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Abstract

A biclique is a maximal induced complete bipartite subgraph of G. The
biclique graph of a graph G, denoted by KB(G), is the intersection graph
of the family of all bicliques of G. In this work we study some structural
properties of biclique graphs which are necessary conditions for a graph
to be a biclique graph. In particular, we prove that for biclique graphs
that are neither a K3 nor a diamond, the number of vertices of degree 2
is less than half the number of vertices in the graph. Also, we present
forbidden structures. For this, we introduce a natural definition of the
distance between bicliques in a graph. We give a formula that relates the
distance between bicliques in a graph G and the distance between their
respective vertices in KB(G). Using these results, we can prove not only
this new necessary condition involving the degree, but also that some
graphs are not biclique graphs. For example, we show that the crown
is the smallest graph that is not a biclique graph, although the known
necessary condition for biclique graphs holds, answering an open prob-
lem about biclique graphs. Finally, we present some interesting related
conjectures and open problems.
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1 Introduction

Intersection graphs of certain special subgraphs of a general graph have been studied
extensively. We can mention line graphs (intersection graphs of the edges of a graph),
interval graphs (intersection graphs of subpaths of a path), and in particular, clique
graphs (intersection graphs of the cliques of a graph) [5, 6, 10, 11, 12, 21, 23].

The clique graph of G, denoted by K(G), is the intersection graph of the family
of all cliques of G. Clique graphs were introduced by Hamelink in [16] and char-
acterized in [31]. It was proved in [1] that the clique graph recognition problem is
NP-Complete.

Bicliques have been studied in many contexts. Depending on the context and the
author, bicliques are defined in different ways: induced or not induced subgraphs,
maximal or not, etc. [2, 9, 19, 24, 26, 30, 32]. All of them are rather natural and clearly
justified. In our work, we consider bicliques as being maximal induced complete
bipartite subgraphs.

Bicliques have applications in various fields, for example, biology: protein-protein
interaction networks [7], social networks: web community discovery [20], genetics [3],
medicine [25], information theory [15]. More applications (including some of these)
can be found in [22].

The biclique graph of a graph G, denoted by KB(G), is the intersection graph of
the family of all bicliques of G. It was defined and characterized in [14]. However, no
polynomial time algorithm is known for recognizing biclique graphs. Biclique graphs
have been studied over the last few years. See [8, 13, 28] for some examples of recent
articles on the subject.

In this work we study structural properties of biclique graphs. For this, we
introduce the concept of the distance between bicliques in a graph. Previous related
work in the context of cliques can be found in [4, 17, 18, 27, 29].

In [14], a necessary condition for a graph to be a biclique graph was given. It was
an open problem whether this condition was sufficient. Using the distances formula,
we give a different proof for this necessary condition1. Moreover, we prove that this
necessary condition is not sufficient, that is, we present some structural properties
and forbidden structures which allow us to identify graphs that verify the condition
but they are not biclique graphs. Finally, we present a new necessary condition of
biclique graphs: given a biclique graph that is not a K3 or a diamond, we prove that
the number of vertices of degree 2 is strictly less than half the number of vertices in
the graph. Consequently, we give some forbidden structures.

We hope that these tools give some light to the main open problem in the context
of biclique graphs, that is, the recognition of this class. In the appendix, we present
a complete list of all biclique graphs up to 6 vertices.

This work is organized as follows. In Section 2 the notation is given. Section 3

1We remark that, although the original proof is short, the new proof shows how to use this
formula to solve problems in biclique graphs.
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contains some preliminary and general properties. In Section 4 we present the relation
between distances in graphs and biclique graphs plus some structural properties of
biclique graphs. Section 5 contains a bound on the number of vertices of degree 2 for
biclique graphs and forbidden structures. In the last two sections we present some
open and interesting related problems, and we end with a concluding one.

2 Preliminaries

Throughout the paper we restrict our attention to undirected simple graphs. Let
G = (V,E) be a graph with vertex set V (G) and edge set E(G), and let n = |V (G)|
and m = |E(G)|. A subgraph G′ of G is a graph G′ = (V ′, E ′), where V ′ ⊆ V and
E ′ ⊆ E such that all endpoints of the edges of E ′ are in V ′. When E ′ has all the edges
of E whose endpoints belong to the vertex subset V ′, we say that V ′ induces the
subgraph G′ = (V ′, E ′), that is, G′ is an induced subgraph of G. A graph G = (V,E)
is bipartite when there exist sets U and W such that V = U ∪W , U ∩W = ∅, U 6= ∅,
W 6= ∅ and E ⊆ U ×W . Say that G is a complete graph when every possible edge
belongs to E. A complete graph on n vertices is denoted Kn. A bipartite graph is
complete bipartite when every vertex of the first set is connected to every vertex of
the second set. A complete bipartite graph on p vertices in one set and q vertices in
the other is denoted Kp,q. A clique of G is a maximal complete induced subgraph,
while a biclique is a maximal induced complete bipartite subgraph of G. The open
neighborhood of a vertex v ∈ V (G), denoted N(v), is the set of vertices adjacent to v.
The closed neighborhood of a vertex v ∈ V (G), denoted N [v], is the set N(v) ∪ {v}.
The degree of a vertex v, denoted by d(v), is defined as d(v) = |N(v)|. A vertex
v ∈ V (G) is simplicial if N [v] is a clique. A vertex v ∈ V (G) is universal if it is
adjacent to all of the other vertices in V (G). A path of k vertices, denoted by Pk, is
a sequence of vertices v1v2 . . . vk ∈ V (G) such that vi 6= vj for all 1 ≤ i 6= j ≤ k and
vi is adjacent to vi+1 for all 1 ≤ i ≤ k−1. A graph is connected if there exists a path
between each pair of vertices. The distance between two vertices v, w ∈ G is defined
as the number of edges in a shortest path between them and is denoted by dG(v, w).
Whenever no confusion arises, we will simply write d(v, w) instead of dG(v, w). We
assume that all the graphs of this paper are connected.

A diamond is a complete graph with 4 vertices minus an edge. A gem is an
induced path with 4 vertices plus a universal vertex.

Given a family of sets H, the intersection graph of H is a graph that has the
members of H as vertices and there is an edge between two sets E,F ∈ H when
E ∩F 6= ∅. A graph G is an intersection graph if there exists a family of sets H such
that G is the intersection graph of H.

3 General properties

In this section we present some properties of the biclique graph related to connectiv-
ity. First we recall the theorem in [14] that gives a necessary condition for a graph
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to be a biclique graph.

Theorem 3.1 ([14]). Let G be a graph such that G = KB(H), for some graph H.
Then every induced P3 of G is contained in an induced diamond or an induced gem
of G as shown in Figure 1.

Figure 1: Induced P3 in bold edges contained in a diamond and in a gem respectively.

In Section 4 we give a different proof of Theorem 3.1. One question that arises
from Theorem 3.1 is: Given a graph G such that every induced P3 is contained in a
diamond or in a gem; is G = KB(H) for some graph H? In Section 4 we show that
the answer is “No”, by proving a result that allows us to construct graphs that have
every induced P3 in a diamond or in a gem although they are not biclique graphs.

Next we show the connectivity relation between G and KB(G).

Proposition 3.2. Let G be a graph. G is connected if and only if KB(G) is con-
nected.

Proof. Suppose G is connected. Let B and B′ be bicliques of G. If B intersects B′

then their corresponding vertices in KB(G) are adjacent. If they do not intersect,
as G is connected, there is a path between each vertex of B and B′. Let b ∈ B,
b′ ∈ B′ such that d(b, b′) = min{d(v, w) | v ∈ B, w ∈ B′}. Let k = d(b, b′).
Clearly k > 0, so take a path P = bv1 . . . vk−1b

′ of length k between b and b′.
Now, each triple of consecutive vertices of P is contained in a different biclique since
both endpoints of each triple are not adjacent. Finally taking the bicliques that
contain the following triples {b, v1, v2}, {v2, v3, v4}, . . . , {vk−2, vk−1, b′} for k even and
{b, v1, v2}, {v2, v3, v4}, . . . , {vk−3, vk−2, vk−1}, {vk−2, vk−1, b′} for k odd (note that for
k = 1, the edge bb′ is in a biclique that intersects both B and B′), we have that each
biclique only intersects with the previous and the following one. Therefore, their
corresponding vertices in KB(G) form a path between the vertices corresponding to
B and B′. Hence KB(G) is connected.

The converse is clear.

The following result is a direct consequence of Theorem 3.1.

Lemma 3.3. Let G be a connected graph such that G = KB(H), for some graph
H. If G has at least 3 vertices, then d(v) ≥ 2 for all v ∈ V (G). Moreover, G is
2-connected.
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Proof. If there is a vertex with degree 1, since G has at least 3 vertices, that vertex
would be an extreme of a P3 not contained in an induced diamond nor an induced
gem, that is, a contradiction by Theorem 3.1. Finally, suppose G is not 2-connected
and let v be a vertex such that G−{v} is disconnected. Taking two vertices v1, v2 in
different connected components of G−{v} that are adjacent to v, we obtain a P3 not
contained in an induced diamond nor an induced gem, and again, a contradiction by
Theorem 3.1.

4 Distances in G and KB(G)

In this section we define the distance between bicliques in a graph. Also, we study
the relation between the distance of bicliques in a graph G and the distance between
their respective vertices in KB(G).

Definition 4.1. Let G be a graph and let B,B′ be bicliques of G. We define the
distance between B and B′ as d(B,B′) = min{d(b, b′) / b ∈ B, b′ ∈ B′}.

The next formula states the relationship between the distances of G and KB(G).
This result is useful to show that the condition of Theorem 3.1 is not sufficient.

Lemma 4.2. Let G be a graph and let B,B′ be two different bicliques of G. Then
dKB(G)(B,B′) =

⌊dG(B,B′)+1
2

⌋
+ 1.

Proof. Let v0, vk be vertices of G such that v0 ∈ B, vk ∈ B′ and d(v0, vk) =
dG(B,B′) = k. If k = 0 then B and B′ intersect in G. So they are adjacent as
vertices in KB(G). Therefore dKB(G)(B,B′) =

⌊
0+1
2

⌋
+ 1 = 1. Suppose now that

k > 0. Let P1 = v0v1 . . . vk be a path in G between B and B′ of length k. Take
Bi ∈ V (KB(G)) such that {vi, vi+1, vi+2} ⊆ Bi in G, i = 0, . . . , k−2. These bicliques
Bi of G exist since vivi+2 /∈ E(G) for i = 0, . . . , k − 2, otherwise there would be a
path of length less than k between B and B′.

Then BB0B2B4 . . . B2j . . . B
′ is a path in KB(G) between B and B′ of

length
⌊
k+1
2

⌋
+ 1 and therefore, as dG(B,B′) = k, we have that dKB(G)(B,B′)

≤
⌊dG(B,B′)+1

2

⌋
+ 1. This situation can be observed in Figure 2.

Now let P2 = B0B1 . . . Bs be a path of minimum length in KB(G) between
B = B0 and B′ = Bs (Fig. 3). Then dKB(G)(B,B′) = s > 0. Let v2i ∈ Bi ∩ Bi+1 be
vertices of V (G) for i = 0, . . . , s− 1. Thus, we obtain the vertices v0, v2, . . . , v2s−2 of
G. Now, for i = 1, . . . , s − 1, either v2i−2 is adjacent to v2i or v2i−2 is not adjacent
to v2i. If they are not adjacent then there exists one vertex v2i−1 adjacent to both
since v2i−2 and v2i belong to the biclique Bi of G. Then, the longest path between
v0 and v2s−2 occurs when these two consecutive vertices are not adjacent. In this
situation, adding the vertex adjacent to both between each pair, we have an induced
path v0v1 . . . v2s−2 in G between B and B′ of length 2s− 2. Then

dG(B,B′) ≤ 2s− 2,
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Figure 2: First inequality.

dG(B,B′) + 2

2
≤ s = dKB(G)(B,B′),

dG(B,B′)

2
+ 1 ≤ dKB(G)(B,B′).

Finally, since dG(B,B′) and dKB(G)(B,B′) are integers, it follows that

⌊dG(B,B′) + 1

2

⌋
+ 1 ≤ dKB(G)(B,B′).

Combining both inequalities we obtain the desired result.

Now, based on the distance between two bicliques of a graph G, we can ensure
the existence of other bicliques “between them”. That is, if the distance between the
bicliques B and B′ of G is k, then there exist other bicliques at distance at most k−1
to each of B and B′. This result will be very useful for proving not only Theorem 3.1
but also that the condition of the theorem is not sufficient.

Theorem 4.3. Let G be a graph and let B,B′ be bicliques of G such that dG(B,B′) =
k > 0. Then there exist at least k + 1 bicliques in G such that they are at distance
at most k − 1 from both B and B′.

Proof. We will prove the theorem in two parts, first when dG(B,B′) = 1 and last
when dG(B,B′) = k > 1.

Suppose first that dG(B,B′) = 1. Let v ∈ B, w ∈ B′ be adjacent vertices and let
x ∈ B, y ∈ B′ be vertices such that vx, wy ∈ E(G). In Figure 4 we show all possible
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configurations (up to symmetry) according to the adjacencies between vertices. We
count the number of different bicliques in each case.

Figure 4: Different cases for bicliques B and B′ at distance 1.

(A) {x, y}, {v, y}, {v, w}, {x,w} are contained in four different bicliques.

(B) {x, v, y}, {x,w, y} and {v, w} are contained in three different bicliques.

(C) {x,w, y} and {v, w, y} are contained in two different bicliques.

(D) {x, v, w} and {v, w, y} are contained in two different bicliques.

Note that if xy ∈ E(G) and xw, vy /∈ E(G), then {x, v, w, y} is contained in
a biclique. Now, as the biclique containing {v, w, x, y} should be different from B,
there exists a vertex z ∈ B such that either zv, zw ∈ E(G) (or zx, zy ∈ E(G)) or
zv ∈ E(G), zy /∈ E(G) (or zx ∈ E(G), zw /∈ E(G)). By symmetry, as the biclique
containing {v, w, x, y} is different from B′, there should also exist a vertex u ∈ B′

with similar adjacencies. In these situations, we can see that we fall in one of the
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previous cases (B), (C) or (D), therefore taking into account the biclique containing
{v, w, x, y}, we obtain at least three different bicliques.

In all cases there are at least two different bicliques that intersect B and B′, that
is, they are at distance k− 1 = 0 to each of them. We remark that we exactly count
in each case the minimum number of bicliques that can exist between B and B′ as
we will use that later in the paper.

B B'
v
0

v
1

v
2

v
3

v
k-1

v
k

Figure 5: Bicliques B and B′ are at distance k.

Suppose last that dG(B,B′) = k > 1 and let v0v1 . . . vk be a shortest path between
B and B′ such that v0 ∈ B, vk ∈ B′. Then, each triple {vi, vi+1, vi+2} is contained in a
different biclique of G for i = 0, . . . , k−2. Therefore we obtain k−1 bicliques that are
at distance at most k−1 to each of B and B′. We obtain the two remaining bicliques
as follows. Let x ∈ B, y ∈ B′ such that xv0, yvk ∈ E(G). If xv1 /∈ E(G) (respectively
yvk−1 /∈ E(G)) there is a biclique containing {x, v0, v1} (respectively {y, vk, vk−1}).
We call this biclique sharing an edge with B (respectively B′) a special biclique.
Otherwise, if xv1 ∈ E(G) (respectively yvk−1 ∈ E(G)), then {x, v1, v2} (respectively
{y, vk−1, vk−2}) is contained in a biclique.

As an immediate result of Theorem 4.3 for k = 1 and k = 2 we obtain the
following two corollaries.

Corollary 4.4. Let G be a graph, let B,B′ be bicliques of G such that dG(B,B′) = 1,
let e be an edge with one endpoint in B and the other in B′, and let B2 be a biclique
containing e. Then there exists a biclique B1 which intersects B,B′ and B2. More-
over, the vertices b, b′, b1, b2 ∈ KB(G) corresponding to the bicliques B,B′, B1, B2 in
G respectively, induce a diamond in KB(G).

Corollary 4.5. Let G be a graph, and let B,B′ be bicliques of G such that dG(B,B′)
= 2. Consider an induced P3 with its extremes in B and B′, and let B2 be a biclique
containing that P3. Then there exist two different bicliques B1, B3 “between” B and
B′, such that, calling b, b′, b1, b2, b3 the vertices in KB(G) corresponding to the bi-
cliques B,B′, B1, B2, B3 in G respectively, we either have

• both B1 and B3 are special bicliques, and thus {b, b′, b1, b2, b3} induces a gem in
KB(G), or

• at least one of B1 and B3 is not special (suppose B1 is not), and thus{b, b′, b1, b2}
induces a diamond in KB(G).



M. GROSHAUS AND L. MONTERO/AUSTRALAS. J. COMBIN. 81 (2) (2021), 301–318 309

The proof of Theorem 3.1 follows from Theorem 4.3, and Corollaries 4.4 and 4.5.

Proof of Theorem 3.1. Let bb2b
′ be an induced P3 in G and let B, B2 and B′ be the

bicliques of H associated to the vertices b, b2 and b′ of G. The biclique B2 contains
either an edge with one endpoint in B and the other in B′, or B2 contains a P3

with its extremes in B and B′. In the first case, by Corollary 4.4, we obtain that
bb2b

′ is contained in an induced diamond of G. In the second case, by Corollary 4.5,
we obtain that bb2b

′ is contained in either an induced diamond or an induced gem
of G.

Now we will show that although in the crown (Fig. 6) every induced P3 is con-
tained in an induced diamond, it is not a biclique graph. This result is a counterex-
ample of the question of the sufficiency of the property of Theorem 3.1.

Figure 6: The crown is not a biclique graph but has every P3 in a diamond.

Indeed, we will prove a more general result that implies not only that the crown
graph is not a biclique graph but neither are many other graphs. We remark that
the crown is the smallest graph that verifies the condition of Theorem 3.1 but is not
a biclique graph.

Proposition 4.6. Let G = KB(H) for some graph H, where G is not isomorphic
to the diamond. Then there do not exist v1, v2 ∈ V (G) such that N(v1) = N(v2) and
their neighbors induce a K2.

Proof. Suppose that there exist v1, v2 ∈ V (G) such that N(v1) = N(v2) and their
neighbors induce a K2. Then dG(v1, v2) = 2, and therefore, if B is the biclique of
H that corresponds to v1 and B′ is the biclique of H that corresponds to v2, by
Lemma 4.2, dH(B,B′) = 2 or dH(B,B′) = 1. We will analyze each case.

Case dH(B,B′) = 2.

Now, H must contain a subgraph as depicted in Figure 7. We will show that we
arrive at a contradiction. Suppose first that one of both dotted edges does not exist,
say vy. Then {v, x, y} is contained in a biclique that does not intersect B′. This
is a contradiction since N(v1) = N(v2) in G. Suppose next that both dotted edges
vy and vy′ exist. In this case we also arrive at a contradiction since in H there
are at least four bicliques that intersect with B and B′. We obtain one for each
choice of one element in {x, y} in B, one element in {x′, y′} in B′ and v. Therefore
N(v1) = N(v2) does not induce a K2, which is a contradiction.
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Figure 7: Graph H when dH(B,B′) = 2.

Case dH(B,B′) = 1.

In this case, by Theorem 4.3, there exist at least two bicliques B1, B2 in H that
intersect both B and B′. Clearly there must be exactly two, or otherwise N(v1) =
N(v2) would not induce a K2. Now, by the first part of the proof of Theorem 4.3,
only in the cases (C) and (D) is it possible that there are exactly two bicliques
intersecting both B and B′ in H. Figure 8 shows both possible options. The labels
of Theorem 4.3 were as given in Figure 4.

Figure 8: Only options for H with two bicliques that intersect B and B′.

− Case (a) (follows case (C) of the proof of Theorem 4.3):

As we can observe in Figure 8a, if B1 is the biclique containing {v, w, y} and
B2 is the biclique containing {x,w, y}, H has four bicliques such that they induce
a diamond in G. As G is not isomorphic to the diamond, there must exist another
biclique in H that intersects neither B nor B′. Let B3 be another biclique such
that V (B3) ⊆ V (H) \ (B ∪ B′). Suppose now that there is a vertex u ∈ B3 such
that u /∈ (B1 ∪ B2). Since H is connected, we can choose B3 such that there is a
vertex u′ ∈ (B ∪ B′ ∪ B1 ∪ B2) adjacent to u. Clearly, if u′ ∈ (B ∪ B′), we obtain a
contradiction because the edge uu′ is contained in a biclique different to B1, B2 that
intersects B or B′. Otherwise, since the edge wy ∈ (B1 ∩B2) and u′ ∈ (B1 ∪B2), we
have that u′ is adjacent to w or y, and therefore we obtain that {u, u′, w} or {u, u′, y}
is contained in another biclique intersecting B′ respectively, which is a contradiction.
We can conclude that V (H) \ (B ∪B′) is contained in B1 ∪B2.

We show now that there are at least three bicliques that intersect B or B′,
i.e., v1 or v2 has an open neighborhood bigger than two vertices, which would be
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a contradiction. For this, let ab be an edge in the biclique B3. Because V (B3) is
contained in B1 ∪B2, both a and b are adjacent to at least one vertex in {w, y}.

If a is adjacent to both w and y, then the edges ab in B3 and wy in B′ determine
case (A) or (B) of the proof of Theorem 4.3, which is a contradiction. Therefore a
is adjacent to just one vertex in {w, y}. Similarly, the same can be said about b.

If a and b are adjacent to different vertices in {w, y}, then these four vertices
induce a C4 and hence there are three bicliques between B3 and B′ like in the proof
of Theorem 4.3, a contradiction.

If a and b are both adjacent to y, consider the bicliques containing {w, y, a}
and {w, y, b}. They cannot be the same biclique, so one is B1 and the other is B2.
Suppose without loss of generality that the first biclique is B1 and the second biclique
is B2. Recalling that B1 is the biclique containing {v, w, y} and B2 is the biclique
containing {x,w, y}, one can conclude that a is adjacent to v and that b is adjacent
to x. Then, if we consider the edge vx in B and the edge ab in B3, we have that
{a, b, v, x} either induces a C4, a diamond (case (B)) or a K4 (case (A)). Thus there
are at least three bicliques between B and B3, a contradiction.

Finally, if both a and b are adjacent to w, this time suppose without loss of gener-
ality that B1 is the biclique containing {a, w} and that B2 is the biclique containing
{b, w}. If v is not adjacent to b, then any biclique containing {v, w, b} is different
from B1 and B2, so there are three bicliques that intersect B′, a contradiction. Con-
sequently, v must be adjacent to b. Similarly, x is adjacent to a. Therefore when we
consider the edges vx in B and ab in B3, we see that {a, b, v, x} induces a C4, diamond
or K4, so there are at least three bicliques between B and B3, a contradiction.

− Case (b) (follows case (D) of the proof of Theorem 4.3):

As we can observe in Figure 8b, if B1 is the biclique containing {x, v, w} and B2 is
the biclique containing {v, w, y}, similarly to the case (a), H has four bicliques that
induce a diamond in G. Then there must exist another biclique B3 in H different
from these four which does not intersect B or B′.

One can show that V (H)\ (B∪B′) is contained in B1∪B2 with exactly the same
argument as the previous case, using now the edge vw ∈ (B1 ∩ B2) rather that the
edge wy ∈ (B1 ∩B2) as we did in case (a).

Now we show for this case that there are at least three bicliques that intersect B
or B′. Let B3 be a fifth biclique in H not intersecting B or B′ and let ab be an edge
in B3. Since V (B3) is contained in B1 ∪ B2, both a and b are adjacent to at least
one vertex in {v, w}.

If a is adjacent to both v and w, then the bicliques containing edges av and aw
are different from B1 and B2, which is a contradiction. Therefore a is adjacent to
just one vertex in {v, w} and the same can be said about b.

If a and b are adjacent to different vertices in {v, w}, suppose without loss of
generality that a is adjacent to v and b is adjacent to w; then these four vertices
induce a C4 that is contained in a biclique B̃. If B̃ is different from B1 and B2, we
obtain a contradiction. Otherwise B̃ should be B1 or B2. Without loss of generality,
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suppose that B̃ = B1; therefore x must be adjacent to b. Considering the edge ab in
B3 and xv in B, {a, b, x, v} induces a C4 and hence there are three bicliques between
B3 and B as in the proof of Theorem 4.3, a contradiction.

Finally, if a and b are both adjacent to v (symmetric if both are adjacent to w),
we have that either {x, v, a} and {x, v, b} are contained in bicliques different from
B2 which is a contradiction, or {a, b, x, v} induces a diamond or a K4 and therefore
there are at least three bicliques between B and B3 which is also a contradiction.

As no more cases are left, there do not exist v1, v2 ∈ V (G) such that N(v1) =
N(v2) with their neighbors inducing a K2; this completes the proof.

Figure 9 shows some examples of graphs that are not biclique graphs, where every
P3 is included in a diamond.

Figure 9: Graphs that are not biclique graphs by Proposition 4.6.

5 Vertices of degree 2 in biclique graphs

In this section we give a strong property for biclique graphs that have an induced P3

contained in a gem and not in a diamond. Also, we show some forbidden structures.
These properties give more tools to recognize graphs that are not biclique graphs.

The next result implies that the Hajós graph, the rising sun and the X1 graph
(see Fig. 10) are not biclique graphs by giving a forbidden structural property.

Proposition 5.1. Let G = KB(H) for some graph H, and let bb2b
′ be an induced

P3 such that b, b′ do not belong to any induced diamond. Let b1, b3 be the vertices
of G corresponding to special bicliques in H such that {b, b′, b1, b2, b3} induces a gem
(Corollary 4.5). If b̃ is a vertex such that b̃ /∈ {b, b′, b1, b2, b3} and b̃ does not belong
to an induced diamond with b, then b̃ is not adjacent to b1.

Proof. Recall that since b, b′ do not belong to any induced diamond and are at
distance 2, by Corollary 4.5, such vertices b1, b3 exist. Let B,B′, B1, B2, B3, B̃ be
the bicliques of H corresponding to the vertices b, b′, b1, b2, b3, b̃ of G. Let xy be an
edge that belongs to B∩B1. Note that this edge exists since B1 is a special biclique.
By contradiction, if B̃ and B1 intersect (i.e., b̃ is adjacent to b1 in G), then either
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x is adjacent to some vertex z of B̃, or the vertex y is adjacent to some vertex z of
B̃. In either case, there is an edge between a vertex of B and a vertex of B̃, which
is a contradiction by Corollary 4.4, as b̃ and b would belong to an induced diamond
in G.

Corollary 5.2. The Hajós graph, the rising sun and the X1 graph are not biclique
graphs (Fig. 10).

Moreover, these three graphs give forbidden structures for biclique graphs.

Corollary 5.3. Let G be a graph which contains the Hajós graph, the rising sun or
the X1 graph as an induced subgraph where the vertices of degree 2 in the subgraph
are also of degree 2 in G. Then G is not a biclique graph.

Figure 10: The Hajós graph, the rising sun and the X1 graph.

Next we present the theorem that gives an upper bound on the number of vertices
of degree 2 in a biclique graph.

Theorem 5.4. Let G = KB(H) for some graph H, where G is not isomorphic to
K3 or the diamond, and |V (G)| = n. Then the number of vertices of degree 2 in G
is strictly less than n/2.

Proof. Let V2 = {v ∈ G : d(v) = 2}. First we show that there are no edges between
the vertices of V2. Suppose by contradiction that vi, vj ∈ V2 are adjacent. If they
have a common neighbor, say w, since G is not isomorphic to K3, both {vi, w, w′} and
{vj, w, w′}, where w′ is any other neighbor of w, induce a P3 which is not contained
in a diamond or a gem. Otherwise, if the vertex w is adjacent to vi and not adjacent
to vj, then {w, vi, vj} induces a P3 that is not included in a diamond or a gem since
no other vertex is adjacent to vi. In both cases we arrive at a contradiction by
Theorem 3.1.

Next we show that for each vi ∈ V2, there exists a vertex wi ∈ N(vi) such that
wi /∈ N(vj), for all vj ∈ V2, j 6= i. Clearly, wi /∈ V2. By contradiction, suppose that
there is a vertex vi ∈ V2 such that each of its two neighbors, say v′, v′′, are adjacent
to some other vertex of V2. Note again that by Theorem 3.1, v′ and v′′ are adjacent.
Consider the following cases:

• N(vi) = N(vj) = {v′, v′′}, for some vj ∈ V2. Since G is not isomorphic to the
diamond, by Proposition 4.6 we arrive at a contradiction.
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• v′ ∈ N(vj) and v′′ ∈ N(vk), for some vj, vk ∈ V2, j 6= k. Let v′′′ be the other
vertex adjacent to vj. Now, as {vi, v′, vj} induces a P3, then by Theorem 3.1,
{vi, v′, vj, v′′, v′′′} induces a gem (the only one) containing that P3, since v′, v′′′

and v′′, v′′′ should be adjacent. Finally, if the vertices vi, v
′, vj, v

′′, v′′′, vk are
respectively called b, b2, b

′, b1, b3, b̃, then by Proposition 5.1 we obtain a contra-
diction since vk cannot be adjacent to v′′. Note that depending on the other
neighbor v′′′′ of vk and their adjacencies, the Hajós graph (v′′′′ = v′′′), the rising
sun (v′′′′ adjacent to v′ and v′′′) or the X1 graph (v′′′′ adjacent to v′ and not
adjacent to v′′′) appears.

Therefore, for each vertex of degree 2, we can associate a unique neighbor of
degree greater than 2 that is not adjacent to any other vertex of degree 2. Thus, as
there is at least one neighbor of a vertex of V2 that is not associated to any vertex,
and has degree greater than 2, it follows that |V2| < n/2.

As an application of Theorem 5.4, in Figure 9, the first and third graphs have
more vertices of degree 2 than vertices of degree greater than 2. Therefore they are
not biclique graphs. Another two examples are shown in Figure 11.

Figure 11: Graphs that are not biclique graphs by Theorem 5.4.

As another application of Proposition 5.1, we obtain the following result. For
this, we need one more definition. A family of sets A is Helly when every subfamily
of pairwise intersecting subsets has a non-empty intersection.

Proposition 5.5. Let G be a biclique graph and let A = {N [v] : v ∈ G and d(v) = 2}.
Then A is Helly.

Proof. Let, to the contrary, A′ be a minimal non-Helly subfamily of A. Now, since
A′ is minimal and each N [vi] ∈ A′ induces a K3 (as by Theorem 3.1, neighbors of vi
should be adjacent), we have |A′| = 3. Moreover, as A′ is non-Helly, it induces the
Hajós graph where the vertices of degree 2 in the subgraph are also of degree 2 in G.
Therefore by Corollary 5.3, G is not a biclique graph, which is a contradiction. We
conclude that A is a Helly family.

6 Open problems

In this section, we present some conjectures. We look for proofs or counterexamples.

We propose first the following conjecture that generalizes Proposition 5.5.
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Conjecture 6.1. Let G be a biclique graph and let A = {N [v] : v ∈ G and v is
simplicial }. Then A is Helly.

Proposition 4.6 can be extended, leading to the following conjecture.

Conjecture 6.2. Let G = KB(H) for some graph H, where G is not isomorphic
to the diamond. Then there do not exist v1, v2, . . . , vi ∈ V (G) such that N(v1) =
N(v2) = · · · = N(vi) and their neighbors are a subgraph of Ki for i ≥ 2.

7 Conclusions

In this work we have given a formula for the distances between vertices in the biclique
graph KB(G) using the distances between bicliques of G. This is a useful tool for
proving structural properties in bicliques graphs. In particular, it allows us to give a
different proof for the necessary condition for a graph to be a biclique graph to that
given in [14]. Also, it is used to answer (negatively) the question about the condition
being sufficient or not.

Finally, we have given an upper bound on the number of vertices of degree 2 for
biclique graphs. Also we gave some forbidden structures that are useful to recognize
graphs which are not biclique graphs.

Appendix

In this section we present a complete list of biclique graphs up to 6 vertices. (See
Figure 12.) For those graphs that verify the necessary condition of biclique graphs, we
have checked by computer whether they are biclique graphs using the characterization
given in [14].
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Figure 12: Biclique graphs up to 6 vertices.
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[6] A. Brandstädt, V. Le and J. P. Spinrad, Graph Classes: a Survey, SIAM
Monographs on Discrete Mathematics and Applications, SIAM, Philadelphia,
PA (1999).

[7] D. Bu, Y. Zhao, L. Cai, H. Xue, X. Zhu, H. Lu, J. Zhang, S. Sun, L. Ling,
N. Zhang, G. Li and R. Chen, Topological structure analysis of the protein-
protein interaction network in budding yeast, Nucleic Acids Research 31 (2003),
2443–2450.

[8] D. Coudert and G. Ducoffe, On the hyperbolicity of bipartite graphs and inter-
section graphs, Discrete Appl. Math. 214 (2016), 187–195.

[9] M. Dawande, P. Keskinocak, J. M. Swaminathan and S. Tayur, On bipartite
and multipartite clique problems, J. Algorithms 41 (2001), 388–403.
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