Magic rectangles, signed magic arrays and integer λ -fold relative Heffter arrays

FIORENZA MORINI

Dipartimento di Scienze Matematiche, Fisiche e Informatiche Università di Parma, Parma Italy fiorenza.morini@unipr.it

Marco Antonio Pellegrini

Dipartimento di Matematica e Fisica Università Cattolica del Sacro Cuore, Brescia Italy marcoantonio.pellegrini@unicatt.it

Abstract

Let m, n, s, k be integers such that $4 \leq s \leq n, 4 \leq k \leq m$ and ms = nk. Let λ be a divisor of 2ms and let t be a divisor of $\frac{2ms}{\lambda}$. In this paper we construct magic rectangles MR(m, n; s, k), signed magic arrays SMA(m, n; s, k) and integer λ -fold relative Heffter arrays ${}^{\lambda}H_t(m, n; s, k)$ where s, k are even integers. In particular, we prove that there exists an SMA(m, n; s, k) for all m, n, s, k satisfying the previous hypotheses. Furthermore, we prove that there exist an MR(m, n; s, k) and an integer ${}^{\lambda}H_t(m, n; s, k)$ in each of the following cases: (i) $s, k \equiv 0 \pmod{4}$; (ii) $s \equiv 2 \pmod{4}$ and $k \equiv 0 \pmod{4}$; (iii) $s \equiv 0 \pmod{4}$ and $k \equiv 2 \pmod{4}$; (iv) $s, k \equiv 2 \pmod{4}$ and m, n both even.

1 Introduction

In this paper we study partially filled (pf, for short) arrays, with entries in \mathbb{Z} and whose rows and columns have prescribed sums. In particular, we construct *magic* rectangles, signed magic arrays and integer λ -fold relative Heffter arrays.

Definition 1.1 A signed magic array SMA(m, n; s, k) is an $m \times n$ pf array with elements in $\Omega \subset \mathbb{Z}$, where $\Omega = \{0, \pm 1, \pm 2, \dots, \pm (ms - 1)/2\}$ if ms is odd and $\Omega = \{\pm 1, \pm 2, \dots, \pm ms/2\}$ if ms is even, such that

- (a) each row contains s filled cells and each column contains k filled cells;
- (b) every $x \in \Omega$ appears exactly once in the array;
- (c) the elements in every row and column sum to 0.

The existence of an SMA(m, n; s, k) has been settled in the square case (i.e., when m = n and so s = k) and in the tight case (i.e., when k = m and s = n), by Khodkar, Schulz and Wagner [17].

Theorem 1.2 [17] There exists an SMA(n, n; k, k) if and only if either n = k = 1 or $3 \le k \le n$.

Theorem 1.3 [17] There exists an SMA(m, n; n, m) if and only if one of the following cases occurs:

- (1) m = n = 1;
- (2) m = 2 and $n \equiv 0, 3 \pmod{4}$;
- (3) n = 2 and $m \equiv 0, 3 \pmod{4}$;
- (4) m, n > 2.

Also the cases when each column contains two or three filled cells have been solved.

Theorem 1.4 [13] There exists an SMA(m, n; s, 2) if and only if one of the following cases occurs:

- (1) m = 2 and $n = s \equiv 0, 3 \pmod{4}$;
- (2) m, s > 2 and ms = 2n.

Theorem 1.5 [16] There exists an SMA(m, n; s, 3) if and only if $3 \le m, s \le n$ and ms = 3n.

In this paper we settle the existence problem of an SMA(m, n; s, k) when s and k are both even, proving constructively the following.

Theorem 1.6 Let s, k be two even integers with $s, k \ge 4$. Then there exists an SMA(m, n; s, k) if and only if $4 \le s \le n$, $4 \le k \le m$ and ms = nk.

This result will be obtained by working in the more general context of the integer λ -fold relative Heffter arrays. In Figure 1 we give an SMA(5, 10; 8, 4) obtained thanks to our constructions.

In [1] Archdeacon introduced an important class of pf arrays, called *Heffter arrays*. One of the applications of these objects is that they allow, under suitable conditions, the construction of pairs of cyclic cycle decompositions of the complete graph K_v on v vertices. With the aim of extending this application to complete multipartite

1	-2		-7	8	11	-12		-17	18
20	3	-4		-9	10	13	-14		-19
-1	2	5	-6		-11	12	15	-16	
	-3	4	7	-8		-13	14	17	-18
-20		-5	6	9	-10		-15	16	19

Figure 1: An SMA(5, 10; 8, 4).

graphs, in [8] the authors of the present paper, in collaboration with Costa and Pasotti, proposed a first generalization of Archdeacon's idea introducing pf arrays called *relative Heffter arrays*. A further generalization, that allows one to work with complete multipartite multigraphs, was introduced in [9] by Costa and Pasotti. These new objects are called λ -fold relative Heffter arrays. We recall here their definition, where we denote by $\mathcal{E}(A)$ the list of the entries of the filled cells of a pf array A.

Definition 1.7 Let m, n, s, k, t, λ be positive integers such that λ divides 2ms and t divides $\frac{2ms}{\lambda}$. Let J be the subgroup of order t of \mathbb{Z}_v , where $v = \frac{2ms}{\lambda} + t$. A λ -fold Heffter array over \mathbb{Z}_v relative to J, denoted by ${}^{\lambda}\mathrm{H}_t(m, n; s, k)$, is an $m \times n$ pf array A with elements in $\Omega = \mathbb{Z}_v \setminus J$ such that:

- (a) each row contains s filled cells and each column contains k filled cells;
- (b) every element of Ω appears exactly λ times in the list $\mathcal{E}(A) \cup -\mathcal{E}(A)$;
- (c) the elements in every row and column sum to 0.

Item (b) of the previous definition requires some explanation. The additive group \mathbb{Z}_v contains an involution if and only if v is even; in this case, the unique involution $\iota \in \mathbb{Z}_v$ belongs to Ω if and only if t is odd. We observe that the assumption v even and t odd implies that λ is even and does not divide ms. So we can write (b) as follows: if Ω does not contain involutions, every $x \in \Omega$ appears in A, up to sign, exactly λ times; if Ω contains the involution ι , then every $x \in \Omega \setminus {\iota}$ appears, up to sign, exactly λ times, while ι appears exactly $\lambda/2$ times.

Some results on the existence of these objects are given in [9], mostly for the square case or for particular values of λ and/or t. Instead of working in a finite cyclic group, one can construct λ -fold relative Heffter arrays whose entries are integers. In this case, the previous definition becomes as follows.

Definition 1.8 Let m, n, s, k, t, λ be positive integers such that λ divides 2ms and t divides $\frac{2ms}{\lambda}$. Let

$$\Phi = \left\{1, 2, \dots, \left\lfloor \frac{v}{2} \right\rfloor\right\} \setminus \left\{\ell, 2\ell, \dots, \left\lfloor \frac{t}{2} \right\rfloor \ell\right\} \subset \mathbb{Z}, \quad \text{where } v = \frac{2ms}{\lambda} + t \text{ and } \ell = \frac{v}{t}.$$

An integer ${}^{\lambda}\mathbf{H}_t(m,n;s,k)$ is an $m \times n$ pf array with elements in Φ such that:

(a) each row contains s filled cells and each column contains k filled cells;

- (b) if v is odd or if t is even, every element of Φ appears, up to sign, exactly λ times in the array; if v is even and t is odd, every element of $\Phi \setminus \{\frac{v}{2}\}$ appears, up to sign, exactly λ times while $\frac{v}{2}$ appears, up to sign, exactly $\frac{\lambda}{2}$ times;
- (c) the elements in every row and column sum to 0.

Example 1.9 Consider the following arrays:

	1	-1		-5	5	1	-1		-5	5
	7	2	-2		-7	7	2	-2		-7
A =	-1	1	4	-4		-1	1	4	-4	
		-2	2	5	-5		-2	2	5	-5
	-7		-4	4	7	-7		-4	4	7
		1								
	1	-1							-5	5
	5	3	-3							-5
	-1	1	1	-1						
		-3	3	3	-3					
B =			-1	1	1	-1				
D =				-3	3	3	-3			
					-1	1	1	-1		
						-3	3	3	-3	
							-1	1	5	-5
	-5							-3	3	5

It is easy to see that A is an integer ${}^{8}H_{5}(5, 10; 8, 4)$, where each entry 1, 2, 4, 5, 7 appears, up to sign, exactly eight times. The array B is an integer ${}^{16}H_{5}(10, 10; 4, 4)$, where each of the entries 1 and 3 appears, up to sign, exactly sixteen times, whereas the entry 5 appears, up to sign, exactly eight times.

Observe that when $\lambda = 1$ one retrieves the concept of an (integer) relative Heffter array. In particular, an (integer) ${}^{1}H_{1}(m, n; s, k)$ is exactly a classical (integer) Heffter array, as defined by Archdeacon. The problem of the existence of square classical Heffter arrays has been completely solved in [3, 12] for the integer case, and in [5] for the general case. For the other cases (non-square or relative), partial results have been obtained in [2, 10, 18]. Applications of (relative) Heffter arrays to graph decompositions and biembeddings are described, for instance, in [4, 6, 7, 11].

Here, we prove the following result, where any admissible value of λ and t is considered.

Theorem 1.10 Let m, n, s, k be integers such that $4 \leq s \leq n, 4 \leq k \leq m$ and ms = nk. Let λ be a divisor of 2ms and let t be a divisor of $\frac{2ms}{\lambda}$. There exists an integer ${}^{\lambda}H_t(m, n; s, k)$ in each of the following cases:

- (1) $s, k \equiv 0 \pmod{4};$
- (2) $s \equiv 2 \pmod{4}$ and $k \equiv 0 \pmod{4}$;

- (3) $s \equiv 0 \pmod{4}$ and $k \equiv 2 \pmod{4}$;
- (4) $s, k \equiv 2 \pmod{4}$ and m, n both even.

Looking at Definitions 1.1 and 1.8 the reader can easily see that, when ms is even, a signed magic array is a particular integer 2-fold relative Heffter array. In fact, the integer ${}^{2}H_{1}(m, n; s, k)$ we construct in the following sections is actually a signed magic array SMA(m, n; s, k). So, Theorem 1.6 will follow from Theorem 1.10, except when $s, k \equiv 2 \pmod{4}$ and m, n are odd. Nevertheless, for these exceptional values, we will construct an SMA(m, n; s, k) starting from *square* signed magic arrays, whose existence is assured by Theorem 1.2, and exploiting the flexibility of our constructions. Note that [9, Theorem 4.9], where the authors considered the particular case ${}^{2}H_{1}(m, n; s, k)$ with s, k even, was actually proved using the previous Theorem 1.6.

Our results on signed magic arrays allow us also to build magic rectangles.

Definition 1.11 A magic rectangle MR(m, n; s, k) is an $m \times n$ pf array with elements in $\Omega = \{0, 1, \dots, ms - 1\} \subset \mathbb{Z}$ such that

- (a) each row contains s filled cells and each column contains k filled cells;
- (b) every $x \in \Omega$ appears exactly once in the array;
- (c) the sum of the elements in each row is a constant value c_1 and the sum of the elements in each column is a constant value c_2 .

Clearly, in the previous definition we must have $c_1 = \frac{s(ms-1)}{2}$ and $c_2 = \frac{k(ms-1)}{2}$. The reader can find results on the existence of these objects in [14, 15] and in the references within. Here, we prove the following.

Theorem 1.12 Let m, n, s, k be integers such that $4 \le s \le n$, $4 \le k \le m$ and ms = nk. There exists an MR(m, n; s, k) in each of the following cases:

- (1) $s, k \equiv 0 \pmod{4};$
- (2) $s \equiv 2 \pmod{4}$ and $k \equiv 0 \pmod{4}$;
- (3) $s \equiv 0 \pmod{4}$ and $k \equiv 2 \pmod{4}$;
- (4) $s, k \equiv 2 \pmod{4}$ and m, n both even.

2 Notation

In this paper, the arithmetic on the row (respectively, on the column) indices is performed modulo m (respectively, modulo n), where the set of reduced residues is $\{1, 2, \ldots, m\}$ (respectively, $\{1, 2, \ldots, n\}$), while the entries of the arrays are taken in \mathbb{Z} . Given two integers $a \leq b$, we denote by [a, b] the interval consisting of the integers $a, a + 1, \ldots, b$. If a > b, then [a, b] is empty. We denote by (i, j) the cell in the *i*-th row and *j*-th column of an array A. The support of A, denoted by supp(A), is defined to be the set of the absolute values of the elements contained in A.

If A is an $m \times n$ pf array, for $i \in [1, n]$ we define the *i*-th diagonal as

$$D_i = \{(1, i), (2, i+1), \dots, (m, i+m-1)\}.$$

Definition 2.1 A pf array with entries in \mathbb{Z} is said to be *shiftable* if every row and every column contains an equal number of positive and negative entries.

Let A be a shiftable pf array and x be a nonnegative integer. Let $A \pm x$ be the (shiftable) pf array obtained by adding x to each positive entry of A and -x to each negative entry of A. Observe that, since A is shiftable, the row and column sums of $A \pm x$ are exactly the row and column sums of A.

We denote by $\tau_i(A)$ and $\gamma_j(A)$ the sum of the elements of the *i*-th row and the sum of the elements of the *j*-th column, respectively, of a pf array A.

For a block B, we write $\mu(B) = \mu$ if every element of supp(B) appears exactly μ times in $\mathcal{E}(B) \cup -\mathcal{E}(B)$.

Given a sequence $S = (B_1, B_2, ..., B_r)$ of shiftable pf arrays and a nonnegative integer x, we write $S \pm x$ for the sequence $(B_1 \pm x, B_2 \pm x, ..., B_r \pm x)$. We set $\mathcal{E}(S) = \bigcup_i \mathcal{E}(B_i)$ and $\operatorname{supp}(S) = \bigcup_i \operatorname{supp}(B_i)$. We also write $\mu(S) = \mu$ if $\mu(B_i) = \mu$ for all i.

If $S_1 = (a_1, a_2, \ldots, a_r)$ and $S_2 = (b_1, b_2, \ldots, b_u)$ are two sequences, by $S_1 \# S_2$ we mean the sequence $(a_1, a_2, \ldots, a_r, b_1, b_2, \ldots, b_u)$ obtained by concatenation of S_1 and S_2 . In particular, if S_1 is the empty sequence then $S_1 \# S_2 = S_2$. Furthermore, given the sequences S_1, \ldots, S_c , we write $\underset{i=1}{\overset{c}{\#}} S_i$ for $(\cdots ((S_1 \# S_2) \# S_3) \# \cdots) \# S_c$.

Given a positive integer n and a sequence $S = (a_1, a_2, \ldots, a_r)$, we denote by n * S the sequence obtained by concatenating n copies of S.

Finally, we recall that the support of an integer ${}^{\lambda}\mathbf{H}_t(m, n; s, k)$ is the set

$$\Phi = \left[1, \left\lfloor \frac{t\ell}{2} \right\rfloor\right] \setminus \left\{\ell, 2\ell, \dots, \left\lfloor \frac{t}{2} \right\rfloor \ell\right\}, \quad \text{where } \ell = \frac{2ms}{\lambda t} + 1 = \frac{v}{t}.$$

Note that, if λ divides ms, then

$$\Phi = \left[1, \frac{ms}{\lambda} + \left\lfloor \frac{t}{2} \right\rfloor\right] \setminus \left\{\ell, 2\ell, \dots, \left\lfloor \frac{t}{2} \right\rfloor \ell\right\}.$$

Also, every element of Φ appears in ${}^{\lambda}\mathrm{H}_t(m, n; s, k)$, up to sign, exactly λ times. If λ does not divide ms, in order to obtain an integer ${}^{\lambda}\mathrm{H}_t(m, n; s, k)$, we have to construct a pf array A such that

if ℓ is odd or if t is even, every element of Φ appears in A, up to sign, exactly λ times; otherwise, i.e, if ℓ is even and t is odd, every element of $\Phi \setminus \left\{\frac{t\ell}{2}\right\}$ appears in A, up to sign, exactly λ times, while the integer $\frac{t\ell}{2}$ appears, up to sign, $\frac{\lambda}{2}$ times. (2.1)

3 The case $s, k \equiv 0 \pmod{4}$

In this section we prove the existence of an integer ${}^{\lambda}\mathbf{H}_t(m,n;s,k)$ when both s and k are divisible by 4. First of all, we set

$$d = \gcd(m, n), \quad m = d\overline{m}, \quad n = d\overline{n}, \quad s = 4\overline{s} \quad \text{and} \quad k = 4\overline{k}.$$

From ms = nk we see that \bar{n} divides \bar{s} and \bar{m} divides k. Hence, we can write $\bar{s} = c\bar{n}$ and $\bar{k} = c\bar{m}$. Observe that $n = d\bar{n} \ge s = 4c\bar{n}$ implies $d \ge 4$.

Fix two integers $a, b \ge 0$ and consider the following shiftable pf array:

$$B = B_{a,b} = \frac{1 - (a+1)}{-(b+1) a+b+1}.$$

Note that the sequences of the row/column sums are (-a, a) and (-b, b), respectively. We use this 3×2 block for constructing pf arrays whose rows and columns sum to zero. Start taking an empty $m \times n$ array A, fix $m\bar{n}$ nonnegative integers $y_0, y_1, \ldots, y_{m\bar{n}-1}$, and arrange the blocks $B \pm y_j$ in such a way that the element $1 + y_j$ fills the cell (j + 1, j + 1) of A (recall that we work modulo m on row indices and modulo n on column indices). In this way, we fill the diagonals $D_{im-1}, D_{im}, D_{im+1}, D_{im+2}$ with $i \in [1, \bar{n}]$. In particular, every row has $4\bar{n}$ filled cells and every column has $4\bar{m}$ filled cells.

Looking at the rows, the elements belonging to the diagonals D_{im+1} , D_{im+2} sum to -a, while the elements belonging to the diagonals D_{im-1} , D_{im} sum to a. Looking at the columns, the elements belonging to the diagonals D_{im+1} , D_{im-1} sum to -b, while the elements belonging to the diagonals D_{im+2} , D_{im} sum to b. Then A has row/column sums equal to zero.

Applying this process c times (working with the diagonals D_{im+3} , D_{im+4} , D_{im+5} , D_{im+6} , and so on), we obtain a pf array A, whose rows have exactly $4\bar{n} \cdot c = s$ filled cells and whose columns have exactly $4\bar{m} \cdot c = k$ filled cells.

Example 3.1 For a = 2 and b = 5, fixing the integers 0, 1, 10, 11, 20, 21, 30, 31, 40, 41, 50, 51, we can fill the diagonals $D_1, D_2, D_5, D_6, D_7, D_8, D_{11}, D_{12}$ of the following 6×12 pf array, where we highlighted the block $B_{2,5}$:

	1	-3			-26	28	31	-33			-56	58	Ι
	59	2	-4			-27	29	32	-34			-57	ĺ
4 —	-6	8	11	-13			-36	38	41	-43			
A =		-7	9	12	-14			-37	39	42	-44		•
			-16	18	21	-23			-46	48	51	-53	
	-54			-17	19	22	-24			-47	49	52	

Note that $supp(A) = [1, 60] \setminus \{5j : j \in [1, 12]\}$. As the reader can verify, A is an integer ${}^{1}H_{24}(6, 12; 8, 4)$: in this case $\ell = \frac{2 \cdot 6 \cdot 8}{24} + 1 = 5$.

The constructions we present in this section are obtained by following this procedure, so they all produce shiftable pf arrays of size $m \times n$ whose rows and columns sum to zero.

Here we always assume that $4 \leq s \leq n$, $4 \leq k \leq m$, ms = nk and $s, k \equiv 0 \pmod{4}$. Let λ be a divisor of 2ms and t be a divisor of $\frac{2ms}{\lambda}$; set

$$\ell = \frac{2ms}{\lambda t} + 1.$$

We first consider the case when λ divides ms. To obtain an integer ${}^{\lambda}H_t(m, n; s, k)$ with $s, k \equiv 0 \pmod{4}$, we only have to determine two integers $a, b \geq 0$ and a set $X = \{x_0, x_1, \ldots, x_{f-1}\} \subset \mathbb{N}$ such that $\mu(B_{a,b}) = \mu$ divides λ and $\bigcup_{x \in X} \operatorname{supp}(B_{a,b} \pm x) = \Phi$, where $f = \frac{ms}{4} \frac{\mu}{\lambda}$. So we can take the sequence $Y = \frac{\lambda}{\mu} * (x_0, x_1, \ldots, x_{f-1})$. Writing $Y = (y_0, y_1, \ldots, y_{\frac{ms}{4}-1})$ we construct A using the blocks $B_{a,b} \pm y_j$. In this way, every element of $\operatorname{supp}(A)$ occurs, up the sign, λ times in A. For instance, we can arrange the blocks in such a way that the element $1 + y_j$ fills the cell $(j + 1, 4q_j + j + 1)$, where q_j is the quotient of the division of j by $\operatorname{lcm}(m, n)$.

Lemma 3.2 Let λ be a divisor of ms such that $\lambda \equiv 0 \pmod{4}$. There exists an integer ${}^{\lambda}H_t(m,n;s,k)$ for any divisor t of $\frac{2ms}{\lambda}$.

PROOF: Let $B = B_{0,0} = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$. Note that $\mu(B) = 4$. An integer ${}^{\lambda}\mathrm{H}_t(m,n;s,k)$, say A, can be obtained by following the construction described before, once we exhibit a suitable set X of size $\frac{ms}{\lambda}$, in such a way that $\mathrm{supp}(A) = \Phi$. Consider the set $X = \{i - 1 \mid i \in \Phi\}$ of size $\frac{ms}{\lambda}$: clearly, $\bigcup_{x \in X} \mathrm{supp}(B \pm x) = \Phi$. Now we take $\frac{\lambda}{4}$ copies of every block $B \pm x$: the pf array A obtained by following our procedure is an integer ${}^{\lambda}\mathrm{H}_t(m,n;s,k)$.

For instance, the integer ${}^{8}H_{5}(5, 10; 8, 4)$ given in Example 1.9 was obtained by following the proof of the previous lemma. In fact, $\lambda = 8$ and t = 5 divides $\frac{2 \cdot 5 \cdot 8}{8}$; note that $\ell = 3$ and Y = 2 * (0, 1, 3, 4, 6).

Lemma 3.3 Let λ be a divisor of ms such that $\lambda \equiv 2 \pmod{4}$. There exists an integer ${}^{\lambda}H_t(m,n;s,k)$ for any divisor t of $\frac{2ms}{\lambda}$.

PROOF: We first consider the case when ℓ is odd, which means that t divides $\frac{ms}{\lambda}$. Let $B = B_{1,0} = \boxed{\frac{1 - 2}{-1 2}}$; note that $\mu(B) = 2$. We start considering the set $X_0 = \{0, 2, 4, \dots, \ell - 3\}$ of size $\frac{\ell - 1}{2} = \frac{ms}{\lambda t}$: it is easy to see that $\bigcup_{x \in X_0} \operatorname{supp}(B \pm x) = [1, \ell] \setminus \{\ell\}$. Similarly, for any $i \in \mathbb{N}$, if $X_i = \{i\ell, i\ell + 2, i\ell + 4, \dots, (i+1)\ell - 3\}$, then

$$\bigcup_{x \in X_i} \operatorname{supp}(B \pm x) = [i\ell + 1, (i+1)\ell] \setminus \{(i+1)\ell\}$$

and $X_{i_1} \cap X_{i_2} = \emptyset$ if $i_1 \neq i_2$. If t is even, take $X = \bigcup_{i=0}^{t/2-1} X_i$: this is a set of size $\frac{t}{2} \cdot \frac{ms}{\lambda t} = \frac{ms}{2\lambda}$, as required. Furthermore,

$$\bigcup_{x \in X} \operatorname{supp}(B \pm x) = \bigcup_{i=0}^{t/2-1} \left([i\ell+1, (i+1)\ell] \setminus \{(i+1)\ell\} \right)$$
$$= \left[1, \frac{t}{2}\ell \right] \setminus \left\{ \ell, 2\ell, \dots, \frac{t}{2}\ell \right\} = \left[1, \frac{ms}{\lambda} + \frac{t}{2} \right] \setminus \left\{ \ell, 2\ell, \dots, \frac{t}{2}\ell \right\}.$$

Suppose now that t is odd, which implies that $\ell \equiv 1 \pmod{4}$. Take

$$Z = \left\{ \left(\frac{t-1}{2}\right)\ell, \left(\frac{t-1}{2}\right)\ell + 2, \left(\frac{t-1}{2}\right)\ell + 4, \dots, \left(\frac{t-1}{2}\right)\ell + 2\frac{\ell-5}{4} \right\}.$$

Then $|Z| = \frac{\ell-1}{4} = \frac{ms}{2\lambda t}$ and $\bigcup_{z \in Z} \operatorname{supp}(B \pm z) = \left[\left(\frac{t-1}{2}\right)\ell + 1, \left(\frac{t-1}{2}\right)\ell + \frac{\ell-1}{2}\right]$. So, we can take $X = \left(\bigcup_{i=0}^{(t-3)/2} X_i\right) \cup Z$: this is a set of size $\frac{t-1}{2} \cdot \frac{ms}{\lambda t} + \frac{ms}{2\lambda t} = \frac{ms}{2\lambda}$, as required. In this case,

$$\begin{split} \bigcup_{x \in X} \mathrm{supp}(B \pm x) &= \bigcup_{i=0}^{\frac{t-3}{2}} \left([i\ell+1, (i+1)\ell] \setminus \{(i+1)\ell\} \right) \cup \\ \left[\left(\frac{t-1}{2}\right)\ell + 1, \left(\frac{t-1}{2}\right)\ell + \frac{\ell-1}{2} \right] \\ &= \left(\left[1, \frac{t-1}{2}\ell \right] \setminus \left\{ \ell, 2\ell, \dots, \frac{t-1}{2}\ell \right\} \right) \cup \left[\left(\frac{t-1}{2}\right)\ell + 1, \frac{ms}{\lambda} + \frac{t-1}{2} \right] \\ &= \left[1, \frac{ms}{\lambda} + \left\lfloor \frac{t}{2} \right\rfloor \right] \setminus \left\{ \ell, 2\ell, \dots, \left\lfloor \frac{t}{2} \right\rfloor \ell \right\}. \end{split}$$

In both cases, considering $\frac{\lambda}{2}$ copies of the distinct blocks $B \pm x$ with $x \in X$, the pf array A obtained by following our procedure is an integer ${}^{\lambda}\mathbf{H}_t(m, n; s, k)$.

Finally, we consider the case when ℓ is even, which implies that $t \equiv 0 \pmod{4}$. Let $B = B_{\ell,0} = \boxed{\frac{1 - (\ell + 1)}{-1 \ell + 1}}$; note that $\mu(B) = 2$. We start considering the set $X_0 = [0, \ell - 2]$ of size $\ell - 1 = \frac{2ms}{\lambda t}$: it is easy to see that $\bigcup_{x \in X_0} \operatorname{supp}(B \pm x) = [1, 2\ell] \setminus \{\ell, 2\ell\}$. Similarly, for any $i \in \mathbb{N}$, if $X_i = [2i\ell, (2i+1)\ell - 2]$, then

$$\bigcup_{x \in X_i} \operatorname{supp}(B \pm x) = [2i\ell + 1, (2i+2)\ell] \setminus \{(2i+1)\ell, (2i+2)\ell\}$$

and $X_{i_1} \cap X_{i_2} = \emptyset$ if $i_1 \neq i_2$. Take $X = \bigcup_{i=0}^{t/4-1} X_i$: this is a set of size $\frac{t}{4} \cdot (\ell - 1) = \frac{ms}{2\lambda}$, as required. In this case,

$$\bigcup_{x \in X} \operatorname{supp}(B \pm x) = \bigcup_{i=0}^{t/4-1} \left([2i\ell + 1, (2i+2)\ell] \setminus \{(2i+1)\ell, (2i+2)\ell\} \right) \\ = \left[1, \frac{t}{2}\ell \right] \setminus \left\{ \ell, 2\ell, \dots, \frac{t}{2}\ell \right\} = \left[1, \frac{ms}{\lambda} + \frac{t}{2} \right] \setminus \left\{ \ell, 2\ell, \dots, \frac{t}{2}\ell \right\}.$$

Now we take $\frac{\lambda}{2}$ copies of every block $B \pm x$: the pf array A obtained by following our procedure is an integer ${}^{\lambda}\mathbf{H}_t(m, n; s, k)$.

We now deal with the case λ odd. This implies that λ divides ms/4.

Lemma 3.4 Let λ be a positive odd integer. There exists an integer ${}^{\lambda}H_t(m,n;s,k)$ for any divisor t of $\frac{2ms}{\lambda}$ such that $t \equiv 0 \pmod{8}$.

PROOF: Let $B = B_{\ell,2\ell} = \frac{1 - (\ell+1)}{-(2\ell+1) - 3\ell+1}$, where $\ell = \frac{2ms}{\lambda t} + 1$. Note that

 $\mu(B) = 1$. An integer ${}^{\lambda}\mathrm{H}_t(m,n;s,k)$, say A, can be obtained by following the construction described before, once we exhibit a suitable set X of size $\frac{ms}{4\lambda}$, in such a way that $\mathrm{supp}(A) = \left[1, \frac{ms}{\lambda} + \frac{t}{2}\right] \setminus \left\{\ell, 2\ell, \ldots, \frac{t}{2}\ell\right\}$.

Start considering the set $X_0 = [0, \ell - 2]$ of size $\ell - 1 = \frac{2ms}{\lambda t}$: it is easy to see that $\bigcup_{x \in X_0} \operatorname{supp}(B \pm x) = [1, 4\ell] \setminus \{\ell, 2\ell, 3\ell, 4\ell\}$. Similarly, for any $i \in \mathbb{N}$, if $X_i = [4i\ell, (4i+1)\ell - 2]$, then

$$\bigcup_{x \in X_i} \operatorname{supp}(B \pm x) = [4i\ell + 1, (4i+4)\ell] \setminus \{(4i+1)\ell, (4i+2)\ell, (4i+3)\ell, (4i+4)\ell\}.$$

Clearly, $X_{i_1} \cap X_{i_2} = \emptyset$ if $i_1 \neq i_2$. So, take $X = \bigcup_{i=0}^{t/8-1} X_i$: this is a set of size $\frac{t}{8} \cdot (\ell - 1) = \frac{t}{8} \cdot \frac{2ms}{\lambda t} = \frac{ms}{4\lambda}$, as required. It is easy to see that

$$\begin{split} \bigcup_{x \in X} \mathrm{supp}(B \pm x) &= \bigcup_{i=0}^{t/8-1} \left([4i\ell + 1, (4i+4)\ell] \setminus \{(4i+1)\ell, (4i+2)\ell, (4i+3)\ell, (4i+4)\ell\} \right) \\ &= \left[1, \frac{t}{2}\ell \right] \setminus \left\{ \ell, 2\ell, \dots, \frac{t}{2}\ell \right\} = \left[1, \frac{ms}{\lambda} + \frac{t}{2} \right] \setminus \left\{ \ell, 2\ell, \dots, \frac{t}{2}\ell \right\}. \end{split}$$

Now we take λ copies of every block $B \pm x$: the pf array A obtained by following our procedure is an integer ${}^{\lambda}\mathbf{H}_t(m, n; s, k)$.

Lemma 3.5 Let λ be a positive odd integer. There exists an integer ${}^{\lambda}H_t(m, n; s, k)$ for any divisor t of $\frac{ms}{\lambda}$ such that $t \equiv 0 \pmod{4}$.

PROOF: Let $B = B_{1,\ell} = \boxed{\begin{array}{c|c} 1 & -2 \\ \hline -(\ell+1) & \ell+2 \end{array}}$: note that $\mu(B) = 1$ and, since t divides

 $\frac{ms}{\lambda}, \ell = \frac{2ms}{\lambda t} + 1 \text{ is an odd integer. We start considering the set } X_0 = \{0, 2, 4, \dots, \ell - 3\}$ of size $\frac{\ell - 1}{2} = \frac{ms}{\lambda t}$: it is easy to see that $\bigcup_{x \in X_0} \operatorname{supp}(B \pm x) = [1, \ell - 1] \cup [\ell + 1, 2\ell - 1] =$

 $[1, 2\ell] \setminus \{\ell, 2\ell\}$. Similarly, for any $i \in \mathbb{N}$, if $X_i = \{2i\ell, 2i\ell+2, 2i\ell+4, \dots, (2i+1)\ell-3\}$, then

$$\bigcup_{x \in X_i} \operatorname{supp}(B \pm x) = [2i\ell + 1, 2(i+1)\ell] \setminus \{(2i+1)\ell, (2i+2)\ell\}$$

and $X_{i_1} \cap X_{i_2} = \emptyset$ if $i_1 \neq i_2$. So, take $X = \bigcup_{i=0}^{t/4-1} X_i$: this is a set of size $\frac{t}{4} \cdot \frac{\ell-1}{2} = \frac{t}{4} \cdot \frac{ms}{\lambda t} = \frac{ms}{4\lambda}$, as required. Hence,

$$\bigcup_{x \in X} \operatorname{supp}(B \pm x) = \bigcup_{i=0}^{t/4-1} \left([2i\ell + 1, 2(i+1)\ell] \setminus \{(2i+1)\ell, (2i+2)\ell\} \right) \\ = \left[1, \frac{t}{2}\ell \right] \setminus \left\{ \ell, 2\ell, \dots, \frac{t}{2}\ell \right\} = \left[1, \frac{ms}{\lambda} + \frac{t}{2} \right] \setminus \left\{ \ell, 2\ell, \dots, \frac{t}{2}\ell \right\}$$

Now we take λ copies of every block $B \pm x$: the pf array A obtained by following our procedure is an integer ${}^{\lambda}H_t(m, n; s, k)$.

For instance, to construct an integer ${}^{5}\text{H}_{4}(5, 10; 8, 4)$ we can follow the proof of the previous lemma. In fact, $\lambda = 5$ and t = 4 divides $\frac{5\cdot 8}{5}$; note that $\ell = 5$ and Y = 5 * (0, 2).

	1	-2		-8	9	3	-4		-6	7	
	9	3	-4		-6	7	1	-2		-8	
${}^{5}\mathrm{H}_{4}(5, 10; 8, 4) =$	-6	7	1	-2		-8	9	3	-4		
		-8	9	3	-4		-6	7	1	-2	
	-4		-6	7	1	-2		-8	9	3	

Lemma 3.6 Let λ be a positive odd integer. There exists an integer ${}^{\lambda}H_t(m, n; s, k)$ for any divisor t of $\frac{ms}{2\lambda}$.

PROOF: Let $B = B_{1,2} = \begin{bmatrix} 1 & -2 \\ -3 & 4 \end{bmatrix}$. Note that $\mu(B) = 1$ and $\ell = \frac{2ms}{\lambda t} + 1 \equiv 1$ (mod 4) since t divides $\frac{ms}{2\lambda}$. We start considering the set $X_0 = \{0, 4, 8, \dots, \ell - 5\}$ of size $\frac{\ell-1}{4} = \frac{ms}{2\lambda t}$: clearly, $\bigcup_{x \in X_0} \operatorname{supp}(B \pm x) = [1, \ell] \setminus \{\ell\}$. Similarly, for any $i \in \mathbb{N}$, if $X_i = \{i\ell, i\ell + 4, i\ell + 8, \dots, (i+1)\ell - 5\}$, then

$$\bigcup_{x \in X_i} \operatorname{supp}(B \pm x) = [i\ell + 1, (i+1)\ell] \setminus \{(i+1)\ell\}$$

and $X_{i_1} \cap X_{i_2} = \emptyset$ if $i_1 \neq i_2$.

If t is even, take $X = \bigcup_{i=0}^{t/2-1} X_i$: this is a set of size $\frac{t}{2} \cdot \frac{\ell-1}{4} = \frac{t}{2} \cdot \frac{ms}{2\lambda t} = \frac{ms}{4\lambda}$, as required. Hence,

$$\bigcup_{x \in X} \operatorname{supp}(B \pm x) = \bigcup_{i=0}^{t/2-1} \left([i\ell+1, (i+1)\ell] \setminus \{(i+1)\ell\} \right)$$
$$= \left[1, \frac{t}{2}\ell \right] \setminus \left\{ \ell, 2\ell, \dots, \frac{t}{2}\ell \right\} = \left[1, \frac{ms}{\lambda} + \frac{t}{2} \right] \setminus \left\{ \ell, 2\ell, \dots, \frac{t}{2}\ell \right\}.$$

Suppose now that t is odd. Notice that, in this case, $\ell \equiv 1 \pmod{8}$. Take

$$Z = \left\{ \left(\frac{t-1}{2}\right)\ell, \left(\frac{t-1}{2}\right)\ell + 4, \left(\frac{t-1}{2}\right)\ell + 8, \dots, \left(\frac{t-1}{2}\right)\ell + 4\frac{\ell-9}{8} \right\}.$$

Then $|Z| = \frac{\ell-1}{8} = \frac{ms}{4\lambda t}$ and $\bigcup_{z \in Z} \operatorname{supp}(B \pm z) = \left[\left(\frac{t-1}{2} \right) \ell + 1, \left(\frac{t-1}{2} \right) \ell + \frac{\ell-1}{2} \right]$. Take $X = \left(\bigcup_{i=0}^{(t-3)/2} X_i \right) \cup Z$: this is a set of size $\frac{t-1}{2} \cdot \frac{\ell-1}{4} + \frac{\ell-1}{8} = \frac{t-1}{2} \cdot \frac{ms}{2\lambda t} + \frac{ms}{4\lambda t} = \frac{ms}{4\lambda}$, as required. In this case,

$$\begin{split} \bigcup_{x \in X} \mathrm{supp}(B \pm x) &= \bigcup_{i=0}^{\frac{t-3}{2}} \left([i\ell+1, (i+1)\ell] \setminus \{(i+1)\ell\} \right) \cup \\ \left[\left(\frac{t-1}{2}\right)\ell + 1, \left(\frac{t-1}{2}\right)\ell + \frac{\ell-1}{2} \right] \\ &= \left(\left[1, \frac{t-1}{2}\ell \right] \setminus \left\{ \ell, 2\ell, \dots, \frac{t-1}{2}\ell \right\} \right) \cup \left[\left(\frac{t-1}{2}\right)\ell + 1, \frac{ms}{\lambda} + \frac{t-1}{2} \right] \\ &= \left[1, \frac{ms}{\lambda} + \left\lfloor \frac{t}{2} \right\rfloor \right] \setminus \left\{ \ell, 2\ell, \dots, \left\lfloor \frac{t}{2} \right\rfloor \ell \right\}. \end{split}$$

In both cases, we construct the pf array A using λ copies of every block $B \pm x$; so, the pf array A obtained by following our procedure is an integer ${}^{\lambda}H_t(m, n; s, k)$. \Box

For instance, we can follow the proof of the previous lemma for constructing an integer ${}^{3}\text{H}_{3}(9,9;8,8)$. In fact, $\lambda = 3$ and t = 3 divides $\frac{9\cdot8}{2\cdot3}$; note that $\ell = 17$ and Y = 3 * (0,4,8,12,17,21).

	1	-2	-20	21	13	-14		-7	8
	12	5	-6	-24	25	18	-19		-11
	-3	4	9	-10	-15	16	22	-23	
		-7	8	13	-14	-20	21	1	-2
${}^{3}\mathrm{H}_{3}(9,9;8,8) =$	-6		-11	12	18	-19	-24	25	5
	9	-10		-15	16	22	-23	-3	4
	8	13	-14		-20	21	1	-2	-7
	-11	12	18	-19		-24	25	5	-6
	-10	-15	16	22	-23		-3	4	9

We now consider the case when λ does not divide ms. We need to adjust our general strategy in order to satisfy (2.1).

Lemma 3.7 Suppose that λ does not divide ms. Then, there exists an integer ${}^{\lambda}H_t(m,n;s,k)$ for any divisor t of $\frac{2ms}{\lambda}$.

PROOF: Since λ divides 2ms but does not divide ms, from $s \equiv 0 \pmod{4}$ we obtain $\lambda \equiv 0 \pmod{8}$. We can easily adapt the proof of Lemma 3.2, using the block $B = B_{0,0} = \boxed{1 \quad -1 \atop -1}$ and considering two possibilities. In both cases, an

integer ${}^{\lambda}\mathrm{H}_t(m,n;s,k)$, say A, can be obtained by following the construction given at the beginning of this section and using the blocks $B \pm y_0, B \pm y_1, \ldots, B \pm y_{\frac{ms}{4}-1}$ for a suitable sequence $Y = (y_0, y_1, \ldots, y_{\frac{ms}{4}-1})$ in such a way that condition (2.1) is satisfied.

Suppose that ℓ is odd or t is even. It suffices to consider the sequence X obtained by taking the natural ordering \leq of $\{i - 1 \mid i \in \Phi\} \subset \mathbb{N}$, and define $Y = \frac{\lambda}{4} * X$.

Suppose that ℓ is even and t is odd. Let X_1 be the sequence obtained by taking the natural ordering \leq of $\{i-1 \mid i \in \Psi\} \subset \mathbb{N}$, where $\Psi = \Phi \setminus \{\frac{t\ell}{2}\}$. Also, let $Y_1 = \frac{\lambda}{4} * X_1$ and let Y_2 be the sequence obtained by repeating $\frac{\lambda}{8}$ times the integer $\frac{t\ell}{2} - 1$. Define $Y = Y_1 + Y_2$ and note that $|Y| = \frac{\lambda}{4} \cdot \frac{2ms-\lambda}{2\lambda} + \frac{\lambda}{8} = \frac{ms}{4}$.

For instance, the integer ${}^{16}\text{H}_5(10, 10; 4, 4)$ given in Example 1.9 was obtained by following the proof of the previous lemma. In fact, $\lambda = 16$ does not divide ms = 40; note that $\ell = 2$, $X_1 = (0, 2)$ and Y = (0, 2, 0, 2, 0, 2, 0, 2, 4, 4).

Proposition 3.8 Suppose $4 \le s \le n$, $4 \le k \le m$, ms = nk and $s, k \equiv 0 \pmod{4}$. Let λ be a divisor of 2ms. There exists a shiftable integer ${}^{\lambda}H_t(m, n; s, k)$ for every divisor t of $\frac{2ms}{\lambda}$.

PROOF: If λ does not divide ms, the statement follows from Lemma 3.7. So, suppose that λ divides ms. If $\lambda \equiv 0 \pmod{4}$ or $\lambda \equiv 2 \pmod{4}$, then we can apply Lemma 3.2 or Lemma 3.3, respectively. Now we assume λ odd. If $t \equiv 0 \pmod{8}$, we apply Lemma 3.4. If $t \equiv 4 \pmod{8}$, then t divides $\frac{ms}{\lambda}$ and hence we can apply Lemma 3.5. Finally, if $t \not\equiv 0 \pmod{4}$, then t divides $\frac{ms}{2\lambda}$ and so the existence of an integer ${}^{\lambda}H_t(m,n;s,k)$ follows from Lemma 3.6. In all these cases, the integer λ -fold Heffter array that we construct is shiftable.

4 The case $s \equiv 2 \pmod{4}$, k and m even

In this section, we will assume that s, m, k are positive even integers with $s \equiv 2 \pmod{4}$ and $s \geq 6$. We need to distinguish two cases, according to the divisibility of ms by λ . In fact, if λ does not divide ms, from $ms \equiv 0 \pmod{4}$ we obtain $\lambda \equiv 0 \pmod{8}$. In this case, we have to construct pf arrays that satisfy (2.1).

If λ divides ms we write

$$\lambda = \lambda_1 \lambda_2$$
, where λ_1 divides $\frac{m}{2}$ and λ_2 divides 2s. (4.1)

Let t be a divisor of $\frac{2ms}{\lambda}$ and set

$$\ell = \frac{2ms}{\lambda t} + 1.$$

4.1 Construction of nice pairs of sequences

To obtain an integer ${}^{\lambda}\mathbf{H}_t(m, n; s, k)$, we first construct pairs of sequences, satisfying the following properties.

Definition 4.1 A pair $(\mathcal{B}_1, \mathcal{B}_2)$ of sequences is said to be *nice* if, for a fixed positive integer *b*, we have:

• the sequence \mathcal{B}_1 consists of blocks satisfying this condition:

there exist b integers $\sigma_1, \ldots, \sigma_b$ such that the elements of \mathcal{B}_1 are shiftable blocks B of size $2 \times 2b$ with $\tau_1(B) = \tau_2(B) = 0$ (4.2) and $\gamma_{2i-1}(B) = -\gamma_{2i}(B) = \sigma_i$ for all $i \in [1, b]$;

• the sequence \mathcal{B}_2 consists of blocks satisfying this condition:

there exist 2b integers $\sigma'_1, \ldots, \sigma'_{2b}$ with $\sum_{i=1}^b \sigma'_{2i-1} = \sum_{i=1}^b \sigma'_{2i} = 0$, such that the elements of \mathcal{B}_2 are shiftable blocks B' of size $2 \times 2b$ with $\tau_1(B') = \tau_2(B') = 0$ and $\gamma_i(B') = \sigma'_i$ for all $i \in [1, 2b]$; (4.3)

• the sequences \mathcal{B}_1 and \mathcal{B}_2 have the same length and, writing $\mathcal{B}_1 = (B_1, B_2, \ldots, B_e)$ and $\mathcal{B}_2 = (B'_1, B'_2, \ldots, B'_e)$, then $\mathcal{E}(B_i) = \mathcal{E}(B'_i)$ for all $i \in [1, e]$.

Observe that the sequences $\mathcal{B}_1, \mathcal{B}_2$ in the previous definition do not need to be distinct.

We construct these nice pairs of sequences, starting with the case when λ divides ms. In particular, our sequences \mathcal{B}_i , consisting of shiftable blocks of size $2 \times s$, are of length $\frac{m}{2\lambda_1}$ and such that $\mu(\mathcal{B}_i) = \lambda_2$. We begin with the case when λ_2 is odd. Note that this implies that λ_2 divides $\frac{s}{2}$.

Lemma 4.2 [18, Corollary 4.10 and Lemma 5.1] Let a and c be even integers with $a \ge 2, c \ge 6$ and $c \equiv 2 \pmod{4}$. Let u be a divisor of 2ac and set $\rho = \frac{2ac}{u} + 1$. There exists a nice pair $(\tilde{\mathcal{B}}_1, \tilde{\mathcal{B}}_2)$ of sequences of length $\frac{a}{2}$, where $\tilde{\mathcal{B}}_1$ and $\tilde{\mathcal{B}}_2$ consist of blocks of size $2 \times c, \mu(\tilde{\mathcal{B}}_1) = \mu(\tilde{\mathcal{B}}_2) = 1$ and

$$\operatorname{supp}(\mathcal{B}_1) = \operatorname{supp}(\mathcal{B}_2) = [1, ac + \lfloor u/2 \rfloor] \setminus \{j\rho : j \in [1, \lfloor u/2 \rfloor]\}$$

Corollary 4.3 Let $\lambda = \lambda_1 \lambda_2$ be as in (4.1). If $\lambda_2 \neq \frac{s}{2}$ is odd, there exists a nice pair $(\mathcal{B}_1, \mathcal{B}_2)$ of sequences of length $\frac{m}{2\lambda_1}$, where \mathcal{B}_1 and \mathcal{B}_2 consist of blocks of size $2 \times s$, $\mu(\mathcal{B}_1) = \mu(\mathcal{B}_2) = \lambda_2$ and

$$\operatorname{supp}(\mathcal{B}_1) = \operatorname{supp}(\mathcal{B}_2) = \left[1, \frac{ms}{\lambda} + \left\lfloor \frac{t}{2} \right\rfloor\right] \setminus \left\{\ell, 2\ell, \dots, \left\lfloor \frac{t}{2} \right\rfloor \ell\right\} = \Phi.$$

PROOF: Take $a = \frac{m}{\lambda_1}$, $c = \frac{s}{\lambda_2}$ and u = t. Since λ_1 divides $\frac{m}{2}$, a is a positive even integer; since $\lambda_2 \neq \frac{s}{2}$ is odd and divides 2s, then c is an even integer such that $c \geq 6$ and $c \equiv 2 \pmod{4}$. Note that t divides $2ac = \frac{2ms}{\lambda_1\lambda_2}$ and $\rho = \frac{2ac}{t} + 1 = \frac{2ms}{\lambda t} + 1 = \ell$. Hence, we can apply Lemma 4.2 obtaining a nice pair $(\tilde{\mathcal{B}}_1, \tilde{\mathcal{B}}_2)$ of sequences of length $\frac{m}{2\lambda_1}$ consisting of blocks of size $2 \times \frac{s}{\lambda_2}$ such that $\mu(\tilde{\mathcal{B}}_1) = \mu(\tilde{\mathcal{B}}_2) = 1$ and $\operatorname{supp}(\tilde{\mathcal{B}}_1) =$ $\operatorname{supp}(\tilde{\mathcal{B}}_2) = \Phi$. Now, replace every block \tilde{B} of $\tilde{\mathcal{B}}_i$, i = 1, 2, with the block B obtained by juxtaposing λ_2 copies of \tilde{B} . So, B is a block of size $2 \times s$ and $\mu(B) = \lambda_2$. Call $\mathcal{B}_1, \mathcal{B}_2$ the two sequences so obtained. It follows that the pair $(\mathcal{B}_1, \mathcal{B}_2)$ satisfies the required properties.

Now we consider the case when $\lambda_2 = \frac{s}{2}$.

Lemma 4.4 Let $\lambda = \lambda_1 \lambda_2$ be as in (4.1) with $\lambda_2 = \frac{s}{2}$. There exists a nice pair $(\mathcal{B}_1, \mathcal{B}_2)$ of sequences of length $\frac{m}{2\lambda_1}$, where \mathcal{B}_1 and \mathcal{B}_2 consist of blocks of size $2 \times s$, $\mu(\mathcal{B}_1) = \mu(\mathcal{B}_2) = \frac{s}{2}$ and $\operatorname{supp}(\mathcal{B}_1) = \operatorname{supp}(\mathcal{B}_2) = \Phi$.

PROOF: We first consider the case when ℓ is odd. Consider the following shiftable blocks:

Λ	_	1	-2	-3	4				F	_	1	-2	-4	5			
Л	_	-1	2	3	-4	,			ľ	_	-1	2	4	-5	,		
F	_	1	-1	3	-4	-3	4		G	_	4	2	-2	2	-1	-5	
Ľ	_	-2	2	-1	2	3	-4	,	G	=	-5	-1	4	-4	1	5	,
E'	_	1	3	-1	-4	-3	4		G'	_	4	-2	2	2	-1	-5	
Ľ	_	-2	-1	2	2	3	-4	,	G	_	-5	4	-1	-4	1	5	•

Note that A and F satisfy both (4.2) and (4.3); E and G satisfy (4.2); E' and G' satisfy (4.3). We first construct the sequence \mathcal{B}_1 . To this purpose, take the block B obtained by juxtaposing the block E and $\frac{s-6}{4}$ copies of the block A. We obtain a block of size $2 \times s$ such that supp(B) = [1, 4] and $\mu(B) = \frac{s}{2}$. Also, let C be the block obtained by juxtaposing the block G and $\frac{s-6}{4}$ copies of the block F. Then C is a block of size $2 \times s$ such that $\text{supp}(C) = \{1, 2, 4, 5\}$ and $\mu(C) = \frac{s}{2}$.

Assume $\ell \equiv 1 \pmod{4}$. Let $S = (B, B \pm 4, B \pm 8, \dots, B \pm 4\frac{\ell-5}{4})$. Then $|S| = \frac{\ell-1}{4}$ and $\operatorname{supp}(S) = [1, \ell] \setminus \{\ell\}$. If t is even, take

$$\mathcal{B}_1 = S + (S \pm \ell) + (S \pm 2\ell) + \ldots + \left(S \pm \frac{t-2}{2}\ell\right)$$

If t is odd, then $\ell - 1 = 8 \frac{m}{2\lambda_1 t} \equiv 0 \pmod{8}$. Let

$$Y = \left(B, B \pm 4, B \pm 8, \dots, B \pm \left(4\frac{\ell - 9}{8}\right)\right)$$

and

$$\mathcal{B}_1 = S + (S \pm \ell) + (S \pm 2\ell) + \ldots + \left(S \pm \frac{t-3}{2}\ell\right) + \left(Y \pm \frac{t-1}{2}\ell\right).$$

In both cases, \mathcal{B}_1 is a sequence of length $\frac{(\ell-1)t}{8} = \frac{m}{2\lambda_1}$ such that $\mu(\mathcal{B}_1) = \frac{s}{2}$ and $\operatorname{supp}(\mathcal{B}_1) = \Phi$. The sequence \mathcal{B}_2 is obtained by replacing in \mathcal{B}_1 the block E with the block E'.

Assume $\ell \equiv 3 \pmod{4}$. Note that, in this case, $8\frac{m}{2\lambda_1 t} \equiv 2 \pmod{4}$ and so $t \equiv 0 \pmod{4}$. Take $S = (B, B \pm 4, B \pm 8, \dots, B \pm 4\frac{\ell-7}{4}, C \pm (\ell-3), B \pm (\ell+2), B \pm (\ell+6), B \pm (\ell+10), \dots, B \pm (2\ell-5))$. Then $|S| = \frac{\ell-1}{2}$ and $\text{supp}(S) = [1, 2\ell] \setminus \{\ell, 2\ell\}$. Define

$$\mathcal{B}_1 = S + (S \pm 2\ell) + (S \pm 4\ell) + \ldots + \left(S \pm 2\frac{t-4}{4}\ell\right).$$

So, \mathcal{B}_1 is a sequence of length $\frac{(\ell-1)t}{8} = \frac{m}{2\lambda_1}$ such that $\mu(\mathcal{B}_1) = \frac{s}{2}$ and $\text{supp}(\mathcal{B}_1) = \Phi$. The sequence \mathcal{B}_2 is obtained by replacing in \mathcal{B}_1 the block G with the block G'.

Finally, assume that ℓ is even. Note that, in this case, $t \equiv 0 \pmod{8}$. Consider the shiftable blocks:

H =	1	$-(\ell \cdot$	+1)	$-(2\ell \cdot$	+1)	3ℓ	+1				
11	<i>п</i> = _	-1	ℓ +	- 1	$2\ell +$	- 1	$-(3\ell$	(2 + 1)	,		
L = -		1	3ℓ	+1	$-(\ell$	+1)	ℓ +	- 1	-1	$-(3\ell+1)$	
	$-(\ell$	+1)	-(2	$\ell + 1)$	2ℓ	+1	$-(2\ell$	+1)	1	$3\ell + 1$	

Note that the blocks H and L satisfy both (4.2) and (4.3). Let K be the block obtained by juxtaposing the block L and $\frac{s-6}{4}$ copies of the block H. Then K is a block of size $2 \times s$ such that $\text{supp}(K) = \{1, \ell + 1, 2\ell + 1, 3\ell + 1\}$ and $\mu(K) = \frac{s}{2}$. Let $S = (K, K \pm 1, K \pm 2, \ldots, K \pm (\ell - 2))$. Then $|S| = \ell - 1$ and $\text{supp}(S) = [1, 4\ell] \setminus \{\ell, 2\ell, 3\ell, 4\ell\}$. Define

$$\mathcal{B}_1 = \mathcal{B}_2 = S + (S \pm 4\ell) + (S \pm 8\ell) + \ldots + \left(S \pm 4\frac{t-8}{8}\ell\right)$$

So, \mathcal{B}_i is a sequence of length $\frac{(\ell-1)t}{8} = \frac{m}{2\lambda_1}$ such that $\mu(\mathcal{B}_i) = \frac{s}{2}$ and $\text{supp}(\mathcal{B}_i) = \Phi$. \Box

For instance, using the previous lemma with m = 30, s = 10, $\lambda_1 = 3$ and t = 5, we have $\ell = 9$. The sequence \mathcal{B}_1 consists of the following five shiftable blocks:

$B_1 =$	_	1	-1	3	-4	-3	4	1	-2	—;	3 4			
$B_1 =$	-	-2	2	-1	2	3	-4	-1	2	3	-4	,		
$B_2 =$	=	5	-5	7	-8		8	5	-6		7 8			
D_2 –	_	-6	6	-5	6	7	-8	-5	6	7	-8	,		
$B_3 =$	_	10	-1	.0 .	12	-13	-12	13		.0	-11	-12	13	
$D_{3} =$	-	-11	1	1 –	-10	11	12	-13	3 –	10	11	12	-13	,
$B_4 =$	_	14	-1	.4 .	16	-17	-16	17	1	4	-15	-16	17	
$D_4 =$	-	-15	15	5 –	-14	15	16	-1'	7 –	14	15	16	-17	,
$B_{5} =$	_	19	-1	9 2	21	-22	-21	22	1	9	-20	-21	22	
$D_5 =$	-	-20	20) –	-19	20	21	-22	2 –	19	20	21	-22	•

We now deal with the case $\lambda_2 \equiv 2 \pmod{4}$.

Lemma 4.5 Let $\lambda = \lambda_1 \lambda_2$ be as in (4.1) with $\lambda_2 \equiv 2 \pmod{4}$ and $\lambda_2 \geq 6$. There exists a nice pair $(\mathcal{B}, \mathcal{B})$, where \mathcal{B} is a sequence of length $\frac{m}{2\lambda_1}$ consisting of blocks of size $2 \times s$ such that $\mu(\mathcal{B}) = \lambda_2$ and $\text{supp}(\mathcal{B}) = \Phi$.

PROOF: We first consider the case when ℓ is odd. Consider the following shiftable blocks:

$$A = \frac{1}{-1} \frac{-1}{1} \frac{2}{-2} \frac{-2}{-2}, \quad E = \frac{1}{-2} \frac{2}{-1} \frac{1}{-2} \frac{-1}{-2} \frac{-1}{-2} \frac{-1}{-2} \frac{-1}{-2} \frac{-1}{-2} \frac{-2}{-2} \frac{-1}{-2} \frac{-2}{-2} \frac{-2}{-2}$$

Note that A and E satisfy both (4.2) and (4.3). To construct the sequence \mathcal{B} , first take the block C obtained by juxtaposing the block E and $\frac{\lambda_2-6}{4}$ copies of the block A. We obtain a block of size $2 \times \lambda_2$ such that $\operatorname{supp}(C) = \{1,2\}$ and $\mu(C) = \lambda_2$. Consider the sequence $S = (C, C \pm 2, C \pm 4, \ldots, C \pm 2\frac{\ell-3}{2})$. Then $|S| = \frac{\ell-1}{2}$, $\mu(S) = \lambda_2$ and $\operatorname{supp}(S) = [1, \ell] \setminus \{\ell\}$. If t is even, take

$$\tilde{\mathcal{B}} = S + (S \pm \ell) + (S \pm 2\ell) + \ldots + \left(S \pm \frac{t-2}{2}\ell\right).$$

If t is odd, then $\ell - 1 = 4 \frac{\frac{m}{2\lambda_1} \cdot \frac{s}{\lambda_2}}{t} \equiv 0 \pmod{4}$. Let

$$Y = \left(C, C \pm 2, C \pm 4, \dots, C \pm \left(2\frac{\ell-5}{4}\right)\right)$$

and

$$\tilde{\mathcal{B}} = S + (S \pm \ell) + (S \pm 2\ell) + \ldots + \left(S \pm \frac{t-3}{2}\ell\right) + \left(Y \pm \frac{t-1}{2}\ell\right).$$

In both cases, $\tilde{\mathcal{B}}$ is a sequence of length $\frac{(\ell-1)t}{4} = \frac{ms}{2\lambda}$ such that $\mu(\tilde{\mathcal{B}}) = \lambda_2$ and $\operatorname{supp}(\tilde{\mathcal{B}}) = \Phi$.

Suppose now that ℓ is even. Note that, in this case, $t \equiv 0 \pmod{4}$. Consider the shiftable blocks:

F	F =	1		$\ell + 1$		$(\ell + 1)$				
Ľ		-1	1	$-(\ell +$	1)	$\ell + 1$,			
C	Q —		1	$\ell + 1$	-1	1		-1	$-(\ell+1)$	
G	_	$-(\ell$	+1)	-1	$\ell + 1$	$-(\ell +$	- 1)	1	$\ell + 1$	•

Note that the blocks F and G satisfy both (4.2) and (4.3). Take the block H obtained by juxtaposing the block G and $\frac{\lambda_2-6}{4}$ copies of the block F. We obtain a block of size $2 \times \lambda_2$ such that $\text{supp}(H) = \{1, \ell + 1\}$ and $\mu(H) = \lambda_2$. Consider the sequence $S = (H, H \pm 1, H \pm 2, \ldots, H \pm (\ell - 2))$. Then $|S| = \ell - 1, \mu(S) = \lambda_2$ and $\text{supp}(S) = [1, 2\ell] \setminus \{\ell, 2\ell\}$. Take

$$\tilde{\mathcal{B}} = S + (S \pm 2\ell) + (S \pm 4\ell) + \dots + \left(S \pm 2\frac{t-4}{4}\ell\right).$$

Hence, $\tilde{\mathcal{B}}$ is a sequence of length $\frac{(\ell-1)t}{4} = \frac{ms}{2\lambda}$ such that $\mu(\tilde{\mathcal{B}}) = \lambda_2$ and $\operatorname{supp}(\tilde{\mathcal{B}}) = \Phi$. Finally, for every ℓ , writing $\tilde{\mathcal{B}} = (K_1, K_2, \ldots, K_{\frac{ms}{2\lambda}})$ and $q = \frac{s}{\lambda_2}$, for every $i \in [1, \frac{m}{2\lambda_1}]$ we construct the block B_i juxtaposing the q blocks $K_{1+(i-1)q}, K_{2+(i-1)q}, \ldots, K_{iq}$. The blocks B_i are of size $2 \times q\lambda_2$, that is, of size $2 \times s$. So, we can set $\mathcal{B} = (B_1, B_2, B_3, \ldots, B_{\frac{m}{2\lambda_1}})$.

For instance, using the previous lemma with m = 84, s = 10, $\lambda_1 = 7$, $\lambda_2 = 10$ and t = 8, we have $\ell = 4$. The sequence \mathcal{B} consists of the following six shiftable blocks:

B_1	=	1	5	-1	1	-1	-5	1	-1	5	-5		
D_1	_	-5	-1	5	-5	1	5	-1	1	-5	5	,	
B_2	=	2	6	-2	2	-2	-6	2	-2	6	-6		
D_2	_	-6	-2	6	-6	2	6	-2	2	-6	6	,	
B_3	_	3	7	-3	3	-3	-7	3	-3	7	-7		
D_3	=	-7	-3	7	-7	3	7	-3	3	-7	7	,	
B_4	=	9	13	-9	Ģ) –	-9 –	13	9	-9	13	-13]
D_4	_	-13	-9	13	—	13 9	9 1	.3 ·	-9	9	-13	13	,
B_5	=	10	14	-	10	10	-10	-1	4 1	0 .	-10	14	-14
D_5	_	-14	-1	0 1	4	-14	10	14	-	10	10	-14	14
B_6	_	11	15	. –	11	11	-11	-1	5 1	1 ·	-11	15	-15
D_6	=	-15	-1	1 1	5	-15	11	15	—	11	11	-15	15

We now deal with the case $\lambda_2 = 2$.

Lemma 4.6 Let $\lambda = \lambda_1 \lambda_2$ be as in (4.1) with $\lambda_2 = 2$. Suppose that t divides $\frac{ms}{2\lambda_1}$. There exists a nice pair $(\mathcal{B}_1, \mathcal{B}_2)$ of sequences of length $\frac{m}{2\lambda_1}$, where \mathcal{B}_1 and \mathcal{B}_2 consist of blocks of size $2 \times s$, $\mu(\mathcal{B}_1) = \mu(\mathcal{B}_2) = 2$ and $\operatorname{supp}(\mathcal{B}_1) = \operatorname{supp}(\mathcal{B}_2) = \Phi$.

PROOF: Write s = 4q + 6 where $q \ge 0$ and take the following shiftable blocks:

TT		1	-2	-4	5				TT		1	-2	-3	4			
$U_3 =$		-1	2	4	-5	,			U_5	=	-1	2	3	-4	,		
<i>V</i> –		2	-2	-5	-6	4	7		V_3	_	1	-1	-5	-6	4	7	
$V_1 =$		-3	3	6	5	-4	-7	,	V3	=	-2	2	6	5	-4	-7	,
$V_{5} =$	Ĩ	6	-6	-2	-3	1	4		\overline{V}	_	1	-1	-4	-5	3	6	ĺ
$V_5 =$		-7	7	3	2	-1	-4	,	V_7	_	-2	2	5	4	-3	-6	,
Z =		1	-1	4	-5	-7	8		Z'	=	1	4	-1	-5	-7	8	
Z —		-2	2	-4	5	7	-8	,	Z	_	-2	-4	2	5	7	-8	ŀ

Note that, since t divides $\frac{ms}{2\lambda_1}$, ℓ is an odd integer.

If $\ell = 4x + 1 \ge 5$, take $\tilde{S} = (U_5, U_5 \pm 4, U_5 \pm 8, \dots, U_5 \pm 4(x-1))$. Then $|\tilde{S}| = x$, $\mu(\tilde{S}) = 2$ and $\text{supp}(\tilde{S}) = [1, \ell] \setminus \{\ell\}$. Let $\tilde{\mathcal{B}}$ be the sequence obtained by taking the

266

first $\frac{mq}{2\lambda_1}$ blocks in $\underset{c\geq 0}{+} (\tilde{S} \pm \ell c)$. If $\ell = 4x + 3 \geq 3$, take $\tilde{S} = (U_5, U_5 \pm 4, U_5 \pm 8, \dots, U_5 \pm 4(x-1), U_3 \pm 4x, U_5 \pm (4x+5), U_5 \pm (4x+9), \dots, U_5 \pm (8x+1))$. Then $|\tilde{S}| = 2x + 1$, $\mu(\tilde{S}) = 2$ and $\operatorname{supp}(\tilde{S}) = [1, 2\ell] \setminus \{\ell, 2\ell\}$. Let $\tilde{\mathcal{B}}$ be the sequence obtained by taking the first $\frac{mq}{2\lambda_1}$ blocks in $\underset{c\geq 0}{+} (\tilde{S} \pm 2\ell c)$. In both cases we obtain a sequence $\tilde{\mathcal{B}}$ of blocks of size 2×4 that satisfy both (4.2) and (4.3) and such that $\operatorname{supp}(\tilde{\mathcal{B}}) = [1, N]$ where $N = \frac{2mq}{\lambda_1} + \eta$ with $\eta = \lfloor \frac{2qt}{s} \rfloor$.

Now, we have to construct a sequence S' of shiftable blocks of size 2×6 satisfying condition (4.2) in such a way that $|S'| = \frac{m}{2\lambda_1}$ and

$$\operatorname{supp}(S') = \left[N+1, \frac{ms}{2\lambda_1} + \left\lfloor \frac{t}{2} \right\rfloor\right] \setminus \left\{j\ell : j \in \left[\eta+1, \left\lfloor \frac{t}{2} \right\rfloor\right]\right\}.$$

If $\ell = 3$, then $t = \frac{ms}{2\lambda_1}$ and $N = 3\frac{mq}{\lambda_1} \equiv 0 \pmod{3}$. We can take $S' = \frac{m}{2\lambda_1} - 1 (Z \pm (N + 9c))$. If $\ell = 5$, then $t = \frac{ms}{4\lambda_1}$ and $N = 5\frac{mq}{2\lambda_1} \equiv 0 \pmod{5}$. Define $T = (V_5, V_3 \pm 7)$. If $\frac{m}{2\lambda_1}$ is even, we can take $S' = \frac{m}{4\lambda_1} - 1 (T \pm (N + 15c))$. If $\frac{m}{2\lambda_1}$ is odd, we can take $S' = \begin{pmatrix} \frac{m-6\lambda_1}{4\lambda_1} \\ \pm \\ c=0 \end{pmatrix} + \begin{pmatrix} V_5 \pm \left(\frac{ms}{2\lambda_1} + \frac{t-15}{2}\right) \end{pmatrix}$.

Suppose now that $\ell \geq 7$: in this case, any set of 6 consecutive integers contains at most one multiple of ℓ . We start considering the interval [N + 1, N + 6] and the first multiple of ℓ belonging to the interval $[N + 1, \frac{ms}{2\lambda_1} + \lfloor t/2 \rfloor]$. So, if $(\eta + 1)\ell$ is an element of [N + 1, N + 6] we take the block V_r where r must be chosen in such a way that $\operatorname{supp}(V_r \pm N)$ does not contain $(\eta + 1)\ell$. Otherwise, we take the block V_7 and repeat this process considering the interval [N + 7, N + 12].

It will be useful to define, for all $b \ge 1$, the sequence

$$H(b) = (V_7, V_7 \pm 6, V_7 \pm 12, \dots, V_7 \pm 6(b-1)).$$

Also, we set H(0) to be the empty sequence: so, for all $b \ge 0$ the sequence H(b) contains b elements and supp(H(b)) = [1, 6b].

Write $(\eta + 1)\ell - N = 6h_0 + r_0$, where $0 \le r_0 < 6$, and define the sequence

$$S'_0 = (H(h_0), V_{r_0} \pm 6h_0).$$

Note that r_0 is odd, since ℓ is odd and $(\eta + 1)\ell - N \equiv (\eta + 1)\ell + \eta \equiv 1 \pmod{2}$. Furthermore, $\operatorname{supp}(S'_0 \pm N) = [N+1, N+6h_0+7] \setminus \{(\eta+1)\ell\}$.

Now, for all $j \in [1, \lfloor t/2 \rfloor - \eta]$, write $\ell - 7 + r_{j-1} = 6h_j + r_j$, where $0 \le r_j < 6$, and define the sequence

$$S'_{j} = \left(H(h_{j}) \pm \left(7j + 6\sum_{i=0}^{j-1} h_{i}\right), V_{r_{j}} \pm \left(7j + 6\sum_{i=0}^{j} h_{i}\right)\right).$$

Note that $(\eta + j + 1)\ell - N = 6\sum_{i=0}^{j} h_i + 7j + r_j$ and

$$\operatorname{supp}(S'_j \pm N) = \left[N + 1 + 7j + 6\sum_{i=0}^{j-1} h_i, \ N + 7(j+1) + 6\sum_{i=0}^j h_i \right] \setminus \{(\eta + j + 1)\ell\}.$$

The elements of S' are the first $\frac{m}{2\lambda_1}$ blocks in $\overset{\lfloor t/2 \rfloor - \eta}{\underset{c=0}{\#}} (S'_c \pm N).$

Finally, writing $\tilde{\mathcal{B}} = \left(A_1, \ldots, A_{\frac{mq}{2\lambda_1}}\right)$ and $S' = \left(G_1, \ldots, G_{\frac{m}{2\lambda_1}}\right)$, for all $i = 1, \ldots, \frac{m}{2\lambda_1}$, let B_i be the block of size $2 \times s$ obtained by juxtaposing the q blocks

$$A_{(i-1)q+1}, A_{(i-1)q+2}, A_{(i-1)q+3}, \ldots, A_{iq}$$

and the block G_i . By construction, the sequence $\mathcal{B}_1 = (B_1, \ldots, B_{\frac{m}{2\lambda_1}})$ satisfies condition (4.2), has cardinality $\frac{m}{2\lambda_1}$, $\mu(\mathcal{B}_1) = 2$ and $\operatorname{supp}(\mathcal{B}_1) = \operatorname{supp}(S) \cup \operatorname{supp}(S') = \Phi$. The sequence \mathcal{B}_2 is obtained from \mathcal{B}_1 by replacing the block Z with the block Z' (case $\ell = 3$).

Lemma 4.7 Let $\lambda = \lambda_1 \lambda_2$ be as in (4.1) with $\lambda_2 = 2$. Let p be an odd prime dividing s and suppose that t is a divisor of $\frac{ms}{\lambda_1}$ such that $t \equiv 0 \pmod{4p}$. There exists a nice pair $(\mathcal{B}, \mathcal{B})$, where \mathcal{B} is a sequence of length $\frac{m}{2\lambda_1}$ consisting of blocks of size $2 \times s$ such that $\mu(\mathcal{B}) = 2$ and $\text{supp}(\mathcal{B}) = \Phi$.

PROOF: Take the following blocks:

W. –	_	1	$-(\ell \cdot$	+ 1)	$-(2\ell+1)$				
<i>vv</i> ₄ –	rr4 —	-1	ℓ +	- 1	$2\ell + 1$	$-(3\ell+1)$,		
$W_6 =$		1	-1	$-(3\ell +$	1) $-(4\ell+1)$) $2\ell + 1$	$5\ell + 1$		
	$-(\ell$	+1)	$\ell + \ell$	$1 4\ell + 1$	$3\ell + 1$	$-(2\ell+1)$	$-(5\ell+1)$	•	

Then W_4 and W_6 satisfy both properties (4.2) and (4.3) with column sums (0, 0, 0, 0)and $(-\ell, \ell, \ell, -\ell, 0, 0)$, respectively. Furthermore, $\mu(W_4) = \mu(W_6) = 2$ and

 $supp(W_4) = \{j\ell + 1 : j \in [0,3]\}$ and $supp(W_6) = \{j\ell + 1 : j \in [0,5]\}.$

Let V be the following $2 \times 2p$ block:

$$V = \begin{bmatrix} W_6 & W_4 \pm 6\ell & W_4 \pm 10\ell & \cdots & W_4 \pm (2p-4)\ell \end{bmatrix}$$

Clearly, also V satisfies both (4.2) and (4.3) and its support is $\operatorname{supp}(V) = \{j\ell + 1 : j \in [0, 2p - 1]\}$. We can use this block V for constructing our sequence \mathcal{B} : the $2 \times s$ blocks of \mathcal{B} are obtained simply by juxtaposing $h = \frac{s}{2p}$ blocks of type $V \pm x$, for $x \in X \subset \mathbb{N}$, following the natural ordering of (X, \leq) . So, we are left to exhibit a suitable set X of size $\frac{mh}{2\lambda_1}$ such that the support of the corresponding sequence \mathcal{B} is Φ .

Let $X_0 = [0, \ell - 2]$. Then $\operatorname{supp}(V \pm x_{i_1}) \cap \operatorname{supp}(V \pm x_{i_2}) = \emptyset$ for each $x_{i_1}, x_{i_2} \in X_0$ such that $x_{i_1} \neq x_{i_2}$. Furthermore,

$$\bigcup_{x \in X_0} \operatorname{supp}(V \pm x) = [1, 2p\ell] \setminus \{j\ell : j \in [1, 2p]\}.$$

Similarly, for any $i \in \mathbb{N}$, if $X_i = [2pi\ell, (2pi+1)\ell - 2]$ then

1

$$\bigcup_{x \in X_i} \operatorname{supp}(V \pm x) = [1 + 2pi\ell, 2p\ell + 2pi\ell] \setminus \{j\ell : j \in [1 + 2pi, 2p + 2pi]\}.$$

Clearly, $X_{i_1} \cap X_{i_2} = \emptyset$ if $i_1 \neq i_2$. Therefore, take $X = \bigcup_{i=0}^{\frac{t}{4p}-1} X_i$: this is a set of size $\frac{t}{4p} \cdot (\ell - 1) = \frac{t}{4p} \cdot \frac{4mph}{2\lambda_1 t} = \frac{mh}{2\lambda_1}$. It follows that the sequence \mathcal{B} obtained, as previously described, from the blocks $V \pm x$, with $x \in X$, has support equal to

$$\begin{aligned} \mathsf{supp}(\mathcal{B}) &= \bigcup_{i=0}^{\frac{t}{4p}-1} ([1+2pi\ell, 2p\ell+2pi\ell] \setminus \{j\ell : j \in [1+2pi, 2p+2pi]\}) \\ &= [1, \frac{t}{2}\ell] \setminus \{j\ell : j \in [1, \frac{t}{2}]\} = \left[1, \frac{ms}{2\lambda_1} + \frac{t}{2}\right] \setminus \{\ell, 2\ell, \dots, \frac{t}{2}\ell\}, \end{aligned}$$
uired.

as required.

Example 4.8 Using the previous lemma with m = 18, s = 10, $\lambda_1 = 3$ and t = 20, we can choose p = 5 so that $t \equiv 0 \pmod{20}$. Hence $\ell = 4$ and \mathcal{B} consists of the following three shiftable blocks:

В. —	1	-1	-13	-17	9	21	25	-29	-33	37	
$D_1 -$	-5	5	17	13	-9	-21	-25	29	33	-37	,
В. —	2	-2	-14				26	-30	-34	38	
$D_2 -$	-6	6	18	14	-10	-22	-26	30	34	-38	;
R _	3	-3	-15	-19	11	23	27	-31	-35	39	
$D_3 -$	-7	7	19	15	-11	-23	-27	31	35	-39	

Lemma 4.9 Let $\lambda = \lambda_1 \lambda_2$ be as in (4.1) with $\lambda_2 = 2$. Let p be an odd prime dividing s and suppose that t is a divisor of $\frac{ms}{\lambda_{1p}}$ such that $t \equiv 0 \pmod{4}$. There exists a nice pair $(\mathcal{B}_1, \mathcal{B}_2)$ of sequences of length $\frac{m}{2\lambda_1}$, where \mathcal{B}_1 and \mathcal{B}_2 consist of blocks of size $2 \times s$, $\mu(\mathcal{B}_1) = \mu(\mathcal{B}_2) = 2$ and $\operatorname{supp}(\mathcal{B}_1) = \operatorname{supp}(\mathcal{B}_2) = \Phi$.

PROOF: By hypothesis we can write $\ell = py + 1$. Consider the following blocks:

W.	_	y+1	-(2y)	+1)	-((p + p))	(+1)y + 2)	(p+2)y+2]
W_4		-(y+1)	2y -	+1	(<i>p</i> -	(+1)y + 2	-((p+2)y+2)	,
Wa	_	2y + 1	-(2)	y + 1)	1	-(y+1)	-((p+1)y+2)	(p+2)y+2
W_6	_	-(py+2)	py	+2	-1	y+1	(p+1)y+2	-((p+2)y+2)
W'	_	2y + 1	1	-(2y)	+1)	-(y+1)	-((p+1)y+2)	(p+2)y+2
W'_6	_	-(py+2)	-1	$py \dashv$	- 2	y+1	(p+1)y+2	-((p+2)y+2)

Note that the block W_4 satisfies both conditions (4.2) and (4.3), while W_6 satisfies condition (4.2) and W'_6 satisfies condition (4.3). Furthermore,

$$\begin{aligned} \supp(W_4) &= \{(jp+1)y+j+1, (jp+2)y+j+1: j \in [0,1]\}, \\ \supp(W_6) &= \supp(W_6') &= \{jpy+j+1, (jp+1)y+j+1, (jp+2)y+j+1: \\ j \in [0,1]\}. \end{aligned}$$

Let V be the following $2 \times 2p$ block:

$$V = W_6 | W_4 \pm 2y | W_4 \pm 4y | \cdots | W_4 \pm (p-3)y |.$$

Clearly, V satisfies (4.2) and its support is

$$\begin{aligned} \mathsf{supp}(V) &= \{ iy+1, (p+i)y+2 : i \in [0, p-1] \} \\ &= \{ iy+1, \ell + (iy+1) : i \in [0, p-1] \}. \end{aligned}$$

We can use this block V for constructing the sequence \mathcal{B}_1 as done in Lemma 4.7: it suffices to exhibit a suitable set X of size $\frac{mh}{2\lambda_1}$, where $h = \frac{s}{2p}$, such that the support of the corresponding sequence \mathcal{B}_1 is Φ .

Let $X_0 = [0, y - 1]$. Then $supp(V \pm x_{i_1}) \cap supp(V \pm x_{i_2}) = \emptyset$ for each $x_{i_1}, x_{i_2} \in X_0$ such that $x_{i_1} \neq x_{i_2}$. Furthermore,

$$\bigcup_{x \in X_0} \operatorname{supp}(V \pm x) = [1, py] \cup [\ell + 1, \ell + py] = [1, 2\ell] \setminus \{\ell, 2\ell\}$$

Similarly, for any $i \in \mathbb{N}$, if $X_i = [2i\ell, 2i\ell + y - 1]$ then

$$\bigcup_{x \in X_i} \operatorname{supp}(V \pm x) = [1 + 2i\ell, (2i+2)\ell] \setminus \{(2i+1)\ell, (2i+2)\ell\}.$$

Clearly, $X_{i_1} \cap X_{i_2} = \emptyset$ if $i_1 \neq i_2$. Therefore, take $X = \bigcup_{i=0}^{\frac{t}{4}-1} X_i$: this is a set of size $\frac{t}{4} \cdot y = \frac{t}{4} \cdot \frac{\ell-1}{p} = \frac{t}{4} \cdot \frac{2mh}{\lambda_1 t} = \frac{mh}{2\lambda_1}$. It follows that the sequence \mathcal{B}_1 obtained from the blocks $V \pm x$, with $x \in X$, has support equal to

$$supp(\mathcal{B}_{1}) = \bigcup_{\substack{i=0\\ [1,\frac{t}{2}\ell]}}^{\frac{t}{4}-1} ([1+2i\ell, 2\ell(i+1)] \setminus \{(2i+1)\ell, (2i+2)\ell\}) \\ = [1,\frac{t}{2}\ell] \setminus \{\ell, 2\ell, \dots, \frac{t}{2}\ell\} = \Phi,$$

as required. The sequence \mathcal{B}_2 is obtained by using W'_6 instead of W_6 .

The last case we need is when $\lambda_2 \equiv 0 \pmod{4}$.

Lemma 4.10 Let $\lambda = \lambda_1 \lambda_2$ be as in (4.1) with $\lambda_2 \equiv 0 \pmod{4}$. There exists a nice pair $(\mathcal{B}, \mathcal{B})$, where \mathcal{B} is a sequence of length $\frac{m}{2\lambda_1}$ consisting of blocks of size $2 \times s$ such that $\mu(\mathcal{B}) = \lambda_2$ and $\operatorname{supp}(\mathcal{B}) = \Phi$.

PROOF: Let Q be the $2 \times \frac{\lambda_2}{2}$ block obtained by juxtaposing $\frac{\lambda_2}{4}$ copies of the shiftable block

1	-1	
-1	1	•

Clearly, Q satisfies both conditions (4.2) and (4.3). Furthermore, $\operatorname{supp}(Q) = \{1\}$ and $\mu(Q) = \lambda_2$. Take a partition of Φ into $\frac{m}{2\lambda_1}$ subsets X_i , each of cardinality $\frac{2s}{\lambda_2}$. Writing, for all $i \in \left[1, \frac{m}{2\lambda_1}\right]$, $X_i = \left\{x_{i,1}, x_{i,2}, \dots, x_{i, \frac{2s}{\lambda_2}}\right\}$, let B_i the block

$$B_{i} = \begin{bmatrix} Q \pm (x_{i,1} - 1) & Q \pm (x_{i,2} - 1) & Q \pm (x_{i,3} - 1) & \cdots & Q \pm \left(x_{i,\frac{2s}{\lambda_{2}}} - 1\right) \end{bmatrix}$$

Then each B_i is a block of size $2 \times s$ such that $\operatorname{supp}(B_i) = X_i$ and $\mu(B_i) = \lambda_2$. Finally, it suffices to take the sequence $\mathcal{B} = \left(B_1, B_2, \dots, B_{\frac{m}{2\lambda_1}}\right)$.

Example 4.11 Using the previous lemma with m = 16, s = 10, $\lambda_1 = 2$, $\lambda_2 = 4$ and t = 5, we have $\ell = 9$ and $\Phi = [1, 22] \setminus \{9, 18\}$. So, can take $X_1 = [1, 5]$, $X_2 = [6, 11] \setminus \{9\}$, $X_3 = [12, 16]$ and $X_4 = [17, 22] \setminus \{18\}$. Hence, the sequence \mathcal{B} consists of the following four shiftable blocks:

B_1	_	1	-1	2	-2	3	-3	4	-4	5	-5			
D_1	_	-1	1	-2	2	-3	3	-4	4	-5	5	,		
B_2	_	6	-6	7	-7	8	-8	10	-1	0	11	-11		
D_2	=	-6	6	-7	7	-8	8	-10	10) –	-11	11	,	
P	_	12	-12	2 1	3	-13	14	-14	1 1	5	-15	16	-16	
B_3	_	-12	12	_	13	13	-14	14	—	15	15	-16	16	
$_{P}$	_	17	-1'	7 1	9	-19	20	-20) 2	1	-21	22	-22	Ì
B_4	=	-17	17		19	19	-20	20	-:	21	21	-22	22	

Proposition 4.12 Suppose that λ divides ms and write $\lambda = \lambda_1 \lambda_2$ be as in (4.1). There exists a nice pair $(\mathcal{B}_1, \mathcal{B}_2)$ of sequences of length $\frac{m}{2\lambda_1}$, where \mathcal{B}_1 and \mathcal{B}_2 consist of blocks of size $2 \times s$, $\mu(\mathcal{B}_1) = \mu(\mathcal{B}_2) = \lambda_2$ and

$$\operatorname{supp}(\mathcal{B}_1) = \operatorname{supp}(\mathcal{B}_2) = \left[1, \frac{ms}{\lambda} + \left\lfloor \frac{t}{2} \right\rfloor\right] \setminus \left\{\ell, 2\ell, \dots, \left\lfloor \frac{t}{2} \right\rfloor \ell\right\} = \Phi.$$

PROOF: If $\lambda_2 = \frac{s}{2}$, the statement follows from Lemma 4.4. If $\lambda_2 \neq \frac{s}{2}$ is odd, we apply Corollary 4.3. If $\lambda_2 \equiv 0 \pmod{4}$, we use Lemma 4.10. So, we may assume $\lambda_2 \equiv 2 \pmod{4}$. If $\lambda_2 \geq 6$, the statement follows from Lemma 4.5. Finally, suppose $\lambda_2 = 2$. Since $s \geq 6$ and $s \equiv 2 \pmod{4}$, there exists an odd prime p that divides s. Now, our analysis depends on t; recall that t is a divisor of $\frac{ms}{\lambda_1}$. If t divides $\frac{ms}{2\lambda_1}$, we apply Lemma 4.6. Otherwise, we must have $t \equiv 0 \pmod{4}$. If t divides $\frac{ms}{\lambda_1 p}$, the result follows from Lemma 4.9. If t does not divide $\frac{ms}{\lambda_1 p}$, then t is divisible by p. In particular, $t \equiv 0 \pmod{4p}$ and so we can apply Lemma 4.7.

Proposition 4.13 Suppose that λ does not divide ms. There exists a nice pair $(\mathcal{B}, \mathcal{B})$, where \mathcal{B} is a sequence of length $\frac{m}{2}$ consisting of blocks of size $2 \times s$, such that $supp(\mathcal{B}) = \Phi$ and condition (2.1) is satisfied.

PROOF: As previously observed, we have $\lambda \equiv 0 \pmod{8}$. Let Q be the following shiftable block:

$$Q = \frac{1 \quad -1}{-1 \quad 1}.$$

Clearly, Q satisfies both conditions (4.2) and (4.3). Furthermore, $supp(Q) = \{1\}$ and $\mu(Q) = 4$.

Suppose that ℓ is odd or t is even. Consider the sequence X obtained by taking the natural ordering \leq of $\{i - 1 \mid i \in \Phi\} \subset \mathbb{N}$ and define $Y = \frac{\lambda}{4} * X$.

Suppose that ℓ is even and t is odd. Let X_1 be the sequence obtained by taking the natural ordering \leq of $\{i-1 \mid i \in \Psi\} \subset \mathbb{N}$, where $\Psi = \Phi \setminus \{\frac{t\ell}{2}\}$. Also, let $Y_1 = \frac{\lambda}{4} * X_1$ and let Y_2 be the sequence obtained by repeating $\frac{\lambda}{8}$ times the integer $\frac{t\ell}{2} - 1$. Define $Y = Y_1 + Y_2$ and note that $|Y| = \frac{ms}{4}$.

In both cases, write $Y = (y_1, y_2, \dots, y_{\frac{ms}{4}})$. For all $i \in [1, \frac{m}{2}]$, let B_i the block

$$B_{i} = \boxed{Q \pm y_{1+(i-1)\frac{s}{2}} \quad Q \pm y_{2+(i-1)\frac{s}{2}} \quad \cdots \quad Q \pm y_{i\frac{s}{2}}}$$

Then each B_i is a block of size $2 \times s$: it suffices to take the sequence $\mathcal{B} = (B_1, B_2, \ldots, B_{\frac{m}{2}})$.

4.2 The subcase $k \equiv 0 \pmod{4}$

Assuming $k \equiv 0 \pmod{4}$, from ms = nk it follows that m must be even. We now explain how to arrange the blocks of the sequences previously constructed, in order to build an integer ${}^{\lambda}\mathbf{H}_t(m, n; s, k)$. To this purpose, we define a 'base unit' that we will fill with the elements of the blocks.

Let $\mathcal{G} = (G_1, \ldots, G_d)$ be a sequence of blocks such that the following property is satisfied:

there exist b integers
$$\sigma_1, \ldots, \sigma_b$$
 such that the elements of \mathcal{G} are blocks G_r of size $2 \times 2b$ with $\gamma_{2i-1}(G_r) = -\gamma_{2i}(G_r) = \sigma_i$ for all $i \in [1, b]$. (4.4)

So, let \mathcal{G} be a sequence satisfying (4.4), where the blocks $G_r = (g_{i,j}^{(r)})$ are all of size $2 \times 2b$, with $2b \leq d$. Let $P = P(\mathcal{G})$ be the pf array of size $2d \times d$ defined as follows. For all $i \in [1, b]$ and all $j \in [1, 2b]$, the cell (i, i + j - 1) of P is filled with the element $g_{1,j}^{(i)}$ and the cell (d + i, i + j - 1) is filled with the element $g_{2,j}^{(i)}$; here, the column indices are taken modulo d. The remaining cells of P are empty. An example of such construction is given in Figure 2.

We prove that P is a pf array whose columns all sum to zero. Observe that every row of P contains exactly 2b filled cells and every column contains exactly 4b

$g_{1,1}^{(1)}$	$g_{1,2}^{(1)}$	$\begin{array}{c}g_{1,3}^{(1)}\\g_{1,2}^{(2)}\\g_{1,2}^{(3)}\\g_{1,1}^{(3)}\end{array}$	$g_{1,4}^{(1)}$		
	$g_{1,2}^{(1)}$ $g_{1,1}^{(2)}$	$g_{1,2}^{(2)}$	$g_{1,3}^{(2)}$	$g_{1,4}^{(2)}$	
		$g_{1,1}^{(3)}$	$\begin{array}{c}g_{1,3}^{(2)}\\g_{1,2}^{(3)}\\g_{1,2}^{(4)}\\g_{1,1}^{(4)}\end{array}$	$\begin{array}{c}g_{1,4}^{(3)}\\g_{1,3}^{(4)}\\g_{1,2}^{(4)}\\g_{1,1}^{(5)}\end{array}$	$\begin{array}{c}g^{(3)}_{1,4}\\g^{(4)}_{1,3}\\g^{(5)}_{1,2}\\g^{(6)}_{1,1}\end{array}$
$\begin{array}{c}g_{1,4}^{(4)}\\g_{1,3}^{(5)}\\g_{1,3}^{(6)}\\g_{1,2}^{(6)}\\g_{1,2}^{(1)}\\g_{2,1}^{(1)}\end{array}$			$g_{1,1}^{(4)}$	$g_{1,2}^{(4)}$	$g_{1,3}^{(4)}$
$g_{1,3}^{(5)}$	$\begin{array}{c}g_{1,4}^{(5)}\\g_{1,3}^{(6)}\\g_{2,2}^{(1)}\\g_{2,2}^{(2)}\\g_{2,1}^{(2)}\end{array}$			$g_{1,1}^{(5)}$	$g_{1,2}^{(5)}$
$g_{1,2}^{(6)}$	$g_{1,3}^{(6)}$	$g_{1,4}^{(6)}$			$g_{1,1}^{(6)}$
$g_{2,1}^{(1)}$	$g_{2,2}^{(1)}$	$g_{2,3}^{(1)}$	$g_{2,4}^{(1)}$		
	$g_{2,1}^{(2)}$	$\begin{array}{c}g^{(6)}_{1,4}\\\hline g^{(1)}_{2,3}\\g^{(2)}_{2,2}\\g^{(3)}_{2,1}\\g^{(3)}_{2,1}\end{array}$	$g_{2,3}^{(2)}$	$g_{2,4}^{(2)}$	
		$g_{2,1}^{(3)}$	$\begin{array}{c} g_{2,4}^{(1)} \\ g_{2,3}^{(2)} \\ g_{2,3}^{(3)} \\ g_{2,2}^{(3)} \\ g_{2,1}^{(4)} \end{array}$	$g_{2,3}^{(3)}$	$g_{2,4}^{(3)}$
$g_{2,4}^{(4)}$			$g_{2,1}^{(4)}$	$\begin{array}{c} g^{(2)}_{2,4} \\ g^{(3)}_{2,3} \\ g^{(4)}_{2,2} \\ g^{(5)}_{2,1} \end{array}$	$\begin{array}{c}g^{(3)}_{2,4}\\g^{(4)}_{2,3}\\g^{(5)}_{2,2}\\g^{(6)}_{2,1}\\g^{(6)}_{2,1}\end{array}$
$g_{2,3}^{(5)}$	$g_{2,4}^{(5)}$			$g_{2,1}^{(5)}$	$g_{2,2}^{(5)}$
$\begin{array}{c}g_{2,4}^{(4)}\\g_{2,3}^{(5)}\\g_{2,3}^{(6)}\\g_{2,2}^{(6)}\end{array}$	$g_{2,4}^{(5)}$ $g_{2,3}^{(6)}$	$g_{2,4}^{(6)}$			$g_{2,1}^{(6)}$

Figure 2: This is a $P(G_1, \ldots, G_6)$, where G_1, \ldots, G_6 are arrays of size 2×4 .

elements. The elements of the i-th column of P are

$$g_{1,1}^{(i)}, g_{1,2}^{(i-1)}, \dots, g_{1,2b}^{(i+1-2b)}, g_{2,1}^{(i)}, g_{2,2}^{(i-1)}, \dots, g_{2,2b}^{(i+1-2b)},$$

where the exponents must be read modulo d, with residues in [1, d]. Since the sequence \mathcal{G} satisfies (4.4), we obtain

$$\gamma_i(P) = \sum_{j=1}^{2b} \gamma_j(G_{i+1-j}) = \sum_{j=1}^{2b} \gamma_j(G_i) = \sum_{u=1}^{b} (\sigma_u - \sigma_u) = 0$$

Furthermore, notice that $\tau_j(P) = \tau_1(G_j)$ and $\tau_{d+j}(P) = \tau_2(G_j)$ for all $j \in [1, d]$.

Proposition 4.14 Suppose $4 \le s \le n$, $4 \le k \le m$ and ms = nk. Let λ be a divisor of 2ms and let t be a divisor of $\frac{2ms}{\lambda}$. There exists a shiftable integer ${}^{\lambda}H_t(m, n; s, k)$ in each of the following cases:

- (1) $s \equiv 2 \pmod{4}$ and $k \equiv 0 \pmod{4}$;
- (2) $s \equiv 0 \pmod{4}$ and $k \equiv 2 \pmod{4}$.

PROOF: (1) If λ divides ms, let $(\mathcal{B}_1, \mathcal{B}_2)$ be the nice pair of sequences constructed in Proposition 4.12 and set $\mathcal{B} = \lambda_1 * \mathcal{B}_1$. If λ does not divide ms, let \mathcal{B} be the sequence constructed in Proposition 4.13. Write $d = \gcd(\frac{m}{2}, n)$ and $a = \frac{sd}{n}$. Note that a is even integer. In fact, write $m = 2\bar{m}d$ and $n = d\bar{n}$. Since $k \equiv 0 \pmod{4}$, from $\frac{s}{2} \cdot \frac{m}{2} = n\frac{k}{4}$ we obtain \bar{n} divides $\frac{s}{2}$.

Given a block $B_h \in \mathcal{B}$, define for every $j \in [1, \bar{n}]$ the block $T_j(B_h)$ of size $2 \times a$ consisting of the columns C_i of B_h with $i \in [a(j-1)+1, aj]$. So, the block B_h of size

1	-1		-13	-17		9	21		25	-29		-33	37	
	2	-2		-14	-18		10	22		26	-30		-34	38
-3		3	-19		-15	23		11	-31		27	39		-35
-5	5		17	13		-9	-21		-25	29		33	-37	
	-6	6		18	14		-10	-22		-26	30		34	-38
7		-7	15		19	-23		-11	31		-27	-39		35
1	-1		-13	-17		9	21		25	-29		-33	37	
	2	-2		-14	-18		10	22		26	-30		-34	38
-3		3	-19		-15	23		11	-31		27	39		-35
-5	5		17	13		-9	-21		-25	29		33	-37	
	-6	6		18	14		-10	-22		-26	30		34	-38
7		-7	15		19	-23		-11	31		-27	-39		35
1	-1		-13	-17		9	21		25	-29		-33	37	
	2	-2		-14	-18		10	22		26	-30		-34	38
-3		3	-19		-15	23		11	-31		27	39		-35
-5	5		17	13		-9	-21		-25	29		33	-37	
	-6	6		18	14		-10	-22		-26	30		34	-38
7		-7	15		19	-23		-11	31		-27	-39		35

Figure 3: An integer ${}^{6}H_{20}(18, 15; 10, 12)$.

 $2 \times s$ is obtained by juxtaposing the blocks $T_1(B_h), T_2(B_h), \ldots, T_{\bar{n}}(B_h)$. Furthermore, for all $i \in [1, \bar{m}]$ and all $j \in [1, \bar{n}]$, each of the sequences

$$(T_j(B_{(i-1)d+1}), T_j(B_{(i-1)d+2}), \ldots, T_j(B_{id})),$$

of cardinality d, satisfies condition (4.4).

Let A be an empty array of size $\bar{m} \times \bar{n}$. For every $i \in [1, \bar{m}]$ and $j \in [1, \bar{n}]$, replace the cell (i, j) of A with the block $P\left(T_j(B_{(i-1)d+1}), T_j(B_{(i-1)d+2}), \ldots, T_j(B_{id})\right)$, according to the previous definition. Note that, for all $r \in [1, \frac{m}{2}]$, we have $\tau_r(A) = \tau_1(B_r) = 0$ and $\tau_{r+\frac{m}{2}}(A) = \tau_2(B_r) = 0$.

By construction, A is a pf array of size $m \times n$, $\operatorname{supp}(A) = \Phi$ and the rows and columns of A sum to zero. If λ divides ms, then every element of Φ appears, up to sign, exactly λ times. If λ does not divide ms, condition (2.1) is satisfied. Furthermore, each row contains $a\bar{n} = s$ elements and each column contains $2a\bar{m} = k$ elements. We conclude that A is a shiftable integer ${}^{\lambda}\operatorname{H}_t(m, n; s, k)$.

(2) This follows from (1). In fact, if $s \equiv 0 \pmod{4}$ and $k \equiv 2 \pmod{4}$, an integer ${}^{\lambda}\mathrm{H}_t(m,n;s,k)$ can be obtained simply by taking the transpose of an integer ${}^{\lambda}\mathrm{H}_t(n,m;k,s)$.

The integer ${}^{6}\text{H}_{20}(18, 15; 10, 12)$ shown in Figure 3 has been obtained by repeating $\lambda_1 = 3$ times each of the blocks of Example 4.8. In Figure 4 we give an integer ${}^{8}\text{H}_{5}(16, 20; 10, 8)$, obtained by repeating $\lambda_1 = 2$ times each of the blocks of Example 4.11.

		-16	22			16	-22			-16	22			16	-22
	-11	16			11	-16			-11	16			11	-16	
-5	11			5	-11			-5	11			5	-11		
5			-22	-5			22	5			-22	-5			22
		-15	21			15	-21			-15	21			15	-21
	-10	15			10	-15			-10	15			10	-15	
-4	10			4	-10			-4	10			4	-10		
4			-21	-4			21	4			-21	-4			21
		-14	20			14	-20			-14	20			14	-20
	-8	14			8	-14			-8	14			∞	-14	
-3	∞			3	-8			-3	∞			3	-8		
°.			-20	-3			20	3			-20	-3			20
		-13	19			13	-19			-13	19			13	-19
	2-	13			2	-13			2-	13			7	-13	
-2	2			2	2-			-2	2			2	2-		
2			-19	-2			19	2			-19	-2			19
		-12	17			12	-17			-12	17			12	-17
	9-	12			9	-12			-6	12			9	-12	
-1	9			7	-6				9				-6		
Ţ			-17				17	1			-17	-1			17

Figure 4: An integer ${}^{8}H_{5}(16, 20; 10, 8)$.

4.3 The subcase $k \equiv 2 \pmod{4}$

Here we only solve the case m even, which implies that also n is even.

Proposition 4.15 Suppose $6 \le s \le n$, $6 \le k \le m$, ms = nk and $s, k \equiv 2 \pmod{4}$. Let λ be a divisor of 2ms and let t be a divisor of $\frac{2ms}{\lambda}$. If m is even, there exists a shiftable integer ${}^{\lambda}H_t(m, n; s, k)$.

PROOF: Without loss of generality, we may assume $m \geq n$ (and so $s \leq k$). If λ divides ms, let $(\mathcal{B}_1, \mathcal{B}_2)$ be the nice pair of sequences constructed in Proposition 4.12. Take $\mathcal{B}_1^* = \lambda_1 * \mathcal{B}_1$ and $\mathcal{B}_2^* = \lambda_1 * \mathcal{B}_2$. So, \mathcal{B}_1^* and \mathcal{B}_2^* have length $\frac{m}{2}$ and $\mu(\mathcal{B}_1^*) = \mu(\mathcal{B}_2^*) = \lambda$. If λ does not divide ms, let $(\mathcal{B}_1^*, \mathcal{B}_2^*)$ be the nice pair of sequences constructed in Proposition 4.13. In both cases, write $\mathcal{B}_1^* = (B_1, \ldots, B_{\frac{m}{2}})$ and $\mathcal{B}_2^* = (B_1', \ldots, B_{\frac{m}{2}})$, where \mathcal{B}_1^* satisfies (4.2), \mathcal{B}_2^* satisfies (4.3) and

$$\operatorname{supp}(\mathcal{B}_1^*) = \operatorname{supp}(\mathcal{B}_2^*) = \left[1, \left\lfloor \frac{t\ell}{2} \right\rfloor\right] \setminus \{j\ell : j \in [1, \lfloor t/2 \rfloor]\} \quad \text{with } \ell = \frac{2ms}{\lambda t} + 1$$

Set

$$\widetilde{\mathcal{B}}_1 = \left(B_{\frac{n}{2}+1}, \dots, B_{\frac{m}{2}}\right)$$
 and $\widetilde{\mathcal{B}}_2 = \left(B'_1, \dots, B'_{\frac{n}{2}}\right)$.

Since, by construction, $\mathcal{E}(B_i) = \mathcal{E}(B'_i)$ for all $i \in [1, \frac{m}{2}]$, it follows that $\mathcal{E}(\widetilde{\mathcal{B}}_2 + \widetilde{\mathcal{B}}_1) = \mathcal{E}(\mathcal{B}_1^*) = \mathcal{E}(\mathcal{B}_2^*)$ and $\operatorname{supp}(\widetilde{\mathcal{B}}_2 + \widetilde{\mathcal{B}}_1) = [1, \lfloor \frac{t\ell}{2} \rfloor] \setminus \{j\ell : j \in [1, \lfloor t/2 \rfloor]$. Furthermore, if λ divides ms then $\mu(\widetilde{\mathcal{B}}_2 + \widetilde{\mathcal{B}}_1) = \lambda$; the same holds if λ does not divide ms, and ℓ is odd or t is even; if λ does not divide ms, ℓ is even and t is odd, then every element of $\Phi \setminus \{\frac{t\ell}{2}\}$ appears in $\mathcal{E}(\widetilde{\mathcal{B}}_2 + \widetilde{\mathcal{B}}_1)$, up to sign, exactly λ times, while the integer $\frac{t\ell}{2}$ appears, up to sign, $\frac{\lambda}{2}$ times.

Using the blocks of the sequence \mathcal{B}_2 , we first construct a square shiftable pf array A_1 of size n such that each row and each column contains s filled cells and such that the elements in every row and column sum to zero. Hence, take an empty array A_1 of size $n \times n$ and arrange the $\frac{n}{2}$ blocks $B'_r = (b_{i,j}^{(r)})$ of \mathcal{B}_2 in such a way that the element $b_{1,1}^{(r)}$ fills the cell (2r-1, 2r-1) of A_1 . This process makes A_1 a pf array with s filled cells in each row and in each column. Since the rows of the blocks B'_r sum to zero, also the rows of A_1 sum to zero. Looking at the columns, the s elements of a column of A_1 are

$$b_{1,s}^{(r)}, b_{2,s}^{(r)}, b_{1,s-2}^{(r+1)}, b_{2,s-2}^{(r+1)}, b_{1,s-4}^{(r+2)}, b_{2,s-4}^{(r+2)}, \dots, b_{1,2}^{(r+s/2)}, b_{2,2}^{(r+s/2)}$$

or

$$b_{1,s-1}^{(r)}, b_{2,s-1}^{(r)}, b_{1,s-3}^{(r+1)}, b_{2,s-3}^{(r+1)}, b_{1,s-5}^{(r+2)}, b_{2,s-5}^{(r+2)}, \dots, b_{1,1}^{(r+s/2)}, b_{2,1}^{(r+s/2)},$$

where the exponents $r, \ldots, r + s/2$ must be read modulo $\frac{n}{2}$. Since $\hat{\mathcal{B}}_2$ satisfies condition (4.3), the sum of these elements is

$$\sum_{j=1}^{s/2} \sigma_{2j} = 0 \quad \text{or} \quad \sum_{j=1}^{s/2} \sigma_{2j-1} = 0, \quad \text{respectively.}$$

By construction, $\mathcal{E}(A_1) = \mathcal{E}(\widetilde{\mathcal{B}}_2)$.

Now, if m = n, then A_1 is actually a shiftable integer ${}^{\lambda}H_t(m, n; k, s)$. Suppose that m > n. If we arrange the blocks of the sequence $\widetilde{\mathcal{B}}_1$ mimicking what we did for the construction of an integer ${}^{1}H_1(m-n, n; s, k-s)$ in the proof of Proposition 4.14, we obtain a shiftable pf array A_2 of size $(m-n) \times n$ such that $\mathcal{E}(A_2) = \mathcal{E}(\widetilde{\mathcal{B}}_1)$, rows and columns sum to zero, each row contains s filled cells and each column contains k-s filled cells. Let A be the pf array of size $m \times n$ obtained by taking

$$A = \boxed{\begin{array}{c} A_1 \\ A_2 \end{array}}$$

Each row of A contains s filled cells and each of its columns contains s + (k - s) = kfilled cells. By the previous properties of $\widetilde{\mathcal{B}}_2 + \widetilde{\mathcal{B}}_1$, it follows that A is a shiftable integer ${}^{\lambda}\mathrm{H}_t(m, n; s, k)$.

An integer ²⁸H₄(16, 16; 14, 14) is shown in Figure 5, choosing $\lambda_1 = 2$ and $\lambda_2 = 14$. In Figure 6 we give an integer ¹⁰H₃(20, 12; 6, 10), where $\lambda_1 = 5$ and $\lambda_2 = 2$.

1	2	-1	1	-1	-2	1	-1	2	-2	1	-1	2	-2		
-2	-1	2	-2	1	2	-1	1	-2	2	-1	1	-2	2		
		3	4	-3	3	-3	-4	3	-3	4	-4	3	-3	4	-4
		-4	-3	4	-4	3	4	-3	3	-4	4	-3	3	-4	4
7	-7			6	7	-6	6	-6	-7	6	-6	7	-7	6	-6
-7	7			-7	-6	7	-7	6	7	-6	6	-7	7	-6	6
8	-8	9	-9			8	9	-8	8	-8	-9	8	-8	9	-9
-8	8	-9	9			-9	-8	9	-9	8	9	-8	8	-9	9
2	-2	1	-1	2	-2			1	2	-1	1	-1	-2	1	-1
-2	2	-1	1	-2	2			-2	-1	2	-2	1	2	-1	1
3	-3	4	-4	3	-3	4	-4			3	4	-3	3	-3	-4
-3	3	-4	4	-3	3	-4	4			-4	-3	4	-4	3	4
-6	-7	6	-6	7	-7	6	-6	7	-7			6	7	-6	6
6	7	-6	6	-7	7	-6	6	-7	7			-7	-6	7	-7
-8	8	-8	-9	8	-8	9	-9	8	-8	9	-9			8	9
9	-9	8	9	-8	8	-9	9	-8	8	-9	9			-9	-8

Figure 5: An integer ${}^{28}H_4(16, 16; 14, 14)$.

5 Conclusion

Thanks to the constructions of Sections 3 and 4, we can prove Theorem 1.10. In fact, case (1) follows from Proposition 3.8; cases (2) and (3) follow from Proposition 4.14; case (4) follows from Proposition 4.15. Unfortunately, we are not able to solve the existence of an integer ${}^{\lambda}\mathbf{H}_t(m,n;s,k)$ when $s,k \equiv 2 \pmod{4}$ and m,n are odd. However, we can prove the existence of an SMA(m,n;s,k) for this choice of m, n, s, k.

1	-1	-4	-5	3	6						
-2	2	5	4	-3	-6						
		7	-7	-11	-12	10	13				
		$^{-8}$	8	12	11	-10	-13				
				1	-1	-4	-5	3	6		
				-2	2	5	4	-3	-6		
						7	-7	-11	-12	10	13
						$^{-8}$	8	12	11	-10	-13
3	6							1	-1	-4	-5
-3	-6							-2	2	5	4
-11	-12	10	13							7	-7
12	11	-10	-13							-8	8
1	-1			-4	-5			3	6		
	7	-7			-11	-12			10	13	
		1	-1			-4	-5			3	6
-7			7	-12			-11	13			10
-2	2			5	4			-3	-6		
	-8	8			12	11			-10	-13	
		-2	2			5	4			-3	-6
8			$^{-8}$	11			12	-13			-10

Figure 6: An integer ${}^{10}H_3(20, 12; 6, 10)$.

PROOF OF THEOREM 1.6: If $s, k \equiv 0 \pmod{4}$, the integer ${}^{2}\text{H}_{1}(m, n; s, k)$ we construct in Lemma 3.3 is actually a (shiftable) SMA(m, n; s, k). Similarly, if $s \equiv 2 \pmod{4}$ and m is even, the integer ${}^{2}\text{H}_{1}(m, n; s, k)$ constructed in Propositions 4.14 and 4.15 are (shiftable) signed magic arrays. So, we are left to consider the case $s, k \equiv 2 \pmod{4}$ with m, n odd.

Without loss of generality, we may assume $m \ge n$ (and so $s \le k$). Let A_1 be an SMA(n, n; s, s), whose existence is assured by Theorem 1.2. Clearly if m = n we have nothing to prove. So, suppose m > n. Since $m - n \ge 2$ is even and $k - s \equiv 0 \pmod{4}$ with $k - s \ge 4$, by Proposition 4.14 there exists a shiftable SMA(m - n, n; s, k - s), say A_2 . Let A be the pf array of size $m \times n$ obtained by taking

$$A = \boxed{\begin{array}{c} A_1 \\ A_2 \pm ns/2 \end{array}}.$$

Each row of A contains s filled cells and each of its columns contains s + (k - s) = k filled cells. Also, note that $\mathcal{E}(A_1) = \{\pm 1, \pm 2, \dots, \pm ns/2\}$ and $\mathcal{E}(A_2 \pm sn/2) = \{\pm (1 + ns/2), \pm (2 + ns/2), \dots, \pm ms/2\}$. Since $\mathcal{E}(A) = \mathcal{E}(A_1) \cup \mathcal{E}(A_2) = \{\pm 1, \pm 2, \dots, \pm ms/2\}$, A is an SMA(m, n; s, k).

We can now prove the existence of magic rectangles.

PROOF OF THEOREM 1.12: Let A be a shiftable SMA(m, n; s, k), whose existence was proved in Theorem 1.6, and let A^* be the pf array obtained by replacing every negative entry x of A with $x + \frac{ms}{2}$ and by replacing every positive entry y with $y + \frac{ms}{2} - 1$. Since $\mathcal{E}(A) = \{-1, -2, \dots, -\frac{ms}{2}\} \cup \{1, 2, \dots, \frac{ms}{2}\}$, we obtain $\mathcal{E}(A^*) = \{0, 1, \dots, \frac{ms}{2} - 1\} \cup \{\frac{ms}{2}, \frac{ms}{2} + 1, \dots, ms - 1\}$. This means that every element of [0, ms - 1] appears just once in A^* . Obviously, every row of A^* contains exactly s filled cells and every column of A^* contains exactly k filled cells. Now, since A is shiftable, every row of A contains $\frac{s}{2}$ negative entries and $\frac{s}{2}$ positive entries. So, the elements of every row of A^* sum to $\frac{s}{2}(\frac{ms}{2} + \frac{ms}{2} - 1) = \frac{s(ms-1)}{2}$. Analogously, the elements of every column of A^* sum to $\frac{k(ms-1)}{2}$. We conclude that A^* is an MR(m, n; s, k).

Example 5.1 Take the shiftable SMA(5, 10; 8, 4) of Figure 1, whose construction is given in Lemma 3.3. Proceeding as described in the proof of Theorem 1.12, we obtain the following MR(5, 10; 8, 4):

	20	18		13	27	30	8		3	37
	39	22	16		11	29	32	6		1
$A^* =$	19	21	24	14		9	31	34	4	
		17	23	26	12		7	33	36	2
	0		15	25	28	10		5	35	38

References

- D. S. Archdeacon, Heffter arrays and biembedding graphs on surfaces, *Electron. J. Combin.* 22 (2015), #P1.74.
- [2] D. S. Archdeacon, T. Boothby and J. H. Dinitz, Tight Heffter arrays exist for all possible values, J. Combin. Des. 25 (2017), 5–35.
- [3] D. S. Archdeacon, J. H. Dinitz, D. M. Donovan and E. Ş. Yazıcı, Square integer Heffter arrays with empty cells, *Des. Codes Cryptogr.* 77 (2015), 409–426.
- [4] K. Burrage, D. M. Donovan, N. J. Cavenagh and E. Ş. Yazıcı, Globally simple Heffter arrays H(n;k) when $k \equiv 0,3 \pmod{4}$, Discrete Math. 343 (2020), #111787.
- [5] N. J. Cavenagh, J. H. Dinitz, D. M. Donovan and E. Ş. Yazıcı, The existence of square non-integer Heffter arrays, Ars Math. Contemp. 17 (2019), 369–395.
- [6] N. J. Cavenagh, D. M. Donovan and E. Ş. Yazıcı, Biembeddings of cycle systems using integer Heffter arrays, J. Combin. Des, 28 (2020), 900–922.
- [7] S. Costa, F. Morini, A. Pasotti and M.A. Pellegrini, Globally simple Heffter arrays and orthogonal cyclic cycle decompositions, *Australas. J. Combin.* 72 (2018), 549–593.
- [8] S. Costa, F. Morini, A. Pasotti and M. A. Pellegrini, A generalization of Heffter arrays, J. Combin. Des. 28 (2020), 171–206.

- [9] S. Costa and A. Pasotti, On λ -fold relative Heffter arrays and biembedding multigraphs on surfaces, *European J. Combin.* (to appear); preprint: https://arxiv.org/abs/2010.10948.
- [10] S. Costa, A. Pasotti and M. A. Pellegrini, Relative Heffter arrays and biembeddings, Ars Math. Contemp. 18 (2020), 241–271.
- [11] J. H. Dinitz and A. R. W. Mattern, Biembedding Steiner triple systems and ncycle systems on orientable surfaces, Australas. J. Combin. 67 (2017), 327–344.
- [12] J. H. Dinitz and I. M. Wanless, The existence of square integer Heffter arrays, Ars Math. Contemp. 13 (2017), 81–93.
- [13] A. Khodkar and B. Ellis, Signed magic rectangles with two filled cells in each column, (preprint), https://arxiv.org/abs/1901.05502.
- [14] A. Khodkar and D. Leach, Magic rectangles with empty cells, Util. Math. 116 (2020), 45–56.
- [15] A. Khodkar and D. Leach, Magic squares with empty cells, Ars Combin. (to appear); preprint: https://arxiv.org/abs/1804.11189.
- [16] A. Khodkar, D. Leach and B. Ellis, Signed magic rectangles with three filled cells in each column, Bull. Inst. Combin. Appl. 90 (2020), 87–106.
- [17] A. Khodkar, C. Schulz and N. Wagner, Existence of some signed magic arrays, Discrete Math. 340 (2017), 906–926.
- [18] F. Morini and M. A. Pellegrini, On the existence of integer relative Heffter arrays, Discrete Math. 343 (2020), #112088.

(Received 19 Jan 2021; revised 10 May 2021)