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Abstract

Parking functions are a widely studied class of combinatorial objects,
with connections to several branches of mathematics. On the algebraic
side, parking functions can be identified with the standard monomials of
Mn, a certain monomial ideal in the polynomial ring S = K[x1, . . . , xn]
where a set of generators are indexed by the nonempty subsets of [n] =
{1, 2, . . . , n}. Motivated by constructions from the theory of chip-firing on

graphs we study generalizations of parking functions determined by M
(k)
n ,

a subideal of Mn obtained by allowing only generators corresponding to
subsets of [n] of size at most k + 1. For each k the set of standard

monomials of M
(k)
n , denoted stankn, contains the usual parking functions

and has interesting combinatorial properties in its own right.
For general k we show that elements of stankn can be recovered as cer-

tain vector-parking functions, which in turn leads to a formula for their
count via results of Yan. The symmetric group Sn naturally acts on the
set stankn and we also obtain a formula for the number of orbits under this
action. For the case k = n− 2 we study combinatorial interpretations of
stann−2

n and relate them to properties of uprooted trees in terms of root
degree and surface inversions. As a corollary we obtain a combinatorial
identity for nn involving Catalan numbers, reminiscent of a result of Ben-
jamin and Juhnke. For the case k = 1 we observe that the number of
elements stan1

n is given by the determinant of the reduced ‘signless’ Lapla-
cian, which provides a weighted count for | stan1

n | in terms of generalized
spanning trees known as ‘spanning TU-subgraphs’. Our constructions
naturally generalize to arbitrary graphs and lead to a number of open
questions.
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1 Introduction

A parking function of length n is a sequence a = (a1, a2, . . . , an) of nonnegative in-
tegers such that its rearrangement c1 ≤ c2 ≤ · · · ≤ cn satisfies ci < i. We let
P(n) denote the set of such sequences. This simple construction turns out to have
connections and applications to many areas of mathematics including noncrossing
partitions, hyperplane arrangements, and invariant theory (see [31] for a recent sur-
vey). In [17] it is shown that the number of parking functions of length n is given
by (n + 1)n−1, which by Cayley’s formula is equal to the number of spanning trees
of the complete graph Kn+1. This correspondence can be generalized to the case
of arbitrary graphs G in the context of sequences of integers known as G-parking
functions [13]. For a general graph G the number of G-parking functions is given by
the number of spanning tree of G. By the matrix tree theorem this number is given
by det L̃(G), the determinant of the reduced Laplacian of G.

On the algebraic side, the set P(n) can be identified with the standard monomials
of the parking function ideal Mn, a monomial ideal living in the polynomial ring
S = K[x1, x2, . . . , xn] for some fixed field K. This is the perspective adopted in [25],
where a parking function ideal MG is defined for an arbitrary graph G on n + 1
vertices. Here we mostly restrict to the case where G = Kn+1 is the complete graph
(see Section 5 for a discussion of the general case). A generating set of monomials
for the ideal Mn is indexed by all nonempty subsets of [n] = {1, 2, . . . , n} according
to the following construction. For any nonempty σ ⊆ [n] define the monomial mσ by

mσ =
∏
i∈σ

x
n−|σ|+1
i . (1)

The ideal Mn is then by definition the ideal (minimally) generated by these mono-
mials:

Mn = 〈mσ : ∅ 6= σ ⊆ [n]〉.

The standard monomials of Mn are by definition the monomials which do not appear
in the ideal Mn (which in turn form a basis for the K-vector space S/Mn). As
discussed in [25] the standard monomials of Mn correspond to the usual parking
functions of length n.

Parking functions are closely related to the theory of chip-firing on graphs, where
an integer number of chips are placed on the vertices of a graph and passed to neigh-
bors according to a simple ‘firing’ rule. The dynamics of this process are described
by various notions of stability of such configurations. To recall some of these notions
fix a root vertex and suppose c ∈ Zn+1 is a configuration of chips with nonnegative
values on the non-root vertices. Then c is stable if no individual non-root vertex
can fire (the number of chips on any vertex is less than its degree) and is superstable
if no subset of chips can fire simultaneously (without resulting in a vertex with a
negative number of chips). If G is a graph on vertex set {0, 1, . . . , n} with specified
root vertex 0, one can check that the set of G-parking functions corresponds to the
set of superstable configurations on the non-root vertices. Such configurations are in
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a simple bijection with so-called critical configurations, which form an abelian group
called the critical group of G.

In the context of chip-firing it is then natural to restrict the sets of vertices
that are allowed to fire at once, interpolating between the notions of stable and
superstable. Chip-firing with such restrictions has been studied in [6] and also [2],
where the process was termed ‘hereditary chip-firing,’ since the sets in question are
required to be closed under taking subsets. Motivated by these constructions, here
we study subideals of Mn generated by monomials corresponding to subsets of [n] of
a bounded size. Our main object of study will be certain k-skeleton ideals, subideals
of Mn defined as follows.

Definition 1.1. For any k = 0, 1, . . . , n − 1, M
(k)
n is the ideal in S = K[x1, . . . , xn]

given by
M (k)

n = 〈mσ : σ ⊂ [n], 1 ≤ |σ| ≤ k + 1〉.

Note that under this convention we have Mn = M
(n−1)
n . Also note that the

generators of M
(k)
n correspond to all subsets of size at most k + 1, which can be

thought of as the k-skeleton of a simplex. Homological properties of these k-skeleton
ideals are studied in [11]. Here, we focus on combinatorial aspects.

In this context, the natural generalization of parking functions will be the stan-
dard monomials determined by the ideals M

(k)
n , by definition the set of exponent

vectors of monomials that are not divisible by any element of M
(k)
n . We let

stankn = stan(M (k)
n )

denote the set of standard monomials of the ideal M
(k)
n . Note that the usual parking

functions are recovered as P(n) = stann−1
n .

Example 1.2. For n = 4 and k = 2 we have M
(2)
4 =

〈x4
1, x

4
2, x

4
3, x

4
4, x

3
1x

3
2, x

3
1x

3
3, x

3
1x

3
4, x

3
2x

3
3, x

3
2x

3
4, x

3
3x

3
4, x

2
1x

2
2x

2
3, x

2
1x

2
2x

2
4, x

2
1x

2
3x

2
4, x

2
2x

2
3x

2
4〉.

The set stan2
4 consist of all monomials xc11 x

c2
2 x

c3
3 x

c4
4 which are not divisible by

any of the generators. In this case there are 152 such monomials (see Corollary 2.2
below). We will typically think of these monomials as the sequences of integers given
by the exponent vectors, so that the standard monomial x2

1x2x
3
4 is represented by

(2, 1, 0, 3).

It turns out that set stankn can be seen to coincide with certain vector parking
functions, introduced by Pitman and Stanley [24] and studied by Yan [29]. Using
results from [29] we obtain the following.

Corollary 2.2. For any n and 0 ≤ k ≤ n − 1, the number of standard monomials
of M

(k)
n is given by

| stankn | =
k∑
j=0

(
n

j

)
(k + 1− j)(k + 1)j−1(n− k)n−j.
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The set stankn carries an action by the symmetric group Sn, and the orbits under
this action can be seen to coincide with the set of (weakly) increasing elements of
stankn. In the case of parking functions, it is well-known that these orbits are counted
by Catalan numbers, and in the more general case of rational parking functions they
lead to a definition of the rational Catalan numbers (see [1]). In our case we obtain
the following family of ‘skeletal Catalan numbers’.

Theorem 2.4. Let Sn act on stankn by permuting variables. Then the number of
orbits under this action is given by

k+1∑
`=1

`

k + 1

(
2k − `+ 1

k

)(
2(n− k) + `− 2

n− k + `− 1

)
.

In the case of k = n − 1 this sum leads to the decomposition of the Catalan
numbers in terms of so-called ballot numbers. We remark that in the case of k = n−2
it can also be shown that the number of orbits is given by the sum Cn + Cn−1 of
consecutive Catalan numbers, where

Cn =
1

n+ 1

(
2n

n

)
.

See Section 3.4 for details.

We next seek combinatorial interpretations of the set stankn, again in analogy with

the study of parking functions. Note that since M
(k)
n ⊂M

(n−1)
n for any 1 ≤ k < n−1

we have that stankn strictly contains the set P(n) of parking functions. Hence any
combinatorial interpretation of stankn should extend known interpretations of P(n).

We first study the case k = n − 2. We let ∂(stann−2
n ) denote the elements of

stann−2
n that are not parking functions 1, so that

∂(stann−2
n ) := stann−2

n \ stann−1
n .

Note that an element of ∂(stann−2
n ) contains all variables xi with degree at least one.

We can relate elements of stann−2
n to statistics on certain labeled trees.

Theorem 3.7. For any n ≥ 1 and 2 ≤ s ≤ n, let O(n, s) denote the number of
elements in ∂(stann−2

n ) with s variables of degree 1. Then O(n, s) is given by the
number of uprooted trees on n having a root of degree s− 1. This number is given by

O(n, s) =

(
n

s

)
(s− 1)(n− 1)n−s−1.

It follows that |∂(stann−2
n )| = (n− 1)n−1, the number of uprooted trees on n.

Here an uprooted tree on n is a rooted tree with vertex set [n] such that the root is
larger than its ‘children’ (immediate descendants). Figure 1 shows the uprooted trees
on [4]. The enumeration of uprooted trees (and other generalizations) is discussed
in [7], and as an immediate corollary we get a simple count for the set stann−2

n .

1In an earlier version of this paper posted on the arXiv the elements of ∂(stann−2
n ) were called

‘spherical parking functions’.
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Figure 1: Uprooted trees on [4] by degree of the root, 27 = 1 + 8 + 18.

Corollary 3.9. For any n the number of standard monomials of M
(n−2)
n is given by

| stann−2
n | = (n+ 1)n−1 + (n− 1)n−1.

This of course follows from Corollary 2.2 but we do not see a simple reduction.
After an earlier version of this paper was posted to the arXiv it was pointed out to
the first author that the elements of ∂(stann−2

n ) can be seen to coincide with the set
of prime parking functions of length n (after subtracting 1 from each coordinate). A
prime parking function (of length n) is a parking function of length n that becomes a
parking function of length n−1 when any 0 is deleted from the sequence. They were
introduced by Gessel who also proved that the number of prime parking functions of
length n is equal to (n− 1)n−1 [28]. Our Corollary 3.9 provides another proof of this
fact. This observation also indicates that prime parking functions are in fact the first
step in a sequence of combinatorial objects coming from stan

(k)
n . The construction

also naturally generalizes to arbitrary graphs G, see Section 5 for more discussion.

In the context of parking functions, a natural parameter to consider is degree, by
definition the sum of the entries. Kreweras [19] showed that the number of elements
of P(n) of degree

(
n
2

)
− d is equal to the number of spanning trees of Kn+1 with d

inversions (see Section 3.3 for more details). A geometric interpretation of parking
functions counted by degree is also provided by the so-called ‘Pak-Stanley’ labeling
of regions in the Shi arrangement [26].

In our context it turns out that the degrees of elements of ∂(stann−2
n ) are related

to what we call surface inversions (see Section 3 for details). We have the following
result.

Theorem 3.12. Let D(n, d) denote the number of elements of ∂(stann−2
n ) of degree d.

Then D(n, d) is equal to the number of uprooted trees on vertex set [n] with
(
n
2

)
−d+1

surface inversions.

The proofs of Theorem 3.7 and Theorem 3.12 both involve modifications of Dhar’s
burning algorithm [9] which provides a bijection between G-parking functions and
spanning trees of an arbitrary graph G. These are discussed in Section 3.1.
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Example 1.3. We illustrate our results for the case of n = 4 and k = 2. From
Corollary 2.2 we see that stan2

4 contains 53 + 33 = 152 elements, and Theorem 2.4
says that these come in 19 Sn-orbits. Among these, 125 correspond to usual parking
functions of length 4 (for instance the parking function (1, 0, 1, 2) corresponds to the
monomial m = x1x3x

2
4), which come in 14 orbits. The other 27 standard monomials

(the elements of ∂(stan2
4)) can be described by permuting variables of the following

orbit representatives

x1x2x3x4, x1x2x3x
2
4 (×4), x1x2x3x

3
4 (×4), x1x2x

2
3x

2
4 (×6), x1x2x

2
3x

3
4 (×12).

Note that if we count elements in terms of how many variables have degree 1 we get
O(4, 4) = 1, O(4, 3) = 8, and O(4, 2) = 18. Theorem 3.7 gives the identity

27 = 18 + 8 + 1.

Compare this to the degrees of the root in the uprooted trees depicted in Figure 1.

If, on the other hand, we count these elements by degree we see that D(4, 4) = 1,
D(4, 5) = 4, D(4, 6) = 10, and D(4, 7) = 12. Theorem 3.12 then gives the identity

27 = 12 + 10 + 4 + 1.

See Figure 2 for the 10 uprooted trees with
(

4
2

)
− 6 + 1 = 1 surface inversion.
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Figure 2: Uprooted trees on [4] with one surface inversion.

We next turn to the low dimensional skeleta. First note that for k = 0, we have
that the ideal M

(0)
n = 〈xn1 , xn2 , . . . , xnn〉, so that we have nn standard monomials as

predicted by Corollary 2.2. For k = 1 the set stan1
n turns out to have connections to

other tree like structures via a determinantal interpretation. Recall that the usual
parking functions (which correspond to the set stann−1

n ) are in bijection with the
set of spanning trees of Kn+1, which by the Matrix Tree Theorem is counted by
det(L̃n+1), the determinant of the reduced Laplacian of Kn+1. For the case of stan1

n

a related matrix makes an appearance.



A. DOCHTERMANN AND W. KING/AUSTRALAS. J. COMBIN. 81 (1) (2021), 126–151 132

Proposition 4.4. Let Q̃n+1 = Q̃(Kn+1) denote the reduced signless Laplacian of

Kn+1. Then the number of standard monomials of M
(1)
n is equal to the determinant

det Q̃n+1. This number is given by

| stan1
n | = det Q̃n+1 = (2n− 1)(n− 1)n−1.

Via an application of the Cauchy-Binet theorem, one can see that det Q̃n+1 has
an interpretation as a weighted count of all spanning TU-subgraphs of Kn+1, where
a spanning TU -subgraph is a generalization of a spanning tree (bases of the matroid
associated to a certain signed graph on Kn+1). We refer to Section 4 for details.
It would be interesting to find a bijection between stan1

n and the set of all such
graphs, ideally one that extends (any of the known) bijections between elements of
P(n) = stann−1

n and spanning trees.

The rest of the paper is organized as follows. In Section 2 we discuss standard
monomials of M

(k)
G and relate them to vector parking functions. We also consider

the orbits of the Sn-action on stankn. In Section 3 we focus on the case k = n − 2
and show how elements of stann−2

n are related to the combinatorics of certain labeled
trees via root degree and inversions. In Section 4 we consider the case k = 1 and
relate the standard monomials of M

(1)
n to the signless Laplacian and other tree-like

structures. In Section 5 we discuss our constructions in the context of general graphs
and address some open questions.

Remark 1.4. While this version of the paper was being prepared, the preprint [21]
was posted to the arXiv with some overlapping results. In particular the authors
make the connection to vector parking functions and give an independent proof of
Theorem 3.12. They also describe how the ideals M

(k)
n are related via Alexander

duality to so-called multipermutohedron ideals.

2 Standard monomials, vector parking functions, and orbits

We briefly recall some basic notions in commutative algebra that we use throughout
the paper. We fix a field K and let S = K[x1, . . . , xn] denote the polynomial ring on
n variables with coefficients in K. If M ⊂ S is any ideal generated by monomials,
the standard monomials of M are by definition the set of monomials in S that are
not divisible by any element of M . This notion makes sense for more general ideals
I ⊂ S where S/I is finite dimensional as a K-vector space (so-called Artinian ideals),
in which case a K-basis for S/I is called a set of standard monomials.

As mentioned above (and following the convention in [25]), any monomial xa11 x
a2
2

· · ·xann can be identified with its exponent vector to provide a sequence (a1, a2, . . . , an)
∈ Nn. Hence when we discuss the set of standard monomials of an ideal I we will
often abuse notation and think about them as a collection of sequences, parking
functions, etc.

Here we study the skeleton ideals M
(k)
n ⊂ S defined in the introduction. In

particular M
(k)
n is a monomial ideal generated by monomials mσ, for all nonempty



A. DOCHTERMANN AND W. KING/AUSTRALAS. J. COMBIN. 81 (1) (2021), 126–151 133

subsets σ ⊂ [n] with |σ| ≤ k+ 1. We let stankn denote the set of standard monomials

of M
(k)
n . By definition an element in stankn is a monomial in S, but in analogy with

parking functions we will often think of it as a sequence of nonnegative integers given
by its exponent vector. For example the element x1x2x

2
4x5 ∈ M (2)

5 is represented by
the sequence (1, 1, 0, 2, 1).

It turns that these sequences are examples of vector parking functions, a concept
introduced by Stanley and Pitman in [24] and further studied by Yan in [29]. To
recall the definition suppose u = u1 ≤ u2 ≤ · · · ≤ un is a sequence of weakly
increasing positive integers. A sequence (a1, a2, . . . , an) of nonnegative integers is
a u-parking function if its rearrangement c1 ≤ c2 ≤ · · · ≤ cn satisfies cj < uj for
all 1 ≤ j ≤ n. We will call u-parking functions and classical parking functions
increasing if ai ≤ ai+1 for 1 ≤ i ≤ n− 1.

We let P(u) denote the set of all u-parking functions. Observe that the usual
parking functions P(n) are recovered for the case u = (1, 2, . . . , n). We then have
the following connection to our standard monomials.

Lemma 2.1. For any n ≥ 1 and 0 ≤ k ≤ n− 1 the set stankn of standard monomials
can be identified with the vector parking functions P(un,k), where

un,k = (n− k, n− k, . . . , n− k︸ ︷︷ ︸
n− k times

, n− k + 1, n− k + 2, . . . , n).

Proof. Recall that the ideal M
(k)
n is generated by all monomials mσ where σ ⊆ [n]

and 1 ≤ |σ| ≤ k+1. Note that if xa11 x
a2
2 · · ·xann ∈ stankn, then no exponent can satisfy

ai ≥ n since xni is a generating monomial of M
(k)
n for all i. Hence cn < n.

If k = 0 then M
(0)
n is generated by the monomials m{i} = xni . Hence the only

condition on the elements of stan0
n is that every element must satisfy ci < n. We

see that this corresponds to a u(n,0)-parking function. Similarly, if k = 1 then M
(1)
n

is generated by all monomials of the form m{i} and m{i,j} = xn−1
i xn−1

j . Hence an
element of stan1

n is characterized by having cn < n and at most one value ci satisfying
ci = n− 1, in other words ci < n− 1 for all i ≤ n− 1.

Now suppose that the result holds for the elements of stank−1
n , so that in particular

cj < j for all j ≤ n− k + 1. Recall that M
(k−1)
n ⊂M

(k)
n , and hence for general k the

elements of stankn are characterized by the conditions of stank−1
n and the additional

condition that at most k values ci satisfy ci = n − k, so that ci < n − k for all
i ≤ n− k. The result follows.

In [30, Theorem 3] Yan provides a formula for the number of u-parking functions
(for a certain class of vectors u that includes this case). Substituting a = n − k,
b = 0, c = 1, and m = k into her formula we obtain the following.

Corollary 2.2. The number of standard monomials of M
(k)
n is given by

| stankn | =
k∑
j=0

(
n

j

)
(k + 1− j)(k + 1)j−1(n− k)n−j.
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Hence we have a good count on the number of elements in stankn. In subsequent
sections of the paper we seek combinatorial interpretations.

2.1 Orbits

For any n ≥ 1 and k = 0, 1, . . . n− 1, the symmetric group Sn acts on the set stankn
by permuting variables (this follows from the definition of Mn, which is evidently
symmetric in the variables xi). One natural statistic to consider is the multiplicity
of the trivial representation (the number of orbits) under this action.

Example 2.3. Corollary 2.2 tells us that the set stan1
4 consists of 189 elements. The

symmetric group S4 acts on this set and we see that the number of orbits is given
by 25 = 14 + 5 + 6, corresponding to the increasing representatives:

{0000, 0001, 0002, 0003, 0011, 0012, 0013, 0022, 0023, 0111, 0112, 0113, 0122, 0123}
∪ {1111, 1112, 1113, 1122, 1123}
∪ {0222, 0223, 1222, 1223, 2222, 2223}.

For the case P(n) = stann−1
n it is known that the number of orbits under the

Sn-action is given by the Catalan number Cn, and in the context of rational parking
functions [1] the number of orbits is given by the so-called rational Catalan numbers
[1] (see Remark 3.4). Next we determine the number of orbits for the standard
monomials of stankn for all values of k.

Theorem 2.4. Let Sn act on stankn by permuting variables. Then, the number of
orbits under this action is given by

k+1∑
`=1

`

k + 1

(
2k − `+ 1

k

)(
2(n− k) + `− 2

n− k + `− 1

)
.

Proof. We choose as our representative of each orbit the element with weakly-
increasing exponent vector. From Lemma 2.1 it is sufficient to count the increasing
vector parking functions in the set P(un,k). To accomplish this, we decompose any
c ∈ P(un,k) into two parts: an increasing classical parking function of length k + 1
with ` instances of 0 and a weakly increasing sequence of length n− k+ `− 1 on the
alphabet {0, 1, . . . , n− k − 1}.

Let c = (c1, c2, . . . , cn) ∈ P(un,k) satisfy c1 ≤ c2 ≤ . . . cn. We obtain a sequence
that we can identify with a parking function of length k + 1 by considering the
vector c′ = (cn−k, cn−k+1, · · · , cn) then forming d = (d1, d2, . . . , dk+1) where di =
cn−k+i−1 − (n − k − 1) when the difference is non-negative and 0 otherwise. Since
cn−k+i−1 < n− k+ i− 1, we have di < i, so d is indeed a classical increasing parking
function.

We are interested in the number of increasing classical parking functions of length
k+1 with ` instances of 0, which can be enumerated via a straightforward application
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of the Cycle Lemma [12] using the Dyck path representation of an increasing parking
function, and is an entry in the Catalan Triangle (OEIS #A009766):

`

k + 1

(
2k − `+ 1

k

)
.

Now, we will count weakly-increasing sequences. Let ` be the largest index such
that di = 0. By construction the numbers c1, . . . , cn−k+`−1 form a weakly increasing
sequence with the alphabet {0, 1, . . . , n−k−1}. The enumeration of such sequences
is well-known ([27], section 1.2) and so we have(

2(n− k) + `− 2

n− k + `− 1

)
choices for our weakly increasing sequence.

Together, these two structures decompose our vector parking function c. On the
other hand, given a parking function of length k+1 with ` instances of 0 and weakly
increasing sequence of length n− k + `− 1 on the alphabet {0, 1, . . . , n− k− 1}, we
can obtain an increasing vector parking function in P(un,k) by adding n− k − 1 to
each entry in the parking function larger than 0 and appending those elements to
our weakly increasing sequence.

Summing over all possible values for ` gives the result.

Example 2.5. Consider the parking function (0, 0, 0, 2, 4) and the sequence (0, 0, 1,
1, 2). From these, we see that ` = 3, k = 4, and thus n = 5 + 4 − 3 + 1 = 7.
Since n − k − 1 = 2, we add 2 to the non-zero entries in the parking function,
and then combine the two sequences to make the increasing vector parking function
(0, 0, 1, 1, 2, 4, 6) ∈ P(u7,4).

Remark 2.6. We may alternatively realize an increasing u-parking function (those
corresponding to our orbits) as a lattice path starting at (0, 0), ending at (n, n− 1)
with steps (1, 0) and (0, 1) such that the path does not touch the points {(i−1, ui)}ni=1.
In this case, the number of such lattice paths (Equation 10.41, [18]) is given by the
determinant of a matrix whose entries are binomial coefficients:

det
1≤i,j≤n

[(
ui

j − i+ 1

)]
.

Remark 2.7. Let Gn,k denote the directed graph on vertex set {0, . . . , n− 1} with

edge set {(n− k− 1, 0)}∪
(
n−1⋃
i=1

{(i− 1, i)}
)

. Then the elements in stankn can also be

realized as the parking functions of Gn,k, as defined in [16]. Furthermore, those mono-
mials with weakly increasing exponent vectors can be identified with the increasing
parking functions.
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3 Uprooted trees, root degree, surface inversions, and
(n− 1)n−1

In this section we specialize to the case k = n − 2 and consider the combinatorics
of stann−2

n , the standard monomials of M
(n−2)
n . Once again we note that the ideal

M
(n−2)
n is contained in Mn = M

(n−1)
n and hence we have stann−1

n ⊂ stann−2
n , the

former set being the set P(n) of parking functions of length n (of which there are
(n+ 1)n−1). Hence it is of interest to consider the ‘new contributions’, for which we
make the following definition.

Definition 3.1. For any integer n ≥ 1 we let ∂(stann−2
n ) = stann−2

n \ stann−1
n .

We can characterize the elements ∂(stann−2
n ) as follows.

Lemma 3.2. A sequence a = (a1, a2, . . . , an) of nonnegative integers is the exponent
vector of an element in ∂(stann−2

n ) if and only if its rearrangement c1 ≤ c2 ≤ · · · ≤ cn
satisfies c1 = 1 and ci < i for all i = 2, 3, . . . , n.

Proof. From Lemma 2.1 we have that stann−2
n is given by the set of u parking func-

tions, where u = (2, 0, 1, . . . , 1). Other the other hand the elements of stann−1
n are

given by the v-parking functions, where v = (1, 1, . . . , 1). Note that both conditions
imply that ci < i for all i ≥ 2. Hence the elements of ∂(stann−2

n ) are characterized
by the additional condition that c1 = 1, and the result follows.

Remark 3.3. A prime parking function of length n is a parking function of length
n that becomes a parking function of length n − 1 after removing any 0 entry [28,
Exercise 5.49f]. From Lemma 3.2 we see that ∂(stann−2

n ) can be seen to coincide with
the set of prime parking functions (after subtracting 1 from each coordinate). Hence
the set stann−2

n contains two disjoint sets A and B, where A is the set of monomials
corresponding to parking functions and B is in (easy) bijection with the set of prime
parking functions of length n.

Remark 3.4. The set ∂(stann−2
n ) can also be seen to be a special case of rational

parking functions as discussed in [1]. In their language the elements of ∂(stann−2
n ) are

(n, n − 1)-parking functions, and correspond to lattice paths weakly staying above
a line of slope n/(n− 1) (so-called rational Dyck paths). By results in [1] the set of
such sequences has cardinality (n− 1)n−1, and carries a permutation representation
of Sn where the number of orbits is given by the (usual) Catalan number Cn−1. The
decomposition of (n − 1)n−1 given in Corollary 3.15 describes this set in terms of
Sn-orbits.

3.1 Breadth-first and depth-first burning algorithms

We wish to relate the elements of stann−2
n to certain statistics on labeled trees. For

this we will employ ‘depth-first search’ (DFS) and ‘breadth-first search’ (BFS) vari-
ants of the classical burning algorithm due to Dhar [9].
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The ‘depth-first’ version of the algorithm is studied by Perkinson, Yang, and
Yu [23] and may be informally stated as follows. Suppose p = (p1, . . . , pn) is any
sequence of nonnegative integers. Consider the graphKn+1 with root 0 and pi number
of firefighters standing on vertex i > 0. A fire is lit at 0 and attempts to spread to the
vertex n. If pn > 0, then one of the firefighters wets the edge {0, n} and the fire fails
to spread. The fire then attempts to spread to n− 1, following the same procedure.
The fire attempts to spread from its current position to the largest adjacent un-burnt
vertex and pi edges are wet by firefighters before the fire can spread to vertex i. If
the fire can not spread from its current vertex, it retreats to the parent vertex and
attempts to spread to the largest adjacent vertex along a non-wet edge. In [23] it is
shown that p is a parking function if and only if the collection of burnt edges forms
a spanning tree of Kn+1. The following is Algorithm 1 from [23], modified for our
purposes, and applied to the graph Kn+1.

Algorithm 1 DFS-burning algorithm
Input: p :∈ Nn

1: burnt vertices = {0}
2: tree edges = {}
3: execute dfs from(0)

Output: tree edges

4: function dfs from(i)
5: for all j ∈ [n], from largest to smallest do
6: if pj = 0 then
7: append j to burnt vertices

8: append {i, j} to tree edges

9: pj = pj − 1
10: dfs from(j)
11: else
12: pj = pj − 1

We will also need a ‘breadth-first’ version of the algorithm, which proceeds simi-
larly to the above except for the fact that the fire attempts to burn ‘level by level’.
The details are given in Algorithm 2. Since we could not find this particular process
described in the literature, we prove here that in fact it gives the desired bijection.

Lemma 3.5. Algorithm 2 provides a bijection between the set P(n) of parking func-
tions of length n and the set of spanning trees of Kn+1.

Proof. We first argue that Algorithm 2 returns a spanning tree if and only if the
input was a parking function. For each vertex added to burnt vertices after
initiation, one edge incident to that vertex and one other in burnt vertices is
added to tree edges. The resulting graph is connected, so if all vertices are in
burnt vertices at termination, then the result must be a spanning tree.
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Suppose for p ∈ Nn that the algorithm does not terminate in a spanning tree.
Then for each i /∈ burnt vertices, we must have pi ≥ |burnt vertices|. However,
this means p is not a parking function since after rearrangement, c|burnt vertices|+1 ≥
|burnt vertices|+ 1.

On the other hand suppose for c ∈ Nn that the algorithm does terminate in a
spanning tree and also assume without loss of generality that ci ≤ ci+1 for 1 ≤ i < n.
Notice that the vertices will be added to burnt vertices in ascending order, meaning
ci − j = 0 for some j < i, which in turn means ci < i, making c a parking function.

We now argue that Algorithm 2 is injective. Given two distinct length n parking
functions, s and p, and for an appropriate i, assume without loss of generality that
si is minimal among all sj and pj such that sj 6= pj. Then the algorithm will add the
same vertices to burnt vertices for both s and p until the point that si is reduced to
zero (and pi is not). On the next iteration of the ‘for’ loop in line 7, an edge incident
to vertex i will be added in the case of s, but the same edge will not be added in the
case of p, causing the resulting trees to be distinct. Finally, the algorithm must give
a bijection because the number of spanning trees of Kn+1 and the number of length
n parking functions are the same.

We can easily reverse Algorithm 2 as follows: let T be a tree spanning Kn+1 and
for 0 ≤ i ≤ n, let i ∈ Lj if and only if there are j edges on the shortest path between
0 and i, and let par(i) be the parent of i in T . Then for i > 0, if i ∈ Lj, we have
pi = |{m ∈ Lj−1 : m < par(i)}|+

∑j−2
`=0 |L`|.

Algorithm 2 BFS-burning algorithm
Input: p ∈ Nn

1: burnt vertices = {0}
2: tree edges = {}
3: current level = {0}
4: next level = {}
5: while current level6= {} do
6: for all i ∈ current level, from smallest to largest do
7: for all j ∈ [n] do
8: if pj = 0 then
9: append j to burnt vertices

10: append j to next level

11: append {i, j} to tree edges

12: pj = pj − 1
13: else
14: pj = pj − 1

15: current level = next level

16: next level = {}
Output: tree edges
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3.2 Root degrees and surface inversions

Next we recall some results from the theory of tree enumeration. Let Tn,k denote the
family of rooted labeled trees on [n] such that the root has exactly k larger immediate
descendants. We will refer to elements in Tn,0 as uprooted trees. In [7] the authors
provide formulas for the size of the sets Tn,k counted by various statistics, and in
particular establish the following.

Proposition 3.6 ([7], Proposition 4.2). The number of uprooted trees on [n] with
root degree s− 1 is given by (

n

s

)
(s− 1)(n− 1)n−s−1.

From this it follows that

(n− 1)n−1 =
n−1∑
s=1

(
n

s

)
(s− 1)(n− 1)n−s−1.

We next use these observations to study elements of ∂(stann−2
n ).

Theorem 3.7. For any n ≥ 1 and 2 ≤ s ≤ n let O(n, s) denote the number of
elements in ∂(stann−2

n ) with s variables of degree 1. Then O(n, s) is given by the
number of uprooted trees on [n] having a root of degree s− 1. This number is given
by

O(n, s) =

(
n

s

)
(s− 1)(n− 1)n−s−1.

The total number of elements in ∂(stann−2
n ) is given by

|∂(stann−2
n )| = (n− 1)n−1.

Proof. We utilize the BFS-burning algorithm, Algorithm 2, to provide a bijection
between the elements of ∂(stann−2

n ) with s variables of degree 1 and uprooted trees
on the vertex set [n] in which the root has s− 1 children. To this end, let a be such
an element of ∂(stann−2

n ). Per Remark 3.3, we obtain a prime parking function p by
letting pi = ai − 1 for i ∈ [n]. Furthermore, we also know we may delete any 0 from
p to obtain a parking function of length n − 1, so let us delete the final pj = 0 in p
to obtain p̂ and we remember j for later. We note that there are (s− 1) instances of
0 in p̂.

Now, we run Algorithm 2 on p̂ and we notice that the root will have child i if
and only if p̂i = 0. Thus, our resulting tree’s root has s − 1 children, but is not an
uprooted tree as the root is labeled 0. This is easily fixed by relabeling the root by j,
the index of the previously-deleted 0, and increasing all non-root vertex labels by 1 if
they are j or larger. Our tree’s root is now larger than its children. That this process
is indeed a bijection follows easily from the fact that Algorithm 2 is reversible.

Hence, by Proposition 3.6, we have found that O(n, s) =
(
n
s

)
(s− 1)(n− 1)n−s−1

as claimed.
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Remark 3.8. One can see that the argument used in the proof of Theorem 3.7
provides an analogous statement for the case of ordinary parking functions. That is,
the number of elements in P(n) with s variables equal to 0 is given by the number
of rooted trees on {0, 1, ..., n} with root 0 where the root has degree s− 1. This also
follows from a result in [8], where the authors describe a bijection due to Postnikov
from the Dyck path representation of the elements of P(n) to trees rooted at 0.

From Theorem 3.7 we get a formula for the number of elements in stan
(n−2)
n . The

following can presumably be derived from Corollary 2.2 but we do not see a simple
reduction.

Corollary 3.9. The number of standard monomials of stan
(n−2)
n is given by

| stann−2
n | = (n+ 1)n−1 + (n− 1)n−1.

In particular we have
|∂(stann−2

n )| = (n− 1)n−1.

Proof. By definition we have that stann−2
n = stann−1

n ∪ ∂(stann−2
n ) (disjoint union).

Recall that stann−1
n = P(n) has cardinality (n + 1)n−1. The result follows from

Theorem 3.7.

Remark 3.10. From Remark 3.3 we saw that the elements of ∂(stann−2
n ) can be

identified (after subtracting one from each entry) with the set of prime parking
functions of length n. Hence Theorem 3.7 provides another proof that there are
(n− 1)n−1 such sequences, a fact that was first established by Gessel [28].

3.3 Degree and surface inversions

We next turn to a proof of Theorem 3.12. Recall that in the classical case Krewaras
[19] showed that the number of length n parking functions of degree

(
n
2

)
− k is equal

to the number of spanning trees of Kn+1 with k inversions. To describe this notion
suppose T is a tree on vertex set {1, 2, . . . , n} and fix a root at 1. Then an inversion
in T is a pair (α, β) of vertices in T such that β is a descendant of α and α > β.
Kreweras established his result by relating parking functions to the Tutte polynomial
of Kn, and hence to the external activity of trees. A bijection between the set of
trees with k inversions and the set of trees with k externally active edges was given
by Beissinger in [4]. A geometric interpretation of parking functions counted by
degree is also provided by the so-called ‘Pak-Stanley’ labeling of regions in the Shi
arrangement [26]. Under this labeling, the set of prime parking function correspond
to the bounded regions.

In our context we can equally well enumerate elements of ∂(stann−2
n ) according

to degree. As we have seen, elements in ∂(stann−2
n ) are in bijection with the set of

uprooted trees on n, and so degree gives a new parameter on such objects. For this
we need the following notion.
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Definition 3.11. Suppose T is a uprooted tree on [n] with root r. A surface in-
version is a pair of non-root vertices (α, β) such that β is a descendant of α and
α > β.

We refer to Figure 2 for examples. We then have the following correspondence.

Theorem 3.12. Let D(n, d) denote the number of elements in ∂(stann−2
n ) of degree

d. Then D(n, d) is equal to the number of uprooted trees on vertex set [n] with(
n
2

)
− d+ 1 surface inversions.

Proof. We will employ Algorithm 1 to prove the claim via bijection. Theorem 3 of
[23] concludes that Algorithm 1 gives a bijection between P(n) and spanning trees
of Kn+1 such that the image of a parking function p has

(
n
2

)
− deg(p) inversions.

Now consider s ∈ ∂(stann−2
n ) of degree deg(s) = d. Per Remark 3.3, we may

subtract 1 from each entry to obtain the prime parking function p = (p1, p2, . . . , pn).
Recall that if any 0 is removed from a prime parking function of length n, then
the resulting sequence is a parking function of size n − 1. Delete the final 0, pi
for some i, from p and consider the resulting sequence p̂ = (p̂1, p̂2, . . . , p̂n−1) where
p̂j = pj for j < i and p̂j = pj+1 for j ≥ i. We note that deg(p̂) = deg(p). Now
run the Algorithm 1 on the complete graph Kn. The resulting spanning tree has(
n−1

2

)
−deg(p̂) =

(
n−1

2

)
− (deg(s)−n) =

(
n
2

)
−d+1 inversions. Since p̂j > 0 for j ≥ i,

all of the root’s children must be smaller than i as the edges {0, j} were wet before
the fire first spread from the root during the burning algorithm. Furthermore none
of the inversions involve the root as the root has label 0.

We finish by converting T into an uprooted tree by relabeling the vertices j = j+1
for j ≥ i then relabeling the root with i. The

(
n
2

)
− d+ 1 inversions before relabeling

are now surface inversions as they do not involve the root and all of the root’s children
have labels less than i since the root before relabeling had no children with labels i
or larger.

One can see that the above process is reversible. Assuming we start from an
uprooted tree with vertex set [n] and

(
n
2

)
− d + 1 surface inversions we convert it

to a spanning tree of Kn by relabeling the root 0 and adjusting the other labels
appropriately. Apply Algorithm 1 in reverse to get a parking function of length
n − 1. This is then converted into our desired element of ∂(stann−2

n ) by inserting
a 0 at the coordinate given by the original root’s label and then adding 1 to all
entries.

Example 3.13. We give an example of the bijection described above with n = 4.
Let s = (2, 1, 1, 2), so that p = (1, 0, 0, 1) and p̂ = (1, 0, 1). We have deg(s) = 6, and
so we expect an uprooted tree with

(
4
2

)
− 6 + 1 = 1 surface inversions. The final 0 of

p is in the 3rd position, so i = 3.

Running Algorithm 1 with p̂ on K4 with vertices {0, 1, 2, 3}, the fire attempts to
spread to vertex 3 but the edge {0, 3} is dampened. The fire spreads to vertex 2,
then to vertex 3 (as one edge was previously dampened). The fire next attempts to
spread to vertex 1 but the edge {1, 3} is dampened and the fire finally spreads to
vertex 1 via vertex 2.
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Since i = 3, we relabel all vertices with labels 3 or larger and then relabel the
root as 3. The resulting tree has 1 surface inversion and the root is larger than its
child. Figure 3 shows K4 before the algorithm initializes, after the burning algorithm
runs (where dashed edges are those dampened), as well as the tree after relabeling.

0

3 2

1 3

4 2

10

3 2

1

Figure 3: Obtaining an uprooted tree from s = (2, 1, 1, 2) ∈ ∂(stan2
4).

Remark 3.14. We have seen that the set stann−2
n forms a K-basis for the S-algebra

S/M
(n−2)
n , and hence the degree sequence of stann−2

n provide the coefficients for the

Hilbert series of the finite dimensional K-vector space S/M
(n−2)
n . We do not know

if the subset ∂(stann−2
n ) can be seen as the set of standard monomials for some

naturally occurring S-algebra. If this was the case, Theorem 3.12 would provide a
combinatorial interpretation for the coefficients of its Hilbert series.

3.4 Another way to count (n− 1)n−1

We next describe how an explicit formula for | stann−2
n | coming directly from the

definition provides another way of counting (n− 1)n−1 in the spirit of [5].

Corollary 3.15. For any integer n ≥ 1 we have

(n− 1)n−1 =
∑

0≤k1≤1
0≤k1+k2≤2

···
0≤k1+···+kn−2≤n−2

(
n

k1

)(
n− k1

k2

)
· · ·
(
n− (k1 + · · ·+ kn−3)

kn−2

)
, (2)

where n > 1 is an integer and k1, k2, . . . , kn−2 are nonnegative integers.

Proof. Our strategy will be to show that the right hand side of the identity naturally
counts the elements of ∂(stann−2

n ), Corollary 3.9 will then give the result. Note
that if xa11 x

a2
2 · · · xann ∈ ∂(stann−2

n ), then no exponent can satisfy ai ≥ n since xni
is a generating monomial of M

(n−1)
G . We can have at most one exponent satisfying

ai = n−1, at most two exponents satisfying aj = n−2, and so on. Let k1 denote the
number of exponents ai such that ai = n−1, k2 the number of exponents aj such that
aj = n− 2, etc. Hence the number of standard monomials of the form xa11 x

a2
2 · · ·xann

is given by the expression on the right hand side of (2), which by Corollary 3.9 is
equal to (n− 1)n−1.
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Note that the expression in the summand in Corollary 3.15 can be written as(
n

k1,k2,...,kn−2,kn−1

)
, where kn−1 = n − (k1 + · · · + kn−2). This allows for more direct

comparison with the identity in Equation (3) below. To illustrate the identity, for
n = 4 we have the possible values of k1, k2 given by

k1 k2

0 0
0 1
0 2
1 0
1 1

and Equation (2) becomes

33 =

(
4

0

)(
4− 0

0

)
+

(
4

0

)(
4− 0

1

)
+

(
4

0

)(
4− 0

2

)
+

(
4

1

)(
4− 1

0

)
+

(
4

1

)(
4− 1

1

)
= 1 + 4 + 6 + 4 + 12.

Note that the formula for (n−1)n−1 involves a total of Cn−1 terms in the summa-
tion. In addition, each summand represents an orbit in the Sn-action on the elements
of ∂(stann−2

n ). Hence for the case k = n−2 we see that the formula from Theorem 2.4
for the number of orbits of stann−2

n reduces to Cn + Cn−1.

In [5] Benjamin and Juhnke established a similar looking identity:

(n− 1)n−1 =
∑

0≤k1≤1
0≤k1+k2≤2

···
0≤k1+···+kn−2≤n−2

(n− 1)!

k1!k2! · · · kn−2!
, (3)

where n > 1 is an integer and k1, k2, . . . , kn−2 are nonnegative integers. In [10]
this formula was generalized to an identity involving nm, where m < n. Note that
Equation (3) involves a summation over the same indexing set as Equation (2) (of
size given by a Catalan number), but one can check that the terms in the summation
are not the same (even up to reordering). For instance, if n = 4 then Equation (3)
becomes

33 =
3!

0!0!
+

3!

0!1!
+

3!

0!2!
+

3!

1!0!
+

3!

1!1!

= 6 + 6 + 3 + 6 + 6.

We do not know if there is a ‘parking function’ interpretation of Equation (3).
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4 Signless Laplacians and TU-subgraphs

In this section we discuss combinatorial interpretations of stan1
n, the standard mono-

mials of the ideal M
(1)
n . Recall that M

(1)
n is generated by all mσ with σ ⊂ [n] and

1 ≤ |σ| ≤ 2. As we have seen, for any n ≥ 1, the ideal M
(1)
n is a subideal of Mn and

hence the set stan1
n contains the set stann−1

n (which correspond to parking functions
of length n).

Example 4.1. For n = 3 we have M
(1)
3 = 〈x3

1, x
3
2, x

3
3, x

2
1x

2
2, x

2
1x

2
3, x

2
2x

2
3〉, with the set

of standard monomials given by

stan2
3 ∪{x1x2x3, x

2
1x2x3, x1x

2
2x3, x1x2x

2
3},

giving a total of 16+4 = 20 standard monomials. Here as usual we identify a parking
function with the monomial having that sequence as an exponent vector, so that for
example (1, 0, 2) is identified with the monomial x1x

2
3.

From Proposition 2.2 we get a formula for the number of elements in stan1
n. We

also provide a direct proof.

Proposition 4.2. The number of standard monomials of M
(1)
n (and hence the di-

mension of the K-vector space S/M
(1)
n ) is given by

| stan1
n | = (2n− 1)(n− 1)n−1.

Proof. Suppose (a1, a2, . . . , an) is the exponent vector of a standard monomial of

M
(1)
n . Then by definition each entry ai is strictly less than n, and at most one entry

equals n− 1.

If no entry equals n − 1 then every entry satisfies 0 ≤ ai ≤ n − 2 so we have
(n−1)n possibilities. If exactly one entry (say ai) equals n−1 then every other entry
satisfies 0 ≤ aj ≤ n − 2 for j 6= i. Hence we have n(n − 1)n−1 possibilities. Adding
these up we get

(n− 1)n + n(n− 1)n−1 = (2n− 1)(n− 1)n−1

standard monomials, as desired.

It turns out the number of elements in stan1
n has a determinantal interpretation

analogous to the case of classical parking functions. Recall that | stann−1
n | is given by

det L̃(Kn+1), the determinant of the reduced Laplacian of Kn+1. For the one-skeleton
a different but related matrix makes an appearance.

Definition 4.3. For a graph G on vertex set {0, 1, . . . , n} the signless Laplacian
Q = Q(G) is the symmetric (n+ 1)× (n+ 1) matrix with rows and columns indexed
by the vertices of G and with entries given by

Qi,j =

{
deg(i) if i = j,

|{edges connecting i and j}| if i 6= j.
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Define the reduced signless Laplacian Q̃ to be the matrix obtained fromQ by deleting
the row and column corresponding to the vertex 0.

Note that Q has entries given by the absolute values of the entries of the usual
Laplacian L (hence the name). For example, if G = K4 we get the following matrices.

Q =


3 1 1 1
1 3 1 1
1 1 3 1
1 1 1 3

 Q̃ =

3 1 1
1 3 1
1 1 3


In this case one has det Q̃ = 20 = (5)(22) and in fact more generally we have the
following.

Proposition 4.4. The number of standard monomials of M
(1)
n is given by

| stan1
n | = det Q̃(Kn+1).

Proof. According to Proposition 4.2 it is enough to show that

det Q̃(Kn+1) = (2n− 1)(n− 1)n−1.

For this we examine the eigenvalues of the matrix Q̃ = Q̃(Kn+1), which are also
given (without proof) in OEIS #A176043 [22]. We have one eigenvalue 2n− 1 with
multiplicity 1 corresponding to the all 1’s vector 1. Subtracting the matrix (n−1)In
from Q̃ gives us the matrix J consisting of all ones, which has an (n−1)-dimensional
kernel. Hence Q̃ has one other eigenvalue n− 1 with multiplicity n− 1. The result
follows.

Proposition 4.4 suggests there may be a bijective proof of Proposition 4.2 that
extends well-known bijections between spanning trees and parking functions (see
for instance [8]). For this we recall the following graph-theoretical interpretation of
det Q̃.

Proposition 4.5 ([3], Theorem 7.8). For any graph G the determinant of Q̃G = Q̃
is given by

det Q̃ =
∑
H

4c(H),

where the summation runs over all spanning TU-subgraphs H of G with c(H) uni-
cyclic components, and one tree component which contains the vertex 0.

Here a unicylic graph is a graph with a single cycle. A TU-subgraph is a subgraph
of G whose components are trees or unicylic graphs with odd cycles.

Remark 4.6. The signless Laplacian also has connections to the theory of signed
graphs as developed by Zaslavsky in [32]. For any graph G the signless Laplacian
Q(G) can be factored as Q(G) = j ◦ jT , where j is the signless incidence matrix
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of G. The matrix j can be taken as an incidence matrix for the underlying signed
graph of G, where all edges are taken to be negative. From [32] it is known that the
independent sets in the linear matroid determined by the matrix j correspond to sets
of edges where each component either contains no circles, or just one circle which is
‘negative’ (in this context equivalent to having an odd number of vertices). Applying
Cauchy-Binet to calculate det Q̃ involves computing determinants of maximal minors
of j̃, and the nonzero contributions are exactly those subgraphs of G described above.

There are a number of combinatorial bijections between the set P(n) (which we
identify with stann−1

n ) and the set of spanning trees of the complete graph Kn+1,
including Dhar’s burning algorithm and other variations ([8]). Many of these extend
to the context of arbitrary graphs. It is a natural question to find a similar map
between the spanning TU -subgraphs of Kn+1 and the set stann−2

n . We note that a
spanning tree is, in particular, a spanning TU subgraph and hence the desired map
should extend one of these bijections.

A bijective proof of Proposition 4.2 would associate to each spanning TU -sub-
graph H ⊂ Kn+1 a collection of 4c(H) elements of stan1

n. Each spanning tree of Kn+1

would be assigned 40 = 1 standard monomials, so presumably such a bijection would
extend the correspondence between usual parking functions and spanning trees. In
Example 4.1 we have the 16 parking functions coming from the spanning trees of
G, and 4 new standard monomials coming from the TU -subgraph consisting of the
edges {12, 13, 23}. It would also be interesting to see if the degree sequence of the
elements in stan1

n can be related to a notion of ‘inversion’ for the set of spanning
TU -subgraphs (see Section 5.3).

5 Arbitrary graphs and further questions

As we have seen, the study of stankn for various values of k leads to combinatorial
notions that relate and extend some known interpretations of classical parking func-
tions. As mentioned in the introduction, the notion of a parking function can be gen-
eralized to G-parking functions, where G is any graph on vertex set V = {0, 1, . . . , n}
(with specified root vertex 0). Here we fix such a graph G and for a subset σ ⊂ [n]
we let degσ(i) = |{j ∈ V (G)\σ : i ∼ j}| denote the number of vertices adjacent to i
that are outside σ. For any subset σ ⊂ [n] define a monomial

mσ =
∏
i∈σ

x
degσ(i)
i .

By definition the G-parking functions correspond to the standard monomials of the
ideal MG ⊂ S generated by all such mσ for σ 6= ∅. We define the ideal M

(k)
G to be

the subideal of MG generated by monomials corresponding to subsets of size at most
k + 1. A natural question to ask is if the objects studied here can be extended to
the context of general graphs.

To motivate this study, note that for an arbitrary graph G (with specified root

vertex), the standard monomials of the k-skeleton ideal M
(k)
G specialize to two natural
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generalizations of classical parking functions: a certain class of u-parking functions
on the one hand (by taking G = Kn+1), and G-parking functions on the other (by
taking k = n − 1). In this context one could hope for a generalization of Corollary

2.2 that counts standard monomials of M
(k)
G , this time incorporating data from the

underlying graph G.

5.1 Codimension-one ideals.

As we have seen, the elements of ∂(stann−2
n ) = stann−2

n \ stann−1
n naturally correspond

to the set of prime parking functions. It is not clear if there is a similar interpretation
for arbitrary G. For example it does not seem that elements of ∂(stann−2

G ) correspond
in any natural way to a subset of usual G-parking functions.

Computing the number of elements in ∂(stan
(n−2)
G ) for arbitrary G seems like a

difficult task. In [21] the authors determine the size of these sets for the case of
G = Kn+1\{e} for some edge e. In the case that e is adjacent to the root vertex 0
they show that

|∂(stan
(n−2)
G )| = (n− 1)n−1,

whereas if e is not adjacent to the root we have

|∂(stan
(n−2)
G )| = (n− 1)n−3(n− 2)2. (4)

We have seen that the elements of ∂(stan
(n−2)
n ) are counted by uprooted trees on

[n] and it is not clear if ∂(stan
(n−2)
G )) can be related to some subset of the spanning

trees of G. We remark that the proof of Equation (4) from [21] involves showing

that the set ∂(stan
(n−2)
G ) is in bijection with the set of uprooted trees on [n], where

1 is not adjacent n.

Also, Gessel [14] has generalized the notion of inversion in the context of κ-
inversions for spanning trees of an arbitrary graph G. In [23] Perkinson, Yang, and
Yu give a bijection between G-parking functions and spanning trees that preserves
degree and the number of κ-inversions. Hence one could search for a generalization
of Theorem 3.12 that extends to ∂(stann−2

G ).

5.2 One-dimensional ideals.

The results from Section 4 can also be considered in the context of arbitrary graphs.
Suppose G has vertex set {0, 1, . . . , n} and as above let Q̃G denote its reduced signless
Laplacian. Our convention here is that 0 is taken to be the sink (corresponding to
which row/column should be deleted) but note that in general det(Q̃G) depends on
this choice. This is in contrast to the usual Laplacian, where the determinant simply
counts the number of spanning trees containing the sink (and hence is independent
of choice of sink). In fact the natural extension of Proposition 4.4 does not hold for
general G, as the following example illustrates.
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Figure 4: The graphs H ′ and H from Example 5.1. The graphs are isomorphic but
have different values of det Q̃ (in both cases the sink is given by the vertex 0).

Example 5.1. Let H be the graph obtained from removing the edge (34) from the
graph K5. The reduced signless Laplacian is

Q̃H =


4 1 1 1
1 4 1 1
1 1 3 0
1 1 0 3


with det(Q̃H) = 99. According to Macaulay2 [15] we have dimKM

(1)
G = 105, so that

there are 105 standard monomials of M
(1)
G in this case. Note however if H ′ is the

graph obtained from K5 by removing the edge 01 then we get det(Q̃H′) = 135, while

there are 135 standard monomials of M
(1)
H′ .

After a number of calculations we have not found an example where the determi-
nant of Q̃ is larger than the dimension of S/M

(1)
G , which begs the following question.

Question 5.2. For any graph G is it true that

| stan(M
(1)
G )| ≥ det(Q̃G)?

Remark 5.3. After a version of this paper was posted to the arXiv this question
was answered in the affirmative by Kumar, Lather, and Roy [20] in the more general
setting of multigraphs.

5.3 Inversions in TU-subgraphs

As we have seen, the degree sequences of elements in stankn can often be interpreted as
statistics on related combinatorial objects. For any k we define a generating function

P (k)
n (q) =

∑
β=(b1,b2,...,bn)

qb1+b2+···+bn

where β ranges over all standard monomials of M
(k)
n .

For the case of k = n− 1 and k = n− 2 the coefficients of these polynomials can
be related to the number of inversions in associated labeled tree-like structures.
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In Section 4 we have seen that elements of stan1
n are counted (in a weighted

fashion) by the spanning TU -subgraphs of Kn+1 (with spanning trees appearing as a
subclass). A natural question to ask is whether the degree of elements in stan1

n can
be interpreted by ‘inversions’ in a similar way. For small values of n we have

P
(1)
1 (q) = 1

P
(1)
2 (q) = 2q + 1

P
(1)
3 (q) = 3q4 + 7q3 + 6q2 + 3q + 1

P
(1)
4 (q) = 4q9 + 13q8 + 28q7 + 38q6 + 40q5 + 31q4 + 20q3 + 10q2 + 4q + 1.

(5)

5.4 Other skeleta and trees

Another open question here is whether or not standard monomials of other skeleton
ideals are related to other tree-like structures. Classically we have that stann−1

n is in
bijection with the number of labeled trees on [n] (equivalently labeled rooted forests
on [n − 1]). From our work we see that stann−2

n counts labeled trees and uprooted
labeled trees, whereas stan1

n counts labeled trees and spanning TU -subgraphs (a
generalization of spanning trees related to basis of an underlying signed graph). We
do not know if stankn is related to other tree-like structures for other values of k.

5.5 Other subcomplex ideals

In this paper we studied skeleta of G-parking function ideals, but the constructions
makes sense in a more general setting. For instance if ∆ is any simplicial complex
on vertex set [n] we can study the ideal M∆

n defined in the natural way

M∆
n = 〈mσ : σ ∈ ∆〉,

where the mσ for nonempty σ ⊂ [n] are the monomials defined above.

Backman considered this level of generality in his hereditary chip-firing models in
[2]. One can then ask for a formula for | stan∆

n |, the number of standard monomials
of this ideal, perhaps in terms of some statistic on ∆. For instance does the number
of standard monomials only depend only on certain combinatorial features of ∆?
Does the topology play any role? Perhaps one can obtain a nice formula for | stan∆

n |
when ∆ is a simplicial complex with desirable combinatorial properties (for example
matroidal, shellable, shifted, etc.).
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