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Abstract

A graph G is said to be fully cycle extendable if every vertex of G lies in
a triangle and for every non-Hamiltonian cycle C there is a cycle C ′ in G
such that V (C) ⊆ V (C ′) and |V (C ′)| = |V (C)| + 1. We investigate the
trail extendability in a graph and the cycle extendability in its line graph.
For simple connected graphs that are neither paths nor cycles, we define
l(G) = max{m : G has a divalent path of length m that is not both of
length 2 and in a K3}, where a divalent path is a path whose internal
vertices have degree two in G. If the removal of any s or fewer vertices
in G results in a fully cycle extendable graph, we say G is an s-fully
cycle extendable graph. The s-fully cycle extendable index, fces(G), of a
simple connected graph G, is the least nonnegative integer m such that
Lm(G) is s-fully cycle extendable. Let s ≥ 0 be an integer and G be a
simple connected graph that is not a path, a cycle or a K1,3. We show
that

fces(G) ≤
{

l(G) + s+ 1 if 0 ≤ s ≤ 1,
l(G) + �log2 s�+ 3 if s ≥ 2,

and the bound is sharp.

1 Introduction

We use [2] for terminology and notation not defined here, and only consider finite
and simple graphs unless otherwise noted (multiple edges appear in the proof of
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Lemma 4.4). In particular, κ(G) and κ′(G) represent the connectivity and edge-
connectivity of a graph G, respectively; δ(G) and Δ(G) denote the minimum and
the maximum degrees of G, respectively. For two sets A and B, A� B denotes the
symmetric difference of A and B. A graph is trivial if it contains no edges. An edge
cut Y of G is essential if G−Y has at least two nontrivial components. For an integer
k > 0, a graph G is essentially k-edge-connected if G does not have an essential edge
cut Y with |Y | < k. We use κ′

e(G) to denote the essential edge connectivity of a
graph G. The degree sum of two end-vertices of an edge is closely related to κ′

e(G).

Proposition 1.1 (Shao, Proposition 2.1 of [13]) Let n ≥ 1 be an integer and G be
a graph which is not K1,n−1 or K3. Then the degree sum of any two adjacent vertices
is at least κ′

e(G) + 2.

Given any nonempty graph G, the line graph of G, denoted by L(G) or L1(G),
has the property that there exists a one-to-one correspondence between E(G) and
V (L(G)) such that two vertices of L(G) are adjacent if and only if the corresponding
edges of G have a common vertex. Iteratively, Ln(G) = L(Ln−1(G)) and L0(G) = G.
The following proposition reveals the relationship of connectivities of G and its line
graph L(G).

Proposition 1.2 (Shao, Proposition 1.2 of [13]) Let n ≥ 1 be an integer and G be
a graph which is not K3 or K1,n−1. Then each of the following holds.

(i) κ′
e(G) ≥ κ′(G).

(ii) κ′
e(G) = κ(L(G)).

(iii) κ′
e(L(G)) ≥ κ′

e(G).

(iv) κ(L(G)) ≥ κ(G).

Propositions 1.1 and 1.2 will be used in the proof of Lemma 4.4 and Theorem 4.3 in
Section 4.

For a graph G and v∈V (G), define NG(v) = {u∈V (G) : u is adjacent to v in G}
and EG(v) = {e ∈ E(G) : e is incident with v in G}. Note that the vertex subset in
the line graph L(G) corresponding to each EG(v) in G induces a complete subgraph
in L(G).

A cycle C in a graph G is extendable in G if there exists a cycle C ′ in G such that
V (C) ⊆ V (C ′) and |V (C ′)| = |V (C)|+1. A graph G of order n is cycle extendable if
G contains at least one cycle and every non-Hamiltonian cycle in G is extendable. A
graph G of order n is fully cycle extendable if G is cycle extendable and every vertex
of G lies in a triangle of G. If the removal of any s or fewer vertices in G results in
a fully cycle extendable graph, we say G is an s-fully cycle extendable graph.

The concept of the Hamiltonian index of a graph G was first introduced by Char-
trand and Wall [3] as the least nonnegative integer k such that Lk(G) is Hamiltonian.
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They showed that the Hamiltonian index exists as a finite number. In 1983, Clark
and Wormald [4] extended this idea and introduced the Hamiltonian-like indices. Lai
gave a best bound for Hamiltonian index h(G) in [9]. For more results of Hamiltonian-
like indices, see [5, 6, 8–12, 15–18]. Motivated by these results (Hamilton-connected
index, pancyclic index etc.), we define the s-fully cycle extendable index, fces(G), of
a simple connected graph G as the least nonnegative integer m such that Lm(G) is
s-fully cycle extendable.

For simple connected graphs that are neither paths nor cycles, we define l(G) =
max{m : G has a divalent path of length m that is not both of length 2 and in a
K3}, where a divalent path is a path whose internal vertices have degree two in
G. Note that an edge with both end-vertices of degree at least 3 is a divalent path of
length 1. In this paper, we give a best bound for an iterated line graph to be s-fully
cycle extendable as follows.

Theorem 1.3 Let s ≥ 0 be an integer and G be a simple connected graph that is
not a path, a cycle or a K1,3. Then

fces(G) ≤
{

l(G) + s+ 1 if 0 ≤ s ≤ 1,
l(G) + �log2 s�+ 3 if s ≥ 2,

and the bound is sharp.

In Section 2, we give some properties of line graphs which will be used in the proof
of Theorem 1.3. In Section 3, we investigate quasi-trails and their extendability. The
proof of our main result Theorem 1.3 lies in Section 4.

2 Properties of Line Graphs

In order to facilitate the proofs of our major results, we list some properties of line
graphs as follows. Let G be a graph and L(G) be its line graph. Proposition 2.1
states that deleting vertices in L(G) corresponds to deleting edges in G. Proposition
2.2 provides us the minimum degree, connectivity and triangular properties of line
graphs. Theorem 2.3 gives best bounds for the connectivity of line graphs.

Proposition 2.1 (Zhang, Eschen, Lai and Shao, Proposition 3.1 of [17]) Let G be a
simple graph with |V (G)| = n. Let S ′ ⊆ E(G) and S ⊆ V (L(G)) be the corresponding
vertex set of the edge set S ′. Then L(G)− S = L(G− S ′).

A graph G is k-triangular if each edge of G lies in at least k triangles and G is
triangular if it is 1-triangular. The following proposition describes a few properties
of iterated line graphs.

Proposition 2.2 (Zhang, Eschen, Lai and Shao, Lemma 3.2 of [17]) Let G be a
simple connected graph that is not a path, a cycle or K1,3, with l(G) = l ≥ 1. Then
each of the following holds:
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(i) For integers m ≥ 0,

l(Lm(G)) =

{
l −m if 0 ≤ m < l,

1 if m ≥ l.

(ii) For integers k ≥ 0,

δ(Ll+k(G)) ≥
{

2 if k = 0 or k = 1,
2k−2 + 2 if k ≥ 2.

(iii) Ll(G), Ll+1(G) and Ll+2(G) are triangular. Moreover, Ll+k(G) is 2k−3-tri-
angular when k ≥ 3.

(iv) For integers k ≥ 0, κ(Ll+k(G)) ≥ k + 1.

The following theorem gives us best bounds for the connectivity of iterated line
graphs.

Theorem 2.3 (Shao, Theorem 1.5 of [14]) Let G be a simple connected graph that
is not a path, a cycle or K1,3, with l(G) = l ≥ 1. Then each of the following holds:

(i) For integers s ≥ 1, κ′
e(L

l+s(G)) ≥ 2s + 2. The bound is best possible.

(ii) For integers s ≥ 2, κ(Ll+s(G)) ≥ 2s−1 + 2. The bound is best possible.

3 Quasi-trails in a graph G and Cycles in L(G)

In this section, Proposition 3.2 reveals a relationship between a cycle in L(G) and a
quasi-trail in G. It converts a cycle extendable question in L(G) to an extension of
a quasi trail in G. Theorem 3.3 and Corollary 3.4 serve as motivations for Theorem
3.6 and Corollary 3.7. As a corollary of Theorem 3.6, Corollary 3.7 provides us with
a sufficient condition for the proof of our main result.

A trail in G is a sequence v1e1v2e2 . . . em−1vm whose terms are alternately vertices
and edges of G such that ei is the edge joining vi and vi+1(1 ≤ i ≤ m − 1) and the
edges are distinct. A trail is closed if v1 = vm and spanning in G if it contains all
vertices of G. A dominating closed trail T of G is a closed trail such that G− V (T )
is edgeless.

The following theorem reveals the relationship between a dominating closed trail
in H and a Hamiltonian cycle in L(H).

Theorem 3.1 (Harary and Nash-Williams, [7]) The line graph G = L(H) of a
graph H is Hamiltonian if and only if H has a dominating closed trail.
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Motivated by Theorem 3.1 and the definition of dominating closed trail, we observe
that any cycle in a line graph corresponds to a “spiky” trail that is the union of a
closed trail and some edges with at least one end-vertex in the trail. If P ⊆ G and
P contains a trail T such that P − V (T ) is edgeless, then we call P a quasi-trail of
G. Let e be an edge of the quasi-trail P . Then at least one end-vertex of e is in T .
A closed quasi-trail is a quasi-trail containing a closed trail T such that P − V (T ) is
edgeless. A quasi-trail P is extendable if there exists a quasi-trail P ′ in G such that
E(P ) ⊆ E(P ′) and |E(P ′)| = |E(P )|+ 1.

Using a similar argument as in [7], we have the following proposition.

Proposition 3.2 Let G be a graph with |E(G)| ≥ 3. Then G has a closed quasi-trail
P if and only if L(G) has a cycle C with |V (C)| = |E(P )| (the vertex set V (C) in
L(G) corresponds to the edge set E(P ) in G).

Theorem 3.3 (Zhang et al., Theorem 3.4 of [18]) Let G be a connected triangular
graph. Let P be a closed quasi-trail of G with E(G)−E(P ) 	= ∅ and T be a closed trail
contained in P such that P − V (T ) is edgeless. Then there exist a closed quasi-trail
P ′ and a closed trail T ′ contained in P ′ such that

(i) P ′ − V (T ′) is edgeless,

(ii) E(P ) ⊆ E(P ′) with |E(P ′)| = |E(P )|+ 1,

(iii) V (T ) ⊆ V (T ′).

The following corollary follows from Proposition 3.2 and Theorem 3.3.

Corollary 3.4 Let G be a connected triangular graph. Then L(G) is fully cycle
extendable.

As defined in Section 2, a graph G is triangular or edge triangular if each edge
of G lies in at least one triangle. In [18], we extended this concept to an almost
triangular graph and defined a graph G as an almost triangular graph if there exists
a connected triangular subgraph H such that G − V (H) is edgeless. Note that a
connected triangular graph must be almost triangular, but not vice versa.

A graph G is vertex pancyclic if for each vertex v ∈ V (G), and for each integer k
with 3 ≤ k ≤ |V (G)|, G has a k-cycle Ck such that v ∈ V (Ck). It is proved in [18]
that the line graph of an almost triangular graph is vertex pancyclic.

However, the line graph of an almost triangular graph might not be fully cycle
extendable. In Figure 1 below, let H be a connected triangular graph and v be an
isolated vertex. We obtain G by joining v to three independent vertices in H . The
claw with center v in G induces a triangle in L(G), but there is no way to extend
this triangle in L(G) to a 4-cycle.
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To exclude the example below, we define a strongly almost triangular graph as
an almost triangular graph such that every vertex of degree at least three lies in a
triangle. We prove the line graph of a strongly almost triangular graph is fully cycle
extendable.

�� �

�
v

Triangular subgraph H

Figure 1: an almost triangular graph with a claw

Lemma 3.5 Let G be a strongly almost triangular graph, P be a closed quasi-trail of
G such that E(G)−E(P ) 	= ∅, and T be a closed trail which is contained in P such
that P − V (T ) is edgeless. If there exist e ∈ E(P ) − E(T ) and e′ ∈ E(G) − E(P )
such that e is incident with e′ and e lies in a triangle of G, then P is extendable.

Proof. In order to show P is extendable, we prove that there exist a closed quasi-trail
P ′ and a closed trail T ′ contained in P ′ such that

(i) P ′ − V (T ′) is edgeless,

(ii) E(P ) ⊆ E(P ′) with |E(P ′)| = |E(P )|+ 1.

If there exists e1 ∈ E(G)−E(P ) such that e1 has at least one end-vertex in V (T ),
then P ′ = P ∪ {e1} and T ′ = T satisfy (i) and (ii). So we may assume that

if an edge has at least one end-vertex in V (T ), then it must be in E(P ). (1)

Since e is incident with e′, we let e = uv and e′ = vv1. Since e ∈ E(P )− E(T ), we
assume u ∈ V (T ). Since e = uv is incident with e′ and e′ /∈ E(P ), by (1),

v /∈ V (T ). (2)

Since e lies in a triangle of G, we assume that e lies in a triangle uvw of G and
consider the following two cases.

Case 1 w ∈ V (T ).

Let T ′ = T � {uw, uv, vw}. By (2), uv, vw /∈ E(T ), and so uv, vw ∈ E(T ′).
Then T ′ is a closed trail with V (T ′) = V (T ) ∪ {v}. By (1), {uw, vw, uv} ⊆ E(P ).
So E(T ′) ⊆ E(P ). Let P ′ = P ∪ {vv1}. As vv1 /∈ E(P ), P ′ − V (T ′) is edgeless and
E(P ) ⊆ E(P ′) with |E(P ′)| = |E(P )|+ 1, implying that P is extendable.
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Case 2 w /∈ V (T ).

Since u ∈ V (T ), by (1), uv, uw ∈ E(P ) − E(T ) and by (2), vw /∈ E(P ). Let
T ′ = T ∪ {uw, uv, vw}. Then T ′ is a closed trail with V (T ′) = V (T ) ∪ {v, w}. Let
P ′ = P∪{vw}. Since E(T ′) ⊆ E(P )∪{vw}, P ′−V (T ′) is edgeless and E(P ) ⊆ E(P ′)
with |E(P ′)| = |E(P )|+ 1, implying that P is extendable.

Theorem 3.6 Let G be a strongly almost triangular graph, and P be a closed quasi-
trail of G such that E(G)−E(P ) 	= ∅. Then P is extendable.

Proof. By the definition of quasi-trails, there exists a closed trail T which is con-
tained in P such that P − V (T ) is edgeless. Since E(G) − E(P ) 	= ∅ and G is
connected, there exists an edge xy ∈ E(G) − E(P ) such that at least one vertex in
{x, y} is in V (P ). Without loss of generality, we assume that x ∈ V (P ). By (1), we
may assume {x, y} ∩ V (T ) = ∅. Since x ∈ V (P ) − V (T ), there exists xz ∈ E(P )
with z ∈ V (T ).

If xz lies in a triangle, then e = xz and e′ = xy satisfy the conditions of
Lemma 3.5, and so P is extendable. Next we assume that xz does not lie in any
triangle of G.

SinceG is strongly almost triangular, there exists a connected triangular subgraph
H such that G − V (H) is edgeless. Let H be a connected triangular subgraph H
with the maximal number of edges such that G− V (H) is edgeless. It implies that
at least one of x, z is in V (H) and we consider the following three cases.

Case 1 Both x and z are in V (H).

Since H is connected and triangular, there exists a (x, z)-path in H such that
every edge on the path lies in a triangle. Denote this (x, z)-path by z0z1z2 . . . zm−1zm
with z0 = x and zm = z. Since xz doe not lie in any triangle, m ≥ 3. Let zt be the
first vertex on the path from x to z such that zt ∈ V (T ). Then zt−1 /∈ V (T ) and
ztzt−1 lies in a triangle. Then e = ztzt−1 and e′ = zt−1zt−2 satisfy the conditions of
Lemma 3.5, so P is extendable (if zt−1 = x, then let zt−2 = y).

Case 2 z ∈ V (H) and x /∈ V (H).

Since x /∈ V (H), by the definition of a strongly almost triangular graph, all
neighbors of x are in V (H). So y ∈ V (H). Since H is connected and triangular,
there exists a (y, z)-path in H such that every edge on the path lies in a triangle.
Using a similar argument as in Case 1, we can see that P is extendable.

Case 3 x ∈ V (H) and z /∈ V (H).

Since z ∈ V (T ) and zx ∈ E(P )−E(T ), dG(z) ≥ 3. By the definition of a strongly
almost triangular graph, z lies in a triangle. By the maximality of E(H), z ∈ V (H),
a contradiction to the assumption of Case 3.

The following corollary follows from Proposition 3.2 and Theorem 3.6.

Corollary 3.7 If G is a strongly almost triangular graph, then L(G) is fully cycle
extendable.
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Proof. Let C be a cycle of L(G) with |V (C)| < |V (L(G))|. By Proposition 3.2,
there exists a closed quasi-trail P in G such that |V (C)| = |E(P )| and the line graph
of P is C in L(G). Since G is a strongly almost triangular graph, P is extendable by
Theorem 3.6. Let P ′ be an extension of P . By Proposition 3.2 again, the line graph
of P ′ is a cycle, say C ′, in L(G) with V (C) ⊆ V (C ′) and |V (C ′)| = |V (C)|+ 1.

4 Proof of Theorem 1.3

In the proof of Theorem 1.3, Theorem 4.3 and Lemma 4.4 are applied in the cases of
s ≥ 2 and s = 1 respectively. Proposition 4.1 and Theorem 4.2 are used in the proof
of Theorem 4.3.

Proposition 4.1 Let m ≥ 1 be an integer and Km+2 be a complete graph of order
m+ 2. Let S ⊆ E(Km+2).

(i) If |S| ≤ m− 1, then Km+2 − S is triangular.

(i) If Km+2 − S is not triangular, then |S| ≥ m.

Proof. (i) Note that dKm+2(v) = m+ 1 for any v ∈ V (Km+2). Denote Km+2 − S by
H . Let uv ∈ E(H). Then dH(u)+dH(v) ≥ (m+1)+(m+1)−|S| ≥ 2m+2−(m−1) =
m+3 > m+2, which implies that u and v must have at least one common neighbor
in H . Since uv is arbitrary in H , it follows that H is triangular, i.e., Km+2 − S is
triangular.

(ii) follows immediately from (i).

The following theorem characterizes a property of line graphs, which will be used
in the proof of Theorem 4.3.

Theorem 4.2 (Krausz, Theorem 10.2 of [1]) A nonempty graph H is a line graph
if and only if E(H) can be partitioned into subsets so that

(i) the subgraph induced by each member of the partition is complete, and

(ii) no vertex of H lies in more than two of these induced subgraphs.

Theorem 4.3 Let t, s be non-negative integers with t ≥ 1. Let G be a graph with
κ(G) ≥ t + 2. Then for each S ⊆ E(L(G)) with |S| = s < 2t, L(G) − S is strongly
almost triangular.

Proof. By Theorem 4.2(i), we have the following:

(A) E(L(G)) can be partitioned into subsets so that the subgraph induced by
each member of the partition is complete.

Let m be a natural number. Following the proof of Theorem 4.2 or by the
definition of line graphs, the corresponding vertex set of the adjacent edges of each
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vertex of G induces a complete subgraph in L(G). Since δ(G) ≥ κ(G) ≥ t + 2, by
(A), we assume that

(B) E(L(G)) = E1 ∪ E2 ∪ · · · ∪ Em, where each Ei induces a complete subgraph
of order at least t+ 2 in L(G) with Ei ∩ Ej = ∅.

For convenience, we let L[Ei] be the induced subgraph of Ei in L(G). By Theorem
4.2(ii) and δ(G) ≥ κ(G) ≥ t+ 2 ≥ 3, we have the following:

(C) Every vertex of L(G) lies in exactly two of L[E1], L[E2], . . . , L[Em].

If s ≤ t − 1, then, by (A) and Proposition 4.1(i), L(G) − S is triangular, and
hence strongly almost triangular. Since s < 2t, we may assume that s = t+a, where
a is an integer with 0 ≤ a < t. If L[Ei]− S is not triangular in L(G)− S, then, by
Proposition 4.1(ii), |Ei ∩ S| ≥ t.

We claim that only one of L[E1], L[E2], . . . , L[Em] is not triangular after the dele-
tion of S in G. Suppose, to the contrary, that at least two of L[E1], L[E2], . . . , L[Em]
are not triangular. Then, by (B) and Proposition 4.1(ii), two of L[E1], L[E2], . . . ,
L[Em] contain at least 2t edges of S in total, contrary to the condition that
|S| = s < 2t.

Without loss of generality, we assume that L[E1]−S is not triangular in L(G)−S.
Then, by Proposition 4.1(ii), |E1 ∩ S| ≥ t. Let H = L[E2 ∪ E3 ∪ · · · ∪ Em −
S]. Clearly H is triangular. By (C), every vertex of L[E1] lies in exactly one of
L[E2], L[E3], . . . , L[Em]. So every vertex of L(G)− S lies in a triangle and V (H) =
V (L(G)− S). It remains to show that H is connected.

Note that L[E1] is generated by the incident edges of a vertex in G, say v. Since
κ(G) ≥ t+2 ≥ 3, κ(G−{v}) ≥ t+1. By Proposition 1.2(iv), κ(L(G−{v})) ≥ t+1.
So L[E2 ∪ E3 ∪ · · · ∪ Em] − V (L[E1]) = L(G − {v}) is (t + 1)-connected. Since
|E1 ∩ S| ≥ t and |S| < 2t, |(E2 ∪ E3 ∪ · · · ∪ Em) ∩ S| < t. So L[E2 ∪ E3 ∪ · · · ∪
Em−S]−V (L[E1]) is connected. By (B) and (C), each vertex of L[E1] must have at
least t+1 neighbors in L[E2 ∪E3 ∪ · · · ∪Em]−V (L[E1]), and thus have at least two
neighbors in L[E2∪E3∪· · ·∪Em−S]−V (L[E1]). So H = L[E2∪E3∪· · ·∪Em−S]
is still connected.

HenceH is a connected triangular subgraph of L(G)−S and L(G)−S−V (H) = ∅,
which implies that L(G)− S is strongly almost triangular.

LetX ⊆ E(G). The contraction G/X is the graph obtained from G by identifying
two ends of each edge in X and then deleting the resulting loops.

Lemma 4.4 Let G be a simple connected graph with l(G) = l, where G is not a
path, cycle, or K1,3. Then each of the following holds.

(i) For any e ∈ E(Ll+1(G)), Ll+1(G)− {e} is strongly almost triangular.

(ii) For any v ∈ V (Ll+2(G)), Ll+2(G)− {v} is fully cycle extendable.

Proof (i) By Proposition 2.2(ii) and (iii),

Ll+1(G) is triangular with minimum degree at least 2. (3)
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If Ll+1(G)− {e} is still triangular, then we are done. So we assume that

Ll+1(G)− {e} is not triangular. (4)

By Proposition 2.2(iv) and Theorem 2.3(i),

κ(Ll+1(G)) ≥ 2 and κ′
e(L

l+1(G)) ≥ 4. (5)

Let e = xy ∈ E(Ll+1(G)). By (3), we consider the following three cases by showing
Ll+1(G)−{xy} has a connected triangular subgraph H such that Ll+1(G)− {xy}−
V (H) is edgeless, and every vertex of degree at least 3 of Ll+1(G) − {xy} lies in a
triangle of Ll+1(G)− {xy}.

Case 1 One of x, y has degree 2 in Ll+1(G).

Without loss of generality we assume that dLl+1(G)(x) = 2. By (3), we assume
that xyz is a triangle containing xy. Together with dLl+1(G)(x) = 2, xyz is the only
triangle that contains the edge xy in Ll+1(G). So xz, yz are the only edges possibly
not lying in any triangle in Ll+1(G)−{xy}, i.e. every edge of Ll+1(G)−{xy, yz, xz}
lies in a triangle in Ll+1(G)− {xy}.

Case 1.1 yz lies in a triangle in Ll+1(G)−{xy}. Let H = Ll+1(G)−{x}. Then
H is triangular. By (5), H is connected. Note that Ll+1(G)− {xy} − V (H) = {x}
is edgeless. So H is a connected triangular subgraph of Ll+1(G) − {xy} such that
Ll+1(G)− {xy} − V (H) is edgeless.

Case 1.2 yz does not lie in any triangle in Ll+1(G)−{xy}. Let H = Ll+1(G)−
{x} − {yz}. Then H is triangular.

By Proposition 1.1, dLl+1(G)(y) ≥ 4 and dLl+1(G)(z) ≥ 4. Then y ∈ V (H), z ∈
V (H). There exists at least one edge yy1 ∈ E(Ll+1(G))− {yx, yz}. Since yy1 lies in
a triangle, and dLl+1(G)(x) = 2, there exists a triangle yy1y2 with y2 ∈ V (Ll+1(G))−
{x, y1, z}. Similarly, z lies in a triangle not containing x and y. So both y and z
lie in triangles in Ll+1(G)− {xy} and Ll+1(G)− {xy} − V (H) = {x} is edgeless. It
remains to show H is connected.

Since the edge connectivity and essential edge connectivity does not decrease
after contraction, by (5), Ll+1(G)/{xy} is 2-edge-connected and essentially 4-edge-
connected, which implies that the only 2-edge-cuts are the sets of edges incident
with a vertex of degree two in Ll+1(G)/{xy}. As neither y (y = x after contracting
xy) nor z has degree two, H = Ll+1(G)− {x} − {yz} = Ll+1(G)/{xy} − {xz, yz} is
2-edge-connected. So H is a connected triangular subgraph of Ll+1(G) − {xy} and
Ll+1(G)− {xy} − V (H) is edgeless.

In either case, x is the only vertex not lying in any triangle of Ll+1(G)−{xy}. As
x has degree 1 in Ll+1(G)−{xy}, every vertex of degree at least 3 of Ll+1(G)−{xy}
lies in a triangle of Ll+1(G)− {xy}.

Case 2 One of x, y has degree 3 in Ll+1(G).

Without loss of generality we assume that dLl+1(G)(x) = 3. Assume that
NLl+1(G)(x)−{y} = {z1, z2}. Since xy, xz1, xz2 lie in triangles, xy lies in at most two
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triangles in Ll+1(G). Suppose xy lies in exactly one triangle, say xyz2, in Ll+1(G).
Then, by (3), z1z2 ∈ E(Ll+1(G)), and so xz1z2 forms a triangle. Note that yz2 is
not lying in any triangle of Ll+1(G)− {xy}, otherwise Ll+1(G)− {xy} is connected
and triangular, contrary to (4). Let H = Ll+1(G)−{xy, yz2}. Then H is triangular.
By Proposition 1.1, dLl+1(G)(y) ≥ 3, and together with (5), H is connected. So H is
a connected triangular subgraph such that Ll+1(G)− {xy} − V (H) = ∅ is edgeless,
and every vertex of Ll+1(G)− {xy} lies in a triangle of Ll+1(G)− {xy}.

Now we assume that xy lies in exactly two triangles, xyz1 and xyz2, in Ll+1(G).
If z1z2 ∈ E(Ll+1(G)), then xz1, yz1, xz2, yz2 lie in triangles in Ll+1(G)−{xy}. By (5),
Ll+1(G) − {xy} is still connected and triangular, contrary to (4). Next we assume
that z1z2 /∈ E(Ll+1(G)).

By Proposition 1.1, dLl+1(G)(y) ≥ 3 and dLl+1(G)(zi) ≥ 3 for i = 1, 2. There exists
at least one edge z1w1 ∈ E(Ll+1(G)) − {xz1, yz1} and w1 	= z2. Since z1w1 lies in
a triangle, z1z2 /∈ E(Ll+1(G)) and dLl+1(G)(x) = 3, there exists a triangle z1w1w

′
1

with w′
1 /∈ {x, z2}. Similarly, z2 lies in a triangle z2w2w

′
2 with w2 /∈ {x, y, z1} and

w′
2 /∈ {x, z1}. So both z1 and z2 lie in triangles in Ll+1(G)− {xy}.
Case 2.1 dLl+1(G)(y) = 3. Then w′

1 	= y, w′
2 	= y, and both x and y have degree

2 in Ll+1(G) − {xy}. Let H = Ll+1(G) − {x, y}. Then H is triangular. By (5),
(Ll+1(G) − {xy})/{xz2, yz2} is 1-edge-connected and essentially 3-edge-connected,
which implies that the only 1-edge-cuts (or 2 edge-cuts) are the sets of edges incident
with a vertex of degree one (or two). So H = Ll+1(G) − {x, y} = (Ll+1(G) −
{xy}/{xz2, yz2})− {xz1, yz1} is 1-edge-connected, Ll+1(G)− {xy} − V (H) = {x, y}
is edgeless, and every vertex of degree at least 3 of Ll+1(G)− {xy} lies in a triangle
of Ll+1(G)− {xy}.

Case 2.2 dLl+1(G)(y) ≥ 4. Then let yz3 ∈ V (Ll+1(G))− {x, z1, z2}. As Ll+1(G)
is claw-free and z1z2 /∈ E(Ll+1(G)), z3 must be adjacent to one of z1, z2, say z2. So
yz2 and yz3 lie in a triangle of Ll+1(G) − {xy}. Similarly, every edge incident to y
except yz1 lies in a triangle of Ll+1(G)− {xy}.

If yz1 also lies in a triangle of Ll+1(G) − {xy}, then H = Ll+1(G) − {x}. Then
H is triangular, and by (5), H is connected. So Ll+1(G) − {xy} − V (H) = {x} is
edgeless, and every vertex of degree at least 3 of Ll+1(G)− {xy} lies in a triangle of
Ll+1(G)− {xy}.

Next we assume that yz1 does not lie in any triangle of Ll+1(G) − {xy}. Let
H = Ll+1(G)−{x}−{yz1}. By (5), (Ll+1(G)−{xy})/{xz2} is 1-edge-connected and
essentially 3-edge-connected, which implies that the only 1-edge-cuts (2 edge-cuts)
are the sets of edges incident with a vertex of degree one (or two). As dLl+1(G)(zi) ≥ 3
for i = 1, 2, H = (Ll+1(G) − {xy})/{xz2} − {xz1, yz1} is 1-edge-connected. And
Ll+1(G)−{xy}− V (H) = {x} is edgeless, which implies that every vertex of degree
at least 3 of Ll+1(G)− {xy} lies in a triangle of Ll+1(G)− {xy}.

Case 3 Both x and y have degree at least 4 in Ll+1(G).

By (4), Ll+1(G) − {xy} has an edge not lying in any triangle. Then this edge
must be incident with x or y. Without loss of generality, we assume xx1 does not lie
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in any triangle in Ll+1(G)− {xy}. Then x1 is not adjacent to any other neighbor of
x in Ll+1(G)− {xy}, so by (3), x1 must be adjacent to y in Ll+1(G).

As dLl+1(G)−{xy}(x) ≥ 3 and Ll+1(G) is claw-free, NLl+1(G)(x)− {x1, y} induces a
complete subgraph of order at least 2 in Ll+1(G)−{xy}. So every edge incident with
x except xx1 lies in a triangle in Ll+1(G)− {xy}.

Case 3.1 yx1 does not lie in any triangle in Ll+1(G)− {xy}.
Then x1 is not adjacent to any other neighbor of y in Ll+1(G) − {xy}. Since

Ll+1(G) is claw-free, NLl+1(G)(y)− {x, x1} induces a complete subgraph of order at
least 2 in Ll+1(G)−{xy}. So every edge incident with y except yx1 lies in a triangle
in Ll+1(G)− {xy}.

If dLl+1(G)(x1) ≥ 3, then H = Ll+1(G)− {xy, xx1, yy1}. By (5), H is a connected
triangular subgraph of Ll+1(G) − {xy} and Ll+1(G) − V (H) = ∅ is edgeless, which
implies that every vertex of Ll+1(G) − {xy} lies in a triangle. If dLl+1(G)(x1) = 2,
then H = Ll+1(G)− {xy} − {x1}. By (5), H is a connected triangular subgraph of
Ll+1(G)− {xy} and Ll+1(G)− V (H) = {x1} is edgeless, which implies every vertex
of degree at least 3 of Ll+1(G)− {xy} lies in a triangle.

Case 3.2 yx1 lies in a triangle in Ll+1(G)− {xy}.
Then x1 must be adjacent to another neighbor of y, say y1, in Ll+1(G) − {xy}.

As dLl+1(G)−{e}(y) ≥ 3, NLl+1(G)(y)− {x1, y1, x} 	= ∅.
Case 3.2.1 If there exists y2 ∈ NLl+1(G)(y)−{x1, y1, x} such that yy2 does not lie

in any triangle in Ll+1(G)−{xy}, then y2 is not adjacent to any other neighbor of y in
Ll+1(G)−{xy}. In particular, y2 is not adjacent to x1. By (3), y2 is adjacent to x. Let
x2 ∈ NLl+1(G)(x)−{x1, y}. As x1 is not adjacent to any vertex inNLl+1(G)(x)−{x1, y},
{x, x1, x2, y2} induces a claw with center x in Ll+1(G), contradicting the fact that a
line graph is claw-free.

Case 3.2.2 Every edge incident with y in Ll+1(G) − {xy} lies in a triangle.
Let H = Ll+1(G) − {xy, xx1}. By (5), H is a connected triangular subgraph of
Ll+1(G)−{xy} and Ll+1(G)−V (H) = ∅ is edgeless, which implies that every vertex
of Ll+1(G)− {xy} lies in a triangle.

(ii) Let ev ∈ E(Ll+1(G)) be the edge corresponding to v ∈ V (Ll+2(G)). By (i),
Ll+1(G)−{ev} is strongly almost triangular, and by Corollary 3.7 and Proposition 2.1,
Ll+2(G)− {v} = L(Ll+1(G)− {ev}) is fully cycle extendable.

Proof of Theorem 1.3 For convenience, let l(G) = l.

If s = 0, by Proposition 2.2(iii), Ll(G) is triangular. So Ll+s+1(G) = Ll+1(G) is
fully cycle extendable by Corollary 3.4.

If s = 1, by Lemma 4.4(ii), Ll+s+1(G) = Ll+2(G) is 1-fully cycle extendable.

If s ≥ 2, then s = 2k + a with 0 ≤ a ≤ 2k − 1 where k is a natural number. Then
l + �log2 s� + 3 = l + �log2(2k + a)� + 3 = l + k + 3.

Let S ′ ⊆ V (Ll+k+3(G)) and S ⊆ E(Ll+k+2(G)), where S is the set of edges
corresponding to vertices in S ′. By Theorem 2.3(ii), κ(Ll+k+1(G)) ≥ 2k + 2 for
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k ≥ 1. Since |S| ≤ s = 2k + a ≤ 2k + (2k − 1) = 2k+1 − 1 < 2k+1, Ll+k+1(G) satisfies
the conditions of Theorem 4.3 with t = 2k. So Ll+k+2(G) − S is strongly almost
triangular. By Corollary 3.7, Ll+k+3(G)− S ′ is fully cycle extendable.

Now we show the bound is sharp.

(i) s = 0. Let G be the graph shown in Figure 2(a). Then l(G) = 1. If we reduce
the bound to l(G) + s = 1, then L(G) shown in Figure 2(b) is an hourglass and
obviously not cycle extendable. So the bound cannot be reduced.

(ii) s = 1. Let G be the same graph shown in Figure 2(a). Then l(G) = 1. If we
reduce the bound to l(G) + s = 2, then L2(G) shown in Figure 2(c) minus a vertex
of degree 4 is not cycle extendable since it contains a vertex of degree one. So the
bound cannot be reduced.
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Figure 2

(iii) s ≥ 2. Let s = 2k+a and 0 ≤ a ≤ 2k−1 where k is a natural number. We give
an example to show fces(G) cannot be reduced to l(G) + �log2 s�+2 = l(G) + k+2.
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By Theorem 2.3(ii), for k ≥ 1, κ(Ll+k+1(G)) ≥ 2k + 2. First we show the
graph G shown in Figure 3(a) satisfies δ(Ll+k+1(G)) = κ(Ll+k+1(G)) = 2k + 2 for
any natural number k. Note l(G) = l = 2 and it suffices to show δ(Lk+3(G)) =
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κ(Lk+3(G)) = 2k + 2. If k = 1, then the graph shown in Figure 3(e) satisfies
δ(L4(G)) = κ(L4(G)) = 21 +2 = 4. Note that the 4-cycle uu3u4u1 with every vertex
of degree 4 in L4(G) generates a 4-cycle with each vertex of degree 6 in L5(G) by the
definition of line graph. By induction, we have δ(Lk+3(G)) = κ(Lk+3(G)) = 2k + 2
for any natural number k.

Let u ∈ V (Ll+k+1(G)) of degree equal to 2k + 2 in Ll+k+1(G). Let e = xy ∈
E(Ll+k(G)) be the edge corresponding to u. Note that u lies in exactly two complete
subgraphs generated by ELl+k(G)(x) and ELl+k(G)(y) and we denote them by L1 and
L2 respectively.

If k = 1, then s = 21 = 2 or s = 21 + 1 = 3. For the graph G shown in Figure
3(a), we have l(G) = l = 2. Then l+k+1 = 2+1+1 = 4. As shown in Figure 3(e),
deleting the two edges with dotted lines results in an induced claw {u, u1, u2, u3} with
center u in L4(G)− S, and the corresponding 3-cycle in L5(G)− S ′ = L(L4(G)− S)
is not extendable. So the bound cannot be reduced to l + k + 2.

Assume that k ≥ 2. Since δ(Ll+k(G)) = κ(Ll+k(G)) = 2k−1 + 2 and dLl+k+1(G)(u)
= 2k + 2, L1 and L2 must be complete subgraphs of order equal to 2k−1 + 2, which
implies dL1(u) = dL2(u) = 2k−1 + 1 for k ≥ 2. Let u1 ∈ EL1(u). Since Ll+k(G)
is a simple graph, every edge in ELl+k(G)(x) − {xy} can only be incident with at
most one edge in ELl+k(G)(y)−{xy}. That means each vertex in NL1(u) can only be
adjacent to at most one vertex in NL2(u). Without loss of generality, we assume that
u1 is adjacent to w1 ∈ NL2(u). Let u2 ∈ NL2(u)− {w1}. Let S1 = EL1(u)− {uu1},
S2 = EL2(u) − {uu2, uu3}, S3 = {u2u3}, and S = S1 ∪ S2 ∪ S3. So |S| = 2k−1 +
(2k−1−1)+1 = 2k and {u, u1, u2, u3} induces a claw with center u in Ll+k+1(G)−S,
and u does not lie in any triangle. So the corresponding 3-cycle in Ll+k+2(G)− S ′ is
not extendable. Thus we cannot reduce the bound to l + k + 2.
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