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Abstract

The face-degree of a face in a connected plane graph is the minimum
length of a closed walk that spans all the vertices and edges of the bound-
ary of the face. A plane graph is ρ-face-degree regular if every face has
face-degree ρ. In this paper, the structure of 2-edge-connected plane
graphs with large minimum face-degree is studied. We give an upper
bound on the minimum face-degree of a plane graph with given radius,
and characterise the graphs meeting this bound. We show that the girth
and minimum face-degree of a plane graph coincide if any of these pa-
rameters is at least twice the diameter of the graph. Furthermore, we
characterise all planar generalised polygons (bipartite graphs whose girth
is twice their diameter). The well-studied degree/diameter problem con-
sists of determining the maximum possible order of a graph given both
its maximum degree and diameter. The structural results in this paper
solve the degree/diameter problem for plane graphs of diameter D that
are either 2D-face-degree regular or (2D + 1)-face-degree regular.

1 Background

The face-degree of a face in a connected plane graph is the minimum length of a
closed walk that spans the subgraph bounding the face. Recall that the girth of a
graph is the minimum length of any of its cycles and the diameter of a graph is the
maximum distance between any two of its vertices. In this paper, we investigate
plane graphs that are extremal with respect to their face-degree and diameter, and
demonstrate the close relationship between girth and face-degree in these extremal
graphs. This investigation is motivated by two well-studied topics in graph the-
ory: Moore graphs and the degree/diameter problem. The degree/diameter problem
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consists of determining the maximum possible order n of a graph with diameter D
and maximum degree Δ, and Moore graphs are those graphs that obtain the ‘trivial
upper bound’ for the degree/diameter problem (this upper bound is known as the
Moore bound). Miller and Širáň wrote a comprehensive survey of both topics in [13].
For plane graphs with D = 2 and Δ ≥ 8 in which every face is a triangle, Seyffarth
has shown in [15] that n ≤ 3

2
Δ + 1. In [6], Dalfó, Huemer, and Salas demonstrated

that plane graphs with D = 2 in which every face is a quadrangle satisfy n ≤ Δ+2.
They also solved the degree/diameter problem for plane graphs with D = 3 in which
every face is a quadrangle, showing that n ≤ 3Δ− 1 for Δ odd and n ≤ 3Δ− 2 for
Δ even.

Extremal plane graphs have also been considered outside the framework of the
degree/diameter problem. The relationship among the radius, maximum face-degree,
and order of a plane graph was investigated by Ali, Dankelmann, and Mukwembi in
[1], where they determined that a 3-connected plane graph of radius r, order n, and
maximum face-degree M satisfies r ≤ n+5M+4

6
. In [8], Dowden considered extremal

plane graphs that do not contain either C4 or C5 as a subgraph, showing that a
C4-free planar graph of order n has at most 15

7
(n − 2) edges, and that a C5-free

planar graph has at most 12n−33
5

edges. Lan, Shi, and Song considered the more
general problem of bounding the maximum number of edges in a planar graph that
does not contain some graph H as a subgraph in [12], and demonstrated a number
of conditions under which an H-free planar graph of order n can obtain the trivial
upper bound of 3n− 6 edges.

2 Definitions

Most of the definitions and conventions we use can be found in Diestel’s Graph
Theory [7]. All graphs in this paper are finite and simple. We assume the reader has
some familiarity with the topology of the plane.

Let G be a graph, let u and v be vertices of G, and let W be a walk in G. If a
walk starts and ends at the same vertex and contains no edge repetitions, we call it
a circuit. The length of the walk W , which we denote �(W ), is the total number of
edges that appear in the walk, counting repeated edges. A u− v geodesic is a u− v
path of minimum length. The distance between two vertices u and v in G, denoted
dG(u, v), is the length of a u − v geodesic in G. We will omit the subscript if the
graph in question is clear from the context. The girth of G, denoted g(G), is the
minimum length of any cycle in G. The eccentricity of a vertex is the maximum
distance between it and any other vertex of the graph. The radius and diameter
of a graph are the maximum and minimum eccentricities of any vertex, respectively.
A graph is self-centered if its radius and diameter are equal.

A separator of a connected graph is a subset of the vertex set whose removal
disconnects the graph. A separating cycle is a cycle, the vertex set of which is a
separator.

If G = (V,E) is a connected graph with S and T subsets of V , then the distance
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between S and T is d(S, T ) = min{d(u, v) : u ∈ S, v ∈ T}. Given a vertex v, we
write d(v, S) for the distance d({v}, S). It follows directly from these definitions
that d(S, T ) = 0 if and only if S ∩ T is non-empty, and that d(S, T ) > 1 implies the
induced subgraph G[S ∪ T ] is disconnected.

Throughout the paper, we implicitly make use of the Jordan Curve Theorem. If
X is an open subset of the plane, then a region of X is a maximal connected subset
of X. A graph is planar if it can be embedded in the plane. An embedding of a
planar graph is called a plane graph, and the regions of the complement of the
plane graph are called faces. Different embeddings of the same planar graph can
create plane graphs with different faces (see Figure 1), so we will work with a fixed
embedding wherever ambiguity can arise.

Figure 1: Two different embeddings of the same planar graph yield plane graphs
with different faces. In the graph on the left, there is a face bounded by a 4-cycle,
but every face of the graph on the right is bouned by a 5-cycle.

For the following definitions, let G = (V,E, F ) be a connected plane graph (where
F is the set of faces of G) and f a face of G. If v is a vertex of G, we let dG(v) denote
the degree of v in G. An edge or vertex of G is incident with the face f if it is
contained in the topological boundary of f . We denote G[f ] the subgraph consisting
of the edges and vertices incident with f , and say that G[f ] bounds the face f . If
some circuit or cycle bounds a face in a plane graph, we call it a face-circuit or
face-cycle, respectively. The subgraph G[f ] bounding f can be traversed by a closed
walk. The length of a shortest closed walk traversing G[f ] is the face-degree E(f)
of f . We denote the minimum face-degree of G by μ(G) = min{E(f) : f ∈ F}.
We say G is ρ-face-degree regular if every face of the graph has face-degree ρ.

Let G be a 2-edge-connected plane graph of diameter D and minimum face-degree
μ. A cycle C of G is a short-cycle if �(C) < μ (In Figure 1, the 4-cycle on the grey
vertices is a short-cycle of the plane graph on the right).

Given a Jordan curve C in the plane (that is, C is the image of an injective,
continuous map from the circle to the plane), we denote the bounded region of
R

2−C by Int(C), the unbounded region by Ext(C), and let Int[C] = Int(C)∪C and
Ext[C] = Ext(C)∪C. Note that any cycle of a plane graph induces a Jordan curve.
If C is a cycle of a plane graph G, then G[Int[C]] is the subgraph of G that consists
of all the edges and vertices contained in Int[C], and G[Ext[C]] is defined similarly
as the subgraph consisting of all edges and vertices in Ext[C]. If a cycle has vertices
in both its interior and its exterior, we call it a Jordan separating cycle. Clearly
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a Jordan separating cycle is itself a separating cycle, but not every separating cycle
of a plane graph is a Jordan separating cycle.

G

C

G[Int[C]] G[Ext[C]]

Figure 2: The bold cycle C in G, the subgraphs G[Int[C]], and G[Ext[C]]. Note that
C is a Jordan separating cycle.

3 Cycle length and minimum face-degree of plane graphs

We recall some results concerning the connectivity of plane graphs. The first is
well-known (see, for example, Diestel’s Graph Theory [7]).

Remark 3.1 A plane graph is 2-connected if and only if each face is bounded by a
cycle.

The following result and its corollary are also known (a strengthening of both is
given as an exercise in Bondy and Murty’s Graph Theory [2]), although a literature
proof is elusive.

Theorem 3.2 A plane graph is 2-edge-connected if and only if every face of the
graph is bounded by a circuit.

Corollary 3.3 Let f be a face of a plane graph G. If G is 2-edge-connected, then
the face-degree of f is the number of edges in the subgraph G[f ].

In a 2-edge-connected plane graph, the girth is bounded above by the minimum
face-degree, as every face is bounded by either a cycle, or a circuit (and every circuit
contains a cycle). However, the difference between the minimum face-degree and the
girth can be arbitrarily large, as the two graphs in Figure 3 show. Given any positive
integer ρ ≥ 3, there is a ρ-face-degree regular 2-edge-connected graph containing a
4-cycle. Given any odd positive integer ρ ≥ 3, there is a ρ-face-degree regular 2-
edge-connected graph containing a 3-cycle.

However, if a 2-edge-connected plane graph does have a cycle of length strictly
less than its minimum face-degree, that cycle must be a Jordan separating cycle.

Lemma 3.4 Every short-cycle of a plane graph is a Jordan separating cycle.
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Figure 3: Left: Let all paths of white internal vertices, starting and ending at a black
vertex, have length (ρ − 2). This creates a ρ-face-degree-regular graph with girth
≤ 4 for any ρ ≥ 3. Right: Let all paths between black vertices having only white
internal vertices have length (ρ

2
− 1

2
). Then, we obtain a ρ-face-degree-regular graph

with girth 3 for any odd ρ.

Proof: Let G be a plane graph and let C = v1, v1, . . . , vk, v1 be a short-cycle of
length k < μ in G. Certainly, C cannot be a face-cycle as every face-cycle has length
μ or greater.

We claim that Int(C) must contain at least one vertex. Assume to the contrary that
it does not, and consider the induced subgraph H = G[Int[C]]. All the faces of H ,
except the external face bounded by C, are also faces of G and, hence, all faces of H
except the external face must have degree at least μ. Since V (H) = V (C) and C is
a subgraph of H , the subgraph H is 2-connected. By Remark 3.1, every face of H
is bounded by a cycle. But there are only k vertices in H with which to construct a
cycle. Thus, every face of H , including all the interior faces, which are faces of G, is
bounded by a cycle of length at most k. This contradicts the fact that every face of
G has degree at least μ.

The same argument shows that the exterior of C must also contain a vertex, so C is
a Jordan separating cycle. �

Before presenting the main result of this section, we will need some extra ma-
chinery. Given a connected graph G, with any spanning tree T of G, there is a
(possibly empty) collection of cycles of G called fundamental cycles (with respect
to T ). A fundamental cycle is a cycle of G formed by the addition of a single edge of
E(G)−E(T ) to T . Given an edge e of E(G)−E(T ), denote by Ce the fundamental
cycle induced in T + e. Note that if G has any cycles at all, it has at least one
fundamental cycle. Further discussions of fundamental cycles in plane graphs can be
found in both Bondy and Murty’s Graph Theory [2] and Mohar and Thomassen’s
Graphs on Surfaces [14]. A radius-preserving spanning tree of G is a spanning
tree T of G such that both T and G have the same radius. We will use the following
well-known lemma, which follows from the discussion on breadth-first-search in [2].

Lemma 3.5 [2] Every connected graph has a radius-preserving spanning tree.
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The following simple lemma has almost certainly appeared in the literature before,
but we give a proof here for completeness.

Lemma 3.6 Let be G a connected graph and T a spanning tree of G with radius r.
If Ce is a fundamental cycle of G with respect to T , then the length of Ce is at most
2r + 1.

Proof: Every path in T is a geodesic. Thus, any path in T has length at most 2r.
Every fundamental cycle is formed by the addition of a single edge to a path in T
and, hence, it has length at most 2r + 1. �

It is well-known and easy to see that if a graph has diameter D and girth g, then
the diameter bounds the girth from above by the inequality g ≤ 2D + 1. The next
result shows that the same constraint holds if we replace the girth by the minimum
face-degree.

Theorem 3.7 If G is a 2-edge-connected plane graph of radius r, then μ(G) ≤ 2r+1.
This bound is sharp.

Proof: Assume for the sake of contradiction that G = (V,E, F ) is a 2-edge-
connected plane graph with minimum face-degree μ and radius r, and μ > 2r + 1.
By Lemma 3.5, the graph has a spanning tree T of radius r. By Lemma 3.6, every
fundamental cycle of G with respect to T has length at most 2r+1. By Lemma 3.4,
every fundamental cycle with respect to T is a Jordan separating cycle.

Choose an edge uv in E(G)−E(T ) that minimises the number of vertices in Int(Cuv).
Since T is spanning and connected, and G is planar, any vertex in the interior of Cuv

is connected to Cuv by some path of T in Int[Cuv]. Since the only cycle in T + uv is
Cuv, there is some vertex in the interior of Cuv, say x, such that dT+uv(x) = 1 (see
part (1) of Figure 4).

Since G is 2-edge-connected, the vertex x has degree at least two in G. Thus, there
is some edge xy in E(G)− E(T ) that lies inside Int[Cuv] (see part (2) of Figure 4).

As the induced subgraph (T +uv)[Int[Cuv]] is connected, the addition of xy to T +uv
divides the interior of Cuv into two regions - exactly one of which has the edge uv on
its boundary (see part (3) of Figure 4).

The region not containing the edge uv on its boundary contains only edges of T ,
and the edge xy on its boundary and, hence, it is bounded by a fundamental cycle.
Thus, T + xy contains a fundamental cycle Cxy that has fewer vertices in its interior
than Cuv does, contradicting the minimality of Cuv.

The bound is sharp as the cycle C2k+1 has radius and diameter k, and both faces of
the cycle have face-degree 2k + 1. �
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Figure 4: (1) The fundamental cycle Cuv in T +uv, with end vertex x in its interior.
The edge uv is bold. (2) The end vertex in T + uv is adjacent to some vertex y in
Int[Cuv]. The vertex y is not necessarily part of the cycle itself and may lie in Int(C).
The edge xy is bold. (3) One of the regions induced by adding the edge xy to T +uv
is bounded by the fundamental cycle Cxy, which is bold.

4 Extremal graphs for Theorem 3.7

In this section, we show that the odd cycle C2D+1 is the only graph that is 2-edge-
connected, has diameter D and has minimum face-degree 2D + 1.

Lemma 4.1 Let G be a 2-edge-connected plane graph with diameter D and minimum
face-degree μ. If μ = 2D + 1, then G is self-centered.

Proof: Assume to the contrary that G is a 2-edge-connected plane graph with
minimum face-degree μ = 2D + 1, diameter D and radius r < D. By Lemma 3.5,
the graph G has a radius-preserving spanning tree of radius at most D−1. Thus, by
Theorem 3.7, the minimum face-degree satisfies μ ≤ 2D−1 < 2D+1, a contradiction.

�

We need two lemmas; the first was originally proven by Buckley [3], and a proof
can be found in a paper by Jarry and Laugier [10]. The second was proven by Harary
and Norman [5], and a proof is given in Buckley and Harary’s Distance in Graphs [4].

Lemma 4.2 [3, 10] If G = (V,E) is a 2-connected graph of diameter D, then⌈
(|V | − 2)D − 1

D − 1

⌉
≤ |E|.

Lemma 4.3 [5, 4] The center of a graph is contained within a single maximal non-
separable subgraph.

Theorem 4.4 If G is a 2-edge-connected plane graph with diameter D and minimum
face-degree 2D + 1, then G is the odd cycle C2D+1.
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Proof: Let G = (V,E) be a 2-edge-connected plane graph of diameter D and
minimum face-degree 2D + 1. The graph G is self-centered by Lemma 4.1. Thus,
by Lemma 4.3, the graph G lies entirely within a single maximal non-separable
subgraph (of itself), and so it is 2-connected. By Lemma 4.2, we obtain the following
inequalities:

(|V | − 2)D − 1

D − 1
≤

⌈
(|V | − 2)D − 1

D − 1

⌉
≤ |E|. (4.1)

Recall that the symbol E(f) denotes the face-degree of the face f . Noting that the
minimum number of edges bounding any face is μ, we see that

μ|F | ≤
∑

f∈F (G)

E(f) = 2|E|.

From this, we deduce

|F | ≤ 2

μ
|E|. (4.2)

Substituting inequality (4.2) into the equation for the Euler characteristic of G, that
is, |V | − |E|+ |F | = 2, we get another inequality:

|E|+ 2 ≤ |V |+ 2

μ
|E|.

Hence,

|E| ≤ μ(|V | − 2)

μ− 2
. (4.3)

Combining the inequalities (4.1) and (4.3), and substituting μ = 2D + 1, we show
that G must satisfy the following inequality:

(|V | − 2)D − 1

D − 1
≤ (|V | − 2)(2D + 1)

2D − 1
.

With some rearrangement, we finally bound the order of G:

|V | ≤ 2D + 1.

Since G is 2-connected, every face of G is bounded by a cycle per Remark 3.1. Since
μ = 2D+1, the graph G contains the cycle C2D+1 as a subgraph. Since |V | ≤ 2D+1,
we conclude that G is the cycle C2D+1. �
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5 Planar generalised polygons

A graph of diameter D is a generalised polygon if it is bipartite and has girth
2D. The structure of generalised polygons is explored in Godsil and Royle’s Algebraic
Graph Theory [9]. In this section, we characterise planar generalised polygons. Much
like the cycle C2D+1 is the only 2-edge-connected planar graph that has diameter D
and is (2D + 1)-face-degree regular (Theorem 4.4), planar generalised polygons are
exactly the 2-edge-connected planar graphs that have diameter D and are 2D-face-
degree regular (Corollary 5.15). Thus, the results of this section demonstrate that
planar generalised polygons are a useful class of ‘nearly extremal’ planar graphs.

As Figure 3 illustrates, we cannot normally use face-degrees to bound the girth
of a graph from below. However, we show that if the face-degrees are all sufficiently
high, then the girth is bounded below by the minimum face-degree. First, we need
some lemmas. In the 1870’s, Kempe [11] observed that if every vertex of a plane
graph has even degree, then the faces of the graph may be 2-coloured such that no
two faces of the same colour share an edge. Hence, by plane duality, we obtain the
next well-known remark.

Remark 5.1 If every face of a plane graph has even face-degree, then the graph is
bipartite.

The next two lemmas are familiar to many graph theorists.

Lemma 5.2 Let G = (V,E) be a connected graph, and S ⊂ V a separator of G.
If two vertices u and v of G are in different components of G − S, then d(u, v) ≥
d(u, S) + d(v, S).

Proof: Let P be a u− v geodesic. As S separates u and v, there exists a vertex s
in S ∩P , so the edges of P can be partitioned into a u− s path P [u, s] and an s− v
path P [s, v]. Hence, we obtain the following sequence of inequalities:

d(u, v) = �(P ) = �(P [u, s]) + �(P [s, v]) ≥ d(u, S) + d(v, S).

�

Lemma 5.3 If G = (V,E) is a connected graph of diameter D, and there are subsets
A, B, and S of V such that {A, S,B} is a partition of V and d(A,B) > 1, then
max
v∈A

{d(v, S)} ≤ ⌊
D
2

⌋
or max

v∈B
{d(v, S)} ≤ ⌊

D
2

⌋
.

Proof: Assume to the contrary that there exist vertices u in A and v in B such
that d(u, S) >

⌊
D
2

⌋
and d(v, S) >

⌊
D
2

⌋
. The set S separates u and v so, by Lemma

5.2, we have the following inequalities:

d(u, v) ≥ d(u, S) + d(v, S) ≥ 2

(⌊
D

2

⌋
+ 1

)
> D.

�



B. DU PREEZ /AUSTRALAS. J. COMBIN. 80 (3) (2021), 401–418 410

Remark 5.4 If B and C are two cycles of a plane graph such that C lies in the
interior of B, then all vertices v in the interior of C satisfy d(v, C) ≤ d(v, B).

The previous remark follows from the fact that any v−B geodesic must contain
some vertex of C.

The next result shows that if the minimum face-degree of a plane graph with
diameter D is large enough, then the graph contains no short cycles.

Theorem 5.5 Let G be a 2-edge-connected plane graph of diameter D. If μ(G) =
2D, then g(G) = 2D.

Proof: Assume, for the sake of contradiction, that g < 2D, and let B be a short-
cycle in G. By Lemma 3.4, the cycle B is a Jordan separating cycle. We know by
Lemma 5.3 that, without loss of generality, all vertices v in the interior of B satisfy
d(v, B) ≤ 	D

2

. Choose C to be an interior-minimal short-cycle in Int[B], so, choose

C such that there does not exist a short-cycle C ′ having Int(C ′) ⊂ Int(C) (it is
possible that C = B). Clearly, C is itself a Jordan separating cycle and, by Remark
5.4, if v is a vertex in the interior of C, then d(v, C) ≤ 	D

2

.

Among all vertices in the interior of C, let v be one at maximum distance from C.
By Lemma 3.4, such a vertex v must exist. Let P be a v − C geodesic, and let u
be the vertex of C ∩ P . Since G is 2-edge-connected, we have that d(v) ≥ 2. Thus,
there is a vertex v′ in Int[C]− P that is adjacent to v.

Let P ′ be a v′ − C geodesic and u′ the vertex of C ∩ P ′ (it is possible that u′ = v′).
If u and u′ are distinct, then the cycle C can be divided into two u − u′ paths. Let
Q denote the shorter of these two paths and note that �(Q) ≤ D− 1. If u = u′, then
let Q be the trivial path containing only the vertex u. Whether or not u = u′, it is
possible that there are other vertices common to both P and P ′. The maximality of
v and the choice of v′ ensures that the closed walk on P ∪Q ∪ P ′ ∪ {vv′} contains a
cycle C ′. There are two cases to consider.

Case 1: The diameter D is odd.
The paths P and P ′ both have length at most 	D

2

 = D−1

2
, so C ′ must satisfy the

following inequalities:

�(C ′) ≤ �(P ∪Q ∪ P ′ ∪ {vv′})
≤ D − 1

2
+ (D − 1) +

D − 1

2
+ 1

< 2D.

Thus, C ′ is a short-cycle contained entirely in the interior of C, contradicting the
minimality of C and completing the proof in the case that D is odd.

Case 2: The diameter D is even.
We claim that d(v, C) = d(v′, C) = D

2
, and that �(Q) = D − 1. Certainly, these
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values are all upper bounds. Assume to the contrary that d(v, C) < D
2
, or that

d(v′, C) < D
2
, or that �(Q) < D − 1. In any of these cases, we get that:

�(C ′) ≤ �(P ∪Q ∪ P ′ ∪ {vv′})
<

D

2
+ (D − 1) +

D

2
+ 1 = 2D.

This contradicts the minimality of C and, thus, proves the claim.

We furthermore claim that u is the only vertex of C such that d(u, v) ≤ D
2
, and that

u′ is the only vertex of C such that d(u′, v′) ≤ D
2
. Assume to the contrary that there

exists a vertex u∗ in C − u such that d(u∗, v) ≤ D
2
. Let P ∗ be a v− u∗ geodesic, and

let Q∗ be a u − u∗ geodesic in the cycle C. The closed walk P ∪ Q∗ ∪ P ∗ contains
a cycle of length at most D

2
+ D

2
+ (D − 1) = 2D − 1, contradicting the minimality

of C. The case in which u′ is not the only vertex of C with d(u′, v′) ≤ D
2
follows

similarly, completing the proof of the second claim.

For a cycle C∗ of G that does not contain v, define the v-exterior of C∗, denoted
vExt(C∗), to be the region of R

2 − C∗ that does not contain the vertex v. We
also define vExt[C∗] = vExt(C∗) ∪ C∗. Let S be the set of all short-cycles of G
that are contained in Ext[C]. Since C is in S (with vExt(C) = Ext(C)), this
set S is nonempty. Choose a short-cycle A in S that is v-exterior minimal, that
is, choose A in S such that there does not exist any short-cycle A′ in S having
vExt(A′) ⊂ vExt(A).

Because A is a short-cycle, the v-exterior of A contains some vertex of G by Lemma
3.4. Let w be any vertex in vExt(A). Since the cycle C separates w from v, and
d(v, C) = D

2
, we must have that d(w,C) ≤ D

2
. The cycle A either is itself C or

separates w from C so, by Remark 5.4, we have that d(w,A) ≤ D
2
. Repeat the

entire first part of the proof, replacing the cycle C with A, and the region Int(C)
with the region vExt(A), to show the existence of four distinct vertices x, x′, y, and
y′ (analogous to u, u′, v, and v′, respectively) in vExt[A] that satisfy the following
conditions:

(1) both x and x′ lie on A, and a shortest x− x′ path in A has length D − 1.

(2) d(x, y) = D
2
, and every vertex w in A− x satisfies d(y, w) > D

2
.

(3) d(x′, y′) = D
2
, and every vertex w in A− x′ satisfies d(y′, w) > D

2
.

Note that both the cycles C and A (which are possibly the same) separate v from
both y and y′. To be possible that d(v, y) ≤ D, it must be the case that u = x, since
u is the unique vertex of C such that d(u, v) ≤ D

2
, and x is the unique vertex of A

such that d(x, y) ≤ D
2
. Similarly, to have that d(v, y′) ≤ D, it must be the case that

u = x′. Because x and x′ must be distinct, this yields a contradiction, completing
the proof. �

Corollary 5.6 Let G be a 2-edge-connected plane graph of diameter D. If either
g(G) ≥ 2D or μ(G) ≥ 2D, then g(G) = μ(G).
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Proof: This corollary follows from Theorems 5.5 and 4.4, as well as the fact that
g(G) ≤ μ(G) in a 2-edge-connected plane graph. �

Theorems 3.7 and 4.4 demonstrate that if a 2-edge-connected plane graph G with
diameter D has μ(G) ≥ 2D + 1, then G is the cycle 2D + 1 and, thus, has girth
2D + 1. As such, there exists a function f of the graph diameter D such that if
μ(G) ≥ f(D), then G contains no short cycle, and Theorem 5.5 illustrates that
f(D) ≤ 2D. The next Theorem demonstrates that the result given by Theorem 5.5
cannot be improved.

Theorem 5.7 For each integer D ≥ 3, there exists a 2-edge-connected plane graph
GD of diameter D such that μ(GD) = 2D − 1 and g(GD) = 2D − 2.

Proof: Let GD be the graph consisting of two vertices u and v, and four internally
disjoint u− v paths. Let two paths have length D, while the other two have length
D−1. Embed GD in the plane such that every face is bounded by one path of length
D, and one path of length D − 1 (see Figure 5).

u v

Figure 5: The graphG4 of diameter 4, described in the proof of Theorem 5.7. Observe
that μ(G4) = 7 but g(G4) = 6.

Noting that any two vertices of GD lie on a cycle of length at most 2D, we see that
the diameter of GD is at most D. On the cycle formed by the two paths of length
D, there exist two vertices at distance D, so the diameter of GD is exactly D. Each
face of GD is bounded by a cycle formed by the union of a path of length D and
a path of length D − 1, so every face of GD has face-degree 2D − 1. The cycle C
formed by the union of the two paths of length D − 1 has length 2D − 2 and it is,
thus, a short-cycle. It is easy to see that C is the shortest cycle of GD and, hence,
g(GD) = 2D − 2. �

The next series of lemmas and remarks (that are likely well-known to those work-
ing with generalised polygons) culminate in a characterisation of planar generalised
polygons.

Lemma 5.8 Generalised polygons are self-centered.
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Proof: Assume to the contrary that G is a generalised polygon with radius r,
diameter D, and that r < D. Let Tr be a radius-preserving spanning tree of G.
Since G has girth 2D, it must contain some cycle, and so there exists at least one
fundamental cycle of G with respect to Tr. By Lemma 3.6, this fundamental cycle
has length at most 2r + 1, which is strictly less than 2D, contradicting that G is a
generalised polygon. �

The next remark follows from Lemmas 5.8 and 4.3.

Remark 5.9 Generalised polygons are 2-connected.

To characterise planar generalised polygons, we will make use of two lemmas from
Algebraic Graph Theory by Godsil and Royle [9].

Lemma 5.10 [9] Let G be a graph of diameter D and girth 2D, and let u and v be
vertices of G. If d(u, v) = k < D, then there is a unique u− v path of length k in G.

Lemma 5.11 [9] Let G be a graph of diameter D and girth 2D, and let u and v be
vertices of G. If d(u, v) = D, then d(u) = d(v).

We will also need the following two simple propositions.

Proposition 5.12 Let G be a graph of diameter D and girth 2D, and let H be a
subgraph of G. If dH(u, v) = D, then dG(u, v) = D.

Proof: Assume to the contrary that dG(u, v) < D. Let P be a u− v geodesic in H
and Q a u − v geodesic in G. The closed walk P ∪ Q has length less than 2D and
contains some cycle, contradicting that g(G) = 2D. �

The next proposition follows from the well-known fact that if G is a bipartite
graph and v is a vertex of G, then the vertices at odd and even distance from v form
partite sets of G. Nevertheless, we include a short proof for completeness.

Proposition 5.13 Let G be a generalised polygon of diameter D, and let u, v, and
w be vertices of G. If u and v are adjacent, and d(u, w) = D, then d(v, w) = D−1.

Proof: Certainly d(v, w) > D−2, so it is suffices to show that d(v, w) < D. Assume
to the contrary that d(v, w) = D, and let P be a w − u geodesic, and Q a w − v
geodesic. Let x be the vertex of P ∩Q that is furthest from the vertex w (it is possible
that x = w). The union P [x, u] ∪ Q[x, v] ∪ {uv} is an odd cycle, contradicting the
fact that G is bipartite. �
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Figure 6: On the left is the unique planar generalised polygon with maximum degree
and diameter both equal to 4. On the right is the unique planar generalised polygon
with maximum degree 3 and diameter 2. The vertices of maximum degree are grey.

The next result, Theorem 5.14, demonstrates that for each pair (Δ, D) of integers
with Δ ≥ 2 and D ≥ 2, there exists a unique planar generalised polygon with
maximum degree Δ and diameter D.

Theorem 5.14 If G is a planar generalised polygon of maximum degree Δ ≥ 2 and
diameter D ≥ 2, then G consists of two vertices of degree Δ joined by Δ internally
disjoint paths of length D.

Proof: Let G be a planar generalised polygon of maximum degree Δ and diameter
D, with a fixed embedding as a plane graph. We may assume that Δ > 2, as the
cycle C2D is the only generalised polygon with Δ = 2 and diameter D. Let u be a
vertex of degree Δ. By Corollary 5.8, there is a vertex v such that d(u, v) = D. By
Lemma 5.11, the vertex v satisfies d(v) = Δ.

Label the vertices ofN(u) = {a1, a2, . . . , aΔ} such that any pair ai and ai+1 of vertices
(subscripts are taken mod Δ) are on the boundary of the same face. By Proposition
5.13, we have that d(ai, v) = D − 1 for all i in {1, 2, . . . ,Δ}. By Lemma 5.10, there
is a unique ai − v path of length D − 1 for all i. Each ai − v path of length D − 1
can be extended to a u − v path of length D. Let Pi be the extended u − v path
containing the vertex ai, and let bi be the vertex of Pi that is adjacent to v.

The paths Pi and Pj are internally disjoint whenever i �= j. Were they not, the union
Pi ∪ Pj would contain a cycle of length less than 2D.

We now have that G contains as a subgraph Δ internally disjoint u − v paths of
length D (the paths P1, P2, . . . , PΔ). Let H be the subgraph containing only the
union of all the Pi’s, and denote by Ci the cycle of length 2D on Pi∪Pi+1 (subscripts
are taken mod Δ). The graph H divides the plane into Δ regions, each bounded by
a cycle Ci.

What remains is to show that G = H . Since g(G) = 2D any two vertices of H lie on
a cycle of length 2D, no edge can be added between two vertices of H , so it suffices
to show that V (G) = V (H). Thus, we assume to the contrary that G contains a
vertex not in H . Since G is connected and d(u) = d(v) = Δ, an internal vertex of
some Pi has a neighbour in G−H . Let x be the internal vertex of Pi and let y be its
neighbour in G−H . Without loss of generality, the vertex y is in the region bounded
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by Ci. Since Δ ≥ 3, there is some path Pj of H such that Pj ∩ Ci = {u, v}, and the
internal vertices of Pj are not in the same region of R2 − Ci as the vertex y.

Let z be the vertex of Pj that satisfies dH(x, z) = D. We know by Proposition
5.12 that dG(x, z) = D, and from Proposition 5.13 that dG(y, z) = D − 1. Thus,
there is a y − z geodesic Q of length D − 1 in G, which does not contain x, but it
must contain some other vertex of Ci. Let w be the vertex of Q ∩ Ci that is closest
to y, and note that since w and z must be distinct, the path segment Q[y, w] has
length at most D − 2. Since x and w are distinct, the cycle Ci is divided into two
internally disjoint x − w paths. Let R be the shorter of these two paths, and note
that �(R) ≤ D. The union of paths R∪Q[y, w]∪{xy} forms a cycle that has length
at most D + (D − 2) + 1 < 2D, a contradiction since g(G) = 2D. �

Corollary 5.15 A plane graph of diameter D is a generalised polygon if and only if
it is 2-edge-connected and 2D-face-degree regular.

Proof: By Theorem 5.14 and Remark 5.9, it is clear that a plane graph that is a
generalised polygon is 2-edge-connected and 2D-face-degree regular. The converse
follows from Theorem 5.5 and Remark 5.1. �

6 The degree/diameter problem for face-degree regular
plane graphs

We obtain some new results on the degree/diameter problem for face-degree regular
graphs as corollaries of the structural results obtained thus far.

Corollary 6.1 If G is a 2-edge-connected plane graph of diameter D and order n in
which every face has degree 2D + 1, then n = 2D + 1.

Proof: This follows from Theorem 4.4. �

Corollary 6.2 If G is a 2-edge-connected plane graph of diameter D, maximum
degree Δ and order n in which every face has degree 2D, then n = Δ(D − 1) + 2.

Proof: This follows from Corollary 5.15 and Theorem 5.14. �

Note that in Corollary 6.2, we cannot replace the condition that G is 2D-face-
degree regular with the condition that G has minimum face-degree 2D. To show this,
we create a plane graph G(Δ, D) with maximum degree Δ ≥ 3, diameter D ≥ 2,
minimum face-degree 2D, and order Δ(D − 1) + 3 as follows. Let u, v, and w be
three vertices, and let u and v be adjacent. Create two internally disjoint paths of
length D between v and w, and Δ− 2 internally disjoint paths of length D between
u and w. This completes the construction of G(Δ, D) (see Figure 7).
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u v wf

Figure 7: Consider every double-line in the diagram to be a path of length D. The
above graph is G(5, D), with diameter D and order 5(D − 1) + 3. Observe that the
face f has degree 2D.

7 Further questions

Question 7.1 Corollary 5.6 gives a sufficient condition for the minimum face-degree
and girth of a 2-edge-connected plane graph to be equal. Can other sufficient/
necessary conditions be found for these two parameters to be equal?

Question 7.2 If a plane graph has minimum face-degree μ and girth g, what can
be said about the quantity μ− g?

We raise the following conjectures as possible answers to Question 7.2.

Conjecture 7.3 Consider a 2-edge-connected plane graph with minimum face-
degree μ, girth g, and diameter D, and let k ≥ 0 be an integer. If μ ≥ 2D − k,
then μ− g ≤ k.

Conjecture 7.4 A 2-edge-connected plane graph with diameter D, girth g and min-
imum face-degree μ satisfies

D ≥ 2μ− g − 1

2
.

Notice that the first conjecture yields Corollary 5.6 by setting k = 0. When
μ = g, the second conjecture gives μ−1

2
≤ D, which is a weakening of Theorem 3.7.

As such, both conjectures certainly hold when μ is sufficiently large.

Question 7.5 We resolved the degree/diameter problem for 2-edge-connected, 2D-
face-degree regular graphs of diameter D by Corollary 6.2. Can we obtain a similar
bound for 2-edge-connected plane graphs with minimum face-degree 2D?

In light of the example in Figure 7, the author has the following conjecture
regarding this question.

Conjecture 7.6 If G is a 2-edge-connected plane graph of diameter D, maximum
degree Δ, order n and minimum face-degree 2D, then n ≤ Δ(D − 1) + 3, and this
bound is sharp.



B. DU PREEZ /AUSTRALAS. J. COMBIN. 80 (3) (2021), 401–418 417

Question 7.7 The degree/diameter problem in planar graphs that have every face
bounded by a cycle (or circuit) of length ρ has only been studied in depth for ρ = 3
and ρ = 4. What bounds can be found for the case where ρ is an arbitrary integer?

The author believes that proof by Dalfó, Huemer and Salas of Theorem 10 in
[6] may be adapted to solve the degree/diameter problem in ρ-face-degree regular
graphs when ρ is even.
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