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Abstract

We present a polynomial invariant for polymatroids. This polynomial is
a natural generalization of the Tutte polynomial of matroids. We explore
some basic properties of this invariant in an effort to establish a solid basis
for the systematic study of the polynomial, in a similar fashion as with
the Tutte polynomial. We also reveal some combinatorial interpretations
of evaluations of this invariant with the intent of encouraging further
research on polymatroid invariants.

1 Introduction

Polymatroids were originally conceived in [5] as polytopes that generalized the con-
cept of matroid polytope; however, our approach follows the work in [16] that con-
siders them as generalizations of matroids. Since their introduction in 1969, polyma-
troids have been very important in combinatorial optimization, e.g., the polymatroid
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parity problem [13]. In cryptology, polymatroid representability over a finite field has
a direct impact on the problem of secret sharing schemes [7]. More recently, polyma-
troid decompositions are at the core of a variety of problems: the study of tropical
linear spaces [17]; compactifying fine Schubert cells in the Grassmannian [12]; and
the study of many important invariants on polymatroids as valuations [1]. There
are currently other attempts at generalising the Tutte polynomial to polymatroids,
see [2, 4].

The paper is organized as follows: In Section 2, the definition and basic properties
of polymatroids are given; most of these results have appeared before in [10, 18]. The
polynomial N(P;u,v) associated with a polymatroid P, the main object of study of
this work, is defined in Section 3, and some basic properties are proved. Examples
of polymatroids and polymatroid invariants coming from hypergraphs are provided
in Section 4. Some easy evaluations of N(P;u,v) are given in Section 5; and two
more evaluations are presented in Section 6 that were considered recently in [20] in
the context of hypergraphs. The last section contains a polynomial that also seems
interesting to explore.

2 Polymatroids

Let £ be a finite set and let r be a function r : 2¥ — Z. We say that r is normalized
if 7(0) = 0, r is increasing if A C B C FE implies r(A) < r(B) and r is submodular if
r(A)+r(B) > r(AUB) +1r(AN B) for all subsets A and B of E. The ordered pair
P = (E,r) is a polymatroid if r is normalized, increasing and submodular. We say
that E is the ground set of P and r is the rank function of P. Let k be a positive
integer. Then the polymatroid P is a k-polymatroid if r({e}) < k, and it is a strict
k-polymatroid if r({e}) = k for all elements e € E. A I-polymatroid is a matroid.

We define the concept of minor on polymatroids. Let P = (E,r) be a polyma-
troid, and let A be a subset of E. The deletion of A from P is the polymatroid
P\ A= (E\A,na) such that m 4(X) = r(X) for each X C E'\ A. The contraction
of A from P is P/A = (E\ A,r/a) where r/a(X) = r(X U A) — r(A) for each
X C E\ A. When A = {e}, we denote by P \ e the deletion of {e} and by P/e
the contraction of {e}. Clearly, for any two elements e and f in the polymatroid P,
P\e/f = P/f\e, as the corresponding rank functions are the same; thus, after doing
a sequence of contractions and deletions, the resulting polymatroid is independent
of the order of the operations in the sequence. The polymatroid P’ is a minor of P
if P"=(P\ A)/B for some disjoint subsets A and B of E.

2.1 Loops, coloops and compactification

Let P = (E,r) be a polymatroid. As with matroids, an element e € E is a loop
in P if r(e) = 0. For an element e € E, let d,(e) = r(E) —r(F \ e). We call an
element e compact if d,(e) = 0. In a matroid, the non-compact elements are precisely
the coloops of the matroid. A polymatroid P is compact if every element of P is
compact. The definition of compact polymatroid is from [9].
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For a non-compact element e of a polymatroid P = (E,r), we define the com-
pactification of the element e as the polymatroid com.(P) over the set E with rank
function r, such that for all X C FE,

r(X), if e & X,

re(X) = { r(X) —d.(e), otherwise. M

Proposition 2.1. The compactification com.(P) is a polymatroid and the element
e is compact in com.(P).

Proof. Clearly, r.(0) = (@) = 0. The only interesting case in the proof of the
inequality 7.(A) < r.(B) for A C B is when e € B\ A. This is a consequence of the
following.

re(AU{e}) = r(AU{e}) —r(E) +r(E - {e})
> r(E)+r(A) —r(E)
= TQ(A)7

where the inequality holds by submodularity. The submodularity of 7., 7.(A) +
re(B) > 1.(AU B) +1r.(AN B) for all subsets A and B of E, is trivial, since in the
three possible cases, e € AN B, e € A\ B and e € AU B, we add two, one or zero
times the constant —r(E) +r(E — e) to both sides.

The definition of 7, guarantees that the element e is compact in comp.(P). O

Observe that in comp.(P), d, (f) = d.(f) for all f € E\ e; thus the set of non-
compact elements in comp,(P) is the same as in P \ e. When every non-compact
element of P is compacted, we obtain the compactification of P, denoted by com(P).
The following result appears in [9] but with a different proof.

Proposition 2.2. The polymatroid com(P) is well defined.

Proof. 1t is enough to prove that com(P) is independent of the order in which the
compactification of the elements is done. Let e and f be different elements in P =
(E,r). Let P., Py, P.; and Py, be the compactifications of P by e, f, e and then
f, and f and then e, respectively; also, let 7, r¢, 7. s and r¢. be the corresponding
rank functions.

Observe that d,,(f) = d.(f) and d,,(e) = d,(e). Then, we have three cases.
If e, f & A, then clearly, r. ;(A) = rf.(A). lf e € Abut f ¢ A, then r.;(A) =
r(A) —d.(e) =7rsc(A). lfe, feA ref(A) =r(A) —d(e) —d.(f) = rs(A). Thus,
P. ;= Pye. O

From the previous proof it is not difficult to infer that if X is the set of non-
compact elements in the polymatroid P = (E,r), then for A C F,

Tcom(P) (A) = T(A) - Z dr(a’)' (2>

aeANX
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2.2 Duality

For a matroid M = (r, E) its dual matroid, M* = (r*, E), where r*(X) = r(E —
X)+|X|—r(F), behaves very nicely. Tt is well known that this dual is an involution
(that is, (M*)* = M) that interchanges the deletion and contraction of an element,
that is, (M \ e)* = M*/e and (M/e)* = M*\ e for all e € E. This is a rare property
in an involution of matroids, as shown in the following Theorem from [10].

Theorem 2.3. The dual is the only involution on the class of matroids that inter-
changes the deletion with the contraction of an element.

Let k& be an integer and let P = (E,r) be a k-polymatroid. We define the
polymatroid P** = (FE, r*), the k-dual of P, where r**(X) = r(E—X)+k|X|—r(E),
for all subsets X of F. We have the following extension of the previous theorem
from [18].

Theorem 2.4. The k-dual is the only involution on the class of k-polymatroids that
interchanges the deletion and contraction of an element.

Because the k-dual and the (k4 1)-dual of a given k-polymatroid P are not equal,
the previous result prohibits a general involution on polymatroids.

Corollary 2.5. There is no involution on the class of polymatroids that interchanges
deletion and contraction of an element.

Let P = (E,r) be a polymatroid. We define the dual of P, denoted P*, as the
polymatroid (E,r*), where, for X C E,

r(X) = r(E = X) + [[X]], —r(E)

and || X||, = >, cx r({z}). We use ||X]|, when the polymatroid is clear from the con-
text. This notion of duality and the following results in this subsection are from [9)].

Theorem 2.6. If P is a polymatroid, then P* is a polymatroid.

If P is a strict k-polymatroid, its dual is the k-dual mentioned above. And, as
noted before, this dual is not an involution on the class of polymatroids. Notice that
for a polymatroid P = (E,r), compact or not, the dual P* is always compact. This
is because for any element x € F,

r(B) = (E\{z}) = (r(0) + [|E]| = r(E)) = (r(x) + [[E\ {z}]| = r(E)) = 0.

Thus, taking (P*)* might not be equal to P, but we have the following.

Proposition 2.7. If P is a polymatroid, then (P*)* = com(P).
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Proof. We can do the computation of (r*)* for a set A C E;

()" (A4) = Al +r"(E\ A) —r*(E)

= Y (@) + 1B\ Al +r(A) = r(B) — [|B| = r(0) + r(E)
z€A

= D (r@@) +r(BE\z) =r(E) + Y rlx) =Y (@) +r(4)
TEA r€E\A zeFE

= > r(@) =Y di(2) = > r(z)+r(A)

= Teom(p)(4),

where the last equality follows from Equation (2). O

Observe that if P = (FE,r) is compact and e € E, then P/e = (£ \ {e},7/.) is
compact because for any element f € E\ {e}, 7/.(E\{e}) —r/.(E\{e, f})=r(F) —
r(e) —r(E\ {f}) + r(e)=0. However, P\ e is not necessarily compact. Thus, the
relation of this new dual and contraction and deletion cannot be as straightforward
as that in matroids. This relation is explained in the following.

Proposition 2.8. If P is a polymatroid, then
(P\e)"=P"/e and (P/e)" = com(P*\ e).

In [15], duality and compactification are used as stepping stones to prove a splitter
theorem for 3-connected 2-polymatroids.

3 An invariant for polymatroids

Associated with any 2-polymatroid, there is a well-known polynomial defined in [16].
The polynomial S(P;u,v) of the 2-polymatroid P is defined as:

P u, U Z ur(E 2\A\ T‘(A)
ACFE

We now introduce a variation on the polynomial S(P;w,v); this polynomial
N(P;u,v) is the focus of the rest of the paper.

Definition 3.1. Given a polymatroid P = (E,r) we define its polynomial N(P;u,v)
as:

N(Piuv) = 3 wr@=rylal=r()

ACE

= Zu —r(A) ;" (B)—r*(E\A)
ACE
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The equivalence between the two expressions follows from the equality r*(E) —
r*(A) = ||E'\ Al|, — r(E \ A). Observe that when P is a strict 2-polymatroid,
N(P;u,v) = N(S;u,v). We notice that this polynomial also appears in [11], and
most likely has been considered many times before.

The classical relation for the Tutte polynomial of a matroid M and its dual M*
is that T(M*;x,y) = T(M;y,x). The relation between N(P) and N(P*) is given by
the following.

Proposition 3.2. If P = (E,r) is a polymatroid, com(P) = (E,Teom) is its com-
pactification and P* = (E,r*) is its dual, then

N(P*u,0) = 3 0B rreom B\A-r(B\A) lAll ()
ACE

In particular, if P is compact, then
N(P*;u,v) = N(P;v,u).
Proof. By definition we have that

ACFE
— Z uHE\A‘|?"_T(E\A)UTcom(E)_Tcom(E\A)'

ACE

The second equality follows from the proof of Proposition 2.7. If P is compact,
7(A) = reom(A) for all A C E and it is clear that N(P*;u,v) = N(P;v,u). If P is
not compact, reom (E) — Teom(E\ A) = r(E) —r(E\ A) + reom(A) —r(A). By making
a change of variable we obtain the result. O]

The Tutte polynomial can be computed using deletion-contraction. For a matroid
M and an element e that is neither a loop nor a coloop, T'(M; z,y) = T (M \ e; z,y) +
T(M/e;x,y). If e is a loop, T(M;z,y) = yT'(M \ e;x,y), and if it is a coloop,
T(M;z,y) = 2T (M/e;x,y). In our case, we also have similar recursions stated in
Propositions 3.3, 3.4, and 3.6. Notice that unlike the case of Tutte polynomials of
matroids, the recurrence relations here do not cover all cases.

Proposition 3.3. If P = (E,r) is a polymatroid and e € E is a loop, then
N(P;u,v) =2N(P\ e;u,v).

Proof. This follows from the observation that, for a loop e in P, r(A U {e}) = r(A)
and [[AU {e}]|, = [[A]]. 0

Proposition 3.4. If P = (E,r) is a polymatroid and e € E 1is a non-compact
element, then

N(P;u,v) = (u¥© — 1)N(P\ €;u,v) + N(com(P);u,v).
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Proof. Let com.(P)=(E,r.). Notice that for A C E \ e, r.(4) = r(A4) and r.(F) =
r(E\ e). Then,

N(come(P);u,v) — N(P\ e;u,v) = Z ule(B)=re(Aufe})  [[AU{e}lre —re(AU{e})
ACE\e
_ Z w B =r(Au{e}) [ AU{e} [ lr—r(AU{e})
ACE\e

Also, as r(E) =r(E \ e) + d.(e), we have that

WON(P eu,v) = 3 wrE-rAylal—r),
ACEFE\e

By adding both expressions we get the result. O]

The above proposition also holds when e is a compact element. Observe that
if e and f are non-compact elements in P, then e is non-compact in P\ f. Also,
comy(P\e) and comy(P)\e are not necessarily equal, but in many cases, for example
ifr(E\f)+r(E\e)=r(E)+r(E\{e f}), they will be equal.

From the previous two propositions, we can concentrate on compact polymatroids
with no loops. For a matroid M and element e that is neither a loop nor a coloop,
the combinatorial information in 7'(M \ e) and T'(M/e) is enough to recover all the
information of T(M). In polymatroids, this might not be the case; see the last
example in Subsection 3.1. But in some cases, this is possible. For this purpose we
define for a polymatroid P = (¥, r) and an element e, p(e) = mingep\{r({a,e}) —
r(a)}. Note that by submodularity, p(e) < r(e). We define the partial contraction
of e as the polymatroid P/p(e) = (E'\ e,7,()), where for X C E'\ e

o { 0, if X =0, (3)
p(e) - r(X U{e}) — p(e), otherwise.

Proposition 3.5. If P = (E,r) is a polymatroid and e € E, then P/p(e) is a
polymatroid.

Proof. Clearly r,) is normalized and increasing. Now, for any pair of subsets A and
B of E'\ e,

To(e)(A) + 700 (B) = r(AU{e}) — ple) +r(BU{e}) — ple)

> r(AUBU{e}) — ple) + r((AN B) U{e}) — ple)
= 7o) (AUB) 4+ 71, (ANDB).

]

When p(e) = r(e), P/p(e) is P/e. The raison d’étre of P/p(e) is the following.
An element e is near-skew if r({a,e}) —r(a) = p(e) > 0 for all a € E'\ e. Tt is called
skew if it is near-skew and p(e) = r(e).
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Proposition 3.6. If P = (E,r) is a compact polymatroid and e € E is a near-skew
element, then

N(P;u,v) = N(P\ e;u,v) + 0" O PEON(P/ple); u,v).

Proof. We proceed by computing N(P \ e;u,v) and N(P/p(e);u,v). In P\ e =
(E\ e,m\), we have that for all A C E'\ e, n.(E\e) —n.(A) =r(E) —r(A), as P
is compact. Also, ||Al|,,, — me(A)=||A||, — r(A). Thus,

"
NP\ eup) = 3 wne@e=ney i —n
ACE\e
= 3w E Ayl
ACE\e

In P/p(e) = (E \ e, 7)), we have that for all A C E'\ e,

Toe)(E\ €) = 1pe)(A) = r(E)—ple) — (r(AU{e}) — p(e))
= r(E)—r(Au{e}).

Also, when e is a near-skew element of P, [|A]l, . = |[A|, for all A C E'\ e. Then,

Al = 7o (A) = [[Allr = r(AU{e}) + p(e)
= [[AU{e}]lr = r(AU{e}) + (p(e) —r(e)).
Thus,
N(P/p(e);u,v) = Z " o@) B\ =Ty (A)  l14llr ) =To(e) (A)
ACE\e
— pPe)-r(e) Z u(B)—r(Au{e}) [lAUfe} || —r(Au{e})
ACE\e

By adding the polynomials N(P \ e;u,v) and v"©=PIN(P/p(e);u,v) we get
N(P;u,v). O

3.1 Examples

The empty matroid Py = (0,0) has N(Pj) = 1. A polymatroid with one element,
P, = ({a}, 1), has rank function of the form r;(a) = k and then, N(P,) = u*+1. A
loopless compact polymatroid with two elements, P, = ({a, b}, 2), has rank function
of the form ro(a) = ro(b) = ro({a,b}) = k and then, N(P,) = uF +v*+2. A loopless
compact polymatroid with three elements, Py = ({a,b,c},r3), has rank function
of the form r3(a) = k, r3(b) = [, r3(c) = m, and r3(A) = n for |A] > 1, where
kjl,m <n < k+1,k+m,l+m, and then, N(P;) = u™ +u™* + w1 +u" ™ +
,Uk—l-l—n + ,Uk—l-m—n + Ul—l—m—n + ,Uk:+l+m—n'

There are compact polymatroids that have no near-skew elements, for example
the polymatroid P = ({a,b,c},r), where r(0) = 0, r(a) = 3, r(b) = 4, r(c) =5
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and r({a,b}) = r({a,c}) = r({b,c}) = r({a,b,c}) = 5. In this case N(P;u,v) =
uS+ut+u+1+v2+0v*+0v'+07. No element e of P is near-skew as r({x,e}) —r(z) =
5—r(z), and for each e, there are two unequal options for r(x). Also, N(P\a;u,v) =
ub+u+ 140t N(P/aju,v) = u?+2+v? and N(P/p(a);u,v) = u® + 2+ v5. The
polynomials are similar for b. For the element ¢, N(P/p(c);u,v) = u* + 2 + v,
N(P/c;u,v) = 4 and N(P \ ¢;u,v) = v’ + u? + u + v?. Thus, a decomposition
using just deletion and (partial-)contraction seems more complicated in the absence
of near-skew elements.

4 Polymatroids and hypergraphs

Here we consider a hypergraph as a triple, H = (V, E, ¢), where ¢ : E — 2V that
is, ¢(e) is a subset of vertices. For A C E, we write ¢(A) for Uecagp(e). When |¢(e)|
is always at most k, for all e € F, we say that H is a k-hypergraph.

For this paper we consider graphs as 2-hypergraphs. Given a fixed graph G =
(V,E, ¢¢), there are also two natural 3-hypergraphs associated with G. First, the
apex hypergraph of G, Heq = (V U{w}, E, dec), where w € V and ¢ec(€) = pg(e) U
{w}. The second is the edge-vertex hypergraph of G, Hg = (V U E,E, ¢g), where
E={e,...,e Yif E={ey,... en} (that is, E is a disjoint copy of E) and ¢p(e) =
oa(e) U {e'}. Both of these hypergraphs associated with graphs were considered
in [20] and they will become relevant in Section 6.

Associated with any hypergraph H we have its chromatic polynomial, x(H;\)
that counts the number of proper colorings of H with A colours. A A-colouring
c:V — {1,...,\} is a proper colouring if no hyperedge of H is monochromatic.
This clearly generalizes the colouring polynomial of graphs. Also, it is clear, that if
the hypergraph has a hyperedge with just one vertex, then its chromatic polynomial
equals 0.

There are two natural polymatroids associated with a hypergraph H. First, the
Boolean polymatroid Py g = (E,ry4 ), given by the submodular function ry g(A) =
|¢p(A)|. The second is the generalization of the rank function for graphs (and ma-
troids), Py (E,ry), where r4(A)= |p(A)| — k(H|A). The value k(H|A) is the number
of connected components of the hypergraph (¢(A), A, ¢ja).

Associated with a polymatroid P = (E,r), we have its characteristic polynomial,

X(Pia) =Y (=1)Alzr=rtd,

ACE

There is a classical result of Helgason [8] (also in Whittle [19]), that elucidates
the relation between these two polynomials in the case of hypergraphs.

Theorem 4.1 (Helgason).
X(H; 0) = A POx(Pyg; M),

Now, we relate the characteristic polynomial of a polymatroid P and the poly-
nomial N(P).
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Proposition 4.2. If P is a strict k-polymatroid, then

X(P;A) =

= N(P;al, é), (4)

Oﬂ”( )
for a = /—1.

Proof. If P = (E,r) is a strict k-polymatroid, then [|A|| = k|A|, for all A C E.
Then, by expanding the right-hand side of Equation (4), we get

| ) ey 0B @7
N(Piah, =) = ) N —
ACE
- a®Y Ar(E)—r<A>(_1)|A\'
ACE

]

Notice that the previous result can be used with any k-th root of —1. Proposi-
tion 4.2 will be relevant in Section 6.

5 Some easy evaluations

For a matroid M = (FE,r), its Tutte polynomial has some trivial evaluations:
T(0,0) = 0, T(2,2) = 2/¥l and in general along the hyperbola (z — 1)(y — 1) = 1,
T(z,y) = yFl(y — 1)7"®). Also, it has some well-known combinatorial interpreta-
tions: 7'(2,1) equals the number of independent sets, T'(1,2) equals the number of
spanning sets, 7'(1, 1) equals the number of bases of the matroid. It is straightforward
to prove similar evaluations for N(P;u,v).

Proposition 5.1. For any polymatroid P = (E,r), we have the following evaluations
for the polynomial N .

e Along the hyperbola wv = 1, N(P;u,v) = v " & ], cp(” (@ 1+ 1).

e In particular,

NP1, -1) 0, ifde€ E, r(e) =1 (mod 2),
b | (=) ®2E otherwise.

Also, N(P;1,1) = 2I#1,

e N(P;0,1) equals the number of spanning sets, that is, subsets A C E such that
r(A) =r(E).

e N(P;1,0) equals the number of subsets A C E such that r(A) = || 4],
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In a 2-polymatroid P = (E,r) a subset X of E is a 2-matching if r(X) =
2|X|. In a graph G, a free loop is an edge that is not incident to any vertex. For
a graph G = (V,E), where free loops are allowed, let Py = (F,rgp) be the
boolean 2-polymatroid associated with G when seen as a hypergraph. Free loops in
G correspond to loops in Py g, but loops in G correspond to elements of rank 1 in
Pg p. With these definitions, a set A is a 2-matching in P p if and only if A is a
matching in G. Notice that Pg p is a strict 2-polymatroid if and only if G has no
loops or free loops.

Clearly, Pop \ € = Po\.,p. However, the contraction of an element in Pg p
behaves in a different way. Define the graph G/e as follows. First, we delete the
edge e and its incident vertices. Then, for an edge f, f # e, either f has no common
vertex with e and stays the same; or has one common vertex with e and becomes a
loop at its other endpoint; or it is a parallel edge to e and becomes a free loop. In
order for the reader to visualize the operation /e, we give an example in Figure 1.
With this operation we have that Pgp/e = Pgjep. Let us denote by m(G) the
number of matchings of GG. It follows from the classical theory of matchings that
m(G) = m(G \ e) + m(G/e).

For the graph G in Figure 1 we have that N (Pg p;u,v) = u* +5u® + 8uv + 2uv® +
8v? + 5vt + 0% 4+ 2. As Pg p is a strict 2-polymatroid, N(Pg 5;1,0) = 8, the number
of 2-matchings of P p. However, this is not true for Pg e p, as N(Pgje,p;u,v) =
u?+3u+3+uv+4v+3v* 403, then when evaluated at (1,0) we get 7, but Pg . p has
only two 2-matching. The reason for this is that at (1,0) we are counting the family
of sets 0,{a}, {c}, {d}, {b}, {a,c}, {a,d}. This suggests considering the following
definition: a matching in a (hyper)graph G is a set of (hyper)edges without common
vertices that does not contain free loops.

e

dca8bQ

b d

Figure 1: On the left is the graph G and on the right the graph G /e

For a polymatroid P = (E,r), we define a hypermatching as any set X C FE such
that 7(X) = || X||, and it does not contain any loops. If X is a hypermatching that
satisfies r(X) = r(E), we called it a perfect hypermatching. We have the following.

Proposition 5.2. For any loopless polymatroid P = (E,r),
e N(1,0) equals the number of hypermatchings.

e N(0,0) equals the number of perfect hypermatchings.
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Observe that if P is compact the number of perfect hypermatchings is the same
for P and P*.

Notice that it is not true in general that N(P;1,0) = N(P\e;1,0)+N(P/e; 1,0),
as it can be checked in the last example of Subsection 3.1. Also, it is not the case
that N(Pg p:1,0) = N(Pgp \e;1,0) + N(Pgp/e;1,0), as it can be checked in the
example of Figure 1.

When P is matroid, N(P;1,0) is the number of independent sets and also the
number of hypermatchings in this 1-polymatroid. We call these 1-matchings. Thus,
when the matroid is graphic, P = M(G), we can interpret a forest in G as a 1-
matching in P.

For a loopless P = (FE,r), we have that

N(P;u,0) = Z " E) ),

A hypermatching

For the boolean polymatroid Py p = (E,ry g) of the hypergraph H = (V, E, ¢) with
n non-isolated vertices, if we denote by my; the number of hypermatchings A with
r#.8(A) = k, we have that

Thus, in the case that H is the 2-hypergraph of a loopless graph G, we get as an
evaluation the matching defect polynomial, that is,

(—i)"N(Pa,piit,0) = Y _(—=1)Fdu(G)t 2,

k>0

where i? = —1 and ®4(G) is the number of matchings in G with & edges.
Similarly, for a P = (E,r), we have that

N(P;0,v) = > olldll=r@),

A spanning

For the boolean polymatroid Py g = (E,ry g) of the hypergraph H = (V, E, ¢) with
n vertices, if we denote by ¢ the number of spanning sets A with k =", _, |a| —n
we have that

N(Py p;0,v) = chv

Thus, in the case that H is the 2-hypergraph of a loopless graph GG, we get as an
evaluation the edge cover polynomial, that is,

t"N(Pgp;0,Vt) = Y c(G)tF,

k>0

where ¢, (G) is the number of edge covers of G with k edges.
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6 Another two interpretations of N(P)

Recently, Zhang and Dong [20] proved the following theorems about the chromatic
polynomial of the two hypergraphs associated with the graph G = (V| E, ¢¢) men-
tioned in Section 4. For a graph G = (V, F), the polynomial

I(G;x) = Z !Vl

UCV stable

is the enumerator of stable sets in G. Here a stable set is a set of vertices in GG, no
two of which are adjacent.

Theorem 6.1 (Zhang-Dong).

N(Hoci X) = A\ — 1) 1(G; %).

The enumerator of stable sets has been considered in other works with an equiv-
alent definition. The most relevant definition for us is the one given by Farr [6],

AGiz) = Y V@ — o)L

UCV stable
from which it is clear that

Proposition 6.2.
x

AGz) = (1 - o)V,

).

This invariant was already related to the boolean polymatroid of the 2-hypergraph
of a graph G. In Oxley and Whittle [16], they proved that

11—z

Proposition 6.3 (Oxley and Whittle).

1
A(Gs ) = 2702 B\ (Pg p; E)'

We now give a different proof of Zhang and Dong’s result using the theory of
polymatroid invariants.

New proof of 6.1. The fundamental observation is the following. Given G and the
hypergraph H.q, the rank function of the polymatroid associated with Heq is

M (A) = [0(A)] — K(Hea|A)
|[pa(A)+1 -1
= ’I“G7B(A).
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Notice that x(Hec|A) = 1 because the apex vertex makes any set of hyperedges a
connected hypergraph. Now, by Theorem 4.1 and Proposition 6.2 and 6.3

X(Hoci A) = NHe)x(Py 5 N)
= )\X(PG,B§>\)
1
— MV 4(G- =

1\ 1
— AV = (G ——

— A=)V ﬁ).

]

The second theorem of Zhang and Dong, also in [20], relates the chromatic poly-
nomial of the hypergraph H¢ associated with the graph GG and the Tutte polynomial
of G and it is the following.

Theorem 6.4 (Zhang-Dong).

A—1
x(He: \) = )\IEIf\V|+2n(G)(_1)IV|%(G)T<G; 1— )2, T)

New proof of 6.4. The fundamental observation is that if G = (V, E, ¢¢) then

mue(A) = [9p(A)| = k(HalA)

= [Al+ [¢a(A)] - £(G|A)
Al + [V(GlA)] = x(G|A)
Al +7(4),

where r(A) is the (matroidal) rank of A. Now, a sequence of change of variables
produces the result. On one hand, for a graph G = (V, E), the cardinality-rank
polynomial

B(Gyx,y) =) a" Wyl

ACE

was define in Brylaswki [3]. This polynomial is clearly equivalent to the Tutte poly-
nomial, because

(z — 1) B(G;

c-Dy-1"7" 1) =T(G;z,y).

Then,
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On the other hand,

B+rE) pren L Ty B ap ()AE
ACE
— Z (_1)|A|)\THG(E)—THG(A)
ACE
= X(Pug;N).

The result follows from our fundamental observation and Theorem 4.1,

X(Ha; ) = N\ (Py i\

1 -1
ANEHVIB(G- = =
( 7)\7 )\ )
A—1
)\|E|+\V| _)\2 fr(E)T G:1— )\2 N
(X - e A
A—1
>\|E|7\V|+2N(G) -1 T(E)T G:1— )\2 2y
(1 Er(En - A

]

To conclude this section, we give two corollaries from the previous results. For
a loopless graph G, the polymatroid Py, is a strict 2-polymatroid. Thus, we can
recast Theorem 6.1 as follows.

Corollary 6.5. For a loopless graph G with n vertices,
1
(=1)"N(Pyog; i, —i) = (A = 1)"I(G; m)
Proof. Using Proposition 4.2, where in this case @ = v/—1 = i, we get

1

AA=D (G ) = X(HaaiA)
= M(Proi N

1 1

= )\mN(PH.G,Z)\,Z)

]

Also, for a loopless graph G, the polymatroid Py, is a strict 2-polymatroid, then
we obtain from Theorem 6.4 the following.

Corollary 6.6. For a loopless graph G = (V, E) with m edges and rank r(E),

-1
N(Prgiid, —i) = (A)EET(G 1 — 22, AT)'
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Proof. From the proof of Theorem 6.4, we know that

1 -1
X(PugiA) = AFTEBG; 5, —)
M\ El+r(E) L A—1
= —(_)\Z)T(E)T(G, 1— )% T)
) 5 —)\
Using Proposition 4.2, where in this case a« = v/—1 = 7, we get
g 1y -t AL

7 Further results and conclusion

McDiarmid [14] considered a family of duals for polymatroids by assigning weights
to the elements and using them to replace the term ||Al|,. It is possible that this
could lead to other interesting polynomials associated with polymatroids, although
we have not investigated this possibility. In the absence of any other information, it
seems that the most natural weight to assign an element e is r({e}), which is what
we have done here.

However, there is also another generalization of S(P). Let P be a class of poly-
matroids that is closed under minors. Given a polymatroid P € P and an element
e € P, we can consider that E(P\ e) C E(P) and E(P/e) C E(P). Thus, we define
E = UpepE(P) and set an arbitrary but fixed integer function w : & — Z. We call
w the weight function of P .

Now, for a polymatroid P € P, P = (r, E), and a weight function w we define
N(P,w;u,v) as:

N(P,w;u,v) = Z uT(E)—T(A)UHAHw—T(A)’
ACE

where ||All, = > c4w(z). This in general is not a polynomial, unless ||All, —
rp(A) > 0 for all A € £ and P € P. In particular, w(a) > rp(a) for all a € £ and
P € P. However, when P consists of all the minors of a fixed polymatroid P, or if
it is the class of k-polymatroids, the above condition can be satisfied for infinitely
many integer functions w.

The relevance of N(P,w;u,v) is that one can recover a deletion-contraction
formula, while there appears to be no reasonable deletion-contraction formula for
N(P;u,v).

Proposition 7.1. If P = (E,r) is a polymatroid and e € E, then

N(P,w;u,v) = u©ON(P\ e,w;u,v) + v* O ON(P/e, w;u,v).
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Proof. As in the proof of Proposition 3.6, in P\ e = (E\ e,7\.), we have that for all
ACE\e,

ne(E\e)—me(A) = r(E\e)—r(A4)

Il
<
—~
&
N~—
|
<
~—
s
S~—
|
—~
=
—~
&
~—
|
<
—~
&
/
S~—
S~—

Also, ||A]]w — r\e(A):||A||w —1r(A). Thus

NP\ e,wiuv) = 3 une@O-ne@ylial—rc
ACE\e
= O 3 Ayl (),
ACE\e

Again, for P/e = (E'\ e,r).), we have that for all A C E\ e,

rre(E\e) =rse(A) = r(E) —r(e) = (r(AU{e}) —r(e))
= r(B) = r(AuU{e}).

Also,
Al = 7/e(A) = [|A]lo —r(AU{e}) +7(e)
= [|[AUu{e}||w —r(AU{e}) +r(e) —wle).
Thus
N(P/e,w;u,v) = Z oo (BN =/ (A) 1 All=T e (4)
ACE\e
— pre-wle Z o B —r(Au{e})  [[Au{e}]|w—r(AU{e})
ACE\e

By adding the polynomials u® ()N (P \ e,w;u,v) and v*© "N (P/e, w;u,v) we
get N(P,w;u,v).
[

Notice that, if w(e) = rp(e) for all e € E, we get N(P;u,v) = N(P,w;u,v);
however, since w cannot depend on P, the equality w(e) = rp(e) can hold for P but
fail if P is replaced by one of its proper minors. We do not know of any relation-
ship between N(P,w;u,v) and N(P* w;u,v), in the case that both expressions are
polynomials.

Clearly, the polynomials N(P;u,v) and N(P,w;u,v) are very general and more
families of polymatroids need to be explored in order to find interesting evaluations.
For example, in [11], the authors use the matroids M = (E,r) and M* = (E,r*) to
construct the polymatroid P = (p, E), where p = r + r*. This polymatroid has rank
n = |F| and the authors consider also the quantity s = max{r(E),*(E)}. They find
that N(P;z +1,1) = >_7_, H;z""" is the generating function for the number H; of
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bi-independent sets, that is, sets independent in both M and M?*, of size ¢. Similarly,
they find that y~™/2N(P;1,,/y + 1) = D1, Siy' is the generating function for the
number S; of bi-spanning sets, that is, sets spanning in both M and M*, of size 1.

As pointed out in [20], evaluating at A = —1 in Theorem 6.4 we get T'(G;0,2)
that has a combinatorial interpretation as the number of totally cyclic orientations
of G. A combinatorial proof of this fact could be interesting.

As we mentioned in the introduction, there are currently other attempts at gener-
alising the Tutte polynomial to polymatroids in [2] and [4]. In principle, our approach
is different as both of the aforementioned papers investigate the maximal facet of
the polytope associated with a polymatroid, while our work stays in the realm of
polymatroids. There are obvious differences between the definition of duality in our
work and the other two papers. However, for compact strict k-polymatroids, this
difference becomes less obvious. Thus, it would be very interesting to check if the
polynomial presented here is related to any of the polynomials in [2] or [4].
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