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Abstract

Conjugation is a common tool in the field of integer partitions. However,
in the study of m-ary partitions—partitions where all parts are a power
of m —the notion of a conjugate partition is rarely used. This is because,
in general, the conjugate of an m-ary partition is no longer m-ary. In this
article, we consider m-ary partitions whose conjugate is also m-ary. We
state conditions that an integer n must satisfy in order to have such
partitions and explore properties of these rare, yet infinite, combinatorial
objects.

1 Introduction

An m-ary partition of an integer n is a partition of n for which the parts are all pow-
ers of m. Properties of m-ary partitions have been studied by several authors. Early
in the study of m-ary partitions, Mahler [12] gave asymptotic results for the number
of m-ary partitions of an integer n. Work by de Bruijn [8] and Pennington [13] ex-
tended Mahler’s results. Churchouse [6] initiated the study of congruence properties
soon after. While Churchhouse considered binary partitions, several authors have
extended this work to m-ary partitions such as in [1, 11, 14] and more recently, in
[4]. Restricted m-ary partitions have also provided an interesting area of study such
as in [5, 7, 9, 10].

Conjugation of partitions leads to some classic results in partition theory [2, 3].
For example, we can use conjugates to show that the number of partitions of an
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integer n into exactly r parts is equal to the number of partitions of n whose greatest
part is r, or to show that the number of self-conjugate partitions of n is equal to
the number of partitions of n with distinct odd parts. Ferrers diagrams provide
an elegant visual proof of the latter statement as well as many other results about
partitions.

However, conjugation does not appear in the study of m-ary partitions, because,
in general, the conjugate of an m-ary partition is not m-ary. In this paper, we
consider the exceptions— those m-ary partitions whose conjugate is also m-ary.

2 Conjugate m-ary partitions

Consider the partitions of n = 15 shown in Figure 1.

λ1 = 3 + 3 + 3 + 3 + 1 + 1 + 1 λ2 = 7 + 4 + 4

� � � � � � � � � �� � � � � � �� � � � � � �� � ��� λ4 = 3 + 3 + 3 + 1 + 1 + 1 + 1 + 1 + 1� � � �� � �� � ��
λ3 = 9 + 3 + 3 ��� � � � � � � � � �� � � �� � � �

Figure 1: Four partitions of n = 15

We observe that λ1 is a 3-ary partition with conjugate λ2. As expected, λ2 is not
3-ary. However, λ3 and its conjugate λ4 are both 3-ary.

Definition 2.1. Let λ be a partition of n and let λ′ be the conjugate of λ. We say
that λ is a conjugate m-ary partition if λ and λ′ are both m-ary partitions.

In the example above, we see that λ3 and λ4 are conjugate m-ary partitions while
λ1 and λ2 are not.

For convenience, we will refer to an integer partition with this property as a CMP
(conjugate m-ary partition). It is clear that when λ is a CMP, λ′ is as well.
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Going forward, we will use the following convenient notation for representing
m-ary partitions. Let λ be some m-ary partition of n and set k = �logm(n)�. Then

λ = (ak, ak−1, . . . , a1, a0)m

where n =
∑k

i=0 aim
i and each ai ≥ 0. In other words, each ai gives the number of

times the part mi appears in the given m-ary partition of n. We will refer to each ai
as the multiplicity of part mi.

For example, with λ3 and λ4 from above, we write

λ3 = (1, 2, 0)3 and λ′
3 = (0, 3, 6)3 = λ4.

It is well-known that an integer partition may be self-conjugate, where λ = λ′. We
observe that it is also possible to have a self-conjugate CMP. For example, consider
a “square” shaped Ferrers diagram such as

9 = 3 + 3 + 3

� � �� � �� � �
which is clearly both CMP and self-conjugate. Additionally, for n = 117 we notice
that

(1, 8, 0, 18)′3 = (1, 8, 0, 18)3.

which gives an example of a non-square self-conjugate CMP.

In order to address general properties of a CMP, we first consider an algorithmic
approach to the process of conjugation as applied to an m-ary partition. For any
integer partition λ, we find its conjugate λ′ by reflecting the Ferrers diagram over
its diagonal, so that the columns and rows of λ become the rows and columns of λ′,
respectively. In doing this, we find that the largest part of λ′ is equal to the number
of parts in λ, and the ith part of λ′ is equal to the number of parts in λ that are
greater than or equal to i. In the case that λ is an m-ary partition, we can follow
this algorithm to be even more specific about the form of the conjugate.

Consider the general m-ary partition λ of an integer n:

λ = (ak, ak−1, . . . , a1, a0)m.

Since the largest part of λ′ is equal to the number of parts in λ, we find this by
adding the multiplicities of all the parts of λ. Thus the largest part of λ′ is ak +
ak−1 + · · · + a1 + a0. To find the next largest part, we add all of the multiplicities
of the parts of λ with exception of the smallest part of λ, that is, the multiplicities
of the parts greater than m0: ak + ak−1 + · · ·+ a1. Similarly, to find the ith largest
part of λ′, we sum the multiplicities of the parts of λ that are greater than or equal
to mi−1: ak + ak−1 + · · ·+ ai−1.
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Here, we define the function fm(r, λ) to be the sum of the multiplicities ar through
ak, that is,

fm(r, λ) =
k∑

i=r

ai.

We will often refer to this summation as the partial sums function as it represents
the partial sums of the multiplicities of the parts of a partition λ.

To find the multiplicity of each part of λ′, we must find the number of columns in
the Ferrers diagram of λ that have the same length. Since λ is an m-ary partition,
each part of λ and thus each row of the corresponding Ferrers diagram will be a power
of m. Therefore, the number of columns of the same length will be the difference of
two powers of m: mi −mj . Observe that i and j need not be consecutive.

Thus we come to the following expression for the conjugate λ′:

m0 ·
k∑

i=0

ai + (m− 1) ·
k∑

i=1

ai + . . .+ (mk−1 −mk−2) ·
k∑

i=k−1

ai + (mk −mk−1) · ak. (1)

Alternatively, using the function f , we have that λ′ is given by

m0 · fm(0, λ) + . . .+ (mk−1 −mk−2) · fm(k − 1, λ) + (mk −mk−1) · fm(k, λ). (2)

Note that these formulas give the conjugate as an expression including the differ-
ence of consecutive powers of m. In the case that some of the partial sums are equal,
the terms will be combined, giving a difference of nonconsecutive powers of m. This
will happen when there are powers of m that do not appear as parts in λ.

To illustrate this procedure for finding the conjugate of an m-ary partition, con-
sider the 3-ary partition of n = 36 = 729,

λ = (1, 0, 2, 24, 0, 216)3.

Then its conjugate is

λ′ = 30f3(0, λ) + (3− 1)f3(1, λ) + . . .+ (34 − 33)f3(4, λ) + (35 − 34)f3(5, λ)

= 30 ·
5∑

i=0

ai + (3− 1) ·
5∑

i=1

ai + . . .+ (34 − 33) ·
5∑

i=4

ai + (35 − 34) · a5

= 30 · (1 + 0 + 2 + 24 + 0 + 216) + (3− 1) · (1 + 0 + 2 + 24 + 0)

+(32 − 3) · (1 + 0 + 2 + 24) + (33 − 32) · (1 + 0 + 2)

+(34 − 33) · (1 + 0) + (35 − 34) · 1
= 1 · 35 + 2 · 33 + 6 · 33 + 18 · 31 + 54 · 30 + 162 · 30
= 1 · 35 + 8 · 33 + 18 · 31 + 216 · 30
= (1, 0, 8, 0, 18, 216)3.
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Notice that λ is a CMP and λ′ is a CMP since both are 3-ary partitions.

Based on the expression for the conjugate of an m-ary partition, we see that in
order for an m-ary partition to be a CMP, the parts of its conjugate must be powers
of m, that is, the partial sums found in the expression for λ′ must all be powers of
m. We now state our first theorem that follows directly from the comments above.

Theorem 2.2. An m-ary partition λ is a conjugate m-ary partition if and only if
fm(r, λ) is a power of m for 0 ≤ r ≤ k, that is, if and only if the partial sums of the
multiplicities of the parts of λ are powers of m.

This theorem gives a method to quickly check if a given m-ary partition is a
CMP. For example, for n = 124 consider the 4-ary partition λ = (1, 3, 0, 12)4. The
partial sums of the multiplicities are

f4(3, λ) = 1 ; f4(2, λ) = 4 ; f4(1, λ) = 4 ; f4(0, λ) = 16.

Since these are all powers of 4, λ must be CMP. Using the algorithm above, we find
λ′ = (0, 1, 15, 48)4, which has partial sums 1, 16, and 64.

3 A Counting Function

We now move to the natural question of enumerating the number of CMP for a
particular value of n. To this end, for a positive integer n and for m ≥ 2, we define
Cm(n) to be the number of conjugate m-ary partitions of n. We note that trivially
Cm(1) = 1.

To illustrate this function, we consider n = 117 and m = 3. There are a total of
635 distinct 3-ary partitions of 117. Of these, five are CMP, so we write C3(117) = 5.
The conjugate 3-ary partitions of 117 are:

(1, 0, 2, 6, 0)3, (3, 6, 72)3, (1, 2, 24, 0)3, (3, 0, 6, 18)3, (1, 8, 0, 18)3.

Observe that
(1, 0, 2, 6, 0)′3 = (0, 0, 3, 6, 72)3

and
(0, 1, 2, 24, 0)′3 = (0, 3, 0, 6, 18)3,

while
(0, 1, 8, 0, 18)′3 = (0, 1, 8, 0, 18)3.

In other words, we have two conjugate pairs and one self-conjugate CMP. We count
both of the CMP in a conjugate pair and we count a self-conjugate CMP only once.

Of course, it is also possible for an integer n to have no CMP. For example,
consider n = 129 and m = 3. There are 837 3-ary partitions of 129, but none of
them are CMP. Thus C3(129) = 0.

From Theorem 2.2, we know that the partial sums of the multiplicities of a CMP
must be a power ofm, including the sum of the multiplicities of all parts of a partition.
This observation leads to the following proposition.
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Proposition 3.1. Let m > 2 and n ≥ 1. If Cm(n) > 0, then n ≡ 1 (mod (m− 1)).

Proof. Suppose m > 2 and there is n ≥ 1 such that Cm(n) > 0. Then there is
a conjugate m-ary partition of n, say λ, where λ = (ak, ak−1, . . . , a1, a0)m. Thus
n = akm

k+ak−1m
k−1+ . . .+a1m

1+a0m
0. Since λ is CMP, by Theorem 2.2 we know

there exists a natural number � such that
∑k

i=0 ai = m�. Then reducing n modulo
m− 1, we find

n = akm
k + ak−1m

k−1 + . . .+ a1m
1 + a0m

0

≡ ak · 1k + ak−1 · 1k−1 + . . .+ a1 · 1 + a0 · 1 (mod (m− 1))

≡
k∑

i=0

ai (mod (m− 1))

≡ m� (mod (m− 1))

≡ 1� (mod (m− 1))

≡ 1 (mod (m− 1)).

Next, we observe that when a partition and its conjugate are both m-ary, a
natural restriction is placed on the number of 1’s that may appear as parts in the
partitions. This observation is key in proving the result below.

Proposition 3.2. Let m > 2 and n > 1. If Cm(n) > 0, then either n ≡ 0 (mod m)
or n ≡ −1 (mod m).

Proof. Assume m > 2, n > 1 and Cm(n) > 0. Then there is a partition of n that is
CMP, say λ = (ak, ak−1, . . . , a1, a0)m. If a0 = 0, then

n =

k∑
i=1

aim
i ≡ 0 (mod m)

and the conclusion holds. Thus, suppose a0 > 0 and notice n ≡ a0 (mod m).

If m0 is the largest part of λ then a0 is the largest part of λ′. Then a0 = m� for
some natural number �. Thus n ≡ a0 ≡ 0 (mod m).

Now suppose there are two or more distinct parts, m0 and one or more other
powers of m. By Theorem 2.2 we know the partial sums of the multiplicities will be
powers of m. In particular, the sum of multiplicities of parts greater than m0 will be
m� for some integer � ≥ 0. Then the largest part of λ′ will be

a0 +m� ≡ n+m� (mod m).

Suppose � > 0. Then

a0 +m� ≡ n+ 0 (mod m).
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Since λ is CMP and n > 1, a0 +m� must be a power of m, so n ≡ 0 (mod m).

Now, suppose � = 0, then a0 +m� ≡ n + 1 (mod m). Since λ is CMP, then we
again know a0 +m� is a power of m. Thus

a0 +m� ≡ n+ 1 ≡ 0 (mod m)

and so n ≡ −1 (mod m).

These two propositions give necessary conditions for when the number of CMP
for an integer n is nonzero. We can use the Chinese Remainder Theorem to combine
these results, giving the following theorem.

Theorem 3.3. Let m > 2 and n > 1. If Cm(n) > 0, then either

n ≡ m (mod m(m− 1))

or
n ≡ 2m− 1 (mod m(m− 1)).

Proof. For m > 2, we have gcd(m,m − 1) = 1. Thus, by the Chinese Remainder
Theorem, there must be a unique solution modulo lcm(m,m − 1) to the system of
congruences formed from Proposition 3.1 with the first part of Proposition 3.2 and
also to the system formed from Proposition 3.1 with the second part of Proposition
3.2. Solving each system produces the desired result.

We note here that binary (2-ary) partitions were excluded because Proposition
3.1 does not hold for m = 2. However, Theorem 3.3 is true for binary partitions as it
would claim that C2(n) > 0 implies n is either even or odd, which is certainly true.
As we go forward we will allow that m may be 2, as in this next fact that extends a
portion of Theorem 3.3.

Theorem 3.4. For m ≥ 2, suppose n ≡ 2m− 1 (mod m(m− 1)). Then,

Cm(n) =

⎧⎪⎨
⎪⎩

2, if n = ms +mt − 1 for t �= s, s, t ≥ 1

1, if n = 2 ·mt − 1 for t ≥ 1

0, otherwise.

Proof. Let n ≡ 2m− 1 (mod m(m− 1)). From above, we know this means n ≡ −1
(mod m). Suppose Cm(n) > 0 and let λ = (ak, ak−1, . . . , a1, a0)m be a partition of
n that is CMP. Then, from the proof of Proposition 3.2, we must have a0 > 0 and
exactly one other part of λ, say mt, with t ≥ 1 and at = 1. Since λ is CMP, there
must exist s ≥ 1 such that the largest part of λ′ is ms meaning the total number of
parts in λ is ms. Thus, a0 = ms − 1 and we have λ = 1 ·mt + (ms − 1) · 1. Using
equation (1) or (2), we see that λ′ = 1 ·ms + (mt − 1) · 1.

Thus, for n = ms + mt − 1, we conclude that when s �= t, the λ and λ′ found
above are the only possible CMP for n. So, Cm(n) = 2. Similarly, if s = t then we
must have λ = λ′, meaning λ is a self-conjugate CMP and Cm(n) = 1.
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As an example, consider n = 32 + 31 − 1 = 11. We have C3(11) = 2 with
(1, 0, 2)′3 = (0, 1, 8)3. The Ferrers diagrams for these partitions are shown in Figure
2. Notice that Theorem 3.4 gives a complete description of the value of Cm(n) when
n ≡ 2m − 1 (mod m(m − 1)) and every CMP in this case will look like a “corner”
as in this example.

� � � � � � � � ���
� � ���������

Figure 2: Ferrers diagrams for (1, 0, 2)3 and (0, 1, 8)3

Combining this with the results of Theorem 3.3, we see that for any m ≥ 2, when
n �≡ m (mod m(m− 1)), the value of Cm(n) is known. It is almost always 0, unless
n is such that it has 1 or 2 “corner” shaped CMP.

This leaves the case of n ≡ m (mod m(m− 1)) for us to explore.

4 A Case Study: Cm(m
�)

The behavior of Cm(n) is quite predictable when n ≡ 2m − 1 (mod m(m − 1)).
However, this is not the case for n ≡ m (mod m(m− 1)). The value of Cm(n) for n
in this congruence class is often 0 and when it is nonzero, the value appears to vary
quite a bit. In this section we explore the case when n = m� in order to observe
some behavior of the nonzero values of Cm(n).

Consider n = 3�, � ≥ 0, as an example. The CMP for 30, 31, 32 and 33 are given
in Table 1. Note that n = 30 �≡ 3 (mod 6), but we include this power of 3 in the
table for completeness.

Observe that for these powers of 3, each CMP contains only one distinct part.
If we looked at the Ferrers diagram for each of these CMP, they would all have a
rectangular appearance. In fact, the integer n = 3� has �+ 1 rectangle CMP for any
� ≥ 0: 3� · 30, 3�−1 · 31, 3�−2 · 32, 3�−3 · 33, . . . , 30 · 3�.

In general, the integer n = m� has at least one rectangle partition for all positive
�. These rectangle partitions give us a lower bound for Cm(m

�).

Lemma 4.1. For m ≥ 2 and � ≥ 0, Cm(m
�) ≥ �+ 1.
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n C3(n)
3-ary partitions

of n
30 1 (1)3

31 2
(1, 0)3
(0, 3)3

32 3
(1, 0, 0)3
(0, 3, 0)3
(0, 0, 9)3

33 4

(1, 0, 0, 0)3
(0, 3, 0, 0)3
(0, 0, 9, 0)3
(0, 0, 0, 27)3

Table 1: CMP for small powers of 3

Proof. Observe that the partitions

m� ·m0, m�−1 ·m1, m�−2 ·m2, m�−3 ·m3, . . . , m0 ·m�

are all CMP of m�. Thus Cm(m
�) ≥ �+ 1.

Returning to the example with m = 3, we see that the bound is tight for the first
powers of 3 as shown in Table 1. However, for n = 34, we have C3(3

4) = 6. The
additional partition is (1, 2, 6, 18)3, shown in Figure 3. This is a self-conjugate CMP
for n = 34 that is not a rectangle partition.

� � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � �� � � � � � � � �� � �� � �� � �� � �� � �� � �������������������

Figure 3: Non-rectangle CMP for 34

This pattern also generalizes. It appears that the rectangle CMP are the only
CMP for powers of m up through mm+1, that is Cm(m

�) = �+ 1 for 0 ≤ � ≤ m. For
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n = mm+1, we see a non-rectangular CMP that has a similar form as the example
we see for n = 34.

Lemma 4.2. The partition λ = (1, m − 1, m2 − m, . . . ,mm − mm−1)m is a self-
conjugate CMP of n = mm+1.

Proof. We first observe that

1 ·mm + (m− 1) ·mm−1 + (m2 −m) ·mm−2 + · · ·+ (mm −mm−1) ·m0

= 1 ·mm +

m∑
i=1

(mi −mi−1) ·mm−i

= 1 ·mm +
m∑
i=1

(mm −mm−1)

= mm +mm+1 −mm

= mm+1.

Thus we see that λ = (1, m− 1, m2 −m, . . . ,mm −mm−1)m is an m-ary partition of
n = mm+1. From equation (2), we have that the conjugate of this partition is given
by

m0·fm(0, λ)+(m−1)·fm(1, λ)+. . .+(mm−1−mm−2)·fm(m−1, λ)+(mm−mm−1)·fm(m,λ).

Since am = 1 and aj = mm−j −mm−j−1 for 0 ≤ j < m, then

fm(m− j, λ) =

m∑
i=m−j

ai = mj

for 0 ≤ j ≤ m. Thus by Theorem 2.2, λ is a CMP. Furthermore, the conjugate is

1 ·mm + (m− 1) ·mm−1 + . . .+ (mm−1 −mm−2) ·m+ (mm −mm−1) ·m0,

and in weight form, (1, m−1, m2−m, . . . ,mm−mm−1)m. Thus λ is self-conjugate.

We will see that the existence of this non-rectangular CMP for mm+1 implies that
every subsequent power of m will also have a non-rectangular CMP. For example,
having (1, 2, 6, 18)3 as a CMP for 34 tells us that (1, 2, 6, 18, 0)3 is a CMP for 35,
(1, 2, 6, 18, 0, 0)3 is a CMP for 36, etc. (See Definition 5.1 and following in Section 5).

For now, we have a slightly better lower bound for Cm(m
�) for sufficiently large

powers of m. In particular, for � ≥ m+ 1, Cm(m
�) > � + 1. However, computations

indicate that the values increase more quickly than the bound increases. For example,
consider the sequence

{
C3(3

�)
}
�≥0

= {1, 2, 3, 4, 6, 8, 14, 32, 67, . . .} .

We see that the sequence not only begins to grow away from the lower bound of �+1
but also appears to be strictly increasing.

In fact, it is true that the sequence
{
Cm(m

�)
}
�≥0

is strictly increasing for m ≥ 2.
Rather than prove this here, we will first develop the necessary tools to prove a more
general version of this result.
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5 Raise and Shift

In the previous section we observed that(1, 2, 6, 18)3 is a CMP of 34 and (1, 2, 6, 18, 0)3
is a CMP of 35. The partition (3, 6, 18, 54)3 is also a CMP of 35. Similarly, any m-ary
partition of an integer n corresponds to two different partitions of the integer mn.

Let λ be an m-ary partition of n where λ = (ak, ak−1, . . . , a1, a0)m. Then we know
that

n = akm
k + ak−1m

k−1 + . . .+ a1m
1 + a0m

0.

To obtain a partition of mn, we multiply the terms of this sum by m. There are
two ways to do this, either by multiplying the parts by m or multiplying the mul-
tiplicities by m. The results are two different m-ary partitions of the integer mn:
(ak, ak−1, . . . , a1, a0, 0)m and (mak, mak−1, . . . , ma1, ma0)m. We call these new parti-
tions of mn the shift and the raise of λ, respectively.

Definition 5.1. Let λ = (ak, ak−1, . . . , a1, a0)m be anm-ary partition of the integer n.

(a) The raise of λ is R(λ) = (mak, mak−1, . . . , ma1, ma0)m.

(b) The shift of λ is S(λ) = (ak, ak−1, . . . , a1, a0, 0)m.

Observe that both R and S are one-to-one functions and are thus invertible. In
addition, the CMP property is maintained under a raise and under a shift as we see
in the following theorem.

Theorem 5.2. Let m ≥ 2 and n ≥ 1. λ is CMP for n if and only if R(λ) and S(λ)
are both CMP for mn.

Proof. Let m ≥ 2 and n ≥ 1. By Theorem 2.2, λ = (ak, ak−1, . . . , a1, a0)m is CMP
for n if and only if fm(r, λ) equals a power of m for 0 ≤ r ≤ k. Then, for any such r,

fm (r, R(λ)) =
k∑

i=r

m · ai = m ·
k∑

i=r

ai = m · fm(r, λ).

So, fm (r, R(λ)) is a power of m if and only if fm(r, λ) is a power of m. Next, for
1 ≤ r ≤ k + 1, fm (r, S(λ)) = fm(r − 1, λ) is a power of m and

fm (0, S(λ)) = fm(0, λ) + 0 = fm(0, λ).

Since the partial sums of multiplicities are equal, fm (r, S(λ)) is a power of m if and
only if fm(r, λ) is a power of m. Thus, by Theorem 2.2, λ CMP is equivalent to both
R(λ) and S(λ) being CMP.

Consider a conjugate pair of m-ary partitions λ and λ′. We know that the multi-
plicity of the largest part of the conjugate λ′ is equal to the smallest part of λ and the
multiplicities of the remaining parts of λ′ are equal to the difference of consecutive
parts in λ. Finding the shift of the partition λ multiplies each of the parts of λ by
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m, effectively multiplying each difference of consecutive parts by m as well. Finding
the raise of the conjugate multiplies each of the multiplicities of λ′ by m. Thus the
multiplicities of R(λ′) remain equal to the difference of consecutive parts of S(λ).

In addition, parts of λ′ are equal to a partial sum of the multiplicities of λ.
Finding the shift of the partition λ multiplies each part of λ by m, but does nothing
to the multiplicities, leaving the partial sums of multiplicities the same. The raise
of λ′ leaves the parts the same. Thus the partial sums of multiplicities of S(λ) are
equal to the parts of R(λ′).

With the paragraphs above, we see that the conjugate of S(λ) is R(λ′), that is,
S(λ)′ = R(λ′). Switching the role of λ and λ′, we would see that R(λ) and S(λ′) are
also conjugates. These results are summarized in the theorem below.

Theorem 5.3. Let λ and λ′ be CMP for n. Then R(λ)′ = S(λ′) and S(λ)′ = R(λ′).

Notice that Theorem 5.3 implies that when λ is self-conjugate for n, we have
R(λ) and S(λ) are a conjugate pair for mn. In fact, we can say a bit more for
self-conjugate CMP.

Theorem 5.4. Let λ = λ′ be a self-conjugate CMP for n. Then R (S(λ)) = S (R(λ))
is a self-conjugate CMP for m2n.

Proof. When λ is a CMP of n, it is clear from the definitions and Theorem 5.2
that R (S(λ)) = S (R(λ)) and that this partition is CMP for m2n. So, suppose λ is
self-conjugate. Using λ = λ′ and the results of Theorem 5.3, we have

R (S(λ))′ = S (S(λ)′) = S (R(λ′)) = S (R(λ)) = R (S(λ)) .

Thus, R (S(λ)) is self-conjugate.

Theorem 5.4 illustrates one way to connect a CMP for n to related CMP for mn
and m2n. The next theorem gives a similar relationship.

Theorem 5.5. Let m ≥ 2 and n ≥ 1. Let λ1 and λ2 each be a CMP for mn.
Suppose R(λ1) = S(λ2). Then there exists π, a CMP for n, such that R(π) = λ2 and
S(π) = λ1. Equivalently, π = S−1(λ1) = R−1(λ2).

Proof. Suppose λ1 = (ak, ak−1, . . . , a1, a0)m and λ2 = (bk, bk−1, . . . , b1, b0)m are both
CMP for the integer mn such that R(λ1) = S(λ2). We know that

R(λ1) = (mak, mak−1, . . . , ma1, ma0)m

and
S(λ2) = (bk, bk−1, . . . , b1, b0, 0)m.
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Since R(λ1) = S(λ2), we obtain the equalities below.

m · a0 = 0

m · a1 = b0

m · a2 = b1
...

m · ak−1 = bk−2

m · ak = bk−1

0 = bk

The first equation implies that a0 = 0. Thus λ1 = (ak, ak−1, . . . , a1, 0)m must be
the shift of a partition of n, meaning S−1(λ1) = (ak, ak−1, . . . , a1)m. Also, we see
that bi is a multiple of m for 0 ≤ i ≤ k. This implies λ2 = (bk, bk−1, . . . , b1, b0)m =
(0, mak, mak−1, . . . , ma1)m must be the raise of a partition of n. Thus R−1(λ2) =
(ak, ak−1, . . . , a1)m. Therefore, S

−1(λ1) = R−1(λ2).

In this section, we have seen that once we identify a CMP for n, then a raise
or a shift will give a CMP for mn. Consequently, we may conclude m�n will have
partitions that are CMP for all � ≥ 0.

6 Infinite Sequences of CMP

In Section 4, we claimed that
{
Cm(m

�)
}
is a strictly increasing sequence. This is a

consequence of a more general statement that we prove in this section. In particular,
we will use the results of the previous section to show that given an n where Cm(n)
is positive, the sequence

{
Cm(m

�n)
}
�≥0

must be strictly increasing.

We begin with a definition.

Definition 6.1. A CMP λ = (ak, ak−1, . . . , a1, a0)m is simple if and only if it is
neither the shift nor the raise of another CMP. Equivalently, λ is simple if and only
if a0 > 0 (so it is not a shift) and aj = 1 where ai = 0 for all i > j (so it is not a
raise).

We know from Theorem 5.3 that the conjugate of a non-simple CMP is always
non-simple. Thus, each simple CMP must have a simple conjugate.

It is possible for an integer to be represented by both simple and non-simple
CMP. Consider for example the simple CMP in Figure 3 along with the rectangular
non-simple partitions of 81 = 34 (see Section 4). However, certain special integers
have only simple CMP.

Definition 6.2. An integer n is m-primitive if Cm(n) > 0 and all CMP for n are
simple. In this case, either Cm(n/m) = 0 or n/m �∈ Z.
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Theorem 3.4 gave a classification of all n ≡ 2m − 1 (mod m(m − 1)) that have
Cm(n) > 0. We now see that all of these “corner” partitions of the form 1 · ms +
(mt − 1) · 1 are simple. Thus, all integers represented by corner partitions will be
m-primitive.

There are also integers in the m congruence class modulo m(m − 1) which are
m-primitive. For example, 57 is 3-primitive (with 1 simple CMP) and 172 is 4-
primitive (with 2 simple CMPs). However, not all integers in this congruence class
are m-primitive. It is an open question to describe which n have this property for a
given m.

The m-primitive integers give an ideal starting point for the sequences mentioned
at the start of this section.

Theorem 6.3. Let m ≥ 2 and suppose n ≥ 1 is m-primitive. Then, the sequence of
positive integers

{
Cm(m

�n)
}
�≥0

is strictly increasing.

Proof. Since n is m-primitive, we have Cm(n) > 0. Now, for some � ≥ 0, let
Cm(m

�n) = Y . Thus, the CMP for m�n may be labeled as

λ1, λ2, . . . , λY . (3)

We claim that at least one of λ1, λ2, . . . , λY must have a non-zero multiplicity for
the number of m0 parts in the partition. Choose any of the CMP, say λ1. If λ1 has
a non-zero multiplicity for the number of m0 parts, the claim holds. Otherwise, we
may write

λ1 = (ak, ak−1, . . . , az, 0, . . . , 0)m

where 1 ≤ z ≤ k − 1 is the number of trailing zeros in λ1. Next, we compute
S−z(λ1) = π. In other words, we do the inverse of the shift function z times to get π,
a CMP for m�−zn. By construction, π must have az as the multiplicity of m0 parts
and az is non-zero. Now, we raise π z times to get Rz(π), a CMP for m�n, which has
a non-zero multiplicity of mzaz for the number of m0 parts. This must be one of the
CMP listed in (3), so the claim holds. Relabel the CMP in (3) so this CMP is λY .

Now, consider
S(λ1), S(λ2), . . . S(λY ), R(λY ). (4)

Since the original Y CMP were distinct, each shift is a distinct CMP for m�+1n (see
Theorem 5.2). Also, by Definition 5.1(b), the first Y of the CMP in (4) will have no
m0 parts, meaning the multiplicity of the m0 part must be 0 in all of them. Further,
by Definition 5.1(a), λY having a non-zero multiplicity of m0 parts implies R(λY ) is
a CMP for m�+1n with a non-zero multiplicity of m0 parts.

Therefore, the list (4) contains Y + 1 distinct CMP for m�+1n which implies
Cm(m

�+1n) > Cm(m
�n). Since this holds for any �, the result follows.

One consequence of this theorem is that the sequence
{
Cm(m

�)
}

is a strictly
increasing sequence as we claimed in Section 4. Since n = 1 is m-primitive, setting
n = 1 in Theorem 6.3 gives the result immediately.
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In practice, the sequences often grow faster than suggested by the argument in the
proof of Theorem 6.3. For example, n = 17 is 3-primitive and since 17 = 32 + 32 − 1
there is a self-conjugate corner CMP. Computations give us the sequence

{
C3(3

� · 17)}
�≥0

= {1, 4, 7, 12, 22, . . .} .
In addition to the CMP resulting from shifts and raises, additional simple CMP
continue to appear as � increases.

In conclusion, we may consider the existence of CMP from two perspectives. On
one hand, CMP are rare. For a given m, integers in most of the congruence classes
modulo m(m−1) have no CMP. Then, in the two congruence classes where they are
possible, many integers still have none. In fact, for those integers that are represented
by at least one CMP, most of the m-ary partitions of that integer are not CMP (see
examples in Section 3).

On the other hand, we know there are infinitely many CMP for a given m.
Theorem 2.2 even suggests an algorithm to construct a simple CMP, λ: choose m;
choose k and let mk be the largest part of λ, setting ak = 1; choose ak−1, ak−2, . . .,
a0 such that fm(r, λ) is a power of m for 0 ≤ r ≤ k and a0 > 0. In this way we
can create infinitely many distinct simple CMP. For each distinct CMP λ, we can
use raises and shifts to generate an infinite family of CMP related to λ. In addition,
if λ does not represent an m-primitive integer n, then the family of CMP arising
from λ are only a subset of the infinitely many CMP that correspond with one of
the sequences given in Theorem 6.3. This is a delightful property for an object that
is as rare as stated above.
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