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Abstract

We show that the minimum number of vertices of K6-free graphs contain-
ing (at least) two monochromatic triangles for any edge 2-coloring is ten,
giving a concrete (minimal) graph on ten vertices with such a property.
Moreover, we show the uniqueness of the graph of all K6-free graphs on
(at most) ten vertices.

1 Introduction

Ramsey theory, initiated by Ramsey [22], is one of the most important areas of
combinatorics. Ramsey theory studies how many elements of some structure there
need to be to guarantee that a particular property on the structure holds. (See [9] as
a classical textbook.) The simplest problem in graph theoretic Ramsey theory is to
ask for the minimum number of vertices of complete graphs, say, Kn, such that there
is one monochromatic triangle (i.e., K3) for any edge 2-coloring. The answer to this
question is six, that is, K6. In fact, there are at least two monochromatic triangles
in K6 for any 2-coloring; Harary [11] listed all 2-colorings of K6 which result in
exactly two monochromatic triangles. Thus, any graph containing K6 satisfies such
a property.
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From this fact, it is natural to ask for a structure of graphs with such a property
that does not contain K6, which was posed by Erdős and Hajnal [5]. Here, we say
that a graph G = (V,E) satisfies property Z1 if for any 2-coloring to E, there is (at
least) one monochromatic triangle in G. In what follows, we consider graphs that
do not contain K6, called K6-free graphs. Answering the question posed by Erdős
and Hajnal [5], Graham [8] presented a K6-free graph satisfying Z1, called here the
Graham graph, which is on eight vertices, depicted in Figure 3 in the next section.
In fact, it is unique of all K6-free graphs satisfying Z1 on (at most) eight vertices.

More generally, a graph is minimal (with respect to 2-colorings to edges and
monochromatic triangles) if the graph does not properly contain any graph satisfying
Z1. Thus, K6 as well as the Graham graph are both minimal. Following the Graham
graph, Nenov [16] presented a minimal graph on nine vertices, called here the Nenov
graph (see Figure 1). Moreover, it is unique of all minimal graphs on nine vertices,
and all minimal graphs on at most thirteen vertices are known in [1].

Figure 1: The Nenov graph

In this paper, we generalize the study on minimal graphs towards another way,
in which we care for the number of monochromatic triangles. This is motivated by
the fact that there are at least two monochromatic triangles in K6 itself for any 2-
coloring. That is, we further ask for a structure of K6-free graphs such that there are
at least two triangles for any edge 2-coloring. In fact, the Graham graph does not
satisfy this property. (See the colorings presented in Figure 4.) Furthermore, neither
does the Nenov graph [16], and all minimal graphs on at most thirteen vertices
in [1] except K6 do not have this property. Thus, the lower bound on the minimum
number of vertices of graphs with such a property is nine. It is easy to see that the
upper bound is eleven, which is guaranteed by the graph obtained by combining two
Graham graphs via sharing the two cycles of size five. Note that the graph does not
share any triangle in the two Graham graphs. Thus, given any 2-coloring, at least
one monochromatic triangle comes from each of the two Graham graphs, giving (at
least) two monochromatic triangles in total.

We show that the minimum number of vertices is ten, giving a concrete graph
G0 on ten vertices with such a property (see Figure 2)1. In fact, the graph G0

contains four Graham graphs in an elaborate way. Thus, it takes more benefit from
the Graham graph than the Nenov graph. In fact, the graph on ten vertices does not

1The graph G0 is a join of K2 and the maximal graph of order 8 showing the Ramsey number
R(4, 3) ≥ 9.
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Figure 2: The graph G0

contain the Nenov graph. Moreover, we show the uniqueness of G0 for all K6-free
graphs on (at most) ten vertices.

Theorem 1.1. The minimum number of vertices of K6-free graphs containing (at
least) two monochromatic triangles for any edge 2-coloring is ten. Moreover, the
graph G0 is unique of all K6-free graphs with such property on (at most) ten vertices.

Related results

Generalizing the stream of research raised by Erdős and Hajnal [5], and Graham
[8], Folkman [6] introduced a new concept similar to the Ramsey number, called the
Folkman number. Let F(r, k, l) with k < l be the set of Kl-free graphs G such that
every edge r-coloring of G produces a monochromatic Kk. The Folkman number
(or edge Folkman number) f(r, k, l) is the minimum order of G ∈ F(r, k, l), i.e.,
f(r, k, l) = minG∈F(r,k,l) |V (G)|, where V (G) denotes the vertex set of G. It is shown
in [6] that F(2, k, l) �= ∅, and more generally, F(r, k, l) �= ∅ for any r ≥ 2 holds [18].
Observe that f(2, 3, l) = 6 for any l > 6 by the fact on K6. Thus the most interesting
and important study on the Folkman number is to determine f(2, 3, l) for 4 ≤ l ≤ 6.
For l = 6, we see f(2, 3, 6) = 8 from the Graham graph. For l = 5, the upper bound
by Nenov [17] and the lower bound by Piwakowski, Radziszowski, and Urbański [19]
determined f(2, 3, 5) = 15. For l = 4, the lower and upper bounds of f(2, 3, 4) are
summarized in Table 1.

As is mentioned above, it is known that every edge 2-coloring of K6 produces at
least two monochromatic triangles. On the other hand, the Graham graph admits
an edge 2-coloring with exactly one monochromatic triangle. Thus, it is natural
to extend the Folkman number f(r, k, l) to fs(r, k, l) along with the number s of
monochromatic Kk. In this notation, f(r, k, l) = f1(r, k, l), and Theorem 1.1 states
f2(2, 3, 6) = 10.
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year authors lower upper
1970 Frankl and Rödl [7] 8 · 1011
1988 Spencer [23] 3 · 109
2008 Lu [14] 9697
2008 Dudek and Rödl [4] 941
2014 Lange, Radziszowski, and Xu [15] 786
2017 Bikov and Nenov [2] 20
2020 Bikov and Nenov [3] 21

Table 1: The summary of the upper and lower bounds for f(2, 3, 4)

Organization

In Section 2, we depict the Graham graph, denoted by GH, as well as two edge 2-
colorings of GH, which are used in the sequel. In Section 3, we enumerate all maximal
K6-free graphs on ten vertices, and show that there is an edge 2-coloring for all
of them, except for G0, such that at most one monochromatic triangle exists. In
Section 4, we present the exceptional graph G0 as well as its minimality and we
prove Theorem 1.1.

2 Preliminaries

In this paper, we mostly follow the standard notation and concepts of graph theory.
For example, Pn, Cn, andKn are a path graph, a cycle graph, and a complete graph on
n vertices, respectively. For a graph G = (V,E), a path v1, . . . , vk ∈ V (respectively
a cycle u1, . . . , u�, u1 ∈ V ) in G is denoted by Pk = (v1, . . . , vk) (respectively C� =
(u1, . . . , u�)). Thus, an edge e ∈ E is denoted by e = (u, v) for the end vertices u and
v. We call K3 a triangle. The complement graph of G is denoted by G. Thus, Kn

is the empty graph, which is the graph on n vertices that does not have any edges.
For a subset V ′ ⊆ V , the induced subgraph of G by V ′ is denoted by G[V ′].

In what follows, for a graph G = (V,E), the set of vertices of G is denoted by
V (G), and the set of edges of G by E(G). (That is, V = V (G) and E = E(G).)
We say that a graph G = (V,E) contains a graph G′ = (V ′, E ′) if V ′ ⊆ V and
E ′ ⊆ E, which is (crudely) denoted by G′ ⊆ G. Furthermore, for a subset E ′ ⊆ E,
we (crudely) denote the graph G′ = (V,E \ E ′) by G′ = G \ E ′. An isolated vertex
of a graph G is a vertex which any edge of G does not have as an endpoint. For a
graph G = (V,E), a set V ′ ⊆ V is called an independent set if the induced subgraph
G[V ′] by V ′ is an empty graph. The independence number of G, denoted by α(G), is
the maximum size of independent sets of G. A graph G is α-critical if for any edge
e ∈ E(G), α(G \ {e}) = α(G) + 1.

In this paper, we focus on the simplest case of graph theoretic Ramsey theory,
that is, edge 2-colorings and monochromatic triangles. In what follows, we use blue
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and red as two colors. (In fact, we use blue and red for coloring edges of graphs
depicted below in figures.)

Definition 2.1. For a natural number r, let R(r) be the minimum number n of
vertices such that there is a monochromatic Kr in Kn for any 2-coloring to E(Kn).
(Note that R(r) is the same as the Ramsey number R(r, r).)

Fact 1. R(3) = 6.

In fact, if we differently color the inside C5 and the outside C5 of E(K5), there
is no monochromatic triangle in K5. Moreover, it is easy to see (by a counting
argument) that there are at least two monochromatic triangles in K6 for any 2-
coloring. From this fact, there is one (further at least two) monochromatic triangle
in any graph containing K6. Thus, people search for a structure of graphs that have
one monochromatic triangle for any 2-coloring but do not contain K6.

Definition 2.2 ([8]). We call the graph depicted in the left in Figure 3 the Graham
graph, denoted by GH. The graph in the right is the complement of the Graham
graph, denoted by GH.

C5 C3 C5

Figure 3: The Graham graph

Note that GH consists of C5, C3, and edges between C5 and C3. Thus, emphasizing
the two cycles, we sometimes denote it by GH(C5, C3), and depict it omitting all the
edges between C5 and C3. Note further that the complement of C5 is again C5.

Fact 2 ([8]). The Graham graph does not contain K6, and there is at least one
monochromatic triangle in GH for any 2-coloring to E(GH). Furthermore, the struc-
ture of GH is unique of all graphs with such a property on at most eight vertices.

Figure 4 shows the 2-colorings of GH such that there is exactly one monochromatic
triangle. In fact, there are several 2-colorings of GH such that there is exactly one
monochromatic triangle in GH. The colorings in Figure 4 are simple and symmetrical,
where dashed lines and arcs can be colored in either way. We call the coloring in (A)
of type A and in (B) of type B, respectively2. In the following sections, we will make

2Here, we explain the coloring of type B in more detail. Let (a, b) be the backbone for a ∈ V (C5)
and b ∈ V (C3). Consider a vertex of C3 which is not incident to the backbone (a, b), the upper
vertex u, for example. The edge (u, a) is colored red. Starting x with x = a, walking on C5 in
the anticlockwise way, (u, x) is alternately colored red and blue. On the other hand, for the lower
vertex v, starting x with x = a, walking on C5 in the clockwise way, (v, x) is alternately colored
red and blue.
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C5 C3

(a) The monochromatic triangle in C3

C5 C3

(b) The monochromatic triangle be-
tween C5 and C3

Figure 4: Colorings of the Graham graph

use of the two 2-colorings, where dashed lines and arcs are colored properly. We call
the dashed line in the middle in (A) and (B), respectively, the backbone.

In Ramsey theory, people focus on the existence of a monochromatic clique in
a large complete graph, that is, they do not care for the number of monochromatic
cliques. Here, we focus on the property that there are at least two monochromatic
triangles.

Definition 2.3. Given a graph G = (V,E) that does not contain K6, we say that G
satisfies property Z2 if for any edge 2-coloring, there are at least two monochromatic
triangles in G.

Note that the Graham graph GH indeed satisfies Z1 (defined in the introduction),
but does not satisfy Z2, as shown in the 2-colorings in Figure 4. As is mentioned in
the introduction, there is a graph on eleven vertices that satisfies Z2, which is the
graph consisting of two Graham graphs GH(C5, C3) and GH(C5, C

′
3) via sharing C5.

In Section 4, we will see that there is a graph on ten vertices that satisfies Z2. In
the next section, we will see that all K6-free graphs on ten vertices, except for that
graph, do not satisfy Z2.

3 The enumeration of maximal K6-free graphs on ten ver-
tices

Consider the lattice over all the graphs on ten vertices, where the top is K10 and the
bottom is the empty graph. We enumerate all maximal graphs that do not contain
K6, and show that all of them, except for one graph, do not satisfy Z2. We here
denote the exceptional graph by G0 (see Figure 2), the complement graph of which
is enumerated in Lemma 3.2, and in fact presented in Figure 19 in the next section.
For our enumeration, we divide graphs into two classes: graphs that contain the
Graham graph GH or not. In what follows, we consider complement graphs so that
we enumerate minimal (complement) graphs3 that do not contain K6, and hence it

3Here, we use the term of minimal as the one in the usual way, i.e., a graph is minimal if G\ {e}
for any edge e in E(G) does contain K̄6 as an induced subgraph.
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suffices to consider graphs with independence number exactly 5. We do it in terms
of the number of isolated vertices.

For a graph G = (V,E) (on ten vertices) that does not contain K6, consider the
complement graph of G, denoted by H . It is easy to see that the number of isolated
vertices of H is at most four since otherwise there exists at least one K6 in G. It
is also easy to see that it is not four since otherwise H must be K4 ∪ K6 so that
G does not contain K6, and hence G does not satisfy Z2. (In fact, we can color it
without monochromatic triangles; see Theorem 3.2) Therefore, it suffices to consider
complement graphs with at most three isolated vertices.

For guaranteeing the correctness of our enumeration, we make use of the following
fact on α-critical graphs of small order, which can be seen in Table 1 in [20]. In Figure
5, we present all the α-critical connected graphs of order at most 7 with independence
number at least 2.

Fact 3. Any α-critical connected graphs of order at most 7 is isomorphic to a com-
plete graph or one of the graphs presented in Figure 5.

C5 L6

C7 L1
7 L2

7 L3
7

Figure 5: All the α-critical connected graphs of order at most 7 with independence
number at least 2

We further make use of the following fact on α-critical graphs of order almost
equal to 2α. (In fact, the order of any α-critical graph is at least 2α. See, for example,
[21] for details.)

Fact 4. Let G be an α-critical connected graph of order n. Then the following holds:

• If n is even and α(G) = n/2, then G = K2.

• If n is odd and α(G) = (n− 1)/2, then G = Cn.

Let M be the set of graphs on ten vertices whose complements are maximal K6-
free graphs. LetM1 andM2 be subsets ofM in which any graph inM1 (respectively
M2) whose complement contains (respectively does not contain) GH. In the following,
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we consider graphs in M1 in Subsection 3.1 and ones in M2 in Subsection 3.2. As
a consequence of results in those subsections, we have the following theorem.

Theorem 3.1. The set M contains exactly eighteen graphs; G0 (Figure 19), HGH
1 ,

HGH
2 , HGH

3 (Figure 6), HGH
4 , HGH

5 , HGH
6 (Figure 7), HGH

7 (Figure 10), HnGH
1 , HnGH

2 (Fig-
ure 12), HnGH

3 , HnGH
4 , HnGH

5 (Figure 13), HnGH
6 , HnGH

7 , HnGH
8 (Figure 16), K4 ∪K6, 5K2.

Equivalently, all 18 maximal K6-free graphs on ten vertices are completely enumer-
ated.

3.1 Graham graph

We first present all maximal graphs that contain GH, but do not contain K6. As
is mentioned above, we consider complement graphs H of those graphs, that is,
H ∈ M1. Fix five vertices that constitute C5 of GH, denoted by S ⊆ V . Note that
H [S] itself must be isomorphic to C5. (Remember GH depicted in Figure 3.) Thus,
we can not have the other edges (i.e., chords) within S.

Consider first that there are exactly three isolated vertices in H , the set of which
is denoted by S1.

Lemma 3.1. The graphs in M1 with three isolated vertices are the graphs HGH
1 , HGH

2

and HGH
3 , presented in Figure 6. Moreover, all the complement graphs of these graphs

do not satisfy Z2.

isolated vertices

a b

C5

(a) HGH
1

isolated vertices

a b

C5

(b) HGH
2

isolated vertices

a b

C5

(c) HGH
3

Figure 6: The minimal graphs in M1 with three isolated vertices

Proof. Let H be a graph in M1 with three isolated vertices. Note first that G[S∪S1]
is isomorphic to GH. Let a, b be the two vertices other than S ∪ S1. We consider
E(H [S ∪ {a, b}]). Note that α(H [S ∪ {a, b}]) = 2, and that any vertex u ∈ {a, b} is
adjacent to at least a vertex in S since otherwise G contains K6. Thus, H [S ∪{a, b}]
is an α-critical connected graph of order 7. Since α(H [S ∪ {a, b}]) = 2, by Fact 3,
we have HGH

1 , HGH
2 , and HGH

3 as H if H [S ∪ {a, b}] is isomorphic to L1
7, L

2
7, and L3

7 in
Figure 5, respectively.
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We show that all the complement graphs of these graphs in Figure 6, denoted
by GGH

1 , GGH
2 , GGH

3 , do not satisfy Z2. For this, we present a concrete coloring to each
graph of GGH

1 , GGH
2 , GGH

3 that produces at most one monochromatic triangle. In fact,
we show it only for GGH

1 since it is almost same for the other two graphs. Note first
that GGH

1 contains exactly one GH. (So do the other two graphs). The coloring of GH
in GGH

1 is of type A, that is, the cycles of C3 and C5 are colored red, and the all the
edges between C3 and C5 blue. In this case, the triangle of C3 is monochromatic. We
will see that this is the only one monochromatic triangle in GGH

1 . The edges between
C3 and {a, b} are colored blue, and the edges between C5 and {a, b} are colored red.
Finally, the edge (a, b) is colored red. (Note that there is no edge between a and b
in the other two graphs.) Note that there is no triangle in G[V (C5) ∪ {a, b}]. It is
easy to check that this coloring gives only one monochromatic triangle, that is, the
one consisting of the three isolated vertices in H .

Next, suppose that there are exactly two isolated vertices in H , the set of which
is denoted by S2.

Lemma 3.2. The graphs in M1 with three isolated vertices are the graphs HGH
4 , HGH

5 ,
HGH

6 presented in Figure 7 and G0 presented in Figure 19. Moreover, the complement
graphs of HGH

4 , HGH
5 and HGH

6 do not satisfy Z2.

isolated vertices

a c

C5

b

a’

(a) HGH
4

isolated vertices

a c

C5

b

a’

b’c’

x y

(b) HGH
5

isolated vertices

a c

C5

b

(c) HGH
6

Figure 7: The minimal graphs in M1 with two isolated vertices

Proof. Let H be a graph in M1 with two isolated vertices. Let a, b, c be the three
vertices other than S ∪ S2. Designate b so that G[S ∪ S2 ∪ {b}] is isomorphic to GH.
We consider E(H [S ∪ {a, b, c}]). Note that α(H [S ∪ {a, b, c}]) = 3, and that b is not
adjacent to any vertex of S, but is adjacent to at least one vertex of {a, c}, say c.

If H [S ∪ {a, b, c}] is disconnected, then the graph has exactly two connected
components D1 and D2, where S ⊆ V (D1) and {b, c} ⊆ V (D2). If D1 contains a,
then H is isomorphic to HGH

4 since α(D1) = 2, and hence D1 must be L6 in Figure 5.
Otherwise, H is isomorphic to HGH

6 since D2 must be K3.
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Suppose that H [S ∪ {a, b, c}] is connected. It is known in [13, Corollary 12.1.8]
that every α-critical graph has no cut vertex. By this fact, b is adjacent to both a
and c. Moreover, there must be three consecutive vertices in S, say a′, x, y, which
are neighbors of a or c (since otherwise H [S ∪ {a, b, c}] ≥ 4). Thus, depending on
neighbors of a and c, we have the following three cases:

• If a is adjacent to all of a′, x, y, then H is a super-graph of HGH
4 .

• If a is adjacent to both of a′, x, and if c is adjacent to y, then H is isomorphic
to HGH

5 .

• If a is adjacent to both of a′, y, and if c is adjacent to x, then H is isomorphic
to G0.

As before, we show that all the complement graphs of these graphs in Figure 7,
denoted by GGH

4 , GGH
5 , GGH

6 , do not satisfy Z2. However, the colorings of G
GH
4 and GGH

5 are
not so simple as before. First, we show the coloring of GGH

4 . For this, we explain the
structure of GGH

4 . (See the left in Figure 8.) The graph GGH
4 consists of the sum of two

a

c

C5 b

C5

C3

C3

b

c

a

a’

a’

w

(a) GGH
4

a

c

C5 b

C5

C3

C3

b

c

a

a’

a’

w

(b) The coloring of GGH
4

Figure 8: The graph GGH
4 and the coloring of GGH

4

GHs, say, GH(Ca
5 , C

b
3) where Ca

5 (respectively Cb
3) is the cycle of size five (respectively

three) containing a (respectively b) and GH(Ca′
5 , C

c
3) where Ca′

5 (respectively Cc
3) is

the cycle of size five (respectively three) containing a′ (respectively c), as well as the
two additional edges (a, c) and (a′, b). Note that all the edges between Ca

5 and Cb
3

and between Ca′
5 and Cc

3 are omitted in the figure. The two vertices corresponding
to the isolated vertices in HGH

4 are depicted rather largely in the figure of GGH
4 . The

cycles Ca
5 and Ca′

5 share the four vertices except for a and a′, and the cycles Cb
3 and

Cc
3 share the two vertices (corresponding to the isolated vertices) except for b and

c. Thus, the coloring of GGH
4 is the one coupling the two colorings of GH(Ca

5 , C
b
3) and

GH(Ca′
5 , Cc

3) both of type B that share the unique monochromatic triangle. See the
right in Figure 8, where the monochromatic triangle is colored red so that the two
backbones are (b, w) and (c, w), which are omitted in the figure and colored in either
way. Note that coloring red to the two additional edges (a, c) and (a′, b) does not yield
any monochromatic triangle. This comes from the following observation: consider a
triangle (a, c, v) containing the edge (a, c), for example. Then, v must be a neighbor
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to a and c, and hence v must be a vertex on Ca
5 or Cc

3. Thus, either (a, v) or (c, v)
must be colored blue, and hence the triangle (a, c, v) can not be monochromatic.

Next, we show the coloring of GGH
5 . For this, we explain the structure of GGH

5 . (See
the left in Figure 9.) The graph GGH

5 consists of the sum of two GHs, say, GH(Cb
5, C

b′
3 )

C5
b

C5
b’

b

b’
a

c’

C3
b’

C3
b

c

a’

x

y

u

v

(a) GGH
5

b

b’
a

c’

C3
b’

C3
b

c

a’

x

y

u

v
C5

b’

C5
b

(b) The coloring of GGH
5

Figure 9: The graph GGH
5 and the coloring of GGH

5

and GH(Cb′
5 , C

b
3), where u and v depicted largely in the figure of GGH

5 correspond to
the isolated vertices in HGH

5 , and

Cb
5 = (a, y, b, x, c), Cb′

3 = (b′, u, v),
Cb′

5 = (a′, y, b′, x, c′), Cb
3 = (b, u, v),

as well as the three additional edges (a, c′), (a′, c), and (c, c′). Note that all the edges
between Cb

5 and Cb′
3 and between Cb′

5 and Cb
3 (except for those overlapping with the

cycles of size five and three) are omitted in the figure. The cycles Cb
5 and Cb′

5 share
the two vertices x and y, and the cycles Cb

3 and Cb′
3 share u and v (corresponding

to the isolated vertices). Thus, the coloring of GGH
5 is the one coupling the coloring

of GH(Cb
5, C

b′
3 ) of type A and the coloring of GH(Cb′

5 , C
b
3) of type B that share the

unique monochromatic triangle. See the right in Figure 9, where the monochromatic
triangle Cb′

3 is colored red so that the two backbones of type A and B are commonly
(b, b′), which are omitted in the figure and colored in either way.

Here, we explain the coloring of GGH
5 in more detail. For the coloring of type

A depicted in the left in Figure 4, letting the backbone be (b, b′), C5 colored red
corresponds to Cb

5 = (a, y, b, x, c) and C3 corresponds to Cb′
3 = (b′, u, v). On the

other hand, for the coloring of type B depicted in the right in Figure 4, letting
the backbone be (b′, b), C5 colored blue corresponds to Cb′

5 = (a′, y, b′, x, c′) and
C3 corresponds to Cb

3 = (b, u, v). Thus, (u, x) (respectively (v, y)) is colored blue
and (u, c′) (respectively (v, a′)) is colored red, and so on anticlockwise (respectively
clockwise) on Cb′

5 .

Observe that (u, y) and (v, x), which correspond to the two dashed arcs in Figure
4, should be colored red in the coloring of GH(Cb

5, C
b′
3 ) of type A so that it is coincident

with the coloring of GH(Cb′
5 , C

b
3) of type B. In fact, for this case of coupling the two
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colorings of type A and B, we have been making the coloring of type A in Figure
4 rather flexible, that is, the dashed lines and arcs can be colored in either way. It
is easy to see that if we ignore the three additional edges (a, c′), (a′, c), and (c, c′),
there is no monochromatic triangle other than Cb′

3 . We claim that for the three
additional edges (a, c′), (a′, c), and (c, c′), coloring (a′, c), (c, c′) (respectively (a, c′))
red (respectively blue) does not yield any monochromatic triangle. This is done by
coloring (u, c) and (v, a) blue and red, respectively, which correspond to the two
dashed lines in Figure 4. Consider a triangle (a, c′, w) containing the edge (a, c′),
for example. Then, w must be a neighbor of a and c′, and hence w ∈ {u, v, c}.
Thus, since the edges (u, c′), (v, a), (c, c′) are all colored red, the triangle (a, c′, w)
can not be monochromatic. (It is similarly shown for a triangle (a′, c, w) containing
the edge (a′, c), via the fact that the edges (u, c), (v, c), (c′, a′) are all colored blue.)
Similarly, consider a triangle (c, c′, w) containing the edge (c, c′). Then, w must
be a neighbor of c and c′, and hence w ∈ {u, v, a, a′, x}. Thus, since the edges
(u, c), (v, c), (a, c′), (a′, c′), (x, c′) are all colored blue, the triangle (c, c′, w) can not be
monochromatic.

Finally, the coloring of GGH
6 is settled by appealing to those for GH. Note that

{a, b, c} are isolated from all the other vertices in HGH
6 , and hence the graph ob-

taining from GGH
6 by identifying {a, b, c} to one vertex v is isomorphic to GH. Since

{a, b, c} are independent in GGH
6 , we make use of any coloring of GH where the unique

monochromatic triangle avoids the vertex v, say, the coloring of type B.

Next, suppose that there is exactly one isolated vertex in H , the set of which is
denoted by S3.

Lemma 3.3. There exists a unique graph in M1 with one isolated vertex, namely
HGH

7 , presented in Figure 10. Moreover, the complement graph of the graph does not
satisfy Z2.

one isolated vertex

a c

C5

b d

Figure 10: The minimal graph in M1 with one isolated vertex

Proof. Let H be a graph in M1 with one isolated vertex. Let a, b, c, d be the four
vertices other than S ∪S3. Designate b and c so that G[S ∪S3 ∪{b, c}] is isomorphic
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to GH. We consider E(H [S ∪ {a, b, c, d}]). Note that α(H [S ∪ {a, b, c, d}]) = 4, and
that (b, c) �∈ E(H [S∪{a, b, c, d}]), and both of b and c are not adjacent to any vertex
of S, but is adjacent to at least one vertex of {a, d}.

Consider first the case that the two vertices adjacent to b and c are different, say,
(a, b), (c, d) ∈ E(H). Then, H is isomorphic to HGH

7 . Consider next the case that the
two vertices adjacent to b and c are same, say, (a, b), (a, c) ∈ E(H). In this case, we
may assume that (b, d), (c, d) �∈ E(H) since otherwise it gives a super-graph of HGH

7 .
Then, as before, there are three consecutive vertices in S adjacent to d, which gives
a super-graph of HGH

4 .

As before, we show that the complement graph of the graph in Figure 10, denoted
by GGH

7 , do not satisfy Z2. The coloring of GGH
7 is again settled by appealing to

those for GH, as in the previous lemma. Note that {a, b} and {c, d} respectively are
isolated from all the other vertices in HGH

7 , and hence the graph obtaining from GGH
7

by identifying {a, b} and {c, d} to one vertex u and v respectively is isomorphic to
GH. Since {a, b} and {c, d} are independent in GGH

7 , we make use of any coloring of
GH where the unique monochromatic triangle avoids the two vertices u and v. Such
a coloring is neither of type A nor type B, which is, for example, shown in Figure
11, where the other vertex in C3 is denoted by w.

Here, we explain the coloring in more detail. Let (a, b) be the backbone for
a ∈ V (C5) and b ∈ V (C3), as in Figure 4. Consider a vertex of C3 which is not
incident to the backbone (a, b), the upper vertex w, for example. The edge (w, a)
is colored red. Starting x with x = a, walking on C5 in the clockwise way, (w, x) is
alternately colored red and blue, resulting in the fact that the first and the end edges
are both colored red, that makes the monochromatic triangle. On the other hand,
for the lower vertex c, the edge (c, a) is colored blue. Starting x with x = a, walking
on C5 in the clockwise way, (c, x) is alternately colored blue and red. In this case,
the fact that the first and the end edges are both colored blue does not make any
monochromatic triangle since all the edges of C5 are colored red. In this notation,
the two vertices {u, v} in the proof correspond to {b, c} in this footnote.

C5 C3

w

Figure 11: A coloring of GH used for HGH
7

Finally, suppose that there is no isolated vertex in H .

Lemma 3.4. No graph H in M1 without an isolated vertex exists.
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Proof. Let a, b, c, d, e be the five vertices other than S. Designate a, b, c so that
G[S ∪ {a, b, c}] is isomorphic to GH. Since H has no isolated vertex (and there is
no edge among {a, b, c}), each vertex of {a, b, c} is adjacent to d or e. If the set of
neighbors of {a, b, c} is {d, e}, then H is a super-graph of HGH

7 . Thus, we may assume
that the neighbor of {a, b, c} is, say, d. Then, as before, whether (d, e) ∈ E(H) or
not, there are three consecutive vertices in S adjacent to e, which gives a super-graph
of HGH

4 .

3.2 Non-Graham graph

We next present all maximal graphs that do not contain GH. As is mentioned before,
we consider complement graphs H of those graphs so that we enumerate minimal
(complement) graphs that do not contain K6, that is, H ∈ M2. Recall that it suffices
to consider graphs H with independence number exactly five, and the number of
isolated vertices in H is at most three.

Before starting the proof, we introduce the following theorem which is a com-
plementary version (with some small change) of the result in [12] that every vertex
5-colorable graph G has an edge 2-coloring of G without a monochromatic triangle4.

Theorem 3.2. Let G be a graph. If each component of G is a complete graph and
the number of components in G is at most 5, then there exists an edge 2-coloring of
G without a monochromatic triangle.

Consider first that there are exactly three isolated vertices in H , the set of which
is denoted by S1.

Lemma 3.5. The graphs in M2 with three isolated vertices are the graphs HnGH
1 and

HnGH
2 , presented in Figure 12. Moreover, all the complement graphs of these graphs

do not satisfy Z2.

Proof. Let H be a graph in M2 with three isolated vertices. Since α(H [V \ S1]) =
2, fix two independent vertices arbitrarily, denoted by a, b. We first suppose that
H [V \ S1] is disconnected. Since both of a and b have degree at least one, and the
two components must be complete, we immediately have that H is isomorphic to
HnGH

1 or HnGH
2 .

We next suppose that H [V \ S1] is connected. Then, H [V \ S1] is an α-critical
connected graph of order 7. As before, since α(H [V \ S1]) = 2, by Fact 3 we have
H [V \ S1] is isomorphic to one of L1

7, L
2
7, and L3

7, and hence it is isomorphic to HGH
1 ,

HGH
2 or HGH

3 .

By Theorem 3.2, the complement graphs of GnGH
1 and GnGH

2 do not satisfy Z2.

Next, suppose that there are exactly two isolated vertices in H , the set of which
is denoted by S2.

4More precisely, Theorem 3.2 is a complement version of Lin’s result for a maximal vertex
5-colorable graph G, that is, G is isomorphic to a complete five partite graph Ka1,a2,a3,a4,a5 .
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isolated vertices

a b

K4

K3

(a) HnGH
1

isolated vertices

a b

K5

(b) HnGH
2

Figure 12: The minimal graphs in M2 with three isolated vertices

Lemma 3.6. The graphs in M2 with two isolated vertices are the graphs HnGH
3 , HnGH

4

and HnGH
5 , presented in Figure 13. Moreover, all the complement graphs of these

graphs do not satisfy Z2.

isolated vertices

a c

K3

b

K3

(a) HnGH
3

isolated vertices

a c

K4

b

(b) HnGH
4

isolated vertices

a cb

x

y z u

v

(c) HnGH
5

Figure 13: The minimal graphs in M2 with two isolated vertices

Proof. Let H be a graph in M2 with two isolated vertices. Since α(H [V \ S2]) = 3,
fix three independent vertices arbitrarily, denoted by a, b, c. We first suppose that
H [V \ S2] is disconnected, and has three connected components. Similar to the first
case in the previous lemma, we have that H is isomorphic to HnGH

3 or HnGH
4 .

We next suppose that H [V \ S2] has two connected components D1, D2, in de-
creasing order of α(Di). We may assume that α(D1) = 2 and α(D2) = 1, and hence
D1 has at least five vertices by Fact 3. Since D2 has at least two vertices, D1 has at
most six vertices. If D2 = C5, then D1 = K3, and hence H = HGH

6 . If D2 = L6, then
H = HGH

4 .
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Finally, we suppose that H [V \ S2] is connected. Recall that every α-critical
graph has no cut vertex [13, Corollary 12.1.8]. Moreover, it is known in [10] that
the degree of any vertex in an α-critical graph of order n is at most n − 2α + 1.
Thus, H [V \ S2] is 3-regular or it has a vertex of degree 2. In the former case, it is
known in [13, Exercise 12.1.16] that such a graph is of order at most 4. In the latter
case, it is known in [13, Lemma 12.1.4] that if an α-critical graph of order n has a
vertex of degree 2, then the graph can be obtained from some (α− 1)-critical graph
of order n− 2 by splitting some vertex into two vertices y and z, and by creating a
new vertex x so that x is adjacent to y and z. Thus, by applying the operation to
a vertex of L6, we can obtain all α-critical connected graphs of order 8 with α = 3
which have a vertex of degree 2. See Figure 14 for all those graphs. Therefore, if

L1
8 L2

8 L3
8

Figure 14: Three α-critical connected graphs of order 8 with α = 3 having a vertex
of degree 2

H [V \ S2] is isomorphic to L1
8, L

2
8, and L3

8, then H is isomorphic to HGH
5 , HnGH

5 , and
G0, respectively.

As before, we show that all the complement graphs of these graphs in Figure 13,
denoted by GnGH

3 , GnGH
4 , GnGH

5 , do not satisfy Z2. By Theorem 3.2, the complements of
GnGH

3 and GnGH
4 do not satisfy Z2. On the other hand, the coloring of GnGH

5 is not so
simple as the two graphs. We first explain the structure of GnGH

5 , which indeed is close
to that of GGH

4 . (See the left in Figure 15, comparing to the left in Figure 8.) The

a

c

u

C3

C3

u

c

y

xb

v z

B2B1

(a) GnGH
5

a

c

u

C3

C3

u

c

y

xb

v z

B2B1

(b) A coloring of GnGH
5

Figure 15: The graph GnGH
5 and the coloring of GnGH

5

graph GnGH
5 consists of the two parts B1 and B2. The part B1 is over a, b, x, y, z, v

and the part B2 is over c, u and the two isolated vertices (depicted rather largely),
which correspond to vertices of HnGH

5 in Figure 13. Observe that there is one edge on
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every pair between vertices of B1 and B2, except for the two pairs (b, u) and (c, v),
where the formers are omitted and the latters are depicted in dashed lines. We next
present a coloring of GnGH

5 so that there is only one monochromatic triangle 5, which
is on x and the two isolated vertices. For this, we focus on the differences between
GGH

4 and GnGH
5 by the following equation:

GnGH
5 = (GGH

4 ∪ {(b, v)}) \ {(b, u), (c, v)},
where we employ the labels of vertices in Figure 15, discarding those in Figure 8.
Then, the coloring of GnGH

5 is almost same as that of GGH
4 shown in the right in Figure

8. Recall that we have made use of the coloring of type B so that we share the unique
monochromatic triangle between the two GHs. It is easy to see that there is only one
monochromatic triangle if we apply the coloring of GGH

4 to edges of E(GGH
4 )∩E(GnGH

5 ),
and do not care for the color of the edge (b, v). We claim that the additional edge
(b, v) colored red does not produce any monochromatic triangle. This is because
(1) there is no edge on (b, u) and (c, v) in GnGH

5 , and (2) (b, w) and (v, w) must be
differently colored for any isolated vertex w.

Next, suppose that there is exactly one isolated vertex in H , the set of which is
denoted by S3.

Lemma 3.7. The graphs in M2 with one isolated vertex are the graphs HnGH
6 , HnGH

7

and HnGH
8 , presented in Figure 16. Moreover, all the complement graphs of these

graphs do not satisfy Z2.

one isolated vertex

a c

C3

b d

(a) HnGH
6

one isolated vertex

a c

C7

b d

x y eu v

(b) HnGH
7

one isolated vertex

a c

C9

b d

x zy vu

(c) HnGH
8

Figure 16: The minimal graphs in M2 with one isolated vertex

Proof. Let H be a graph in M2 with one isolated vertex. Since α(H [V \ S3]) = 4,
fix four independent vertices arbitrarily, denoted by a, b, c, d. We first suppose that
H [V \S3] is disconnected, and has four connected components. Similar to the proofs
of the previous lemmas, we have that H is isomorphic to HnGH

6 ,

5There might exist a coloring of GnGH
5 so that that there is no monochromatic triangle.
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Suppose that H [V \S3] has three connected components D1, D2, D3, in decreasing
order of α(Di). We may assume that α(D1) = 2 and α(D2) = α(D3) = 1. Since each
of D2 and D3 has at least two vertices, D1 has at most five vertices. This means that
D1 = C5 by Fact 3, and hence H = HGH

7 . Suppose that H [V \ S3] has two connected
components D1, D2, in decreasing order of α(Di). If α(D1) = 3, then D1 = C7 by
Fact 4 since |V (D1)| ≤ 7, and hence H = HnGH

7 . Otherwise, i.e., α(D1) = α(D2) = 2,
at least one of D1 and D2 does not exist by Fact 3 since min{|V (D1)|, |V (D2)|} ≤ 4.

Finally, suppose that H [V \ S3] is connected. Then, H [V \ S3] = C9 by Fact 4
since |V \ S3| = 9 and α(H [V \ S3]) = 4, and hence H = HnGH

8 .

As before, we show that all the complement graphs of these graphs in Figure 16,
denoted by GnGH

6 , GnGH
7 , GnGH

8 , do not satisfy Z2. By Theorem 3.2, the complement of
GnGH

6 does not satisfy Z2. On the other hand, the colorings of GnGH
7 and GnGH

8 are not
so simple, which are presented individually in the following two claims.

Claim 1. The graph ˜GnGH
7 obtained from GnGH

7 by identifying the two vertices d and e
in HnGH

7 is depicted in the left in Figure 17. All the edges among V (C7) and the two
vertices, the isolated vertex and identified vertex, are omitted in the figure. Then,

there is only one monochromatic triangle in the coloring of ˜GnGH
7 depicted in the right

in Figure 17, where the following colorings are omitted: let C5 = (a, y, x, c, b) be the
cycle of size five. The coloring of edges between the identified vertex w and V (C5) is
as follows: starting p with p = a, walking on C5 in the anticlockwise way, the edge
(w, p) is alternately colored blue and red so that (w, a) and (w, b) are both colored
blue.

C7

identified vertex

isolated vertex

a

c

b

y

x

v

u

(a) ˜GnGH
7

C7

identified vertex

a

b

c

v

u

y

x

(b) The coloring of ˜GnGH
7

Figure 17: The graph ˜GnGH
7 and the coloring of ˜GnGH

7

Proof. We explain the structure of ˜GnGH
7 , in particular, the complement of C7 =

(a, x, b, y, c, v, u) in HnGH
7 . We extract C5 with the chord (a, c) from C7, and put aside

the other two vertices u and v. Note that u (respectively v) is neither adjacent to v

nor a (respectively u nor c) in ˜GnGH
7 . Moreover, triangles within C7 other than (a, b, c)

are incident to either u or v.
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We confirm that there is only one monochromatic triangle in the coloring of ˜GnGH
7 .

Here, we make sure of important features in the coloring. Let q be the isolated vertex
and w be the identified vertex. Then,

1. All the edges except for (a, b) on C5 as well as the chord (a, c) are colored blue.

2. The edges between u (respectively v) and {b, c, x, y} (respectively {b, a, y, x})
are alternately colored.

3. All the edges between V (C5) and q are colored red.

4. All the edges between V (C5) and w are alternately colored as in the claim.

Firstly, it is easy to see that there is no monochromatic triangle within C7 because
of the feature 1 and 2 above. Next, consider triangles containing the isolated vertex

q within ˜GnGH
7 [V (C7) ∪ {q}]. It is easy to see that there is only one monochromatic

triangle between C5 and q because of the feature 1 and 3 above. It is also easy to see
that there is no monochromatic triangle containing (q, u) and (q, v) since they are
colored blue and because of the feature 3 above. Finally, consider triangles containing

the identified vertex w in ˜GnGH
7 . Firstly, it is obvious that there is no monochromatic

triangle within ˜GnGH
7 [{w, q, u, v}]. It is easy to see that there is no monochromatic

triangle between C5 and w because of the feature 1 and 4 above. It is also easy
to see that there is no monochromatic triangle containing (w, u) and (w, v) since
these are colored red and because of the feature 2 and 4 above. Note here about
the feature 2 that the edges (x, u), (x, v) (respectively (y, u), (y, v)) are colored red
(respectively blue) while (x, w) (respectively (y, w)) is colored blue (respectively red).
It is also easy to see that there is no monochromatic triangle containing (w, q) since
it is colored blue and because of the feature 3 above.

From this claim, it is easy to see that GnGH
7 does not satisfy Z2 since the monochro-

matic triangle in the claim avoids the identified vertex which corresponds to d and e
in GnGH

7 .

Claim 2. The graph GnGH
8 is depicted in the left in Figure 18. All the edges between

V (C9) and the isolated vertex are omitted in the figure. Moreover, adjacent vertices
z, d (respectively u, v) on C9 in HnGH

8 are bundled up (but not identified) in one dotted
circle in the figure, where one common edge is depicted for each vertex adjacent to z
and d (respectively u and v) in GnGH

8 [V (C9)]. Then, there is only one monochromatic
triangle in the coloring of GnGH

8 depicted in the right in Figure 18.

Proof. We explain the structure of GnGH
8 , in particular, the complement of C9 =

(a, x, b, y, c, z, d, v, u) in HnGH
8 . As the previous claim, we extract C5 = (a, y, x, c, b)

with the chord (a, c) from C9, and put aside the other four vertices z, d, u, v, bundling
adjacent vertices z and d (respectively u and v) as one vertex. Remark that we do
not identify the two vertices. Note that z (respectively d) is neither adjacent to d
nor c (respectively z nor v) in GnGH

8 . It is symmetrically similar for u and v.
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C9

isolated vertex

a

b

c

y

x

z
d

u
v

(a) GnGH
8

C9

a

b

c

y

x

(b) The coloring of GnGH
8

Figure 18: The graph GnGH
8 and the colorings of GnGH

8

We confirm that there is only one monochromatic triangle in the coloring of GnGH
8 .

Here, we make sure of important features in the coloring. Let q be the isolated
vertex. Then,

1. All the edges are colored red on C5.

2. The common edges between the bundle {z, d} (respectively {u, v}) and {a, y, x}
(respectively {c, x, y}) are alternately colored, but the two edges corresponding
to the commonly depicted edge incident to b is exclusively colored in {z, d}
(respectively {u, v}).

3. All the edges between the two bundles are colored blue.

4. All the edges between V (C5) and q are colored blue.

5. All the edges between the two bundles and q are colored red.

Firstly, it is easy to see that there is only one monochromatic triangle within
GnGH

8 [V (C5)]. Next, consider triangles containing z within C9. It is easy to see
that there is no monochromatic triangle between C5 and z because of the feature
2 above. It is also easy to see that there is no monochromatic triangle containing
(z, u) because of the feature 3 and the following observation on the feature 2: the
edge between the bundle {z, d} and x (respectively y) is colored blue (respectively
red) while the edge between the bundle {u, v} and x (respectively y) is colored red
(respectively blue). This fact on (z, u) is similar for (z, v) except for the existence
of a triangle (z, v, a). These facts on z are similar for d except for the existence of a
triangle (b, c, d). Moreover, those facts about z and d are symmetrically same for u
and v. Finally, consider an arbitrary triangle (q, s, t) in GnGH

8 for some s, t ∈ V (C9).
Firstly, for the case of s, t ∈ V (C5), it is obvious that (q, s, t) is not monochromatic
because of the feature 1 and 4. For the case of s, t ∈ V (C9) \ V (C5), it is obvious
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that (q, s, t) is not monochromatic because of the feature 3 and 5. For the case of
s ∈ V (C5) and t ∈ V (C9) \ V (C5), it is obvious that (q, s, t) is not monochromatic
because of the feature 4 and 5.

From this claim, we see that GnGH
8 does not satisfy Z2.

Finally, suppose that there is no isolated vertex in H .

Lemma 3.8. There exists a unique graph in M2 without an isolated vertex, namely
the bipartite graph 5K2. Moreover, K2,2,2,2,2 = 5K2 does not satisfy Z2.

Proof. Let H be a graph in M2 without an isolated vertex. Since α(H) = 5, we may
suppose that H is disconnected (since otherwise H = K2 by Fact 4). If H has five
connected components, then each component is K2, and hence, H = 5K2.

Suppose that H has four connected components D1, D2, D3, D4, in decreasing
order of α(Di). Since α(D1) = 2 and |V (D1)| ≤ 4, such a connected graph D1 does
not exist by Fact 3.

Next, suppose that H has three connected components D1, D2, D3, in decreasing
order of α(Di). If α(D1) = 3, such a connected graph D1 does not exist by Fact 3
since |V (D1)| ≤ 6. Otherwise, α(D1) = α(D2) = 2, and hence at least one of D1 and
D2 does not exist by Fact 3 since min{|V (D1)|, |V (D2)|} ≤ 4.

Finally, suppose that H has two connected components D1, D2, in decreasing
order of α(Di). There are two cases; (α(D1), α(D2)) is equal to (4, 1) or (3, 2). In
either case, similar to the above cases, no such graph exists by Fact 3 and Fact 4.

By Theorem 3.2, K2,2,2,2,2 = 5K2 has an edge 2-coloring without a monochromatic
triangle.

4 Proof of Theorem 1.1

We present the maximal K6-free graph on ten vertices satisfying Z2, denoted by
G0 = (V,E0) (see Figure 2) where V = {v1, . . . , v10}. We depict the complement
graph of G0 in Figure 19. Before we show that the graph G0 satisfies Z2, we explain

v1 v3 v5 v7

v2 v4 v6 v8

v9

v10

Figure 19: The graph G0

the structure of the complement graph G0. The following induced sub-graphs of G0
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are all isomorphic to GH.

G1
def
= G0[{v1, v2, v3, v4, v5} ∪ {v8, v9, v10}],

G2
def
= G0[{v1, v2, v3, v4, v6} ∪ {v7, v9, v10}],

G3
def
= G0[{v3, v5, v6, v7, v8} ∪ {v2, v9, v10}],

G4
def
= G0[{v4, v5, v6, v7, v8} ∪ {v1, v9, v10}]

Thus, emphasizing the two cycles in GH, for each 1 ≤ i ≤ 4, we denote Gi by
GH(C i

5, C
i
3). It is easy to see that G0 is K6-free. This comes from the following

observation. It suffices to show that there is no independent set of size four in
G0[{v1, . . . , v8}]. Let I ⊆ {v1, . . . , v8} be an arbitrary independent set in G0[{v1, . . . ,
v8}]. Consider the case of I ∩ {v3, v4, v5, v6} = ∅. Then, it is easy to see |I| ≤ 2.
Otherwise, suppose w.l.o.g. that v3 ∈ I. In this case, v1, v5, v6 �∈ I. Then, it is easy
to see |I| ≤ 3. It is also easy to see the maximality of G0. This comes from the
fact that there is an independent set of size four in G0[{v1, . . . , v8}] \ {e} for any
e ∈ E(G0).

Lemma 4.1. The graph G0 = (V,E0) satisfies Z2.

Proof. Fix an edge 2-coloring of G0 arbitrarily. Note that there is at least one
monochromatic triangle in G0 since the graph G0 contains GH and because of Fact 2.
Let {a, b, c} ⊆ V be the set of the vertices of a monochromatic triangle in G0. We
show that there exists another monochromatic triangle in G0.

Claim 3. For any v ∈ {v1, . . . , v8}, there is one Gi such that v �∈ V (Gi).

Proof. Consider v = v1, for example. Then, v1 �∈ V (G3). It is similarly proven for
any v ∈ {v2, . . . , v8}.

At least one from {a, b, c} must be from {v1, . . . , v8}. Thus, from this claim,
there is one Gi which does not contain the triangle (a, b, c). Thus, there is another
monochromatic triangle in the graph Gi, which is guaranteed by Fact 2.

Lemma 4.2. The graph G0 is minimal with respect to the property Z2, that is, for any
edge e ∈ E(G0), there is a coloring for G0\{e} such that at most one monochromatic
triangle exists.

Proof. For proving the lemma, we deal with the complement graph of G0, denoted by
H0, so that we consider to add an edge e to H0. We will see that any graph H0∪{e}
except for some graph, denoted by H ′

0, is a super-graph of some graph presented in
the previous section, resulting in the contradiction to Z2.

We first consider an edge e incident to v10. (By symmetry, we similarly consider
an edge e incident to v9.) For any v ∈ {v1, . . . , v9}, it is easy to check that the graph
H0 ∪ {e} for e = (v, v10) is a super-graph of HGH

7 .

We next consider an edge e incident to v1. (By symmetry, we similarly consider
an edge e incident to v2, v7, v8.) Observe that for any v ∈ {v4, . . . , v8}, the graph
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H0 ∪ {(v1, v)} with v = v5 (respectively v7) is isomorphic to the graph with v = v6
(respectively v8). The exceptional graph H ′

0 is the graph H0 ∪ {(v1, v)} with v = v7,
which is not a super-graph of any graph presented in the previous section. It is easy
to check that the graph H0 ∪ {e} for e = (v1, v5) is a super-graph of HGH

5 . It is also
easy to check that the graph H0 ∪ {e} for e = (v1, v4) is a super-graph of HGH

6 .

We next consider an edge e incident to v3. (By symmetry, we similarly consider
an edge e incident to v4, v5, v6.) It suffices to consider the case of e = (v3, v4). Then,
it is easy to check that the graph H0 ∪ {e} for e = (v3, v4) is a super-graph of HGH

4 .

We finally show the coloring of the complement graph of H ′
0, denoted by G′

0.
For this, we explain the structure of G′

0. (See the left in Figure 20.) The graph
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Figure 20: The graph G′
0 and the coloring of G′

0

as well as the coloring are very close to those of GGH
5 depicted in Figure 9. The

difference of the two graphs is about additional edges, that is, the three additional
edges (a, c′), (a′, c), (c, c′) in GGH

5 are replaced with the two edges (v1, v6) and (v4, v7)
in G′

0. The coloring of G′
0 is almost same as that of GGH

5 so that there is the unique
monochromatic triangle (v2, v9, v10), denoted by Cv2

3 . (See the right in Figure 20.)
As same as that case, it is easy to see that if we ignore the two additional edges
(v1, v6) and (v4, v7), there is no monochromatic triangle other than Cv2

3 . We claim
that coloring the two additional edges (v1, v6) and (v4, v7) red does not yield any
monochromatic triangle. This is done by coloring (v6, v9) and (v7, v10) blue, which
correspond to the two dashed lines in Figure 4. Consider a triangle (v1, v6, w) con-
taining the edge (v1, v6). Then, w must be a neighbor of v1 and v6, and hence
w ∈ {v5, v9, v10}. Thus, since the edges (v5, v1), (v9, v6), (v10, v1) are all colored blue,
the triangle (v1, v6, w) can not be monochromatic. Similarly, consider a triangle
(v4, v7, w) containing the edge (v4, v7). Then, w must be a neighbor of v4 and v7, and
hence w ∈ {v3, v9, v10}. Thus, since the edges (v3, v4), (v9, v4), (v10, v7) are all colored
blue, the triangle (v4, v7, w) can not be monochromatic.

Finally, we give a proof of Theorem 1.1.

Proof of Theorem 1.1. By Lemmas 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7 and 3.8, any maxi-
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mal K6-free graph except G0 does not have property Z2. Moreover, by Lemmas 4.1
and 4.2, G0 satisfies Z2 and it is minimal with respect to the property Z2. Therefore,
the theorem holds.

5 Conclusions

We have shown that the minimum number of vertices of K6-free graphs containing
(at least) two monochromatic triangles for any edge 2-coloring is ten, giving a con-
crete (minimal) graph on ten vertices with such a property. Moreover, we show the
uniqueness of the graph of all K6-free graphs on (at most) ten vertices.

Recall that f1(2, 3, 6) = f(2, 3, 6) = 8 and that our result implies f2(2, 3, 6) =
10, where fs(r, k, l) is a generalized concept of the Folkman number defined in the
introduction. A straightforward future work is to generalize the construction of the
graph G0, which gives an upper bound on the value of fs(2, 3, 6) for any s ≥ 1.
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