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Abstract

McKay, Miller and Širáň (1998) constructed, for an infinite set of values d,
a vertex-transitive graph of diameter 2, degree d and order νd =

8
9
(d+ 1

2
)2,

as an abelian lift of a regular complete bipartite graph with loops at each
vertex. We examine the order of abelian lifts of complete multigraphs and
also prove that νd is an upper bound on the order of any (not necessarily
vertex-transitive) graph of diameter 2 and any degree d ≥ 11, obtained
as an abelian lift of a regular complete bipartite graph (with loops and
semi-edges) of order at least 4.

1 Introduction and preliminaries

The well known degree-diameter problem is to find, for given d and k, the largest
order (that is, the number of vertices) of a graph of maximum degree d and diameter
k. We will be interested in the special case of diameter k = 2 and in a somewhat
restricted class of regular, finite and undirected graphs of degree d which we will
describe in what follows. For literature and advances on the general problem we
refer to the survey [7].

The upper bound on the order of a graph of diameter 2 and a maximum degree d
is d2+1, which is a special case of the so-called Moore bound for general degree and
diameter. The value of d2 + 1 is attained only for d = 2, 3, 7, and, possibly, 57 [5];
for the remaining d ≥ 4 the upper bound is d2−1, see [7]. The best currently known
graphs of diameter 2 and order ‘close’ to the Moore bound are the Brown graphs [2]
(also known as polarity graphs [1], originally introduced by Erdős and Rényi in [3])
of order d2 − d+1 for all values of d such that d− 1 is an odd prime power (with an
improvement on the order by +1 if d − 1 is a power of 2). Brown graphs, however,
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are not regular; by results of [12] they can be extended to regular graphs of degree d
but never to vertex-transitive graphs of such degree. As shown in [1] this is also not
possible when polarity graphs are extended to regular graphs of degree d+ 2.

The largest currently known vertex-transitive graphs — in fact, Cayley graphs —
of diameter 2 and a given degree d for an infinite (but rather sparse) set of degrees

d were constructed in [11] and have order at least d2 − 6
√
2d

3
2 . The largest available

vertex-transitive non-Cayley graphs of diameter 2 and degree d = (3q − 1)/2 where
q is a prime power congruent to 1 mod 4, known as the McKay-Miller-Širáň graphs
[6, 9], have order νd = 8

9
(d + 1

2
)2. The graphs were originally constructed in [6] as

abelian lifts of graphs arising from Kq,q by adding an appropriate number of loops
to every vertex. It is quite remarkable that the McKay-Miller-Širáň graphs also turn
out to be (ordinary) lifts of dipoles (multigraphs of order 2 with the same number
of loops at each vertex), with voltages in abelian groups, as was shown in [9]. Such
lifts, however, cannot be used to approach the Moore bound, since it was proved in
[8] that their order does not exceed 0.932d2 in the asymptotic sense.

A natural generalisation of dipoles are the complete multigraphs Kn(m, l, s) of
order n ≥ 2 and degree d = (n − 1)m + 2l + s, with edge multiplicity m, l loops,
and s semi-edges at every vertex, which we will call n-poles. Another generalisa-
tion of dipoles retaining the bipartiteness are the complete bipartite multigraphs
Kn,n(m, l, s) for n ≥ 2 and degree d = nm+ 2l + s, also with edge multiplicity m, l
loops, and s semi-edges at every vertex, and such graphs will be called (n, n)-bipoles.
We recall here that a semi-edge is incident to just one vertex and contributes just 1
to the degree of the vertex. Semi-edges arise naturally in graph coverings; see e.g. [7].

In this note we will focus on deriving upper bounds on the orders of lifts of n-poles
and (n, n)-bipoles with voltages in abelian groups. As a consequence we will obtain
a generalisation of the upper bound for lifts of dipoles (without semi-edges) proved
in [8].

We will assume throughout that the reader is familiar with the theory of lifts of
graphs by voltage assignments (see eg. [4]); for an elementary introduction to the
degree-diameter problem we refer to [7]. We recall here just a few basic facts. If G is a
graph (possibly with loops and parallel edges), then every edge h of G can be viewed
as consisting of two oppositely directed darts x, x−1, and we write h = {x, x−1}. Let
V (G) and D(G) be the vertex set and the dart set of G. Given a group Γ , a voltage
assignment on G in Γ is a mapping α : D(G) → Γ such that α(x−1) = (α(x))−1 for
every x ∈ D(G). The lift Gα of G by α has vertex set V (Gα) = V (G)× Γ and dart
set D(Gα) = D(G) × Γ , and for any dart x of D(G) from a vertex u to a vertex v
and for any g ∈ Γ there is a dart (x, g) in Gα from the vertex (u, g) to the vertex
(v, gα(x)); the darts (x, g) and (x−1, gα(x)) form an edge of Gα. Note that if Γ is an
abelian group, then the lift will be called abelian. The original graph G is called the
base graph of the lift, and for each vertex u of G the set {(u, g), g ∈ Γ} of vertices of
the lift is the fibre above u. Let us note here that the degree of every vertex in the
fibre above u is equal to the degree of u.

There is an easy way to control the diameter of a lift in terms of the base graph and
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the voltage assignment, proved in [6]. Given a base graph G and a voltage assignment
α on G in a group Γ and a walk W = x0x1 . . . xt in G (that is, a sequence of darts
such that the terminal vertex of xi−1 is the initial vertex of xi for i ∈ {1, . . . , t}), the
voltage α(W ) is simply the product α(x0)α(x1) . . . α(xt).

Lemma 1.1 Let α be a voltage assignment on a connected graph G in a group Γ ,
let k be a positive integer. Then, the lift Gα has diameter at most k if and only if
for any pair of vertices u, v of G, and for every element g of the group Γ there is a
u → v walk W in G of length at most k such that α(W ) = g.

2 Lifting given base graphs to graphs of diameter two

In this section we will consider lifts of graphs Kn(m, l, s) and Kn,n(m, l, s) introduced
in the previous section. We will apply Lemma 1.1 to prove upper bounds on the
orders of lifts of n-poles and (n, n)-bipoles with voltages in abelian groups.

Proposition 2.1 Let G = Kn(m, l, s) and let α be a voltage assignment on G in
an abelian group A such that the lift Gα has diameter two. Then the order of Gα is
bounded above by

ω1(m, l, s) = n ·min{(n− 1)m(m− 1) + 2l(l + 1) + 2ls+
s(s+ 1)

2
+ 1,

(n− 2)m2 + (4l + 2s+ 1)m}.
(1)

Proof. Let α be a voltage assignment on the base graph G = Kn(m, l, s) in an
abelian group A. At this point there are no restrictions on α, except that voltages
on semi-edges must be involutions of A.

The number of vertices in a fibre above any particular vertex u ∈ V (G) is,
by Lemma 1.1, bounded above by the number of distinct voltages on the closed
u → u walks of length at most 2 in the base graph. By vertex-transitivity of G,
our considerations do not depend on the choice of u. We obviously have the trivial
walk of length 0 that carries the zero voltage. Next, there are 2l + s walks of length
1 (each loop traversed in either direction and each semi-edge traversed), which can
carry at most 2l+s distinct voltages. The u → u walks of length 2 in the base graph
not containing a loop or a semi-edge can only be obtained by traversing from u to
any vertex distinct from u and back, which gives at most (n− 1)m(m − 1) distinct
non-zero voltages.

Finally, let us estimate the number of distinct voltages of the u → u walks of
length 2 that use loops and/or semi-edges. Every loop can be traversed twice in the
same direction, giving at most 2l distinct voltages. There are

(
l
2

)
unordered pairs of

distinct loops at u and, since A is abelian, walks of length 2 using two loops in such
a pair give at most 4 distinct voltages. Similarly, each unordered pair of distinct
semi-edges, and also each unordered pair of a semi-edge and a loop with a chosen
direction, induce two different walks with equal voltages. It follows that the number
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of voltages on such paths of length 2 is bounded above by 2l+
(
l
2

) ·4+2ls+s(s−1)/2.
Summing up, we can have at most

p1(m, l, s) = (n− 1)m(m− 1) + 2l(l + 1) + 2ls+
s(s+ 1)

2
+ 1

vertices of the lift in a fibre above any vertex of the base graph.

The second limitation comes, by Lemma 1.1, from examining the walks between
the vertices in two different fibres. Since the base graph is arc-transitive, it is suffi-
cient to take an arbitrary ordered pair u, v of distinct vertices and derive an upper
bound on the number of distinct voltages of the u → v walks of length at most 2 in
G. The m edges between u and v give m paths of length 1, and hence at most m
distinct voltages on such walks. There are 2(2l+ s)m distinct u → v walks of length
2 using a loop or a semi-edge exactly once; these carry at most 2(2l + s)m distinct
voltages. It remains to take into account the u → v paths of length 2 through a
third vertex w distinct from u and v, carrying at most (n− 2)m2 distinct voltages.
In summary, this gives the upper bound of the form

p2(m, l, s) = (n− 2)m2 + (4l + 2s+ 1)m

vertices in a fibre over a vertex in the lift.

Then, the minimum of polynomials p1(m, l, s) and p2(m, l, s), appearing in the
statement of our proposition, is an upper bound on the number of vertices in a fibre,
and this quantity multiplied by n is therefore an upper bound on the order of G. �

Now we turn our attention to lifts of (n, n)-bipoles.

Proposition 2.2 Let G = Kn,n(m, l, s) for n ≥ 2 and let α be a voltage assignment
on G in an abelian group A such that the lift Gα has diameter two. Then the order
of Gα is bounded above by

ω2(m, l, s) = 2n ·min{nm(m−1)+2l(l+1)+2ls+
s(s+ 1)

2
+1, (4l+2s+1)m,nm2}.

(2)

Proof. We will use an analogous approach as in the proof of Proposition 2.1, with
only few differences. LetG = Kn,n(m, l, s), n ≥ 2 be the base graph that is a complete
bipartite multigraph with two distinct sets of vertices U = {uk, k ∈ {1, . . . , n}}
and V = {vk, k ∈ {1, . . . , n}}. Let α be a voltage assignment on this base graph in
an abelian group A, without any restrictions on α, except that voltages on semi-edges
must be involutions of A.

We recall here that the number of vertices in a fibre above any particular vertex is
bounded above, as in the previous proof, by the number of distinct voltages assigned
on the closed walks of length at most 2 at a chosen vertex in the base graph. By
vertex-transitivity of the base graph this number is equal for any vertex of G.

For any u ∈ U examination of all possible u → u walks of length 2 on the base
graph G shows that there is only one difference from the previous case of n-poles.
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Namely, the number of distinct voltages of the walks traversing from u to some vertex
distinct from u and back is at most nm(m − 1) in this case. Next, let u ∈ U and
v ∈ V and consider all possible u → v walks of length 2 on G. Again, this is similar
to the case of n-poles, but since u and v are in different parts of bipartite graph G,
there will be no walks of length 2 through a third vertex distinct from vertices u and
v. The sum of the possibilities for u → u and u → v walks gives an upper bound on
the number of vertices in a fibre above any vertex of the base graph G in the form
of two polynomials

q1(m, l, s) = nm(m− 1) + 2l(l + 1) + 2ls+
s(s+ 1)

2
+ 1, and

q2(m, l, s) = (4l + 2s+ 1)m.

Finally, we look on the walks between two distinct vertices in the same partition.
Let u, u′ be a pair of distinct vertices in U and consider all u → u′ walks of length
2. Every such walk will go from u to one of the n vertices in V and back to u′, both
by m paths. This gives an upper bound of the form

q3(m, l, s) = nm2

vertices in a fibre over a vertex in the lift of G. Therefore, the minimum of polynomi-
als q1(m, l, s), q2(m, l, s) and q3(m, l, s) is an upper bound on the number of vertices
in a fibre, and therefore an upper bound on the order of G is this quantity multiplied
by 2n. �

Observe that the ‘min’ terms in (1) and (2) also give an upper bounds on the
orders of the corresponding abelian voltage groups.

3 Main results

We now prove an estimate on the order of an abelian lift of an n-pole.

Theorem 3.1 Let n ≥ 2 be an integer and let α be a voltage assignment on an
n-pole G of degree d in an abelian group such that the lift Gα has diameter 2. Then
the order of Gα is bounded above by

n4 + 4n3 + (2
√
2− 1)n2 − (2

√
2 + 2)n

(n2 + 2n− 1)2
d2 +O(d3/2)

as d → ∞.

Proof. Let G = Kn(m, l, s), with m ≥ 1 and l, s ≥ 0. By Proposition 2.1 we have
|Gα| ≤ ω1(m, l, s). Since we would like to have a bound on the order of the lift in
terms of d = (n−1)m+2l+s, we evaluate l = (d−(n−1)m−s)/2 and substitute this
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into ω1(m, l, s). If we consider the two arguments of the ‘min’ term as polynomials
in m, the substitution gives

p1(m) =

(
n2

2
− 1

2

)
m2 + (−dn− 2n+ d+ 2)m+

d2

2
+ d+ 1− s

2
, and

p2(m) = −nm2 + (2d+ 1)m

where in both cases 1 ≤ m ≤ d/(n− 1) and 0 ≤ s ≤ d− (n− 1).

Since we want to establish an upper bound on |Gα| we determine

M = max
m

min {p1(m), p2(m)}.

For an upper bound on M it is sufficient to replace m by a continuous real argument
x and determine the quantity

M∗ = max
x

min {p1(x), p2(x)}

where x ranges over all real numbers; we clearly have M ≤ M∗.

Observe that the parabola p1(x) is concave up while the parabola p2(x) is concave
down. It follows that to determine M∗ it is necessary and sufficient to identify the
points of intersection of p1(x) and p2(x). The value M∗ will be attained at one
of the intersection points of the parabolas. The roots x1 and x2 of the equation
p1(x) = p2(x) are

x1 =
dn+ 2n+ d− 1−√

2d2 + (2n2 − 2n)d+ 2n2 − 8n+ 3 + (n2 + 2n− 1)s

n2 + 2n− 1

x2 =
dn+ 2n+ d− 1 +

√
2d2 + (2n2 − 2n)d+ 2n2 − 8n+ 3 + (n2 + 2n− 1)s

n2 + 2n− 1

and the x-coordinates of the vertices of the parabolas p1(x) and p2(x), respectively,
are V1 = d+2

n+1
and V2 = 2d+1

2n
. An inspection shows that if V1 ≤ V2, that is, if

3n ≤ 2d+ 1, then M∗ = maxx min {p1(x), p2(x)} = p2(x2), and if V1 ≥ V2, that is,
if 3n ≥ 2d+ 1, then M∗ = p2(x1). Since we are interested in the case when d → ∞
for any fixed n ≥ 2, we only need to consider the first case and so M∗ = p2(x2). The
resulting upper bound on the number of vertices of the lift is in this case n ·M∗ =
n · p2(x2). An evaluation of this quantity finally yields

n · p2(x2) =
n4 + 4n3 + (2

√
2− 1)n2 − (2

√
2 + 2)n

(n2 + 2n− 1)2
d2 +O(d3/2)

as in the statement of the theorem. �

In the following Theorem 3.2 we derive an upper bound on the order of an abelian
lift of an (n, n)-bipole.



P. JÁNOŠ ET AL. /AUSTRALAS. J. COMBIN. 81 (3) (2021), 357–366 363

Theorem 3.2 Let n ≥ 2 be an integer and let α be a voltage assignment in an
abelian group on an (n, n)-bipole G of degree d such that the lift Gα has diameter 2.
If d ≥ 11, then the order of Gα is bounded above by

8

9

(
d+

1

2

)2

.

Proof. Let G = Kn,n(m, l, s) of degree d = nm + 2l + s, where n ≥ 2, m ≥ 1 and
l, s ≥ 0. Let α be a voltage assignment on G in an abelian group A of order at most
ω2(m, l, s), cf. Proposition 2.2. We substitute s = d − nm − 2l into ω2(m, l, s) to
derive an upper bound ω(d) on the order of the lift in terms of d. As a result of
this substitution we have a modified form of the three polynomials of ω2(m, l, s) in
variable m as an argument:

q1(m) =

(
n2

2
+ n

)
m2 +

(
−3n

2
− dn

)
m+

d(d+ 1)

2
+ l + 1,

q2(m) = (−2n)m2 + (2d+ 1)m,

q3(m) = nm2,

where 1 ≤ m ≤ d
n
and 0 ≤ l ≤ 	d−n

2

.

To derive an upper bound on |Gα| we replace m by a continuous real argument
x and determine the quantity

M = max
x

min {q1(x), q2(x), q3(x)}.

For determining the value ofM it is necessary to examine the position of parabolas
q1(x), q2(x) and q3(x), and the points of their intersection, since the value of M will
be attained at one of these points.

Observe that the parabolas q1(x) and q3(x) are concave up while the parabola
q2(x) is concave down, and the x-coordinates of their vertices are V1 = 2d+3

2n+4
, V2 =

2d+1
4n

and V3 = 0. It is straightforward to check that the inequalities V3 < V2 < V1

hold for all d ≥ 11 and n ≥ 2. The roots xσ
1 and xσ

2 of the equation σ : q1(x) = q3(x)
are given by

2d+ 3±√
8d− 8l + 1

2n
,

where the minus belongs to xσ
1 and the plus belongs to xσ

2 . It is easy to verify that
since d ≥ l it holds that both xσ

1 and xσ
2 are real. Then the roots xτ

1 and xτ
2 of the

equation τ : q2(x) = q3(x) are xτ
1 = 0 and xτ

2 = 2d+1
3n

.

Based on the fact that q1(x) and q3(x) are both concave up and the x-coordinates
of their points of intersection are xσ

1 , x
σ
2 we have q1(x) ≤ q3(x) for x ∈ (xσ

1 , x
σ
2 ).

Considering the position of the parabolas q1(x) and q2(x) in the sense of determining
the value of M we can show that the case where

xσ
1 > xτ

2 (3)
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holds for d ≥ 11. This is equivalent to showing that

2d+ 3−√
8d− 8l + 1

2n
>

2d+ 1

3n
. (4)

If we consider any value of l from the interval 0 ≤ l ≤ 	d−n
2

, the character of the

position of parabolas q1(x), q2(x) and q3(x) will not be changed and therefore we
only need to consider the case where l = 0. Then, the inequality (4) can, for n ≥ 2,
be simplified to

2d+ 7− 3
√
8d+ 1 > 0 . (5)

Squaring both sides of (5) and further manipulating the resulting inequality yields
(d− 10)(d− 1) > 0, and reversing the process gives (3) for d > 10.

The inequality (3) implies that for all d ≥ 11 the M = maxx min {q1(x), q2(x),
q3(x)} is attained at xτ

2 with value M = q3(x
τ
2), and then the resulting upper bound

on the number of vertices of the lift will be determined as 2n ·M = 2n · q3(xτ
2). This

finally gives

2n · q3(xτ
2) =

8

9

(
d+

1

2

)2

for any fixed n ≥ 2, regardless of the number of loops and semi-edges at each vertex,
as in the statement of the Theorem 3.2. Note here that we omit roots of the equation
q1(x) = q2(x) since in the case (3) for d ≥ 11 the M = maxx min {q1(x), q2(x), q3(x)}
is not achieved in any of these roots. �

For d ≤ 10, that is, for the opposite case than (3), the maximum value of ω(d) is
attained for n = 2 and l = 	d−2

2

, and the corresponding values of the upper bound

(obtained by computer search) are ω(8) = 64, ω(9) = 80 and ω(10) = 98. We do not
include the calculations for the remaining values of d ≤ 7 because in this range of d
the orders of the largest known (d, 2)-graphs is larger that ω(d).

The last part of this section is dedicated to the conclusions of theorems stated
above. Theorem 3.1 may be regarded as an improvement over the Moore bound
for graphs of degree d and diameter two obtained as lifts of n-poles of degree d in
an abelian group. In the case where n = 2 we obtain, up to the ‘big O’ term, the
same upper bound as in [8]. For n = 3 the upper bound from the Theorem 3.1 gives

approximately 87+6
√
2

98
d2 +O(d3/2)

.
= 0.974d2 +O(d3/2) as d → ∞. For n up to 7 we

obtain the following approximate upper bounds on the order of a diameter-two lift
of an n-pole with voltages in an abelian group:

n Order of lift of n-pole

2 0.932d2 +O(d3/2)

3 0.974d2 +O(d3/2)

4 0.987d2 +O(d3/2)

5 0.992d2 +O(d3/2)

6 0.995d2 +O(d3/2)

7 0.996d2 +O(d3/2)
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This behavior is, of course, expected, since the limit of the leading term in the
upper bound in Theorem 3.1 tends to 1 as n → ∞.

Theorem 3.2 shows that for every d ≥ 11 and n ≥ 2 the upper bound on the
order of abelian lifts of complete bipartite multigraphs based on Kn,n of diameter 2

is 8
9

(
d+ 1

2

)2
. Since this is equal to the order of McKay-Miller-Širáň graphs [6, 9],

the upper bound is sharp.

We would like to point out that our proof of the upper bound from Theorem 3.2
works for n ≥ 2. For n = 1 the (1, 1)-bipole in our terminology is just a dipole, that
is, in the notation of Theorem 3.1, a 2-pole. Thus, for abelian lifts of 2-poles we
currently have no better bound than the one of Theorem 3.1; elaborating on it the
bound turns out to be

4(10 +
√
2)

49
(d+ 0, 35)2 ≈ 0, 932(d+ 0, 35)2,

for odd degrees d ≥ 7, which is mildly better than the one presented in [8] where
semiedges have not been considered.
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