Upper bounds on the coalition number

Teresa W. Haynes*
Department of Mathematics and Statistics
East Tennessee State University
Johnson City, TN 37614, U.S.A.
haynes@etsu.edu

Jason T. Hedetniemi
Department of Mathematics Wilkes Honors College
Florida Atlantic University Jupiter, FL 33458, U.S.A.
j.hedetniemi@wingate.edu

Stephen T. Hedetniemi
Emeritus Professor of Computer Science, School of Computing
Clemson University
Clemson, SC 29634, U.S.A.
hedet@clemson.edu

Alice A. McRae Raghuveer Mohan
Computer Science Department
Appalachian State University
Boone, NC 28608, U.S.A.
alice.mcrae@gmail.com mohanr@appstate.edu

Abstract

A dominating set in a graph $G=(V, E)$ is a set $S \subseteq V$ such that every vertex not in S is adjacent to at least one vertex in S. A coalition in a graph G consists of two disjoint sets $V_{1}, V_{2} \subset V$ neither of which is a dominating set but whose union $V_{1} \cup V_{2}$ is a dominating set. A vertex partition $\pi=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ such that every set V_{i} is either a dominating set consisting of a single vertex, or is not a dominating set but forms a

[^0]coalition with another set V_{j} which is not a dominating set, is called a coalition partition. The maximum order of a coalition partition is called the coalition number of G. In this paper we obtain a tight upper bound on the coalition number of any graph G in terms of the maximum degree of G. We also give a tight upper bound on the coalition number in terms of both maximum degree and minimum degree of G.

1 Introduction

The term coalition is used to describe a situation in which two or more parties negotiate and reach an agreement on a temporary course of action that is viewed as mutually beneficial, a common example arising in parliamentary systems of government, when in a general election no political party achieves a majority. Although parliamentary coalitions typically involve agreements between more than two political parties, the graph theory model presented in this paper represents situations in which coalitions are formed by only two groups.

We will need the following definitions. Given a graph $G=(V, E)$, with vertex set V of order $n=|V|$, the open neighborhood of a vertex $v \in V$ is the set $N(v)=$ $\{u \mid u v \in E\}$, and its closed neighborhood is $N[v]=N(v) \cup\{v\}$. Each vertex $u \in N(v)$ is called a neighbor of v, and $|N(v)|$ is called the degree of v, denoted $\operatorname{deg}(v)$. We let $\delta(G)$ and $\Delta(G)$ denote the minimum and maximum degree, respectively, over all degrees of vertices in G. For a set S of vertices, we denote the subgraph induced by S by $G[S]$. A set $S \subseteq V$ is a dominating set of a graph G if every vertex in $V-S$ has at least one neighbhor in S. A set $S \subseteq V$ is a vertex cover of a graph G if every edge in $E(G)$ is incident to at least one vertex of S. The minimum cardinality of any vertex cover of G is the vertex cover number, denoted by $\beta(G)$. For an integer k, we use the standard notation $i \in[k]$ to mean that i is an integer and $1 \leq i \leq k$.

We denote the family of paths, cycles, and complete graphs of order n by P_{n}, C_{n}, and K_{n}, respectively, and the complete bipartite graph having r vertices in one partite set and s vertices in the other by $K_{r, s}$. The union $G \cup H$ of two disjoint graphs G and H is the disconnected graph with components G and H. Let $G-e$ denote the graph obtained by removing an arbitrary edge from G.

In a graph G of order n, a vertex of degree $n-1$ is called a full vertex. A subset V_{i} is called a singleton set if $\left|V_{i}\right|=1$. Note that any full vertex forms a singleton dominating set.

The concept of coalitions in graphs was introduced by the authors in 2020 [3] as follows.

Definition 1 A coalition in a graph G consists of two disjoint sets of vertices $V_{1}, V_{2} \subset$ V, neither of which is a dominating set but whose union $V_{1} \cup V_{2}$ is a dominating set. We say that the sets V_{1} and V_{2} form a coalition and are coalition partners.

Definition 2 A coalition partition, henceforth called a c-partition, in a graph G is a vertex partition $\pi=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ such that every set V_{i} of π is either a singleton
dominating set or forms a coalition with another set V_{j} in π. The coalition number $C(G)$ equals the maximum order k of a c-partition of G, and a c-partition of G having order $C(G)$ is called a $C(G)$-partition.

Definition 3 Let G be a graph of order n with vertex set $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. The singleton partition, denoted π_{1}, of G is the partition of V into n singleton sets, that is, $\pi_{1}=\left\{\left\{v_{1}\right\},\left\{v_{2}\right\}, \ldots,\left\{v_{n}\right\}\right\}$.

Note that if G has no full vertices, then no set V_{i} in a c-partition is a dominating set, and, hence, must form a coalition with another set V_{j} in the partition.

Coalition graphs were defined in $[1,3]$ as follows.
Definition 4 Given a c-partition $\pi=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ of order k of a graph $G=$ (V, E), the coalition graph $C G(G, \pi)$ is the graph whose k vertices correspond one-to-one with the sets of π, and two vertices V_{i} and V_{j} are adjacent in $C G(G, \pi)$ if and only if their corresponding sets V_{i} and V_{j} form a coalition in G.

Note that in Definition 4, we abuse notation slightly by letting V_{i} represent both a set in π and a vertex in $C G(G, \pi)$. For simplicity, we will continue this throughout the paper, depending on context to make it clear. Note also that for any graph G and a $C(G)$-partition π, there will be a corresponding coalition graph $C G(G, \pi)$ having $C(G)$ vertices.

A few examples will illustrate these definitions. Consider first the path $P_{6}=$ $\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right)$. The partition $\pi=\left\{\left\{v_{1}, v_{6}\right\},\left\{v_{2}\right\},\left\{v_{3}\right\},\left\{v_{4}\right\},\left\{v_{5}\right\}\right\}$ is a c-partition of P_{6}. No set of π is a dominating set, but $\left\{v_{2}\right\}$ and $\left\{v_{5}\right\}$ form a coalition; $\left\{v_{1}, v_{6}\right\}$ and $\left\{v_{3}\right\}$ form a coalition; and $\left\{v_{1}, v_{6}\right\}$ and $\left\{v_{4}\right\}$ form a coalition. Thus, every set forms a coalition with at least one other set. From this it follows that the coalition number of the path P_{6}, satisfies $C\left(P_{6}\right) \geq 5$.

To see that $C\left(P_{6}\right)=5$, we note that the only partition of $V\left(P_{6}\right)$ of larger order is the singleton partition $\pi_{1}=\left\{\left\{v_{1}\right\},\left\{v_{2}\right\},\left\{v_{3}\right\},\left\{v_{4}\right\},\left\{v_{5}\right\}\left\{v_{6}\right\}\right\}$. Since no dominating set of P_{6} contains v_{1} and one other vertex, the set $\left\{v_{1}\right\}$ does not form a coalition with any other set in π_{1}, and therefore the singleton partition π_{1} of P_{6} is not a c-partition. Hence, $C\left(P_{6}\right)=5$ and $\pi=\left\{\left\{v_{1}, v_{6}\right\},\left\{v_{2}\right\},\left\{v_{3}\right\},\left\{v_{4}\right\},\left\{v_{5}\right\}\right\}$ is a $C\left(P_{6}\right)$-partition.

Consider next the cycle C_{6}. The following partitions are c-partitions of C_{6} of orders $2,3,4,5$, and 6 :

$$
\begin{aligned}
& \pi_{2}=\left\{\left\{v_{1}, v_{2}, v_{3}\right\},\left\{v_{4}, v_{5}, v_{6}\right\}\right\}, \\
& \pi_{3}=\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{3}, v_{5}\right\},\left\{v_{4}, v_{6}\right\}\right\}, \\
& \pi_{4}=\left\{\left\{v_{1}\right\},\left\{v_{2}\right\},\left\{v_{3}, v_{5}\right\},\left\{v_{4}, v_{6}\right\}\right\}, \\
& \pi_{5}=\left\{\left\{v_{1}\right\},\left\{v_{2}\right\},\left\{v_{3}\right\},\left\{v_{4}\right\},\left\{v_{5}, v_{6}\right\}\right\}, \\
& \pi_{6}=\left\{\left\{v_{1}\right\},\left\{v_{2}\right\},\left\{v_{3}\right\},\left\{v_{4}\right\},\left\{v_{5}\right\}\left\{v_{6}\right\}\right\} .
\end{aligned}
$$

Note as well that these five c-partitions of C_{6} result in the following coalition graphs:
$C G\left(C_{6}, \pi_{2}\right) \simeq K_{2}$,
$C G\left(C_{6}, \pi_{3}\right) \simeq K_{3}$,
$C G\left(C_{6}, \pi_{4}\right) \simeq K_{4}-e$,
$C G\left(C_{6}, \pi_{5}\right) \simeq K_{2} \cup P_{3}$,
$C G\left(C_{6}, \pi_{6}\right) \simeq 3 K_{2}$.
In [3] the authors show that every graph G has a c-partition. Hence, we have the following straightforward bounds on the coalition number.

Corollary 1.1 If G is a graph of order n, then $1 \leq C(G) \leq n$.
It is easy to see that the trivial graph K_{1} is the only graph which attains the lower bound of Corollary 1.1, while the complete graphs K_{n} and the complete bipartite graphs $K_{r, s}$, with $2 \leq r \leq s$, among other graphs, attain the upper bound.

In Section 2 we provide a tight upper bound on $C(G)$ for all graphs G in terms of maximum degree $\Delta(G)$, and construct families of graphs achieving this upper bound. In Section 3, we give an improved upper bound on $C(G)$ for some graphs in terms of minimum and maximum degree of G. We also construct a family of graphs achieving this bound.

We will use the following known results.
Lemma 1.1 ([2]) For any graph G with c-partition π,

$$
\Delta(C G(G, \pi)) \leq \Delta(G)+1
$$

Lemma 1.2 ([4]) For any graph G with c-partition π, the vertex cover number

$$
\beta(C G(G, \pi)) \leq \delta(G)+1
$$

2 Upper Bound in Terms of Maximum Degree

In this section, we give an upper bound on $C(G)$ for any graph G in terms of the maximum degree $\Delta(G)$ and give a construction of graphs attaining the bound.

2.1 Upper Bound

We are now ready to present our main result.
Theorem 2.1 For any graph $G, C(G) \leq(\Delta(G)+3)^{2} / 4$.
Proof. The theorem obviously holds for any graph G of order n with a full vertex, since $C(G) \leq n<(n+2)^{2} / 4=(\Delta(G)+3)^{2} / 4$. So we can assume that G is a graph with no full vertices.

Let $\pi=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ be a $C(G)$-partition for G, and let $H=C G(G, \pi)$ be the coalition graph of G and π. Then H has order $k=C(G)$. Since G has no full
vertices, every set in π is in a coalition with another set in π, and so H has no isolated vertices. In order to obtain an upper bound on $C(G)=k$, we obtain a bound on the order k of H.

Let S be a minimum vertex cover for H, that is, $|S|=\beta(H)$. Let \bar{S} denote the set $V(H)-S$, and let $N_{\bar{S}}(v)=N_{H}(v) \cap \bar{S}$. Note that the set \bar{S} is an independent set in H.

If $|S|=1$, then every edge of H is incident to the only vertex, say V_{i}, of S. Since H has no isolated vertices, V_{i} is a full vertex of H. Thus, $k=1+\left|N_{H}\left(V_{i}\right)\right| \leq 1+\Delta(H)$. By Lemma 1.1, $k \leq 1+\Delta(H) \leq 1+(\Delta(G)+1)=\Delta(G)+2$, and the theorem holds since $C(G)=k \leq \Delta(G)+2<(\Delta(G)+3)^{2} / 4$.

Assume next that $|S|=2$, and let $S=\left\{V_{i}, V_{j}\right\}$. If $V_{i} V_{j} \notin E(H)$, then the set $V_{i} \cup V_{j}$ is not a dominating set of G. Thus, there exists a vertex u in G not dominated by $V_{i} \cup V_{j}$. Since S is a vertex cover of H, every vertex in \bar{S} is adjacent to at least one of V_{i} and V_{j} in H, that is, their corresponding sets must form a coalition with V_{i} or V_{j} in π. The only sets of π that can form a coalition with V_{i} or V_{j} in G must contain at least one member of $N_{G}[u]$. Since $\left|N_{G}[u]\right| \leq \Delta(G)+1$, it follows that $k \leq 2+(\Delta(G)+1)=\Delta(G)+3$, and $\Delta(G)+3 \leq(\Delta(G)+3)^{2} / 4$, as desired. If $V_{i} V_{j} \in E(H)$, then it follows that $k \leq 2+2(\Delta(H)-1)=2 \Delta(H)$. By Lemma 1.1, $C(G)=k \leq 2 \Delta(H) \leq 2(\Delta(G)+1)=2 \Delta(G)+2 \leq(\Delta(G)+3)^{2} / 4$. Thus, the theorem holds if $|S|=2$.

Henceforth, we may assume that $|S| \geq 3$. By Lemma $1.2,|S| \leq \delta(G)+1 \leq$ $\Delta(G)+1$. Among all vertices in S, let V_{i} be one having the maximum number of neighbors in \bar{S}, that is, $\left|N_{\bar{S}}\left(V_{i}\right)\right|$ is maximized. Let $\left|N_{\bar{S}}\left(V_{i}\right)\right|=m$.

Recall that no set of π dominates G. Let u be a vertex in G that is not dominated by the set V_{i}. Let U be the subset of π whose sets contain members of $N_{G}[u]$. Note that every coalition of π must include a member of U to dominate u in G. As before, abusing notation slightly, we use U to refer to the collection of sets of π in G and to the set of their corresponding vertices in H. Notice that the sets corresponding to the m vertices in $N_{\bar{S}}\left(V_{i}\right)$ must be in U, since each of these sets forms a coalition with V_{i} in G. Since $\left|N_{G}[u]\right| \leq \Delta(G)+1$, there are at most $\Delta(G)+1-m$ other sets in U.

By our choice of u, each vertex in $S \cap U$ has at most m neighbors in \bar{S}. Since S is a vertex cover of H, we deduce that the vertices in \bar{S} in H are the m vertices in $N_{\bar{S}}\left(V_{i}\right)$, along with at most $\Delta(G)+1-m-|S \cap U|$ other vertices in $U \cap \bar{S}$ and at most $m \cdot|S \cap U|$ vertices that are adjacent to vertices in $S \cap U$. Thus, $|\bar{S}| \leq m+\Delta(G)+1-m-|S \cap U|+m \cdot|S \cap U|=\Delta(G)+1+(m-1)|S \cap U|$. Since $|S| \leq \Delta(G)+1$, we have $k=|S|+|\bar{S}| \leq(\Delta(G)+1)+\Delta(G)+1+(m-1)|S \cap U|=$ $2 \Delta(G)+2+(m-1)|S \cap U|$.

Recall that $|S \cap U| \leq \Delta(G)+1-m$. If $|S \cap U|<\Delta(G)+1-m$, then $k \leq$ $2 \Delta(G)+2+(m-1)(\Delta(G)-m)=\Delta(G)+2+m(\Delta(G)+1)-m^{2}$. This value is maximized when $m=(\Delta(G)+1) / 2$, and so $k \leq(\Delta(G)+3)^{2} / 4$. Hence, the result holds for $|S \cap U|<\Delta(G)+1-m$.

Henceforth, we may assume that $|S \cap U|=\Delta(G)+1-m$. Let $\Delta=\Delta(G)$. We
prove two claims.
Claim 1 If there exist two vertices in $S \cap U$, say V_{1} and V_{2}, such that $\mid\left(N_{\bar{S}}\left(V_{1}\right) \cup\right.$ $N_{\bar{S}}\left(V_{2}\right) \mid \leq m$, then $k<(\Delta+3)^{2} / 4$.

Proof. Suppose that there exist two vertices in $S \cap U$, say V_{1} and V_{2}, such that $\mid\left(N_{\bar{S}}\left(V_{1}\right) \cup N_{\bar{S}}\left(V_{2}\right) \mid \leq m\right.$. Then the vertices in \bar{S} in H are the m vertices in $N_{\bar{S}}\left(V_{i}\right)$, the vertices adjacent to V_{1} or V_{2}, and the vertices adjacent to the vertices in $(S \cap U)-$ $\left\{V_{1}, V_{2}\right\}$. Since $|S \cap U|=\Delta+1-m$ and each vertex in $S \cap U$ has at most m neighbors in \bar{S}, it follows that $|\bar{S}| \leq m+m+m\left|(S \cap U)-\left\{V_{1}, V_{2}\right\}\right|=2 m+m(\Delta+1-m-2)$. Thus, $k=|S|+|\bar{S}| \leq(\Delta+1)+2 m+m(\Delta-m-1) \leq \Delta+1+m+m \Delta-m^{2}=$ $\Delta+1+m(\Delta+1)-m^{2}$. This value is maximized when $m=(\Delta+1) / 2$, and so $k \leq(\Delta+1)(\Delta+5) / 4<(\Delta+3)^{2} / 4$, as desired.

Hence, we may assume every pair of vertices in $S \cap U$ have greater than m vertices in the union of their neighborhoods in \bar{S} in H, else the result holds by Claim 1.

Claim 2 If every vertex in $S \cap U$ has fewer than m neighbors in $\bar{S}-N_{\bar{S}}\left(V_{i}\right)$, then $k \leq(\Delta+3)^{2} / 4$.

Proof. Suppose that every vertex in $S \cap U$ has fewer than m neighbors in $\bar{S}-N_{\bar{S}}\left(V_{i}\right)$. Then the vertices of \bar{S} are the m vertices of $N_{\bar{S}}\left(V_{i}\right)$ and at most $(m-1)|S \cap U|$ vertices adjacent to the vertices of $S \cap U$. Since $|S \cap U|=\Delta+1-m$, we have $k=|S|+|\bar{S}| \leq(\Delta+1)+m+(m-1)|S \cap U|=\Delta+1+m+(m-1)(\Delta+1-m)$. This value is maximized when $m=(\Delta+3) / 2$, and so $k \leq(\Delta+3)^{2} / 4$.

Henceforth, we may assume that there is at least one vertex, say V_{j}, in $S \cap U$ with m neighbors in $\bar{S}-N_{\bar{S}}\left(V_{i}\right)$, else the result holds by Claim 2. Note that $V_{j} \neq V_{i}$. Further, $N_{G}[u] \cap V_{j} \neq \emptyset$ in G, since $V_{j} \in S \cap U$ in H.

Since the set V_{j} does not dominate G, there is a vertex x of G that is not dominated by V_{j} in G. Let X be the subset of π whose sets contain members of $N_{G}[x]$. Again, we use X to refer to the collection of sets of π in G and to the set of their corresponding vertices in H.

Note that V_{j} could have been chosen instead of V_{i}, so the arguments that hold for V_{i} also hold for V_{j}. In particular, we may assume that $|X \cap S|=\Delta+1-m$ and that the vertices of $\bar{S} \cap X$ are precisely the m vertices adjacent to V_{j}. Furthermore, since V_{i} and V_{j} have no common neighbors in \bar{S}, none of the m vertices in $N_{\bar{S}}\left(V_{i}\right)$ are in X. Since vertex $V_{r} \in N_{\bar{S}}\left(V_{i}\right)$ in H represents a coalition partner of the set V_{i} in G and no such set V_{r} dominates x in G, we deduce that $V_{i} \in X \cap S$.

If there is a vertex $V_{p} \in\left(S-\left(U \cup\left\{V_{i}\right\}\right)\right.$, then V_{p} must have a neighbor in \bar{S}, otherwise $S-\left\{V_{p}\right\}$ is a vertex cover of H with cardinality less than $|S|=\beta(H)$, a contradiction. Moreover, every neighbor of V_{p} in H must be in U since $V_{p} \notin U$. Thus, $N_{\bar{S}}\left(V_{p}\right) \subseteq N_{\bar{S}}\left(V_{i}\right)$, implying that $V_{p} \in X$ and $\mid\left(N_{\bar{S}}\left(V_{p}\right) \cup N_{\bar{S}}\left(V_{i}\right) \mid \leq m\right.$. Now suppose we had chosen V_{j} instead of V_{i}. Then Claim 1 implies that every two vertices
in $S \cap X$ must have more than m vertices of \bar{S} in the union of their neighborhoods. But V_{i} and V_{p} are in $S \cap X$ and $\mid\left(N_{\bar{S}}\left(V_{p}\right) \cup N_{\bar{S}}\left(V_{i}\right) \mid \leq m\right.$, a contradiction.

Thus, no such vertex V_{p} exists. Hence, $S-\left(U \cup\left\{V_{i}\right\}\right)=\emptyset$, and so $|S|=|S \cap U|+1$. Now the vertices of \bar{S} are the m vertices of $N_{\bar{S}}\left(V_{i}\right)$ and at most $m|S \cap U|$ vertices adjacent to the vertices of $S \cap U$. Thus, $k=|S|+|\bar{S}| \leq|S \cap U|+1+m+m|S \cap U|=$ $(\Delta+1-m)+1+m+m(\Delta+1-m)=\Delta+2+m(\Delta+1-m)=\Delta+2+m(\Delta+1)-m^{2}$. This value is maximized when $m=(\Delta+1) / 2$, and so $k \leq(\Delta+3)^{2} / 4$, completing the proof.

The upper bound of Theorem 2.1 is sharp. For example, a graph G with $\Delta(G)=3$ and $C(G)=9=(\Delta(G)+3)^{2} / 4$ is illustrated in Figure 1, where a $C(G)$-partition is given by $\pi=\left\{V_{1}, V_{2}, \ldots, V_{9}\right\}$, where V_{i} is the set of vertices labeled i for $i \in[9]$. In the next section, we construct graphs G achieving this tight bound for all $\Delta(G) \geq 0$. An open problem is to characterize the graphs attaining the bound of Theorem 2.1.

Figure 1: $C(G)=9$

2.2 Graphs Achieving the Upper Bound

In this section, we construct families of graphs achieving the upper bound of Theorem 2.1.

Theorem 2.2 For every non-negative integer Δ, there exists a graph G with $\Delta(G)=$ Δ, for which $C(G)=\frac{(\Delta+2)(\Delta+4)}{4}$ if Δ is even, and $C(G)=\frac{(\Delta+3)^{2}}{4}$ if Δ is odd.

Proof. For every non-negative integer Δ, we construct a graph G for which $\Delta(G)=$ Δ and $C(G)=\frac{(\Delta+2)(\Delta+4)}{4}$ if Δ is even, and $C(G)=\frac{(\Delta+3)^{2}}{4}$ if Δ is odd.

Assume first that Δ is even. If $\Delta=0$, then the empty graph \bar{K}_{2} with its singleton c-partition has $C(G)=2=\frac{(\Delta+2)(\Delta+4)}{4}$. And the singleton c-partition for the cycle C_{6} shows that there is a graph with $\Delta=2$ and $C(G)=6=\frac{(\Delta+2)(\Delta+4)}{4}$.

For even $\Delta \geq 4$, we the build a Δ-regular graph G with a labeling of the vertices of G that produces a c-partition π and the desired coalition number.

Let $p=(\Delta+2) / 2$. To build G, begin with two groups of p complete graphs K_{p}. Thus, we start with $(2 p) K_{p}$. To aid in our discussion, we refer to the $i^{\text {th }}$ clique in a group for $i \in[p]$, that is, we associate a unique label from 1 to p for each complete graph in Group 1 and similarly for the p graphs in Group 2. For each of the cliques in Group 1, label its vertices a unique number from $[p]$, that is, the vertices of each K_{p} in Group 1 are labeled from 1 to p. For Clique i in Group 2, label its vertices from $i p+1, i p+2, \ldots, i p+p$. It follows that every vertex in Group 2 has a different label from $p+1$ to $p^{2}+p$. Finally, we add edges to finish building G as follows:

For each Clique i in Group 2 and each vertex v labeled $i p+j$ in Clique i, add edges from v to every vertex, except the vertex labeled i, in Clique j of Group 1. Then G is a Δ-regular graph. Figure 2 illustrates the construction for $\Delta=4$.

Figure 2: $\Delta=4$ and $C(G)=12$
Define partition $\pi=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$, where V_{i} is the set of vertices labeled i in G. We note that every vertex in the cliques of Group 2 is in a singleton set of π. Note also that π has order $p^{2}+p=\left(\frac{\Delta+2}{2}\right)^{2}+\frac{\Delta+2}{2}=\frac{(\Delta+2)(\Delta+4)}{4}$.

To see that π is a c-partition of G, note that no $V_{s} \in \pi$ dominates G. We need to show that every $V_{s} \in \pi$ forms a coalition with another set of π. If $V_{s}=\{v\}$ is a singleton set containing a vertex from a clique of Group 2, then $s=i p+j$, where the vertex v is in Clique i of Group 2. Thus, V_{s} forms a coalition with V_{i} in π, and the result holds for all s, where $p+1 \leq s \leq p^{2}+p$. Moreover, since there exists an $s=i p+j$ for all $i \in[p]$, we have that each V_{i} forms a coalition with a set in π. Hence, π is a c-coalition of G, implying that $C(G) \geq k=\frac{(\Delta+2)(\Delta+4)}{4}$. By Theorem 2.1, $C(G) \leq \frac{(\Delta+3)^{2}}{4}$, and so $C(G)=\frac{(\Delta+2)(\Delta+4)}{4}$.

Next assume that Δ is odd. The graph $G=2 K_{2}$ has $\Delta=1$ and $C(G)=4=$ $\frac{(\Delta+3)^{2}}{4}$.

For odd $\Delta \geq 3$, we the build a graph G with $\Delta(G)=\Delta$ and give a labeling of the vertices of G that produces a c-partition π and the desired coalition number as follows.

Let $p=(\Delta+3) / 2, q=(\Delta+1) / 2$, and $r=(\Delta+5) / 2$. To build G, begin with two groups, such that Group 1 is the union of r complete graphs K_{p}, and Group 2 is the union p complete graphs K_{q}. As before, we refer to the $i^{\text {th }}$ clique, associating a unique label i from 1 to r with each K_{p} in Group 1 and associating a unique label from 1 to p with each K_{q} in Group 2. For each of the r cliques in Group 1, label its vertices a unique number from $[p]$. In other words, the vertices of each K_{p} in Group 1 are labeled from 1 to p. For the $p q$ vertices in Group 2, give each vertex a different label from $p+1$ to $p+p q$.

Finally, we add edges to finish building G as follows: for each vertex v in Clique i, for $i \in[p]$, of Group 2, add edges from v to $p-1$ vertices in Group 1, such that each of these $p-1$ neighbors of v has a different label from $\{1,2, \ldots, p\}-\{i\}$ and no vertex of Group 1 is adjacent to more than $\Delta-p+1$ vertices of Group 2. Now each vertex of Group 2 has degree $q-1+p-1=q+p-2=\Delta=\Delta(G)$, and each vertex of Group 1 has degree at most $p-1+\Delta-p+1=\Delta$. Figure 3 illustrates the construction for $\Delta=5$.

Figure 3: $\Delta=5$ and $C(G)=16$
Define partition $\pi=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$, where V_{i} is the set of vertices labeled i in G. We note that π has order $p+p q=(\Delta+3) / 2+(\Delta+3)(\Delta+1) / 2=(\Delta+3)^{2} / 4$,
and that every vertex in a clique of Group 2 is in a singleton set of π.
It is straightforward to see that no $V_{s} \in \pi$ dominates G. We need to show that every $V_{s} \in \pi$ forms a coalition with another set of π. If $V_{s}=\{v\}$ is a singleton set containing a vertex from Clique i, for $i \in[p]$, of Group 2, then V_{s} forms a coalition with V_{i} in π. Thus, every singleton set V_{s} containing a vertex from Group 2 is in a coalition, and also every V_{i}, for $i \in[p]$, is in a coalition with a singleton set of π. Hence, π is a c-coalition of G, implying that $C(G) \geq(\Delta+3)^{2} / 4$. By Theorem 2.1, $C(G)=(\Delta+3)^{2} / 4$.

3 Upper Bound in Terms of Minimum and Maximum Degree

In this section, we give an upper bound on $C(G)$ for some graphs G in terms of the minimum degree $\delta(G)$ and maximum degree $\Delta(G)$. We also construct graphs attaining this bound.

Theorem 3.1 If G is a graph with no full vertices and $\delta(G)<\Delta(G) / 2$, then

$$
C(G) \leq(\delta(G)+1)(\Delta(G)-\delta(G)+2)
$$

Proof. Let $\pi=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ be a c-partition for G, where $k=C(G)$, and let $H=C G(G, \pi)$. Then H has order k. Since G has no full vertices, every set in π forms a coalition with another set in π, and so H has no isolated vertices. In order to obtain an upper bound on $C(G)=k$, we obtain a bound on the order k of H.

Let S be a minimum vertex cover for H, that is, $|S|=\beta(H)$. By Lemma 1.2, $|S|=\beta(H) \leq \delta(G)+1$. Let \bar{S} denote the set $V(H)-S$, and let $N_{\bar{S}}(v)=N_{H}(v) \cap \bar{S}$. Let V_{i} be a vertex in S that is adjacent to the maximum number of vertices in \bar{S}.

If $\left|N_{\bar{S}}\left(V_{i}\right)\right| \leq \Delta(G)-\delta(G)+1$, then $k=|S|+|\bar{S}| \leq|S|+|S|(\Delta(G)-\delta(G)+1) \leq$ $(\delta(G)+1)+(\delta(G)+1)(\Delta(G)-\delta(G)+1)=(\delta(G)+1)(\Delta(G)-\delta(G)+2)$, as desired.

Thus, we may assume that $\left|N_{\bar{S}}\left(V_{i}\right)\right|>\Delta(G)-\delta(G)+1$, that is, $\left|N_{\bar{S}}\left(V_{i}\right)\right|=$ $\Delta(G)-\delta(G)+1+q$, for some $q \geq 1$.

Recall that no set of π dominates G. Let u be a vertex in G that is not dominated by the set V_{i}. Let U be the subset of π whose sets contain vertices in $N_{G}[u]$. Note that $N_{\bar{S}}\left(V_{i}\right) \subseteq U$ in H. Since $|U| \leq\left|N_{G}[u]\right| \leq \Delta(G)+1$, there are at most $(\Delta(G)+$ 1) $-(\Delta(G)-\delta(G)+1+q)=\delta(G)-q$ vertices in $U-N_{\bar{S}}\left(V_{i}\right)$ in H.

Since every edge in H must be incident to a vertex in U and S is a vertex cover, it follows that $k=|S|+|\bar{S}| \leq(\delta(G)+1)+(\Delta(G)-\delta(G)+1+q)+|S \cap U|(\Delta(G)-$ $\delta(G)+1+q) \leq(\delta(G)+1)+(\Delta(G)-\delta(G)+1+q)+(\delta(G)-q)(\Delta(G)-\delta(G)+1+q)$. Simplifying, we have

$$
k \leq(\delta(G)+1)(\Delta(G)-\delta(G)+2)-q(\Delta(G)-2 \delta(G)+q)
$$

Since $\Delta(G)>2 \delta(G), k<(\delta(G)+1)(\Delta(G)-\delta(G)+2)$, proving the theorem.

To see that the upper bound of Theorem 3.1 is sharp, we construct graphs G with $\Delta(G)=\Delta$ and $\delta(G)=\delta$, such that $\delta<\Delta / 2$, attaining the bound as follows:

Let $m=\Delta-\delta+1$. Begin with two groups, such that Group 1 is the union of $\delta+1$ complete graphs $K_{\delta+1}$, and Group 2 is the union of $\delta+1$ complete graphs K_{m}. As before, we refer to the $i^{\text {th }}$ clique in each group for $i \in[\delta+1]$. For each of the cliques in Group 1, label its vertices from 1 to $\delta+1$. Label every vertex in Group 2 a different label from $\delta+2$ to $(\delta+1)(m+1)$.

Finally, we add edges to finish building G as follows: for each vertex v in Clique i, for $i \in[\delta+1]$, of Group 2, add edges from v to δ vertices in Clique i in Group 1, such that none of the δ vertices have label i. Note that every vertex in Group 2 has maximum degree $\Delta(G)$, while the vertex labeled i in Clique i of Group 2 has degree $\delta(G)$. An argument similar to the proof of Theorem 2.2 shows that $C(G)=$ $(\delta(G)+1)(\Delta(G)-\delta(G)+2)$. Figure 4 illustrates the construction for $\Delta=5$ and $\delta=2$.

Figure 4: $\delta=2, \Delta=5$, and $C(G)=15$
We conclude this section with a corollary to Theorem 3.1. The coalition number of paths P_{n} is given in [3] as follows.

Theorem 3.2 For the path P_{n},

$$
C\left(P_{n}\right)=\left\{\begin{array}{lll}
n & \text { if } & n \leq 4 \\
4 & \text { if } & n=5 \\
5 & \text { if } & 6 \leq n \leq 9 \\
6 & \text { if } & n \geq 10
\end{array}\right.
$$

Corollary 3.1 For any tree $T, C(T) \leq 2 \Delta(T)+2$.
Proof. If T is the trivial graph K_{1}, then $C(T)=1<2=2 \Delta(T)+2$. If $T \simeq K_{2}$, then $C(T)=2<4=2 \Delta(T)+2$. If T is a star having order at least three, then
$C(T)=3<2 \Delta(T)+2$. Thus, we may assume that T is not a star, T has order at least 3 , and $\Delta(T) \geq 2$. If $\Delta(T)=2$, then T is a path and the result follows from Theorem 3.2 since $C(T) \leq 6=2 \Delta(T)+2$.

If $\Delta(T) \geq 3$, then $1=\delta(T)<\Delta(T) / 2$ and the result follows from Theorem 3.1.

Corollary 3.1 is sharp for paths P_{n}, for $n \geq 10$.
We conclude this section with two open problems:

1. Characterize the graphs attaining the bound of Theorem 3.1.
2. Characterize the trees attaining the bound of Corollary 3.1.

References

[1] T. W. Haynes, J. T. Hedetniemi, S. T. Hedetniemi, A. A. McRae and R. Mohan, Coalition graphs, J. Combin. Math. Combin. Comput. (to appear).
[2] T. W. Haynes, J. T. Hedetniemi, S. T. Hedetniemi, A. A. McRae and R. Mohan, Coalition graphs of paths, cycles and trees, Discuss. Math. Graph Theory. (to appear).
[3] T. W. Haynes, J. T. Hedetniemi, S. T. Hedetniemi, A. A. McRae and R. Mohan, Introduction to coalitions in graphs, AKCE Int. J. Graphs Combin. 17 (2) (2020), 653-659.
[4] T. W. Haynes, J. T. Hedetniemi, S. T. Hedetniemi, A. A. McRae and R. Mohan, Self-coalition graphs, (submitted).

[^0]: * Also: Department of Mathematics, University of Johannesburg, Auckland Park, South Africa.

