some α, β, γ. For the path Pn of order n with e an edge adjacent to
a leaf, we have that

(Pn)−e = K1 ∪ Pn−1, (Pn)/e = Pn−1, (Pn)†e = Pn−2,

while for the cycle Cn of order n with e any edge of the cycle,

(Cn)−e = Pn, (Cn)/e = Cn−1, (Cn)†e = Pn−2.

From

A(Pn, x) = (1 + x)n = (1 + x)(1 + x)n−1 + α(1 + x)n−1 + β(1 + x)n−2
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we find that α = β = 0. However, then

A(Cn, x) = (1 + x)n − xn = (1 + x)n + α((1 + x)n−1 − xn−1) + β(1 + x)n−2,

from which it follows that xn = 0, a contradiction. Thus A(G, x) is not an EE-
invariant, and hence not an evaluation of the Tutte polynomial (or the matching
polynomial).

2 Acyclic Roots

The roots of many graph polynomials have received considerable attention:

• For chromatic polynomials, the chromatic number of a graph G is simply the
least positive integer that is not a root of its polynomial, and the infamous Four
Colour Theorem can be stated as: 4 is never a root of a chromatic polynomial
of a planar graph. There are many, many results on chromatic roots, that
is, the roots of chromatic polynomials (see, for example, [28, Chapters 12-
14]), including that chromatic roots are dense in the whole complex plane, the
closure of the real chromatic roots is [32

27
,∞), and that the chromatic roots of

a graph with maximum degree Δ are within the disk {z ∈ C : |z| � 8Δ}.
• Given a graphG where vertices are always operational but each edge is indepen-
dently operational with probability p, the all-terminal reliability (polynomial)
of G is the probability that all vertices can communicate, that is, the opera-
tional edges contain a spanning tree of the graph. The roots of all-terminal
reliability polynomials were studied first in [17], where it was conjectured that
they all lay in the unit disk centered at z = 1 (the real roots were shown to
be in the disk, and the closure of the roots contained the disk). While the
conjecture remained open for approximately 10 years, it was finally shown [51]
to be false, but only by the slimmest of margins (the furthest a root is known
to be away from z = 1 is approximately 1.14 [20]). It is still unknown whether
roots of all-terminal reliability are unbounded.

• The independence polynomial I(G, x) of a graph G is the generating polynomial∑
ikx

k for the number of independent sets ik of each cardinality k. There are
many interesting results about the roots of independence polynomials (cf. [42]),
including Chudnovsky and Seymour’s beautiful paper [21] showing that the
roots of independence polynomials of claw-free graphs (i.e., graphs that do not
contain an induced star K1,3) are real (and hence the coefficients are unimodal,
that is, nondecreasing, then nonincreasing).

More generally, the roots of polynomials are interesting for a number of reasons.
The nature and location of roots can also show relationships among the coefficients,
and the regions that (or do not) contain roots can show interesting structure. For
example, if a polynomial f with positive coefficients has all real roots, then the
sequence of coefficients of f is unimodal, and extension shows the same is true pro-
vided all of the roots of f lie in the sector {z ∈ C : 2π/3 � argz � 2π/3} (see [16]).
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Michelen and Sahasrabudhe [49] prove that if a polynomial h is the probability gener-
ating function of a random variable X ∈ {0, 1, . . . , n} with sufficiently large standard
deviation, and the polynomial has no roots “close” to 1, then X is approximately
normally distributed. As yet another example, Barvinok [9] built deterministic quasi-
polynomial-time approximation algorithms for approximating polynomial functions
using zero-free regions of the complex plane. All of the above have been applied to
various problems on graph polynomials. (We remark that Marden’s book [48] on the
geometry of polynomials is an excellent reference on classical results that we rely on
for the rest of this section. See also [6, 35, 36].)

As noted in [47], the location of the roots of graph polynomials can be indicative
of various properties of the underlying graph. Here we investigate acyclic roots, their
location and moduli, and also the properties of real roots. Our main results are:

(i) If G is a graph of order n � 4 and A(G, x) is of degree 3, then A(G, x) has one
real root and two nonreal roots s and s′ (Theorem 2.6). Furthermore, both s
and s′ tend to zero as n goes to infinity (Theorem 2.10).

(ii) The roots of an acyclic polynomial of degree 3 are all in the left half of the
complex plane (Theorem 2.8).

(iii) There exist graphs with degree 3 acyclic polynomials having real roots of arbi-
trarily large modulus (Theorem 2.13).

(iv) The roots of A(G, x) (of any degree) are all real if and only if G is a forest
(Theorem 2.16).

(v) There are graphs G of arbitrarily large order n which have a real acyclic root
in [a(n), b(n)] and no acyclic root of modulus larger than |a(n)|, where a(n) =
−n2

2
− 5n

2
+ 17 and b(n) = −n2

2
− 5n

2
+ 18 (Theorem 2.19).

(vi) There are arbitrarily large graphs with acyclic roots which have a positive real
part (Theorem 2.24).

We begin our investigation of acyclic roots by looking at the roots of acyclic polyno-
mials of small degree.

2.1 Roots of Acyclic Polynomials of Degree 3

The only graph whose acyclic polynomial is of degree 1 is K1, with polynomial 1+x,
with a root at x = −1. Acyclic polynomials of degree 2 are precisely those of K2

(i.e., the complement of the complete graph of order 2) and complete graphs of order
n � 2, and have the form 1 + nx+

(
n
2

)
x2. The acyclic polynomials of degree 2 have

roots
−1

n− 1
±

√
n2 − 2n

n(n− 1)
i.

The modulus of each such root is
√

2
n2−n

, which is decreasing, bounded by 1 (and

tends to 0 as n → ∞).
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The roots so far are rather uninteresting, but the situation changes dramatically
when we move to acyclic dimension 3 (see Figure 2). This subsection is devoted
to such an investigation. We begin by characterizing when a graph has acyclic
dimension 3.

Figure 2: The acyclic roots of all graphs of order 12 with acyclic dimension 3.

Theorem 2.1. Let G be a graph of order n. Then A(G, x) has degree 3 if and only
if one of the following holds:

(i) G is disconnected and G = K3 or G = K1 ∪Kn−1 with n � 3, or

(ii) G is connected and G is the disjoint union of at least two stars, at least one of
which has an edge.

Proof. We begin by showing the reverse direction. First, note that the degree of the
acyclic polynomial of a graph is the sum of the degrees of the acyclic polynomials of
its components.

Consider the cases where G is disconnected. If G is K3, then it is clear that
A(G, x) = (x + 1)3, so A(G, x) has degree 3. If G = K1 ∪Kn−1 with n � 3, then,
because A(K1, x) has degree 1 and A(Kn−1, x) has degree 2, A(G, x) has degree 3.

Now suppose G is connected and G is the disjoint union of at least two stars, at
least one of which has an edge. Then G has two vertices that are not adjacent and
G has at least three vertices. Since any set of three vertices, two of which are not
adjacent, induces an acyclic subgraph of G then the degree of A(G, x) is at least 3.
It remains to show that any subset S ⊆ V (G) with four vertices contains a cycle.
We will show this by considering cases based on how many vertices in S belong to
the same component of G.

Suppose S contains at least three vertices from the same component of G. Then
two of these vertices, call them u and v, must be leaves and are therefore not adjacent
in G. Furthermore, both u and v are joined in G to the same vertex and to no other
vertex. Thus, S must contain a vertex that is independent of both u and v in G
(i.e., another leaf from the same component or a vertex from another component of
G) as shown in Figure 3. Since S contains three vertices that are independent in G,
S contains three vertices that form a 3-cycle in G.

If S does not contain three vertices from one component in G, but does contain
exactly two vertices, u and v, from one component, then S must contain two other
vertices to which neither u nor v are joined in G. Thus, these four vertices will
contain a 4-cycle in G, as shown in Figure 4.
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b

u

v

a

x

Figure 3: Example of G. If vertices u and v are part of S, then a or b must also be
part of S, forming a 3-cycle in G.

a b

u v

Figure 4: If u and v are from the same component in G, but a and b do not belong
to this component, then these four vertices form a 4-cycle in G. The dotted lines
represent edges that may or may not exist and the solid red lines show the edges
that form a 4-cycle in G.

Lastly, if S contains no more than one vertex from any given component of G,
then S contains four vertices that are all independent in G. These four vertices form
K4 in G, which is clearly not acyclic. Thus, S is not an acyclic subset of G.

It follows that any subset of V (G) with at least four vertices must contain a cycle.
Therefore, A(G, x) has degree 3.

To show the forward direction, assume G has acyclic dimension at least 3 (so G
has order n � 3). We divide the proof into two cases based on the connectivity of G.

For the first case, suppose G is disconnected. Recall that the acyclic dimension
of G equals the degree of A(G, x), and since the acyclic dimension of G is the sum of
its components’ acyclic dimensions, G cannot have more than three components. If
G has three components, then the acyclic polynomial of each component has degree
1. That is, G = K3. Otherwise, G has two components, with one component G1

having an acyclic polynomial of degree 1 and the other G2 degree 2. It follows from
our previous work that G1 = K1 and G2 is complete of order at least 2, that is,
G2 = Kn−1, so G = K1 ∪Kn−1.

Now for the second case, suppose G is connected. Notice that G cannot contain
an induced P4 for otherwise G would have acyclic dimension at least 4. Hence G
is a cograph. Since G is connected on n � 3 vertices, G must be the join of k � 2
smaller cographs, F1, . . . , Fk. Thus G is the disjoint union of H1 = F1, . . . , Hk = Fk,
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and without loss of generality we may assume that H1, . . . , Hk are connected. Also
notice that H1, . . . , Hk must be cographs since P4 is self-complementary. Suppose—
to reach a contradiction—that some Hi is not a star.

IfHi has a universal vertex u, then two vertices, v, w, both joined to u, must share
an edge, as shown in Figure 5, as Hi is not a star. So, u, v, w are three independent
vertices in G. Thus taking u, v, w with any other vertex in G gives an acyclic subset
with four vertices (G must contain another vertex as k � 2). It follows that A(G, x)
has degree greater than or equal to 4, contradicting our assumption that A(G, x) has
degree 3.

u

x

y

w

v

Figure 5: If Hi has a universal vertex u, but is not a star, then two vertices not
including u, for example v and w, must be joined.

If, on the other hand, Hi does not have a universal vertex then Hi contains at
least four vertices. Let u be one of these vertices. Then u must be adjacent in Hi to
another vertex, v. A third vertex, w, must also be adjacent in Hi to one of these two
vertices, say v. Note that w cannot be adjacent to both u and v, as otherwise u, v, w
will be an independent set of three vertices in G, which will form an acyclic subset
of size four with any other vertex in G. Without loss of generality, w is joined to v
(but not u).

Since v is not a universal vertex, we know that there exists another vertex x in Hi

that is not joined to v in Hi. If x is joined to either u or w in G, then it is easy to see
that {u, v, w, x} is an acyclic set in G (as the subgraph of G induced by {u, v, w, x}
properly contains a P4 as a subgraph), and we have a contradiction. Thus x is joined
to both u and w (but not v). However, in this case {u, v, w, x} is again an acyclic set
in G since the subgraph induced by {u, v, w, x} is K2 ∪K2 (see Figure 6a). Hence,
x is not adjacent to u, v, or w.

Consider a shortest path P in Hi from x to the set {u, v, w}. Let y be the last
vertex on this path that is not in {u, v, w}. By the same argument as for x, y is
not joined to u or w in Hi, so y is joined to v in Hi. In particular, y �= x, so there
is a previous vertex y′ on path P joined to y (y′ could be x). However, then in
Hi, {u, v, y, y′} properly contains a P4 as a subgraph, as shown in Figure 6b, and
hence is acyclic in G, yielding a contradiction. Thus Hi must be a star.

It follows that G is the disjoint union of stars. Furthermore, one of these stars
must have an edge, as otherwise, G will be the complete graph whose acyclic poly-
nomial has degree 2. �
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u

x

w

v

(a) If x is joined to u and w in Hi,
then {u, v, w, x} is an acyclic subset
of G. The black lines show the edges
inHi (G) and the red shows the edge
in Hi (G).

u

y

w

vy′

(b) A shortest path P from a vertex
x that is not joined to v must include
a (noninduced) P4, shown in blue.

Figure 6: If Hi is acyclic, then Hi must have a universal vertex.

As it is now straightforward to recognize graphs whose acyclic polynomials have
degree 3, we also wish to be able to find the acyclic polynomial for any one of these
graphs. We already know a0, a1, and a2, so this task is equivalent to finding an
expression for a3.

Theorem 2.2. Let G be a connected graph with order n and suppose A(G, x) has
degree 3 so that the complement of G is the disjoint union of k stars H1, H2, . . . , Hk.
Let ei be the number of edges in Hi. Then a3 is given by

(
n− 3

2

)
(n−k)− 1

2

∑k
i=1 e

2
i .

Proof. Suppose S is an acyclic subset of G with three vertices. Then S must contain
two vertices that are not joined. This corresponds to two vertices that are joined in
G. Since G is the disjoint union of k stars, G has n− k edges, i.e.,

∑k
i=1 ei = n− k.

Thus, there are n− k ways to choose two vertices joined by an edge in G.
Given the vertices of an edge of G, there are n− 2 ways to choose a third vertex

to form an acyclic subset of G. However, if this third vertex belongs to the same
component as the other two in G, then we have over-counted this subset once. There
are

(
ei
2

)
= ei(ei−1)

2
ways to choose such a 3-subset in Hi.

So, if G is the disjoint union of stars, then there are

(n− 2)(n− k)−
k∑

i=1

ei(ei − 1)

2

ways to form an acyclic subset with three vertices. We then obtain

a3 = (n− 2)(n− k)−
k∑

i=1

e2i − ei
2

= (n− 2)(n− k)− 1

2

k∑
i=1

e2i +
n− k

2

=

(
n− 3

2

)
(n− k)− 1

2

k∑
i=1

e2i .
�
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Of course a3 �
(
n
3

)
where n is the order of the graph. However, there is a much

better upper bound on a3 for graphs with acyclic dimension 3. To find such a bound,
we first make the following observation:

Lemma 2.3. For fixed n and k, if e1, . . . , ek are nonnegative reals with
∑k

i=1 ei =
n− k, then (

n− 3

2

)
(n− k)− 1

2

k∑
i=1

e2i

is maximized when e1 = e2 = · · · = ek =
n−k
k
.

Proof. Let u = (e1, . . . , ek) and let v be the k-dimensional vector (1, . . . , 1). The
well-known Cauchy-Schwartz inequality states that ||u||||v|| � u · v with equality if
and only if u = av for some scalar a. So,

k∑
i=1

e2i = ||u||2 � (u · v)2
||v||2 =

(
∑k

i=1 ei)
2

k
.

It follows that
∑k

i=1 e
2
i is minimized when u is a scalar multiple of v, that is, when

each ei =
n−k
k
. The result follows. �

This result allows us to find an upper bound on a3 for graphs with acyclic dimen-
sion 3 that is an order of magnitude smaller than

(
n
3

)
.

Theorem 2.4. The leading coefficient a3 of an acyclic polynomial for a graph of
order n with acyclic dimension 3 is at most

f(n) = n2 − n2

√
2n− 2

− n
√
2n− 2

2
− n

2
+

n√
2n− 2

.

Proof. Let n be fixed. First, if G is disconnected, then either (i) G = K3 with
a3 = 1 � 3/2 = f(3), or (ii) G is the disjoint union of a single vertex and Kn−1, in

which case a3 =
(
n−1
2

)
= (n−1)(n−2)

2
. In the second case, a3 < f(n) is equivalent to

(n2 + 2n− 2)
√
2n− 2− 4n2 + 4n

2
√
2n− 2

> 0.

Clearly the denominator is positive, so we need only check that the numerator is
positive as well. For n > 9,

√
2n− 2 > 4, and the numerator is greater than (n2 +

2n−2) ·4−4n2+4n, which is positive. For 3 � n � 8, a simple calculation will verify

that the numerator is again positive. In all cases, we find that (n2+2n−2)
√
2n−2−4n2+4n

2
√
2n−2

is positive so a3 < f(n).
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We now assume that G is connected. From Lemma 2.3, we know that for a given
k, a3 is maximized when each ei =

n−k
k
. Thus,

a3 �
(
n− 3

2

)
(n− k)− 1

2

k∑
i=1

(
n− k

k

)2

=

(
n− 3

2

)
(n− k)− (n− k)2

2k

= k(1− n)− n2

2k
+ n2 − 1

2
n.

Let B(x) = x(1− n)− n2

2x
+n2 − 1

2
n for 1 � x � n− 1. At the maximum value of B,

0 =
dB

dx
= 1− n+

n2

2x2
.

So, x = n√
2n−2

is a critical point of B(x). The second derivative of B is

d2B

dx2
= −n2

x3
< 0.

Thus, x = n√
2n−2

is in fact the absolute maximum of B. Therefore,

a3 � B

(
n√

2n− 2

)
= n2 − n2

√
2n− 2

− n
√
2n− 2

2
− n

2
+

n√
2n− 2

.

�

(We remark that with more work, one can show that this upper bound is never
achieved.)

We shall also need a lower bound for a3, and in this case the bound is tight.

Theorem 2.5. Suppose A(G, x) = a3x
3+ n(n−1)

2
x2+nx+1 is an acyclic polynomial

with degree 3. Then a3 � n − 2, with equality if G = Kn − e, the complete graph of
order n � 3 minus an edge.

Proof. Let G be an arbitrary graph of order n � 3 with acyclic dimension 3.
Consider as well H = Kn − e. The complement of H is the disjoint union of K2

and n− 2 independent vertices. So, following from Theorem 2.1, A(H, x) has degree
3. From Theorem 2.2, the coefficient of x3 in A(H, x) is n − 2. Now clearly G is a
spanning subgraph of H . Removing an edge does not change an acyclic subset to a
cyclic subset, so any acyclic subset of H is also an acyclic subset of G. Thus, G has
at least as many acyclic subsets has H . Therefore, a3 � n− 2. �

We are now ready to explore the roots of acyclic polynomials of degree 3. We
know at least one root of A(G, x) lies on the real axis and, for n > 3, there is only
one such root.
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Theorem 2.6. If G has n > 3 vertices and has acyclic dimension 3, then A(G, x)
has one real acyclic root and two nonreal acyclic roots.

Proof. For a general cubic, ax3 + bx2 + cx + d, the discriminant is defined to be
Δ = 18abcd−4b3d+ b2c2−4ac3−27a2d2. If Δ > 0, then the cubic has three distinct
real roots, and if Δ < 0, the cubic has one real root and two nonreal roots (see,
for example, [37]). We will show that the discriminant of A(G, x) is negative, from
which the result follows.

Let

A(G, x) = ax3 +
n(n− 1)

2
x2 + nx+ 1 (2.1)

with fixed n > 3. Then the discriminant of A(G, x) can be calculated to be

Δ(a) = 18a
n(n− 1)

2
n− 4

(
n(n− 1)

2

)3

+

(
n(n− 1)

2

)2

n2 − 4an3 − 27a2

= −n6

4
+ n5 − 5n4

4
+

(
5a +

1

2

)
n3 − 9an2 − 27a2.

To show that Δ(a) is negative, observe that its derivative with respect to a,

Δ′(a) = 5n3 − 9n2 − 54a,

is negative when a > 5
54
n3 − 1

6
n2 and positive when a < 5

54
n3 − 1

6
n2. Thus Δ is

increasing to the left of 5
54
n3 − 1

6
n2 and decreasing to the right. Furthermore, at

a = 5
54
n3 − 1

6
n2,

Δ = −n6

4
+ n5 − 5n4

4
+

(
5

(
5

54
n3 − 1

6
n2

)
+

1

2

)
n3

− 9

(
5

54
n3 − 1

6
n2

)
n2 − 27

(
5

54
n3 − 1

6
n2

)2

= − 1

54
n6 +

1

6
n5 − 1

2
n4 +

1

2
n3.

For n � 9, Δ � −1
6
n5 + 1

6
n5 − 1

2
n4 + 1

2
n3 < 0. A quick check verifies that Δ is

negative for n = 4, . . . , 8 as well. Since a = 5
54
n3 − 1

6
n2 is a maximum, it follows

that Δ(a) is negative for all a and for all n � 4. As the discriminant of A(G, x) is
negative, we conclude that A(G, x) has one real root and two nonreal roots. �

Figure 2 seems to suggest that all of the acyclic roots (real or otherwise) are in the
left half-plane. Of course the real acyclic root of any acyclic polynomial is negative
(as the polynomial has positive coefficients and hence is positive on the positive real
axis), but what about the location of the two nonreal roots for acyclic polynomials
of graphs of acyclic dimension 3? A polynomial is said to be stable if all its roots lie
in the left half-plane. To prove the stability of acyclic polynomials of degree 3, we
will use the Hermite-Biehler Theorem. To state this theorem, we first define a few
terms. A polynomial is real if each of its coefficients is real. Given a real polynomial
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f(x) =
∑

bix
i, then even and odd polynomials fe and fo, respectively, are given

by fe(x) =
∑

b2ix
i and fo(x) =

∑
b2i+1x

i (so that f(x) = fe(x
2) + xfo(x

2)). A
real polynomial is standard if and only if it is identically 0 or has positive leading
coefficient. Finally, if α1 � α2 � · · · � αk and β1 � β2 � · · · � β� are reals, then the
sequence (α1, α2, . . . , αk) interlaces the sequence (β1, β2, . . . , β�) if either

1. k = 
 and α1 � β1 � α2 � β2 � · · · � αk � β�, or

2. k = 
+ 1 and α1 � β1 � α2 � β2 � · · · � β� � αk.

The Hermite-Biehler Theorem (see, for example, [55]) states necessary and suffi-
cient conditions for a real polynomial to be stable:

Theorem 2.7 (The Hermite-Biehler Theorem for Stability). Define a standard poly-
nomial to be a real polynomial with a positive leading coefficient (or the zero polyno-
mial). Suppose f(x) is standard. Write f(x) as f(x) = fe(x

2) + xfo(x
2). Then f(x)

is stable if and only if the following hold

• fe and fo are standard

• both fe and fo have all real, nonpositive roots

• the roots of fo interlace the roots of fe.

Theorem 2.8. If A(G, x) is an acyclic polynomial with degree 3, then A(G, x) is
stable.

Proof. First, if G is disconnected then either (i) G = K3, A(G, x) = (1+x)3 and the

only root is −1, or (ii) G = K1∪Kn−1, A(G, x) = (1+x)(1+(n−1)x+ (n−1)(n−2)
2

x2)
and the roots have real part −1 or −1

n−2
. Thus in either case, the roots are all in the

left half-plane, so A(G, x) is stable.
Now we assume that G is connected. Here, we will apply the Hermite-Biehler

Theorem. Since A(G, x) has degree 3, for some a3 � 1,

A(G, x) = a3x
3 +

n(n− 1)

2
x2 + nx+ 1

= fe(x
2) + xfo(x

2)

where fe =
n(n−1)

2
x+1 and fo = a3x+n are the even and odd parts of f , respectively.

Both of these functions are standard, as is f .
Let re and ro be the roots of fe and fo respectively. Then re = − 2

n(n−1)
and

ro = − n
a3
. Notice that both re and ro are real and negative. Furthermore, by

Theorem 2.4,

n(n− 1)

2
− a3

n
� n(n− 1)

2
−

n2 − n2√
2n−2

− n
√
2n−2
2

− n
2
+ n√

2n−2

n

=
n2

2
− n

2
− n +

n√
2n− 2

+

√
2n− 2

2
+

1

2
− 1√

2n− 2
.
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Since n � 3, it is clear that n√
2n−2

> 1√
2n−2

. Hence,

n(n− 1)

2
− a3

n
>

n2

2
− 3n

2
+

√
2n− 2

2
+

1

2

>
n2

2
− 3n

2
� 0.

So ro < re and thus the roots of fo interlace the roots of fe. Therefore, by the
Hermite-Biehler Theorem for stability, A(G, x) is stable. �

What more can we say about the location of the acyclic roots of graphs of acyclic
dimension 3? From Figure 2, we see that, in addition to being in the left half-plane,
there are real acyclic roots far to the left, but the nonreal roots seem to be close to
the origin. We shall make both of these observations more precise.

We begin with an observation about the roots of certain cubics that we can apply
to acyclic polynomials.

Lemma 2.9. Let a3, a
′
3, a2, a1, and a0 be positive. Suppose

f(x) = a3x
3 + a2x

2 + a1x+ a0

g(x) = a′3x
3 + a2x

2 + a1x+ a0

have unique real roots r and r′ respectively. If a3 > a′3, then r > r′.

Proof. Note that r and r′ must be negative, and

f(x) = a3x
3 + a2x

2 + a1x+ a0

= a′3x
3 + a2x

2 + a1x+ a0 + a3x
3 − a′3x

3

= g(x) + (a3 − a′3)x
3.

Since r is the only real root of f(x) and a3, . . . , a0 are all positive, r is the unique
place where f(x) changes from negative to positive. Similarly, r′ is the unique place
where g(x) changes from negative to positive. Thus, f(r′) = g(r′) + (a3 − a′3)(r

′)3 =
(a3 − a′3)(r

′)3 < 0, since a3 > a′3. Therefore, r > r′. �

We will use Lemma 2.9 to explain the behaviour of the nonreal roots of acyclic
polynomials with degree 3 as the order of the graph increases.

Theorem 2.10. Suppose n � 4 and s, s are the nonreal roots of

A(G, x) = a3x
3 +

n(n− 1)

2
x2 + nx+ 1,

where A(G, x) is an acyclic polynomial with a3 � 1. Then, as n increases, s and its
conjugate s go to zero.
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Proof. We can assume that G is connected (as otherwise G is K1 ∪ Kn−1 and its
two nonreal acyclic roots are easily seen to head to 0). Suppose r is the real root of
A(G, x) and let r′ be the real root of

f(x) =

(
n2 − n2

√
2n− 2

− n
√
2n− 2

2
− n

2
+

n√
2n− 2

)
x3 +

n(n− 1)

2
x2 + nx+ 1.

As f(x) is of the same form as Equation (2.1) and n > 3, by the same reasoning in
Theorem 2.6, r′ is unique. From Theorem 2.4, we know

a3 � n2 − n2

√
2n− 2

− n
√
2n− 2

2
− n

2
+

n√
2n− 2

.

Thus, from Lemma 2.9 it follows that r < r′. Furthermore, since r′ is unique, f(x)
will be negative for x < r′. At x = −1

2
,

f

(
−1

2

)
=

(
n2 − n2

√
2n− 2

− n
√
2n− 2

2
− n

2
+

n√
2n− 2

)(
−1

2

)3

+
n(n− 1)

2

(
−1

2

)2

+ n

(
−1

2

)
+ 1

=
n2

8
√
2n− 2

+
n
√
2n− 2

16
− 9n

16
− n

8
√
2n− 2

+ 1.

For n � 42, it is straightforward to verify that

f

(
−1

2

)
� 42n

8
√
2n− 2

+
n
√
82

16
− 9n

16
− n

8
√
2n− 2

+ 1 > 0.

Hence for n � 42, r < r′ < −1
2
.

Now notice that A(G, x) can be factored as follows:

A(G, x) = a3

(
x3 +

n(n− 1)

2a3
x2 +

n

a3
x+

1

a3

)

= a3
(
x3 + (−r − s− s)x2 + (rs+ rs+ ss)x− rss

)
.

So, −rss = 1
a3
. From Theorem 2.5, a3 � n − 2, and thus |s| =

√
1

|r|a3 <
√

2
n−2

. As

n → ∞,
√

2
n−2

→ 0. Hence, s and s → 0. �

We can provide, depending on n, an annulus that contains the acyclic roots of
graphs with acyclic dimension 3. To do so, we will use the well known Eneström-
Kakeya Theorem [30, 38].

Theorem 2.11 (The Eneström-Kakeya Theorem). Let f(x) = anx
n+· · ·+a1x

1+a0x
0

be a real polynomial with degree greater than 1. If r is a root of f(x), then

min

{
a0
a1

,
a1
a2

, . . . ,
an−1

an

}
< |r| < max

{
a0
a1

,
a1
a2

, . . . ,
an−1

an

}
.
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Lemma 2.12. Let G be a graph with n vertices. If r is a root of A(G, x), then
1
n
< |r|. Moreover, if A(G, x) has degree 3, then |r| < n(n−1)

2(n−2)
.

Proof. As mentioned in Section 1.2, the Sperner bounds for complexes imply that
i

n−i+1
� ai−1

ai
. The term i

n−i+1
is at a minimum when i = 1, so ai−1

ai
� i

n−i+1
� 1

n
.

From the Eneström-Kakeya Theorem we concude that |r| > 1
n
.

Now suppose A(G, x) = 1+nx+ n(n−1)
2

x2+a3x
3 has degree 3. From Theorem 2.5,

a3 � n− 2, and so a2
n−2

� a2
a3
. Also, n � 3, and thus

a2
n− 2

=
n(n− 1)

2(n− 2)
>

2n

n(n− 1)
=

a1
a2

>
1

n
=

a0
a1

.

By the Eneström-Kakeya Theorem, we conclude that |r| < n(n−1)
2(n−2)

. �

There are graphs whose acyclic polynomials have degree 3 and their real roots
are within unit modulus. In particular, if G is the graph of order 2n2 (n � 2)
whose complement is the disjoint union of n stars with 2n vertices, then A(G, x) =

(4n4 − 4n3 − n2 + n)x3 + n2(2n2 − 1)x2 + 2n2x+ 1 and max
{

a2
a3
, a1
a2
, a0
a1

}
< 1. So via

the Eneström-Kakeya Theorem, all three roots lie in the unit disk.
However, and more interestingly, we can show that there are graphs with acyclic

dimension 3 and with real acyclic roots of large modulus.

Theorem 2.13. There exist graphs with acyclic dimension 3 that have real acyclic
roots of arbitrarily large modulus.

Proof. Let n � 4 and let G be the graph Kn minus an edge. Then as shown in
Theorem 2.5, A(G, x) = (n− 2)x3 + n(n−1)

2
x2 +nx+1. Let r be the unique real root

of A(G, x).
Note that at x = −n

2
,

A
(
G,−n

2

)
= −(n− 2)n3

8
+

n3(n− 1)

8
− n2

2
+ 1

=
n3

8
− n2

2
+ 1.

For n � 4, A
(
G,−n

2

)
� 1 > 0. It follows that r < −n

2
, since A

(
G,−n

2

)
> 0 and all

the coefficients of A(G, x) are positive. Therefore, as n → ∞, the root r → −∞.
We remark that A

(
G,−n

2
− 1

)
= −n3

8
− n2

2
+ n

2
+3 < 0 for n � 4, and so the real

root r will lie in (−n
2
− 1,−n

2
). �

2.2 Real acyclic roots

For graphs of acyclic dimension at most 3, we have seen that an acyclic polynomial
with all real roots is rare – it only happens for those graphs that are acyclic (so
A(G, x) = (1 + x)n and the n roots are all −1). Does this behaviour extend past
acyclic dimension 3? The related question of when a particular graph polynomial has
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all real roots appears difficult. For example, an important result on independence
polynomials, due to Chudnovsky and Seymour [21], states that the independence
polynomials of claw-free graphs have all real roots, and yet this is far from a charac-
terization of such graphs. There is much known on real-rooted chromatic polynomials
[28] as well, and there are many examples of such families (such as the chromatic
polynomials of chordal graphs).

Surprisingly, we can precisely characterize graphs that have all real acyclic roots.
To do so, we will need a theorem that provides a necessary and sufficient condition
for a real polynomial to have all real roots. We begin with a definition.

The Sturm sequence of a real polynomial f is the sequence f0 = f , f1 = f ′,
f2, . . . , fk where, for i � 2, fi is the negative of the remainder when fi−2 is divided
by fi−1, and fk is the last nonzero term in the sequence of polynomials of strictly
decreasing degrees. Sturm proved the following result (see [35, 48]).

Theorem 2.14 (Sturm’s Theorem). Let f be a polynomial with real coefficients and
let (f0, f1, . . . , fk) be its Sturm Sequence. Let a < b be two real numbers that are not
roots of f . Then the number of distinct roots of f in (a, b) is V (a)−V (b) where V (c)
is the number of changes in sign in (f0(c), f1(c), . . . , fk(c)).

The Sturm sequence (f0, f1, . . . , fk) of f has gaps in degree if the degree of one
term is at least 2 lower than the preceding one; the Sturm sequence has a negative
leading coefficient if one of the terms does. A consequence of Sturm’s Theorem
that is also due to Sturm (again, see [35, 48]) will be very useful to us (we use the
formulation stated in [18]).

Corollary 2.15. Let f be a real polynomial whose degree and leading coefficient are
both positive. Then f has all real roots if and only if its Sturm sequence has no gaps
in degree and no negative leading coefficients.

We are ready to characterize graphs with all real acyclic roots.

Theorem 2.16. G has all real acyclic roots if and only if G is a forest.

Proof. We observe first that if G is a forest of order n, then A(G, x) = (1 + x)n,
which clearly has all real roots (namely −1 with multiplicity n). We now assume
that G is not a forest, so that it has a cycle. Let g be the order of a smallest cycle
in G, so g � 3. Suppose that A(G, x) has degree d = n−∇(G) < n. Then

A(G, x) = 1 +

(
n

1

)
x+

(
n

2

)
x2 + · · ·+

(
n

g − 1

)
xg−1 +

((
n

g

)
− α

)
xg + · · ·+ adx

d

where α is a positive integer. It is clear that A(G, x) has all real roots if and only if

f(x) = xnA

(
G,

1

x

)

= xn +

(
n

1

)
xn−1 +

(
n

2

)
xn−2 + · · ·+

(
n

g − 1

)
xn−(g−1)

+

((
n

g

)
− α

)
xn−g + · · ·+ adx

n−d
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has all real roots.
We now consider the first few terms of the Sturm sequence of f and show that

f = f0 does not have all real roots. Since f1 = f ′, then

f1 = nxn−1 + (n−1)

(
n

1

)
xn−2 + (n−2)

(
n

2

)
xn−3+ · · ·+(n−(g−1))

(
n

g−1

)
xn−g

+ (n− g)

((
n

g

)
− α

)
xn−g−1 + · · ·+ (n− d)adx

n−d−1.

Now

f0 =

(
x

n
+

1

n

)
f1 +

(
α
n− 2g + 1

n

)
xn−g + · · · ,

so

f2 = −
(
f0 −

(
x

n
+

1

n

)
f1

)
.

As n − d � 1, the coefficient of xn−d−1 in f2 is clearly nonzero (since xn−d is the
smallest power of x in f0 that has a nonzero coefficient), so it follows that f2 is
a nonzero polynomial of degree at most n − g � n − 3. This clearly implies that
the Sturm sequence of f will have a gap in degree, and hence a nonreal root. We
conclude that the acyclic polynomial of G has a nonreal root as well. �

A classical theorem of Newton states that if all of the roots of a polynomial with
positive real coefficients are themselves real, then the polynomial’s coefficients are
log-concave and therefore also unimodal (see, for example, [23]). Hence it follows
from Theorem 2.16 that if G is a forest then the coefficients of A(G, x) are unimodal,
although this observation is also readily apparent from the fact that if G is a forest
of order n then A(G, x) = (1 + x)n.

Instead of focussing on real roots, we could instead ask which rational numbers
arise as acyclic roots. The answer is rather easy, in that the set of all such roots
is {− 1

n
: n � 1}. The Rational Root Theorem shows that every root of an acyclic

polynomial is of the form − 1
k
for some positive integer k as acyclic polynomials have

constant term 1 and have positive integer coefficients. On the other hand, note that
A(Kn,n, x) = 2nx

(
(1+x)n−nx−1

)
+n2x2+2(1+x)n−1 and hence A(Kn,n,− 1

n
) = 0.

2.3 Acyclic roots of large modulus

The real acyclic roots of large modulus that we discovered in Section 2.1 had modulus
Ω(n), but from calculations it seems that this is far from the true magnitude for
graphs in general. To find (real) acyclic roots of larger modulus, we will examine
the complement of the disjoint union of the star graph Sn−4 of order n − 4 and the
cycle C4. We denote this graph as Jn = Sn−4 ∪ C4, which we observe is the same as
Sn−4 + C4; see Figure 7 for an example of such a graph. This family of graphs may
seem to be an arbitrary choice of a family to examine, but for graphs with order
between 5 and 8, the acyclic polynomial of Sn−4 ∪ C4 has the left-most real root, and
the root of largest modulus.
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Figure 7: The graph J10 is the join of C4 (in red) and S6 (in blue). The dotted lines
show the join.

Question 2.17. Let n � 5. Is it the case that the acyclic polynomial of the graph
Jn has a real root that is less than the real roots of all other acyclic polynomials of
graphs of order n? Moreover, does Jn have the acyclic root of largest modulus for
graphs of order n?

We will show that the maximum modulus of the acyclic roots of such graphs is,
in fact, quadratic in n. We begin by first finding the acyclic polynomial of these
graphs.

Lemma 2.18. Let n � 5. The acyclic polynomial of the graph Jn is

x4 +
n2 + 5n− 34

2
x3 +

n2 − n

2
x2 + nx+ 1.

Proof. Note that Jn = Sn−4 ∪ C4 = Sn−4 + C4 = (K1 ∪Kn−5) + 2K2. It is easy to
verify that:

A(K1 ∪Kn−5, x) = (1 + x)

(
1 + (n− 5)x+

(
n− 5

2

)
x2

)

A(2K2, x) = (1 + x)4

I(K1 ∪Kn−5, x) = (1 + x)(1 + (n− 5)x)

I(2K2, x) = (1 + 2x)2.
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Applying Theorem 1.3, we derive that

A
(
(K1 ∪Kn−5) + 2K2, x

)
= A(K1 ∪Kn−5, x) + A(2K2, x)

+ (n− 4)xI(2K2, x) + 4xI(K1 ∪Kn−5, x)

+

((
n

2

)
− 8(n−4)−

(
n−4

2

)
−
(
4

2

))
x2 − nx−1

= x4 +
n2 + 5n− 34

2
x3 +

n2 − n

2
x2 + nx+ 1.

�

Though we cannot show that the acyclic polynomial of Jn has the minimum real
root for arbitrary n, we can place bounds on the real root that appears to be the
minimum.

Theorem 2.19. Let n � 6. The acyclic polynomial of the graph Jn has a real root
between −n2

2
− 5n

2
+ 17 and −n2

2
− 5n

2
+ 18, and has no root of modulus larger than

n2

2
+ 5n

2
− 17.

Proof. By Lemma 2.18, A(Jn, x) = x4 + n2+5n−34
2

x3 + n2−n
2

x2 + nx + 1. Let m =
−n2

2
− 5n

2
+ 17. Then

A(Jn, m) =
1

8
n6 +

9

8
n5 − 53

8
n4 − 301

8
n3 +

369

2
n2 − 255

2
n + 1.

When n � 8, we have

A(Jn, m) � 8n4 + 72n3 − 53

8
n4 − 301

8
n3 + 1476n− 255

2
n+ 1

=
11

8
n4 +

275

8
n3 +

2697

2
n+ 1

> 0.

For n = 6 and n = 7, we can verify that A(Jn, m) is positive as well. Hence, for
n � 6, A(Jn, x) is positive when x = −n2

2
− 5n

2
+ 17.

On the other hand, when M = −n2

2
− 5n

2
+ 18, we have

A(Jn,M) = −3

4
n5 − 3n4 +

319

4
n3 + 56n2 − 2574n+ 5833

and

A′(Jn,M) = −15

4
n4 − 12n3 +

957

4
n2 + 112n− 2574.

So, when n � 8,

A′(Jn,M) � −240n2 − 768n+
957

4
n2 + 112n− 2574

= −3

4
n2 − 656n− 2574

< 0.
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Thus, A(Jn,M) is decreasing when n � 8. At n = 8, A(Jn,M) = −7207. So,
A(Jn,M) � 0 when n � 8. Again, we can also verify that when n = 6 and n = 7,
A(Jn,M) is negative.

It follows from the Intermediate Value Theorem that for n � 6, the acyclic
polynomial A(Jn, x) has a real root r such that −n2

2
− 5n

2
+ 17 < r < −n2

2
− 5n

2
+ 18.

That there is no root of modulus greater than n2

2
+ 5n

2
−17 follows from the Eneström-

Kakeya Theorem. �

2.4 Acyclic polynomials with roots in the right half-plane

Throughout this exposition, all the roots of acyclic polynomials that we have en-
countered lie in the left half-plane. This leads us to question whether there exist
acyclic polynomials that have roots with a positive real component.

Instead of directly finding an acyclic polynomial with a root in the right half-
plane, we present a family of graphs with limits of roots in the right half-plane.

First, we make the following definition:

Definition 2.20. Let G and H be two arbitrary graphs. Then G[H ] is the graph
formed by replacing each vertex of G by a copy of graph H, and inserting all edges
between two copies of H if and only if the corresponding vertices of G were adjacent
(we say that we have substituted H in for each vertex of G; G[H ] is often called the
lexicographic product of G and H).

The following lemma allows us to compute the acyclic polynomial forG[Kk] where
G is a complete multipartite graph.

Lemma 2.21. Let G be an arbitrary complete multipartite graph. Then

A(G[Kk], x) = A(G, kx) + I

(
G, kx+

(
k

2

)
x2

)
− I(G, kx),

where I(G, x) is the independence polynomial of G.

Proof. Let H = Kk and let VG and VH be the vertex sets of G and H respectively
so that the vertex set of G[H ] is VG[H] = VG × VH . Suppose U ⊆ VG[H] and define
support(U) = {vi : (vi, w) ∈ U for some w}.

Suppose (v1, w1), (v2, w2) ∈ U for some v1, v2, w1, w2. If v1, v2 are adjacent in G,
then (v1, w1), (v2, w2) must be adjacent in G[H ]. Thus, if U is acyclic, support(U)
must be acyclic as well. Partition the acyclic subsets of G into two sets:

1. The independent subsets of G (all of which are necessarily acyclic)

2. The acyclic subsets of G that are not independent.

Suppose support(U) belongs to the first set. Then, since no two vertices of
support(U) are adjacent, two vertices (v1, w1), (v2, w2) ∈ U are adjacent if and only
if v1 = v2 and w1 is adjacent w2 in H . Thus, since H is a complete graph, U is
acyclic if and only if, for every vi ∈ support(U) there exist no more than two vertices
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in U of the form (vi, w) for some w. Hence, the contribution of these subsets to the
acyclic polynomial of G[H ] is I

(
G, kx+

(
k
2

)
x2
)
.

If instead, support(U) is in the second set, then support(U) must contain two ver-
tices that are adjacent in G. Because G is multipartite, this means that support(U)
does not contain any isolated vertices. Thus, if there exist two vertices (v1, w1),
(v1, w

′
1) ∈ U for some w1 �= w′

1 then there must exist a third vertex (v2, w2) ∈ U such
that v2 is adjacent v1 in G. These three vertices must then all be joined in G[H ],
forming a cycle. Hence, if U is acyclic, then for each vi ∈ support(U) there are no
two vertices in U each of the form (vi, w) for some w.

On the other hand, if U is such that for each vi ∈ support(U) there are no two
vertices in U each of the form (vi, w) for some w, then two vertices (v1, w1), (v2, w2) ∈
U are adjacent if and only if v1 is adjacent v2 in G. Since support(U) is acyclic,
this means that U must also be acyclic. That is, U is acyclic if and only if for
each vi ∈ support(U) there are no two vertices in U each of the form (vi, w) for
some w. Hence, the contribution of the subsets of the second type to A(G[H ], x) is
A(G, kx)− I(G, kx).

Therefore, A(G[H ], x) = I
(
G, kx+

(
k
2

)
x2
)
+ A(G, kx)− I(G, kx). �

We can now apply this formula to the lexicographic product of a star graph with
a complete graph. Such are the graphs that will give us acyclic roots in the right
half-plane (and indeed, we prove something stronger about the location of the limits
of the roots).

First we present the Beraha-Kahane-Weiss Theorem which will be a useful
tool [13]. For a family of (complex) polynomials {fn(x) : n ∈ N}, we say that
z ∈ C is a limit of roots of {fn(x) : n ∈ N} if there is a sequence {zn : n ∈ N} such
that fn(zn) = 0 and zn → z as n → ∞.

Theorem 2.22 (The Beraha-Kahane-Weiss Theorem). Suppose

fN (x) = α1(x)λ
N
1 (x) + · · ·+ αk(x)λ

N
k (x)

where the αi’s and the λi’s are polynomials in x such that no αi is the zero function
and for no i, j with i �= j does λi = ωλj where |ω| = 1. Then z is a limit of roots of
fN if and only if either

1. for some 
 � 2, |λi1(z)| = |λi2(z)| = · · · = |λi�(z)| > |λj(z)| for all j �=
i1, i2, . . . , i�, or

2. for some i, αi(z) = 0 and for each j �= i, |λi(z)| > |λj(z)|.
For the following result, we remind the reader that a limaçon is a plane curve of

the form r = a cos θ ± b or r = a sin θ ± b.

Theorem 2.23. Suppose G = K1,n−1[K2] is the lexicographic product of a star graph
K1,n−1 and the complete graph K2. Then as n → ∞, the roots of A(G, x) approach a
circle of radius 1

2
centered at −1

2
and the truncated limaçon given by r =

√
2−2 cos θ

with π
4
< θ < 7π

4
in the complex plane.
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Proof. We have the following equations:

A(K1,n−1, x) = (1 + x)n

I(K1,n−1, x) = (1 + x)n−1 + x.

Thus, from Lemma 2.21,

A (K1,n−1[K2], x) = A(K1,n−1, 2x) + I(K1,n−1, 2x+ x2)− I(K1,n−1, 2x)

= (1 + 2x)n + (1 + 2x+ x2)n−1 + 2x+ x2 − (1 + 2x)n−1 − 2x

= 2x(1 + 2x)n−1 +
(
(1 + x)2

)n−1
+ x2

= 2x(1 + 2x)N +
(
(1 + x)2

)N
+ x2

where N = n− 1. Let

α1(x) = 2x λ1(x) = 1 + 2x

α2(x) = 1 λ2(x) = (1 + x)2

α3(x) = x2 λ3(x) = 1

so that
A (K1,N [K2], x) = α1(x)λ

N
1 (x) + α2(x)λ

N
2 (x) + α3(x)λ

N
3 (x).

From the Beraha-Kahane-Weiss Theorem, z ∈ C is a limit of roots of
A (K1,N [K2], x) if and only if one of the following holds:

1. (a) |λ1(z)| = |λ2(z)| = |λ3(z)|, i.e., |λ1(z)| = |λ2(z)| = 1

(b) |λ1(z)| = |λ3(z)| > |λ2(z)|, i.e., |λ1(z)| = 1 > |λ2(z)|
(c) |λ2(z)| = |λ3(z)| > |λ1(z)|, i.e., |λ2(z)| = 1 > |λ1(z)|, or
(d) |λ1(z)| = |λ2(z)| > |λ3(z)|, i.e., |λ1(z)| = |λ2(z)| > 1

or

2. (a) |λ1(z)| > max{|λ2(z)|, |λ3(z)|}, i.e., |λ1(z)| > max{|λ2(z)|, 1}, and α1(z) = 0

(b) |λ2(z)| > max{|λ1(z)|, |λ3(z)|}, i.e., |λ2(z)| >max{|λ1(z)|,1}, andα2(z) = 0,
or

(c) |λ3(z)| > max{|λ1(z)|, |λ2(z)|}, i.e., 1 > max{|λ1(z)|, |λ2(z)|}, and α3(z) = 0.

It is easy to check that all of cases 2a, 2b and 2c lead to contradictions, so if z is
a limit of roots, it must satisfy one of the conditions in case 1.

Case 1a is satisfied if and only if 1 = |1 + 2z| and 1 = |1 + z|2, i.e., when z lies
on both the circle of radius 1

2
centered at −1

2
and on the circle of radius 1 centered

at −1. These two circles only intersect at the origin, as shown in Figure 8. Thus,
z = 0 is the only limit of roots fulfilling case 1a.

Next, z satisfies case 1b if and only if 1 = |1 + 2z| and 1 > |1 + z|. That is,
when z lies on the circle of radius 1

2
centered at −1

2
and z lies in the open circle of

radius 1 centered at −1. As shown in Figure 8, the circle of radius 1
2
centered at
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Figure 8: The circle of radius 1 centered at −1 (in red) and the circle of radius 1
2

centered at −1
2
(in blue).

−1
2
is entirely contained within the circle of radius 1 centered at −1, except for the

point at the origin. However, z = 0 is also a limit of roots from case 1a. So, z is a
limit of roots satisfying case 1a or case 1b if and only if z lies on the circle of radius
1
2
centered at −1

2
.

If z satisfies case 1c, then 1 = |1 + z|2 and 1 > |1 + 2z|. This means that z lies
on the circle of radius 1 centered at −1 and in the open circle of radius 1

2
centered

at −1
2
. However, the circle of radius 1

2
centered at −1

2
is entirely contained within

the circle of radius 1 centered at −1, so this is a contradiction. Hence, there is no z
that satisfies case 1c.

Finally, z satisfies case 1d if and only if |1+2z| = |1+ z|2 and |1+2z| > 1. Since
|1 + 2z| > 1, z must lie outside the circle of radius 1

2
centered at −1

2
. Furthermore,

|1+ 2z| = |1+ z|2 if and only if |1+ 2z|2 = |1+ z|4. Letting z = a+ bi with a, b ∈ R,
we have,

|1 + 2z|2 = (1 + 2a)2 + (2b)2 = 1 + 4a+ 4a2 + 4b2

and

|1 + z|4 = (
(1 + a)2 + b2

)2
= 1 + 6a2 + a4 + b4 + 4a+ 2b2 + 4a3 + 4ab2 + 2a2b2.

So,

1 + 4a + 6a2 + 4b2 = 1 + 4a2 + a4 + b4 + 4a+ 2b2 + 4a3 + 4ab2 + 2a2b2.

Rearranging this expression, we get

2a2 + 2b2 = 4a2 + a4 + b4 + 4a3 + 4ab2 + 2a2b2 = (a2 + b2 + 2a)2.

This equation describes a limaçon. Thus, z is a limit of roots satisfying case 1d if
and only if z lies on the limaçon in the complex plane whose equation in Cartesian
form is √

2
2
(a2 + b2) = (a2 + b2 + 2a)2
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Figure 9: The limaçon given by
√
2
2
(a2+ b2) = (a2+ b2+2a)2 (in red) and the circle

of radius 1
2
centered at −1

2
(in blue).

and outside the circle of radius 1
2
centered at −1

2
(see Figure 9).

In polar form, the equation of this limaçon is r =
√
2− 2 cos θ. So, z is a limit of

roots satisfying case 1d if and only if z lies on the curve given by r =
√
2 − 2 cos θ

with π
4
< θ < 7π

4
, shown in Figure 10.

Figure 10: The curve given by r =
√
2− 2 cos θ with π

4
< θ < 7π

4
.

Since z is a limit of roots if and only if z satisfies one of cases 1a, 1b, 1c, or 1d,
z is a limit of roots if and only if z lies on the circle of radius 1

2
centered at −1

2
(as

in cases 1a and 1b) or on the curve given by r =
√
2 − 2 cos θ with π

4
� θ � 7π

4
(as

in cases 1a and 1d). These limits of roots are shown in Figure 11. �

With this strong result, we can prove that we are guaranteed that there exist
acyclic polynomials with roots in the right half-plane.

Theorem 2.24. For all sufficiently large n, A (K1,n−1[K2], x) has a root with a pos-
itive real part.
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Figure 11: The limits of roots of A (K1,n−1[K2], x).

Proof. From Theorem 2.23, we know that for large enough n, there exists a root of
A (K1,n−1[K2], x) arbitrarily close to the truncated limaçon given by r =

√
2−2 cos θ

with π
4
< θ < 7π

4
.

Take θ = π
3
. Then r =

√
2 − 2 cos

(
π
3

)
=

√
2 − 1. So

(√
2− 1, π

3

)
is a point on

this curve. In Cartesian coordinates, this means x = r cos θ =
√
2−1
2

.
Hence there exist roots of A (K1,n−1[K2], x) whose real components are arbitrarily

close to
√
2−1
2

. Since
√
2−1
2

> 0, there must exist positive roots of A (K1,n−1[K2], x)
for some n. �

3 Discussion and Open Problems

The results of the previous section point to two types of open problems – those
that talk about the coefficients of acyclic polynomials, and those that talk about the
location and nature of the acyclic roots – and the problems are not unconnected.

In Section 2.1 we characterized those graphs having acyclic polynomials of degree
3, and as well we studied the coefficients and roots of their acyclic polynomials. For
higher degree we can ask:

Question 3.1. For fixed acyclic dimension Υ(G) � 4, is there a characterization of
graphs G with acyclic polynomials of degree Υ(G)?

3.1 Unimodality

Recall that a real polynomial f(x) = c0+c1x+c2x
2+· · · is said to be unimodal if there

exists an integer t such that c0 � c1 � · · · � ct−1 � ct and ct � ct+1 � ct+2 � · · · .
Clearly A(G, x) is unimodal in cases when G is a tree or a complete graph.

Graphic polynomials (that is, generating functions for the acyclic edge sets) were
recently proved to always be unimodal [5, 15, 41], thereby settling what had been an
outstanding conjecture for matroids in general for many years. Domination polyno-
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mials of graphs have also been conjectured to be unimodal (see [3] as well as [11] for
some recent progress).

For the acyclic polynomial, it is not true that A(G, x) is unimodal for every
graph G. When m � 20, the acyclic polynomial A(Km + K6, x) is not unimodal
because a3 < a2 and a3 < a4. For example, observe that A(K20 + K6, x) = 1 +
26x+ 325x2 + 320x3 + 415x4 + 306x5 + 121x6 + 20x7. As another example of a class
of graphs with acyclic polynomials that are not unimodal, let H be complement
of the join of a disjoint 4-cycles, and let G = H + Kb. So A(G, x) = 1 + (4a +
b)x +

(
4a+b
2

)
x2 +

((
b
3

)
+ 4

(
b
2

)
a+ 4ab+ 4a+ 4a(4a− 4)

)
x3 +

((
b
4

)
+ 4

(
b
3

)
a+ a

)
x4 +∑b

i=5

(((
b
i

)
+ 4

(
b

i−1

)
a
)
xi
)
. Observe that when a � 6 and b = 8, A(G, x) is not

unimodal (because a4 is less than a3 and a5). We ask:

Question 3.2. Which classes of graphs have unimodal acyclic polynomials? And
which ones do not?

Inspired by questions about unimodality of independence polynomials of trees [1]
and of bipartite graphs [43], we ask:

Question 3.3. If a graph G is bipartite then is A(G, x) unimodal?

As pointed out by one of the referees, the entire setting for acyclic polynomials
can be embedded in a much broader setting. Suppose that H is a hereditary class
of graphs, that is, one closed under induced subgraphs (and isomorphism). For a
graph G we can analogously define a generating function PH(G, x) =

∑
x|S|, where

the sum is taken over all vertex subsets S of V (G) that induce a subgraph in H

(when H is the class of all forests, PH(G, x) = A(G, x)). A number of the results
we have presented for acyclic polynomials can be carried over – in particular, that
of Theorem 2.16, when a graph has all real acyclic roots (see [46]). In this light, it
would also be interesting to find a hereditary family H for which PH(G, x) always
has unimodal coefficient sequences, but may have nonreal roots.

3.2 Location and nature of acyclic roots

A well known theorem due to Newton (see, for example, [23]) states that if a poly-
nomial with positive coefficients has all of its roots real (and on the negative real
axis), then its coefficient sequence is unimodal. This result highlights the fact that
the nature and location of the roots can inform the unimodality of the coefficient
sequence of a real polynomial. In Section 2.4 we showed that for large enough n, the
graph K1,n−1[K2] has an acyclic root in the right half-plane. This is not the only
class of graphs with this property. When m � 18, we find that A(Km + K6, x) =
1+(m+6)x+

(
m+6
2

)
x2+(15m+20)x3+(20m+15)x4+(15m+6)x5+(6m+1)x6+mx7

also has roots in the right half-plane. These examples lead us to ask:

Question 3.4. If a graph G has an acyclic polynomial that is not unimodal, then
does it have acyclic roots in the right half-plane?

Continuing on the topic of acyclic roots, we pose the following problems:
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Question 3.5. What can be said about the nature and location of the roots of acyclic
polynomials of degree 4 and higher?

Question 3.6. Are there open sets in C that are free of acyclic roots? What is the
closure of the acyclic roots? Is the closure of the real acyclic roots equal to (−∞, 0]?

Question 3.7. What is the maximum modulus of an acyclic root of a graph of
order n?
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als of König-Egerváry graphs, Congr. Numer. 179 (2006), 109–119.

[44] D-M. Li and Y-P. Liu, A polynomial algorithm for finding the minimum feedback
vertex set of a 3-regular simple graph, Acta Math. Sci. 19 (1999), 375–381.

[45] N. Linial, Hard enumeration problems in geometry and combinatorics, SIAM J.
Algebraic Discrete Methods 7 (1986), 331–335.

[46] J.A. Makowsky and V. Rakita, Almost unimodal and real-rooted graph poly-
nomials, arXiv:2102.00268v2 .

[47] J.A. Makowsky, E.V. Ravve and N.K. Blanchard, On the location of roots of
graph polynomials, Europ. J. Combin. 41 (2014), 1–19.

[48] M. Marden, Geometry of polynomials (3rd ed.), Amer. Math. Soc., Providence,
2014.

[49] M. Michelen and J. Sahasrabudhe, Central limit theorems and the roots of
probability generating functions, Adv. Math. 358 (2019), 106840. (27 pp.)

[50] D.A. Pike and Y. Zou, Decycling Cartesian products of two cycles, SIAM J.
Discrete Math. 19 (2005), 651–663.

[51] G. Royle and A.D. Sokal, The Brown-Colbourn conjecture on zeros of reliability
polynomials is false, J. Combin. Theory Ser. B 91 (2004), 345–360.

[52] L. Shi and H. Xu, Large induced forests in graphs, J. Graph Theory 85 (2017),
759–779.

[53] E. Sperner, Ein satz über untermengen einer endlichen menge, Math. Zeit. 27
(1928), 544–548.

[54] S. Ueno, Y. Kajitani and S. Gotoh, On the nonseparating independent set prob-
lem and feedback set problem for graphs with no vertex degree exceeding three,
Discrete Math. 72 (1988), 355–360.

[55] D.G. Wagner, Zeros of reliability polynomials and f -vectors of matroids, Com-
bin. Probab. Comput. 9 (2000), 167–190.

(Received 27 Nov 2020; revised 6 Jan 2022)


