Magic rectangles, signed magic arrays and integer λ-fold relative Heffter arrays

Fiorenza Morini
Dipartimento di Scienze Matematiche, Fisiche e Informatiche Università di Parma, Parma
Italy
fiorenza.morini@unipr.it

Marco Antonio Pellegrini
Dipartimento di Matematica e Fisica Università Cattolica del Sacro Cuore, Brescia Italy
marcoantonio.pellegrini@unicatt.it

Abstract

Let m, n, s, k be integers such that $4 \leq s \leq n, 4 \leq k \leq m$ and $m s=$ $n k$. Let λ be a divisor of $2 m s$ and let t be a divisor of $\frac{2 m s}{\lambda}$. In this paper we construct magic rectangles $\operatorname{MR}(m, n ; s, k)$, signed magic arrays SMA $(m, n ; s, k)$ and integer λ-fold relative Heffter arrays ${ }^{\lambda} \mathrm{H}_{t}(m, n ; s, k)$ where s, k are even integers. In particular, we prove that there exists an SMA $(m, n ; s, k)$ for all m, n, s, k satisfying the previous hypotheses. Furthermore, we prove that there exist an $\operatorname{MR}(m, n ; s, k)$ and an integer ${ }^{\lambda} \mathrm{H}_{t}(m, n ; s, k)$ in each of the following cases: $(i) s, k \equiv 0(\bmod 4) ;(i i)$ $s \equiv 2(\bmod 4)$ and $k \equiv 0(\bmod 4) ;(i i i) s \equiv 0(\bmod 4)$ and $k \equiv 2$ $(\bmod 4) ;(i v) s, k \equiv 2(\bmod 4)$ and m, n both even.

1 Introduction

In this paper we study partially filled (pf, for short) arrays, with entries in \mathbb{Z} and whose rows and columns have prescribed sums. In particular, we construct magic rectangles, signed magic arrays and integer λ-fold relative Heffter arrays.

Definition 1.1 A signed magic array $\operatorname{SMA}(m, n ; s, k)$ is an $m \times n$ pf array with elements in $\Omega \subset \mathbb{Z}$, where $\Omega=\{0, \pm 1, \pm 2, \ldots, \pm(m s-1) / 2\}$ if $m s$ is odd and $\Omega=\{ \pm 1, \pm 2, \ldots, \pm m s / 2\}$ if $m s$ is even, such that
(a) each row contains s filled cells and each column contains k filled cells;
(b) every $x \in \Omega$ appears exactly once in the array;
(c) the elements in every row and column sum to 0 .

The existence of an $\operatorname{SMA}(m, n ; s, k)$ has been settled in the square case (i.e., when $m=n$ and so $s=k$) and in the tight case (i.e., when $k=m$ and $s=n$), by Khodkar, Schulz and Wagner [17].

Theorem 1.2 [17] There exists an $\operatorname{SMA}(n, n ; k, k)$ if and only if either $n=k=1$ or $3 \leq k \leq n$.

Theorem 1.3 [17] There exists an $\operatorname{SMA}(m, n ; n, m)$ if and only if one of the following cases occurs:
(1) $m=n=1$;
(2) $m=2$ and $n \equiv 0,3(\bmod 4)$;
(3) $n=2$ and $m \equiv 0,3(\bmod 4)$;
(4) $m, n>2$.

Also the cases when each column contains two or three filled cells have been solved.

Theorem 1.4 [13] There exists an $\operatorname{SMA}(m, n ; s, 2)$ if and only if one of the following cases occurs:
(1) $m=2$ and $n=s \equiv 0,3(\bmod 4)$;
(2) $m, s>2$ and $m s=2 n$.

Theorem 1.5 [16] There exists an $\operatorname{SMA}(m, n ; s, 3)$ if and only if $3 \leq m, s \leq n$ and $m s=3 n$.

In this paper we settle the existence problem of an $\operatorname{SMA}(m, n ; s, k)$ when s and k are both even, proving constructively the following.

Theorem 1.6 Let s, k be two even integers with $s, k \geq 4$. Then there exists an $\operatorname{SMA}(m, n ; s, k)$ if and only if $4 \leq s \leq n, 4 \leq k \leq m$ and $m s=n k$.

This result will be obtained by working in the more general context of the integer λ-fold relative Heffter arrays. In Figure 1 we give an SMA(5,$10 ; 8,4$) obtained thanks to our constructions.

In [1] Archdeacon introduced an important class of pf arrays, called Heffter arrays. One of the applications of these objects is that they allow, under suitable conditions, the construction of pairs of cyclic cycle decompositions of the complete graph K_{v} on v vertices. With the aim of extending this application to complete multipartite

1	-2		-7	8	11	-12		-17	18
20	3	-4		-9	10	13	-14		-19
-1	2	5	-6		-11	12	15	-16	
	-3	4	7	-8		-13	14	17	-18
-20		-5	6	9	-10		-15	16	19

Figure 1: $\operatorname{An} \operatorname{SMA}(5,10 ; 8,4)$.
graphs, in [8] the authors of the present paper, in collaboration with Costa and Pasotti, proposed a first generalization of Archdeacon's idea introducing pf arrays called relative Heffter arrays. A further generalization, that allows one to work with complete multipartite multigraphs, was introduced in [9] by Costa and Pasotti. These new objects are called λ-fold relative Heffter arrays. We recall here their definition, where we denote by $\mathcal{E}(A)$ the list of the entries of the filled cells of a pf array A.

Definition 1.7 Let m, n, s, k, t, λ be positive integers such that λ divides $2 m s$ and t divides $\frac{2 m s}{\lambda}$. Let J be the subgroup of order t of \mathbb{Z}_{v}, where $v=\frac{2 m s}{\lambda}+t$. A λ-fold Heffter array over \mathbb{Z}_{v} relative to J, denoted by ${ }^{\lambda} \mathrm{H}_{t}(m, n ; s, k)$, is an $m \times n$ pf array A with elements in $\Omega=\mathbb{Z}_{v} \backslash J$ such that:
(a) each row contains s filled cells and each column contains k filled cells;
(b) every element of Ω appears exactly λ times in the list $\mathcal{E}(A) \cup-\mathcal{E}(A)$;
(c) the elements in every row and column sum to 0 .

Item (b) of the previous definition requires some explanation. The additive group \mathbb{Z}_{v} contains an involution if and only if v is even; in this case, the unique involution $\iota \in \mathbb{Z}_{v}$ belongs to Ω if and only if t is odd. We observe that the assumption v even and t odd implies that λ is even and does not divide $m s$. So we can write (b) as follows: if Ω does not contain involutions, every $x \in \Omega$ appears in A, up to sign, exactly λ times; if Ω contains the involution ι, then every $x \in \Omega \backslash\{\iota\}$ appears, up to sign, exactly λ times, while ι appears exactly $\lambda / 2$ times.

Some results on the existence of these objects are given in [9], mostly for the square case or for particular values of λ and/or t. Instead of working in a finite cyclic group, one can construct λ-fold relative Heffter arrays whose entries are integers. In this case, the previous definition becomes as follows.

Definition 1.8 Let m, n, s, k, t, λ be positive integers such that λ divides $2 m s$ and t divides $\frac{2 m s}{\lambda}$. Let

$$
\Phi=\left\{1,2, \ldots,\left\lfloor\frac{v}{2}\right\rfloor\right\} \backslash\left\{\ell, 2 \ell, \ldots,\left\lfloor\frac{t}{2}\right\rfloor \ell\right\} \subset \mathbb{Z}, \quad \text { where } v=\frac{2 m s}{\lambda}+t \text { and } \ell=\frac{v}{t}
$$

An integer ${ }^{\lambda} \mathrm{H}_{t}(m, n ; s, k)$ is an $m \times n$ pf array with elements in Φ such that:
(a) each row contains s filled cells and each column contains k filled cells;
(b) if v is odd or if t is even, every element of Φ appears, up to sign, exactly λ times in the array; if v is even and t is odd, every element of $\Phi \backslash\left\{\frac{v}{2}\right\}$ appears, up to sign, exactly λ times while $\frac{v}{2}$ appears, up to sign, exactly $\frac{\lambda}{2}$ times;
(c) the elements in every row and column sum to 0 .

Example 1.9 Consider the following arrays:

$A=$| 1 | -1 | | -5 | 5 | 1 | -1 | | -5 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | 2 | -2 | | -7 | 7 | 2 | -2 | | -7 |
| -1 | 1 | 4 | -4 | | -1 | 1 | 4 | -4 | |
| | -2 | 2 | 5 | -5 | | -2 | 2 | 5 | -5 |
| -7 | | -4 | 4 | 7 | -7 | | -4 | 4 | 7 |,

$B=$| 1 | -1 | | | | | | | -5 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | 3 | -3 | | | | | | | -5 |
| -1 | 1 | 1 | -1 | | | | | | |
| | -3 | 3 | 3 | -3 | | | | | |
| | | -1 | 1 | 1 | -1 | | | | |
| | | | -3 | 3 | 3 | -3 | | | |
| | | | | -1 | 1 | 1 | -1 | | |
| | | | | | -3 | 3 | 3 | -3 | |
| | | | | | | -1 | 1 | 5 | -5 |
| -5 | | | | | | | -3 | 3 | 5 |

It is easy to see that A is an integer ${ }^{8} \mathrm{H}_{5}(5,10 ; 8,4)$, where each entry $1,2,4,5,7$ appears, up to sign, exactly eight times. The array B is an integer ${ }^{16} \mathrm{H}_{5}(10,10 ; 4,4)$, where each of the entries 1 and 3 appears, up to sign, exactly sixteen times, whereas the entry 5 appears, up to sign, exactly eight times.

Observe that when $\lambda=1$ one retrieves the concept of an (integer) relative Heffter array. In particular, an (integer) ${ }^{1} \mathrm{H}_{1}(m, n ; s, k)$ is exactly a classical (integer) Heffter array, as defined by Archdeacon. The problem of the existence of square classical Heffter arrays has been completely solved in [3, 12] for the integer case, and in [5] for the general case. For the other cases (non-square or relative), partial results have been obtained in $[2,10,18]$. Applications of (relative) Heffter arrays to graph decompositions and biembeddings are described, for instance, in $[4,6,7,11]$.

Here, we prove the following result, where any admissible value of λ and t is considered.

Theorem 1.10 Let m, n, s, k be integers such that $4 \leq s \leq n, 4 \leq k \leq m$ and $m s=n k$. Let λ be a divisor of $2 m s$ and let t be a divisor of $\frac{2 m s}{\lambda}$. There exists an integer ${ }^{\lambda} \mathrm{H}_{t}(m, n ; s, k)$ in each of the following cases:
(1) $s, k \equiv 0(\bmod 4)$;
(2) $s \equiv 2(\bmod 4)$ and $k \equiv 0(\bmod 4)$;
(3) $s \equiv 0(\bmod 4)$ and $k \equiv 2(\bmod 4)$;
(4) $s, k \equiv 2(\bmod 4)$ and m, n both even.

Looking at Definitions 1.1 and 1.8 the reader can easily see that, when $m s$ is even, a signed magic array is a particular integer 2 -fold relative Heffter array. In fact, the integer ${ }^{2} \mathrm{H}_{1}(m, n ; s, k)$ we construct in the following sections is actually a signed magic array $\operatorname{SMA}(m, n ; s, k)$. So, Theorem 1.6 will follow from Theorem 1.10, except when $s, k \equiv 2(\bmod 4)$ and m, n are odd. Nevertheless, for these exceptional values, we will construct an $\operatorname{SMA}(m, n ; s, k)$ starting from square signed magic arrays, whose existence is assured by Theorem 1.2, and exploiting the flexibility of our constructions. Note that [9 , Theorem 4.9], where the authors considered the particular case ${ }^{2} \mathrm{H}_{1}(m, n ; s, k)$ with s, k even, was actually proved using the previous Theorem 1.6

Our results on signed magic arrays allow us also to build magic rectangles.

Definition 1.11 A magic rectangle $\operatorname{MR}(m, n ; s, k)$ is an $m \times n$ pf array with elements in $\Omega=\{0,1, \ldots, m s-1\} \subset \mathbb{Z}$ such that
(a) each row contains s filled cells and each column contains k filled cells;
(b) every $x \in \Omega$ appears exactly once in the array;
(c) the sum of the elements in each row is a constant value c_{1} and the sum of the elements in each column is a constant value c_{2}.

Clearly, in the previous definition we must have $c_{1}=\frac{s(m s-1)}{2}$ and $c_{2}=\frac{k(m s-1)}{2}$. The reader can find results on the existence of these objects in $[14,15]$ and in the references within. Here, we prove the following.

Theorem 1.12 Let m, n, s, k be integers such that $4 \leq s \leq n, 4 \leq k \leq m$ and $m s=n k$. There exists an $\operatorname{MR}(m, n ; s, k)$ in each of the following cases:
(1) $s, k \equiv 0(\bmod 4)$;
(2) $s \equiv 2(\bmod 4)$ and $k \equiv 0(\bmod 4)$;
(3) $s \equiv 0(\bmod 4)$ and $k \equiv 2(\bmod 4)$;
(4) $s, k \equiv 2(\bmod 4)$ and m, n both even.

2 Notation

In this paper, the arithmetic on the row (respectively, on the column) indices is performed modulo m (respectively, modulo n), where the set of reduced residues is $\{1,2, \ldots, m\}$ (respectively, $\{1,2, \ldots, n\}$), while the entries of the arrays are taken in \mathbb{Z}. Given two integers $a \leq b$, we denote by $[a, b]$ the interval consisting of the integers $a, a+1, \ldots, b$. If $a>b$, then $[a, b]$ is empty. We denote by (i, j) the cell in
the i-th row and j-th column of an array A. The support of A, denoted by $\operatorname{supp}(A)$, is defined to be the set of the absolute values of the elements contained in A.

If A is an $m \times n \mathrm{pf}$ array, for $i \in[1, n]$ we define the i-th diagonal as

$$
D_{i}=\{(1, i),(2, i+1), \ldots,(m, i+m-1)\} .
$$

Definition 2.1 A pf array with entries in \mathbb{Z} is said to be shiftable if every row and every column contains an equal number of positive and negative entries.

Let A be a shiftable pf array and x be a nonnegative integer. Let $A \pm x$ be the (shiftable) pf array obtained by adding x to each positive entry of A and $-x$ to each negative entry of A. Observe that, since A is shiftable, the row and column sums of $A \pm x$ are exactly the row and column sums of A.

We denote by $\tau_{i}(A)$ and $\gamma_{j}(A)$ the sum of the elements of the i-th row and the sum of the elements of the j-th column, respectively, of a pf array A.

For a block B, we write $\mu(B)=\mu$ if every element of $\operatorname{supp}(B)$ appears exactly μ times in $\mathcal{E}(B) \cup-\mathcal{E}(B)$.

Given a sequence $S=\left(B_{1}, B_{2}, \ldots, B_{r}\right)$ of shiftable pf arrays and a nonnegative integer x, we write $S \pm x$ for the sequence ($\left.B_{1} \pm x, B_{2} \pm x, \ldots, B_{r} \pm x\right)$. We set $\mathcal{E}(S)=\cup_{i} \mathcal{E}\left(B_{i}\right)$ and $\operatorname{supp}(S)=\cup_{i} \operatorname{supp}\left(B_{i}\right)$. We also write $\mu(S)=\mu$ if $\mu\left(B_{i}\right)=\mu$ for all i.

If $S_{1}=\left(a_{1}, a_{2}, \ldots, a_{r}\right)$ and $S_{2}=\left(b_{1}, b_{2}, \ldots, b_{u}\right)$ are two sequences, by $S_{1}+S_{2}$ we mean the sequence ($a_{1}, a_{2}, \ldots, a_{r}, b_{1}, b_{2}, \ldots, b_{u}$) obtained by concatenation of S_{1} and S_{2}. In particular, if S_{1} is the empty sequence then $S_{1}+S_{2}=S_{2}$. Furthermore, given the sequences S_{1}, \ldots, S_{c}, we write $\underset{i=1}{\stackrel{c}{+}} S_{i}$ for $\left(\cdots\left(\left(S_{1}+S_{2}\right)+S_{3}\right)+\cdots\right)+S_{c}$.

Given a positive integer n and a sequence $S=\left(a_{1}, a_{2}, \ldots, a_{r}\right)$, we denote by $n * S$ the sequence obtained by concatenating n copies of S.

Finally, we recall that the support of an integer ${ }^{\lambda} \mathrm{H}_{t}(m, n ; s, k)$ is the set

$$
\Phi=\left[1,\left\lfloor\frac{t \ell}{2}\right\rfloor\right] \backslash\left\{\ell, 2 \ell, \ldots,\left\lfloor\frac{t}{2}\right\rfloor \ell\right\}, \quad \text { where } \ell=\frac{2 m s}{\lambda t}+1=\frac{v}{t}
$$

Note that, if λ divides $m s$, then

$$
\Phi=\left[1, \frac{m s}{\lambda}+\left\lfloor\frac{t}{2}\right\rfloor\right] \backslash\left\{\ell, 2 \ell, \ldots,\left\lfloor\frac{t}{2}\right\rfloor \ell\right\} .
$$

Also, every element of Φ appears in ${ }^{\lambda} \mathrm{H}_{t}(m, n ; s, k)$, up to sign, exactly λ times. If λ does not divide $m s$, in order to obtain an integer ${ }^{\lambda} \mathrm{H}_{t}(m, n ; s, k)$, we have to construct a pf array A such that
if ℓ is odd or if t is even, every element of Φ appears in A, up to sign, exactly λ times; otherwise, i.e, if ℓ is even and t is odd, every element of $\Phi \backslash\left\{\frac{t \ell}{2}\right\}$ appears in A, up to sign, exactly λ times, while the integer $\frac{t \ell}{2}$ appears, up to sign, $\frac{\lambda}{2}$ times.

3 The case $s, k \equiv 0(\bmod 4)$

In this section we prove the existence of an integer ${ }^{\lambda} \mathrm{H}_{t}(m, n ; s, k)$ when both s and k are divisible by 4 . First of all, we set

$$
d=\operatorname{gcd}(m, n), \quad m=d \bar{m}, \quad n=d \bar{n}, \quad s=4 \bar{s} \quad \text { and } \quad k=4 \bar{k} .
$$

From $m s=n k$ we see that \bar{n} divides \bar{s} and \bar{m} divides \bar{k}. Hence, we can write $\bar{s}=c \bar{n}$ and $\bar{k}=c \bar{m}$. Observe that $n=d \bar{n} \geq s=4 c \bar{n}$ implies $d \geq 4$.

Fix two integers $a, b \geq 0$ and consider the following shiftable pf array:

$$
B=B_{a, b}=\begin{array}{|c|c|}
\hline 1 & -(a+1) \\
\hline & \\
\hline-(b+1) & a+b+1 \\
\hline
\end{array} .
$$

Note that the sequences of the row/column sums are $(-a, a)$ and $(-b, b)$, respectively. We use this 3×2 block for constructing pf arrays whose rows and columns sum to zero. Start taking an empty $m \times n$ array A, fix $m \bar{n}$ nonnegative integers $y_{0}, y_{1}, \ldots, y_{m \bar{n}-1}$, and arrange the blocks $B \pm y_{j}$ in such a way that the element $1+y_{j}$ fills the cell $(j+1, j+1)$ of A (recall that we work modulo m on row indices and modulo n on column indices). In this way, we fill the diagonals $D_{i m-1}, D_{i m}, D_{i m+1}, D_{i m+2}$ with $i \in[1, \bar{n}]$. In particular, every row has $4 \bar{n}$ filled cells and every column has $4 \bar{m}$ filled cells.

Looking at the rows, the elements belonging to the diagonals $D_{i m+1}, D_{i m+2}$ sum to $-a$, while the elements belonging to the diagonals $D_{i m-1}, D_{i m}$ sum to a. Looking at the columns, the elements belonging to the diagonals $D_{i m+1}, D_{i m-1}$ sum to $-b$, while the elements belonging to the diagonals $D_{i m+2}, D_{i m}$ sum to b. Then A has row/column sums equal to zero.

Applying this process c times (working with the diagonals $D_{i m+3}, D_{i m+4}, D_{i m+5}$, $D_{i m+6}$, and so on), we obtain a pf array A, whose rows have exactly $4 \bar{n} \cdot c=s$ filled cells and whose columns have exactly $4 \bar{m} \cdot c=k$ filled cells.

Example 3.1 For $a=2$ and $b=5$, fixing the integers $0,1,10,11,20,21,30,31,40$, $41,50,51$, we can fill the diagonals $D_{1}, D_{2}, D_{5}, D_{6}, D_{7}, D_{8}, D_{11}, D_{12}$ of the following $6 \times 12 \mathrm{pf}$ array, where we highlighted the block $B_{2,5}$:

$A=$| 1 | -3 | | | -26 | 28 | 31 | -33 | | | -56 | 58 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 59 | 2 | -4 | | | -27 | 29 | 32 | -34 | | | -57 |
| -6 | 8 | 11 | -13 | | | -36 | 38 | 41 | -43 | | |
| | -7 | 9 | 12 | -14 | | | -37 | 39 | 42 | -44 | |
| | | -16 | 18 | 21 | -23 | | | -46 | 48 | 51 | -53 |
| -54 | | | -17 | 19 | 22 | -24 | | | -47 | 49 | 52 |

Note that $\operatorname{supp}(A)=[1,60] \backslash\{5 j: j \in[1,12]\}$. As the reader can verify, A is an integer ${ }^{1} \mathrm{H}_{24}(6,12 ; 8,4)$: in this case $\ell=\frac{2 \cdot 6 \cdot 8}{24}+1=5$.

The constructions we present in this section are obtained by following this procedure, so they all produce shiftable pf arrays of size $m \times n$ whose rows and columns sum to zero.

Here we always assume that $4 \leq s \leq n, 4 \leq k \leq m, m s=n k$ and $s, k \equiv 0$ $(\bmod 4)$. Let λ be a divisor of $2 m s$ and t be a divisor of $\frac{2 m s}{\lambda}$; set

$$
\ell=\frac{2 m s}{\lambda t}+1
$$

We first consider the case when λ divides $m s$. To obtain an integer ${ }^{\lambda} \mathrm{H}_{t}(m, n ; s, k)$ with $s, k \equiv 0(\bmod 4)$, we only have to determine two integers $a, b \geq 0$ and a set $X=\left\{x_{0}, x_{1}, \ldots, x_{f-1}\right\} \subset \mathbb{N}$ such that $\mu\left(B_{a, b}\right)=\mu$ divides λ and $\bigcup_{x \in X} \operatorname{supp}\left(B_{a, b} \pm x\right)=$ Φ, where $f=\frac{m s}{4} \frac{\mu}{\lambda}$. So we can take the sequence $Y=\frac{\lambda}{\mu} *\left(x_{0}, x_{1}, \ldots, x_{f-1}\right)$. Writing $Y=\left(y_{0}, y_{1}, \ldots, y_{\frac{m s}{4}-1}\right)$ we construct A using the blocks $B_{a, b} \pm y_{j}$. In this way, every element of $\operatorname{supp}(A)$ occurs, up the sign, λ times in A. For instance, we can arrange the blocks in such a way that the element $1+y_{j}$ fills the cell $\left(j+1,4 q_{j}+j+1\right)$, where q_{j} is the quotient of the division of j by $\operatorname{lcm}(m, n)$.

Lemma 3.2 Let λ be a divisor of $m s$ such that $\lambda \equiv 0(\bmod 4)$. There exists an integer ${ }^{\lambda} \mathrm{H}_{t}(m, n ; s, k)$ for any divisor t of $\frac{2 m s}{\lambda}$.

Proof: Let $B=B_{0,0}=$| 1 | -1 |
| :---: | :---: |
| | |
| -1 | 1 | . Note that $\mu(B)=4$. An integer ${ }^{\lambda} \mathrm{H}_{t}(m, n ; s, k)$, say A, can be obtained by following the construction described before, once we exhibit a suitable set X of size $\frac{m s}{\lambda}$, in such a way that $\operatorname{supp}(A)=\Phi$. Consider the set $X=\{i-1 \mid i \in \Phi\}$ of size $\frac{m s}{\lambda}$: clearly, $\bigcup_{x \in X} \operatorname{supp}(B \pm x)=\Phi$. Now we take $\frac{\lambda}{4}$ copies of every block $B \pm x$: the pf array A obtained by following our procedure is an integer ${ }^{\lambda} \mathrm{H}_{t}(m, n ; s, k)$.

For instance, the integer ${ }^{8} \mathrm{H}_{5}(5,10 ; 8,4)$ given in Example 1.9 was obtained by following the proof of the previous lemma. In fact, $\lambda=8$ and $t=5$ divides $\frac{2 \cdot 5 \cdot 8}{8}$; note that $\ell=3$ and $Y=2 *(0,1,3,4,6)$.

Lemma 3.3 Let λ be a divisor of ms such that $\lambda \equiv 2(\bmod 4)$. There exists an integer ${ }^{\lambda} \mathrm{H}_{t}(m, n ; s, k)$ for any divisor t of $\frac{2 m s}{\lambda}$.

Proof: We first consider the case when ℓ is odd, which means that t divides $\frac{m s}{\lambda}$. Let $B=B_{1,0}=$| 1 | -2 |
| :--- | :--- |
| | |
| -1 | 2 | ; note that $\mu(B)=2$. We start considering the set $X_{0}=$ $\{0,2,4, \ldots, \ell-3\}$ of size $\frac{\ell-1}{2}=\frac{m s}{\lambda t}$: it is easy to see that $\bigcup_{x \in X_{0}} \operatorname{supp}(B \pm x)=[1, \ell] \backslash\{\ell\}$.

Similarly, for any $i \in \mathbb{N}$, if $X_{i}=\{i \ell, i \ell+2, i \ell+4, \ldots,(i+1) \ell-3\}$, then

$$
\bigcup_{x \in X_{i}} \operatorname{supp}(B \pm x)=[i \ell+1,(i+1) \ell] \backslash\{(i+1) \ell\}
$$

and $X_{i_{1}} \cap X_{i_{2}}=\emptyset$ if $i_{1} \neq i_{2}$.
If t is even, take $X=\bigcup_{i=0}^{t / 2-1} X_{i}$: this is a set of size $\frac{t}{2} \cdot \frac{m s}{\lambda t}=\frac{m s}{2 \lambda}$, as required. Furthermore,

$$
\begin{aligned}
\bigcup_{x \in X} \operatorname{supp}(B \pm x) & =\bigcup_{i=0}^{t / 2-1}([i \ell+1,(i+1) \ell] \backslash\{(i+1) \ell\}) \\
& =\left[1, \frac{t}{2} \ell\right] \backslash\left\{\ell, 2 \ell, \ldots, \frac{t}{2} \ell\right\}=\left[1, \frac{m s}{\lambda}+\frac{t}{2}\right] \backslash\left\{\ell, 2 \ell, \ldots, \frac{t}{2} \ell\right\}
\end{aligned}
$$

Suppose now that t is odd, which implies that $\ell \equiv 1(\bmod 4)$. Take

$$
Z=\left\{\left(\frac{t-1}{2}\right) \ell,\left(\frac{t-1}{2}\right) \ell+2,\left(\frac{t-1}{2}\right) \ell+4, \ldots,\left(\frac{t-1}{2}\right) \ell+2 \frac{\ell-5}{4}\right\} .
$$

Then $|Z|=\frac{\ell-1}{4}=\frac{m s}{2 \lambda t}$ and $\bigcup_{z \in Z} \operatorname{supp}(B \pm z)=\left[\left(\frac{t-1}{2}\right) \ell+1,\left(\frac{t-1}{2}\right) \ell+\frac{\ell-1}{2}\right]$. So, we can take $X=\left(\bigcup_{i=0}^{(t-3) / 2} X_{i}\right) \cup Z$: this is a set of size $\frac{t-1}{2} \cdot \frac{m s}{\lambda t}+\frac{m s}{2 \lambda t}=\frac{m s}{2 \lambda}$, as required. In this case,

$$
\begin{aligned}
\bigcup_{x \in X} \operatorname{supp}(B \pm x)= & \bigcup_{i=0}^{\frac{t-3}{2}}([i \ell+1,(i+1) \ell] \backslash\{(i+1) \ell\}) \cup \\
& {\left[\left(\frac{t-1}{2}\right) \ell+1,\left(\frac{t-1}{2}\right) \ell+\frac{\ell-1}{2}\right] } \\
= & \left(\left[1, \frac{t-1}{2} \ell\right] \backslash\left\{\ell, 2 \ell, \ldots, \frac{t-1}{2} \ell\right\}\right) \cup\left[\left(\frac{t-1}{2}\right) \ell+1, \frac{m s}{\lambda}+\frac{t-1}{2}\right] \\
= & {\left[1, \frac{m s}{\lambda}+\left\lfloor\frac{t}{2}\right\rfloor\right] \backslash\left\{\ell, 2 \ell, \ldots,\left\lfloor\frac{t}{2}\right\rfloor \ell\right\} . }
\end{aligned}
$$

In both cases, considering $\frac{\lambda}{2}$ copies of the distinct blocks $B \pm x$ with $x \in X$, the pf array A obtained by following our procedure is an integer ${ }^{\lambda} \mathrm{H}_{t}(m, n ; s, k)$.

Finally, we consider the case when ℓ is even, which implies that $t \equiv 0(\bmod 4)$. Let $B=B_{\ell, 0}=$| 1 | $-(\ell+1)$ |
| :---: | :---: |
| | |
| -1 | $\ell+1$ | ; note that $\mu(B)=2$. We start considering the set $X_{0}=$ $[0, \ell-2]$ of size $\ell-1=\frac{2 m s}{\lambda t}$: it is easy to see that $\bigcup_{x \in X_{0}} \operatorname{supp}(B \pm x)=[1,2 \ell] \backslash\{\ell, 2 \ell\}$. Similarly, for any $i \in \mathbb{N}$, if $X_{i}=[2 i \ell,(2 i+1) \ell-2]$, then

$$
\bigcup_{x \in X_{i}} \operatorname{supp}(B \pm x)=[2 i \ell+1,(2 i+2) \ell] \backslash\{(2 i+1) \ell,(2 i+2) \ell\}
$$

and $X_{i_{1}} \cap X_{i_{2}}=\emptyset$ if $i_{1} \neq i_{2}$. Take $X=\bigcup_{i=0}^{t / 4-1} X_{i}$: this is a set of size $\frac{t}{4} \cdot(\ell-1)=\frac{m s}{2 \lambda}$, as required. In this case,

$$
\begin{aligned}
\bigcup_{x \in X} \operatorname{supp}(B \pm x) & =\bigcup_{i=0}^{t / 4-1}([2 i \ell+1,(2 i+2) \ell] \backslash\{(2 i+1) \ell,(2 i+2) \ell\}) \\
& =\left[1, \frac{t}{2} \ell\right] \backslash\left\{\ell, 2 \ell, \ldots, \frac{t}{2} \ell\right\}=\left[1, \frac{m s}{\lambda}+\frac{t}{2}\right] \backslash\left\{\ell, 2 \ell, \ldots, \frac{t}{2} \ell\right\}
\end{aligned}
$$

Now we take $\frac{\lambda}{2}$ copies of every block $B \pm x$: the pf array A obtained by following our procedure is an integer ${ }^{\lambda} \mathrm{H}_{t}(m, n ; s, k)$.

We now deal with the case λ odd. This implies that λ divides $m s / 4$.
Lemma 3.4 Let λ be a positive odd integer. There exists an integer ${ }^{\lambda} \mathrm{H}_{t}(m, n ; s, k)$ for any divisor t of $\frac{2 m s}{\lambda}$ such that $t \equiv 0(\bmod 8)$.

Proof: Let $B=B_{\ell, 2 \ell}=$| 1 | $-(\ell+1)$ |
| :---: | :---: |
| | |
| $-(2 \ell+1)$ | $3 \ell+1$ | , where $\ell=\frac{2 m s}{\lambda t}+1$. Note that $\mu(B)=1$. An integer ${ }^{\lambda} \mathrm{H}_{t}(m, n ; s, k)$, say A, can be obtained by following the construction described before, once we exhibit a suitable set X of size $\frac{m s}{4 \lambda}$, in such a way that $\operatorname{supp}(A)=\left[1, \frac{m s}{\lambda}+\frac{t}{2}\right] \backslash\left\{\ell, 2 \ell, \ldots, \frac{t}{2} \ell\right\}$.

Start considering the set $X_{0}=[0, \ell-2]$ of size $\ell-1=\frac{2 m s}{\lambda t}$: it is easy to see that $\bigcup_{x \in X_{0}} \operatorname{supp}(B \pm x)=[1,4 \ell] \backslash\{\ell, 2 \ell, 3 \ell, 4 \ell\}$. Similarly, for any $i \in \mathbb{N}$, if $X_{i}=$ $[4 i \ell,(4 i+1) \ell-2]$, then

$$
\bigcup_{x \in X_{i}} \operatorname{supp}(B \pm x)=[4 i \ell+1,(4 i+4) \ell] \backslash\{(4 i+1) \ell,(4 i+2) \ell,(4 i+3) \ell,(4 i+4) \ell\} .
$$

Clearly, $X_{i_{1}} \cap X_{i_{2}}=\emptyset$ if $i_{1} \neq i_{2}$. So, take $X=\bigcup_{i=0}^{t / 8-1} X_{i}$: this is a set of size $\frac{t}{8} \cdot(\ell-1)=\frac{t}{8} \cdot \frac{2 m s}{\lambda t}=\frac{m s}{4 \lambda}$, as required. It is easy to see that

$$
\begin{aligned}
\bigcup_{x \in X} \operatorname{supp}(B \pm x)= & \bigcup_{\substack{i=0}}^{t / 8-1}([4 i \ell+1,(4 i+4) \ell] \backslash\{(4 i+1) \ell,(4 i+2) \ell,(4 i+3) \ell, \\
& (4 i+4) \ell\}) \\
= & {\left[1, \frac{t}{2} \ell\right] \backslash\left\{\ell, 2 \ell, \ldots, \frac{t}{2} \ell\right\}=\left[1, \frac{m s}{\lambda}+\frac{t}{2}\right] \backslash\left\{\ell, 2 \ell, \ldots, \frac{t}{2} \ell\right\} }
\end{aligned}
$$

Now we take λ copies of every block $B \pm x$: the pf array A obtained by following our procedure is an integer ${ }^{\lambda} \mathrm{H}_{t}(m, n ; s, k)$.

Lemma 3.5 Let λ be a positive odd integer. There exists an integer ${ }^{\lambda} \mathrm{H}_{t}(m, n ; s, k)$ for any divisor t of $\frac{m s}{\lambda}$ such that $t \equiv 0(\bmod 4)$.

Proof: Let $B=B_{1, \ell}=$| 1 | -2 |
| :---: | :---: |
| | |
| $-(\ell+1)$ | $\ell+2$ | : note that $\mu(B)=1$ and, since t divides $\frac{m s}{\lambda}, \ell=\frac{2 m s}{\lambda t}+1$ is an odd integer. We start considering the set $X_{0}=\{0,2,4, \ldots, \ell-3\}$ of size $\frac{\ell-1}{2}=\frac{m s}{\lambda t}$: it is easy to see that $\bigcup_{x \in X_{0}} \operatorname{supp}(B \pm x)=[1, \ell-1] \cup[\ell+1,2 \ell-1]=$

$[1,2 \ell] \backslash\{\ell, 2 \ell\}$. Similarly, for any $i \in \mathbb{N}$, if $X_{i}=\{2 i \ell, 2 i \ell+2,2 i \ell+4, \ldots,(2 i+1) \ell-3\}$, then

$$
\bigcup_{x \in X_{i}} \operatorname{supp}(B \pm x)=[2 i \ell+1,2(i+1) \ell] \backslash\{(2 i+1) \ell,(2 i+2) \ell\}
$$

and $X_{i_{1}} \cap X_{i_{2}}=\emptyset$ if $i_{1} \neq i_{2}$. So, take $X=\bigcup_{i=0}^{t / 4-1} X_{i}$: this is a set of size $\frac{t}{4} \cdot \frac{\ell-1}{2}=$ $\frac{t}{4} \cdot \frac{m s}{\lambda t}=\frac{m s}{4 \lambda}$, as required. Hence,

$$
\begin{aligned}
\bigcup_{x \in X} \operatorname{supp}(B \pm x) & =\bigcup_{i=0}^{t / 4-1}([2 i \ell+1,2(i+1) \ell] \backslash\{(2 i+1) \ell,(2 i+2) \ell\}) \\
& =\left[1, \frac{t}{2} \ell\right] \backslash\left\{\ell, 2 \ell, \ldots, \frac{t}{2} \ell\right\}=\left[1, \frac{m s}{\lambda}+\frac{t}{2}\right] \backslash\left\{\ell, 2 \ell, \ldots, \frac{t}{2} \ell\right\}
\end{aligned}
$$

Now we take λ copies of every block $B \pm x$: the pf array A obtained by following our procedure is an integer ${ }^{\lambda} \mathrm{H}_{t}(m, n ; s, k)$.

For instance, to construct an integer ${ }^{5} \mathrm{H}_{4}(5,10 ; 8,4)$ we can follow the proof of the previous lemma. In fact, $\lambda=5$ and $t=4$ divides $\frac{5 \cdot 8}{5}$; note that $\ell=5$ and $Y=5 *(0,2)$.

${ }^{5} \mathrm{H}_{4}(5,10 ; 8,4)=$| 1 | -2 | | -8 | 9 | 3 | -4 | | -6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9 | 3 | -4 | | -6 | 7 | 1 | -2 | | -8 |
| -6 | 7 | 1 | -2 | | -8 | 9 | 3 | -4 | |
| | -8 | 9 | 3 | -4 | | -6 | 7 | 1 | -2 |
| -4 | | -6 | 7 | 1 | -2 | | -8 | 9 | 3 |.

Lemma 3.6 Let λ be a positive odd integer. There exists an integer ${ }^{\lambda} \mathrm{H}_{t}(m, n ; s, k)$ for any divisor t of $\frac{m s}{2 \lambda}$.

Proof: Let $B=B_{1,2}=$| 1 | -2 |
| :---: | :---: |
| -3 | |
| -3 | 4 | . Note that $\mu(B)=1$ and $\ell=\frac{2 m s}{\lambda t}+1 \equiv 1$ $(\bmod 4)$ since t divides $\frac{m s}{2 \lambda}$. We start considering the set $X_{0}=\{0,4,8, \ldots, \ell-5\}$ of size $\frac{\ell-1}{4}=\frac{m s}{2 \lambda t}$: clearly, $\bigcup_{x \in X_{0}} \operatorname{supp}(B \pm x)=[1, \ell] \backslash\{\ell\}$. Similarly, for any $i \in \mathbb{N}$, if $X_{i}=\{i \ell, i \ell+4, i \ell+8, \ldots,(i+1) \ell-5\}$, then

$$
\bigcup_{x \in X_{i}} \operatorname{supp}(B \pm x)=[i \ell+1,(i+1) \ell] \backslash\{(i+1) \ell\}
$$

and $X_{i_{1}} \cap X_{i_{2}}=\emptyset$ if $i_{1} \neq i_{2}$.
If t is even, take $X=\bigcup_{i=0}^{t / 2-1} X_{i}$: this is a set of size $\frac{t}{2} \cdot \frac{\ell-1}{4}=\frac{t}{2} \cdot \frac{m s}{2 \lambda t}=\frac{m s}{4 \lambda}$, as required. Hence,

$$
\begin{aligned}
\bigcup_{x \in X} \operatorname{supp}(B \pm x) & =\bigcup_{i=0}^{t / 2-1}([i \ell+1,(i+1) \ell] \backslash\{(i+1) \ell\}) \\
& =\left[1, \frac{t}{2} \ell\right] \backslash\left\{\ell, 2 \ell, \ldots, \frac{t}{2} \ell\right\}=\left[1, \frac{m s}{\lambda}+\frac{t}{2}\right] \backslash\left\{\ell, 2 \ell, \ldots, \frac{t}{2} \ell\right\}
\end{aligned}
$$

Suppose now that t is odd. Notice that, in this case, $\ell \equiv 1(\bmod 8)$. Take

$$
Z=\left\{\left(\frac{t-1}{2}\right) \ell,\left(\frac{t-1}{2}\right) \ell+4,\left(\frac{t-1}{2}\right) \ell+8, \ldots,\left(\frac{t-1}{2}\right) \ell+4 \frac{\ell-9}{8}\right\} .
$$

Then $|Z|=\frac{\ell-1}{8}=\frac{m s}{4 \lambda t}$ and $\bigcup_{z \in Z} \operatorname{supp}(B \pm z)=\left[\left(\frac{t-1}{2}\right) \ell+1,\left(\frac{t-1}{2}\right) \ell+\frac{\ell-1}{2}\right]$. Take $X=\left(\bigcup_{i=0}^{(t-3) / 2} X_{i}\right) \cup Z$: this is a set of size $\frac{t-1}{2} \cdot \frac{\ell-1}{4}+\frac{\ell-1}{8}=\frac{t-1}{2} \cdot \frac{m s}{2 \lambda t}+\frac{m s}{4 \lambda t}=\frac{m s}{4 \lambda}$, as required. In this case,

$$
\begin{aligned}
\bigcup_{x \in X} \operatorname{supp}(B \pm x)= & \bigcup_{i=0}^{\frac{t-3}{2}}([i \ell+1,(i+1) \ell] \backslash\{(i+1) \ell\}) \cup \\
& {\left[\left(\frac{t-1}{2}\right) \ell+1,\left(\frac{t-1}{2}\right) \ell+\frac{\ell-1}{2}\right] } \\
= & \left(\left[1, \frac{t-1}{2} \ell\right] \backslash\left\{\ell, 2 \ell, \ldots, \frac{t-1}{2} \ell\right\}\right) \cup\left[\left(\frac{t-1}{2}\right) \ell+1, \frac{m s}{\lambda}+\frac{t-1}{2}\right] \\
= & {\left[1, \frac{m s}{\lambda}+\left\lfloor\frac{t}{2}\right\rfloor\right] \backslash\left\{\ell, 2 \ell, \ldots,\left\lfloor\frac{t}{2}\right\rfloor \ell\right\} }
\end{aligned}
$$

In both cases, we construct the pf array A using λ copies of every block $B \pm x$; so, the pf array A obtained by following our procedure is an integer ${ }^{\lambda} \mathrm{H}_{t}(m, n ; s, k)$.

For instance, we can follow the proof of the previous lemma for constructing an integer ${ }^{3} \mathrm{H}_{3}(9,9 ; 8,8)$. In fact, $\lambda=3$ and $t=3$ divides $\frac{9 \cdot 8}{2 \cdot 3}$; note that $\ell=17$ and $Y=3 *(0,4,8,12,17,21)$.

${ }^{3} \mathrm{H}_{3}(9,9 ; 8,8)=$| 1 | -2 | -20 | 21 | 13 | -14 | | -7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 12 | 5 | -6 | -24 | 25 | 18 | -19 | | -11 |
| -3 | 4 | 9 | -10 | -15 | 16 | 22 | -23 | |
| | -7 | 8 | 13 | -14 | -20 | 21 | 1 | -2 |
| -6 | | -11 | 12 | 18 | -19 | -24 | 25 | 5 |
| 9 | -10 | | -15 | 16 | 22 | -23 | -3 | 4 |
| 8 | 13 | -14 | | -20 | 21 | 1 | -2 | -7 |
| -11 | 12 | 18 | -19 | | -24 | 25 | 5 | -6 |
| -10 | -15 | 16 | 22 | -23 | | -3 | 4 | 9 |

We now consider the case when λ does not divide $m s$. We need to adjust our general strategy in order to satisfy (2.1).

Lemma 3.7 Suppose that λ does not divide $m s$. Then, there exists an integer ${ }^{\lambda} \mathrm{H}_{t}(m, n ; s, k)$ for any divisor t of $\frac{2 m s}{\lambda}$.

Proof: Since λ divides $2 m s$ but does not divide $m s$, from $s \equiv 0(\bmod 4)$ we obtain $\lambda \equiv 0(\bmod 8)$. We can easily adapt the proof of Lemma 3.2, using the block $B=B_{0,0}=$| 1 | -1 |
| :---: | :---: |
| | |
| -1 | 1 | and considering two possibilities. In both cases, an

integer ${ }^{\lambda} \mathrm{H}_{t}(m, n ; s, k)$, say A, can be obtained by following the construction given at the beginning of this section and using the blocks $B \pm y_{0}, B \pm y_{1}, \ldots, B \pm y_{\frac{m s}{4}-1}$ for a suitable sequence $Y=\left(y_{0}, y_{1}, \ldots, y_{\frac{m s}{4}-1}\right)$ in such a way that condition (2.1) is satisfied.
Suppose that ℓ is odd or t is even. It suffices to consider the sequence X obtained by taking the natural ordering \leq of $\{i-1 \mid i \in \Phi\} \subset \mathbb{N}$, and define $Y=\frac{\lambda}{4} * X$.
Suppose that ℓ is even and t is odd. Let X_{1} be the sequence obtained by taking the natural ordering \leq of $\{i-1 \mid i \in \Psi\} \subset \mathbb{N}$, where $\Psi=\Phi \backslash\left\{\frac{t \ell}{2}\right\}$. Also, let $Y_{1}=\frac{\lambda}{4} * X_{1}$ and let Y_{2} be the sequence obtained by repeating $\frac{\lambda}{8}$ times the integer $\frac{t \ell}{2}-1$. Define $Y=Y_{1}+Y_{2}$ and note that $|Y|=\frac{\lambda}{4} \cdot \frac{2 m s-\lambda}{2 \lambda}+\frac{\lambda}{8}=\frac{m s}{4}$.

For instance, the integer ${ }^{16} \mathrm{H}_{5}(10,10 ; 4,4)$ given in Example 1.9 was obtained by following the proof of the previous lemma. In fact, $\lambda=16$ does not divide $m s=40$; note that $\ell=2, X_{1}=(0,2)$ and $Y=(0,2,0,2,0,2,0,2,4,4)$.

Proposition 3.8 Suppose $4 \leq s \leq n, 4 \leq k \leq m, m s=n k$ and $s, k \equiv 0(\bmod 4)$. Let λ be a divisor of $2 m s$. There exists a shiftable integer ${ }^{\lambda} \mathrm{H}_{t}(m, n ; s, k)$ for every divisor t of $\frac{2 m s}{\lambda}$.

Proof: If λ does not divide $m s$, the statement follows from Lemma 3.7. So, suppose that λ divides $m s$. If $\lambda \equiv 0(\bmod 4)$ or $\lambda \equiv 2(\bmod 4)$, then we can apply Lemma 3.2 or Lemma 3.3, respectively. Now we assume λ odd. If $t \equiv 0(\bmod 8)$, we apply Lemma 3.4. If $t \equiv 4(\bmod 8)$, then t divides $\frac{m s}{\lambda}$ and hence we can apply Lemma 3.5. Finally, if $t \not \equiv 0(\bmod 4)$, then t divides $\frac{m_{s}}{2 \lambda}$ and so the existence of an integer ${ }^{\lambda} \mathrm{H}_{t}(m, n ; s, k)$ follows from Lemma 3.6. In all these cases, the integer λ-fold Heffter array that we construct is shiftable.

4 The case $s \equiv 2(\bmod 4), k$ and m even

In this section, we will assume that s, m, k are positive even integers with $s \equiv 2$ $(\bmod 4)$ and $s \geq 6$. We need to distinguish two cases, according to the divisibility of $m s$ by λ. In fact, if λ does not divide $m s$, from $m s \equiv 0(\bmod 4)$ we obtain $\lambda \equiv 0$ $(\bmod 8)$. In this case, we have to construct pf arrays that satisfy (2.1).

If λ divides $m s$ we write

$$
\begin{equation*}
\lambda=\lambda_{1} \lambda_{2}, \quad \text { where } \lambda_{1} \text { divides } \frac{m}{2} \text { and } \lambda_{2} \text { divides } 2 s . \tag{4.1}
\end{equation*}
$$

Let t be a divisor of $\frac{2 m s}{\lambda}$ and set

$$
\ell=\frac{2 m s}{\lambda t}+1
$$

4.1 Construction of nice pairs of sequences

To obtain an integer ${ }^{\lambda} \mathrm{H}_{t}(m, n ; s, k)$, we first construct pairs of sequences, satisfying the following properties.

Definition 4.1 A pair $\left(\mathcal{B}_{1}, \mathcal{B}_{2}\right)$ of sequences is said to be nice if, for a fixed positive integer b, we have:

- the sequence \mathcal{B}_{1} consists of blocks satisfying this condition:

$$
\begin{align*}
& \text { there exist } b \text { integers } \sigma_{1}, \ldots, \sigma_{b} \text { such that the elements of } \mathcal{B}_{1} \\
& \text { are shiftable blocks } B \text { of size } 2 \times 2 b \text { with } \tau_{1}(B)=\tau_{2}(B)=0 \tag{4.2}\\
& \text { and } \gamma_{2 i-1}(B)=-\gamma_{2 i}(B)=\sigma_{i} \text { for all } i \in[1, b] ;
\end{align*}
$$

- the sequence \mathcal{B}_{2} consists of blocks satisfying this condition:
there exist $2 b$ integers $\sigma_{1}^{\prime}, \ldots, \sigma_{2 b}^{\prime}$ with $\sum_{i=1}^{b} \sigma_{2 i-1}^{\prime}=\sum_{i=1}^{b} \sigma_{2 i}^{\prime}=0$, such that the elements of \mathcal{B}_{2} are shiftable blocks B^{\prime} of size $2 \times 2 b$ with $\tau_{1}\left(B^{\prime}\right)=\tau_{2}\left(B^{\prime}\right)=0$ and $\gamma_{i}\left(B^{\prime}\right)=\sigma_{i}^{\prime}$ for all $i \in[1,2 b]$;
- the sequences \mathcal{B}_{1} and \mathcal{B}_{2} have the same length and, writing $\mathcal{B}_{1}=\left(B_{1}, B_{2}, \ldots\right.$, $\left.B_{e}\right)$ and $\mathcal{B}_{2}=\left(B_{1}^{\prime}, B_{2}^{\prime}, \ldots, B_{e}^{\prime}\right)$, then $\mathcal{E}\left(B_{i}\right)=\mathcal{E}\left(B_{i}^{\prime}\right)$ for all $i \in[1, e]$.

Observe that the sequences $\mathcal{B}_{1}, \mathcal{B}_{2}$ in the previous definition do not need to be distinct.

We construct these nice pairs of sequences, starting with the case when λ divides $m s$. In particular, our sequences \mathcal{B}_{i}, consisting of shiftable blocks of size $2 \times s$, are of length $\frac{m}{2 \lambda_{1}}$ and such that $\mu\left(\mathcal{B}_{i}\right)=\lambda_{2}$. We begin with the case when λ_{2} is odd. Note that this implies that λ_{2} divides $\frac{s}{2}$.

Lemma 4.2 [18, Corollary 4.10 and Lemma 5.1] Let a and c be even integers with $a \geq 2, c \geq 6$ and $c \equiv 2(\bmod 4)$. Let u be a divisor of $2 a c$ and set $\rho=\frac{2 a c}{u}+1$. There exists a nice pair $\left(\tilde{\mathcal{B}}_{1}, \tilde{\mathcal{B}}_{2}\right)$ of sequences of length $\frac{a}{2}$, where $\tilde{\mathcal{B}}_{1}$ and $\tilde{\mathcal{B}}_{2}$ consist of blocks of size $2 \times c, \mu\left(\tilde{\mathcal{B}}_{1}\right)=\mu\left(\tilde{\mathcal{B}}_{2}\right)=1$ and

$$
\operatorname{supp}\left(\tilde{\mathcal{B}}_{1}\right)=\operatorname{supp}\left(\tilde{\mathcal{B}}_{2}\right)=[1, a c+\lfloor u / 2\rfloor] \backslash\{j \rho: j \in[1,\lfloor u / 2\rfloor]\}
$$

Corollary 4.3 Let $\lambda=\lambda_{1} \lambda_{2}$ be as in (4.1). If $\lambda_{2} \neq \frac{s}{2}$ is odd, there exists a nice pair $\left(\mathcal{B}_{1}, \mathcal{B}_{2}\right)$ of sequences of length $\frac{m}{2 \lambda_{1}}$, where \mathcal{B}_{1} and \mathcal{B}_{2} consist of blocks of size $2 \times s$, $\mu\left(\mathcal{B}_{1}\right)=\mu\left(\mathcal{B}_{2}\right)=\lambda_{2}$ and

$$
\operatorname{supp}\left(\mathcal{B}_{1}\right)=\operatorname{supp}\left(\mathcal{B}_{2}\right)=\left[1, \frac{m s}{\lambda}+\left\lfloor\frac{t}{2}\right\rfloor\right] \backslash\left\{\ell, 2 \ell, \ldots,\left\lfloor\frac{t}{2}\right\rfloor \ell\right\}=\Phi .
$$

Proof: Take $a=\frac{m}{\lambda_{1}}, c=\frac{s}{\lambda_{2}}$ and $u=t$. Since λ_{1} divides $\frac{m}{2}, a$ is a positive even integer; since $\lambda_{2} \neq \frac{s}{2}$ is odd and divides $2 s$, then c is an even integer such that $c \geq 6$ and $c \equiv 2(\bmod 4)$. Note that t divides $2 a c=\frac{2 m s}{\lambda_{1} \lambda_{2}}$ and $\rho=\frac{2 a c}{t}+1=\frac{2 m s}{\lambda t}+1=\ell$. Hence, we can apply Lemma 4.2 obtaining a nice pair $\left(\tilde{\mathcal{B}}_{1}, \tilde{\mathcal{B}}_{2}\right)$ of sequences of length $\frac{m}{2 \lambda_{1}}$ consisting of blocks of size $2 \times \frac{s}{\lambda_{2}}$ such that $\mu\left(\tilde{\mathcal{B}}_{1}\right)=\mu\left(\tilde{\mathcal{B}}_{2}\right)=1$ and $\operatorname{supp}\left(\tilde{\mathcal{B}}_{1}\right)=$ $\operatorname{supp}\left(\tilde{\mathcal{B}}_{2}\right)=\Phi$. Now, replace every block \tilde{B} of $\tilde{\mathcal{B}}_{i}, i=1,2$, with the block B obtained by juxtaposing λ_{2} copies of \tilde{B}. So, B is a block of size $2 \times s$ and $\mu(B)=\lambda_{2}$. Call $\mathcal{B}_{1}, \mathcal{B}_{2}$ the two sequences so obtained. It follows that the pair $\left(\mathcal{B}_{1}, \mathcal{B}_{2}\right)$ satisfies the required properties.

Now we consider the case when $\lambda_{2}=\frac{s}{2}$.
Lemma 4.4 Let $\lambda=\lambda_{1} \lambda_{2}$ be as in (4.1) with $\lambda_{2}=\frac{s}{2}$. There exists a nice pair $\left(\mathcal{B}_{1}, \mathcal{B}_{2}\right)$ of sequences of length $\frac{m}{2 \lambda_{1}}$, where \mathcal{B}_{1} and \mathcal{B}_{2} consist of blocks of size $2 \times s$, $\mu\left(\mathcal{B}_{1}\right)=\mu\left(\mathcal{B}_{2}\right)=\frac{s}{2}$ and $\operatorname{supp}\left(\mathcal{B}_{1}\right)=\operatorname{supp}\left(\mathcal{B}_{2}\right)=\Phi$.

Proof: We first consider the case when ℓ is odd. Consider the following shiftable blocks:

$A=$	1	-2	-3	4			F	-	-2	-4	5		
	-1	2	3	-4				-1	2	4	-5		
$E=$	1	-1	3	-4	-3	4	G	4	2	-2	2	-1	-5
	-2	2	-1	2	3	-4		-5	-1	4	-4	1	5
$E^{\prime}=$	1	3	-1	-4	-3	4	G^{\prime}	4	-2	2	2	-1	-5
	-2	-1	2	2	3	-4		-5	4	-1	-4	1	5

Note that A and F satisfy both (4.2) and (4.3); E and G satisfy (4.2); E^{\prime} and G^{\prime} satisfy (4.3). We first construct the sequence \mathcal{B}_{1}. To this purpose, take the block B obtained by juxtaposing the block E and $\frac{s-6}{4}$ copies of the block A. We obtain a block of size $2 \times s$ such that $\operatorname{supp}(B)=[1,4]$ and $\mu(B)=\frac{s}{2}$. Also, let C be the block obtained by juxtaposing the block G and $\frac{s-6}{4}$ copies of the block F. Then C is a block of size $2 \times s$ such that $\operatorname{supp}(C)=\{1,2,4,5\}$ and $\mu(C)=\frac{s}{2}$.
Assume $\ell \equiv 1(\bmod 4)$. Let $S=\left(B, B \pm 4, B \pm 8, \ldots, B \pm 4 \frac{\ell-5}{4}\right)$. Then $|S|=\frac{\ell-1}{4}$ and $\operatorname{supp}(S)=[1, \ell] \backslash\{\ell\}$. If t is even, take

$$
\mathcal{B}_{1}=S+(S \pm \ell)+(S \pm 2 \ell)+\ldots+\left(S \pm \frac{t-2}{2} \ell\right)
$$

If t is odd, then $\ell-1=8 \frac{m}{2 \lambda_{1} t} \equiv 0(\bmod 8)$. Let

$$
Y=\left(B, B \pm 4, B \pm 8, \ldots, B \pm\left(4 \frac{\ell-9}{8}\right)\right)
$$

and

$$
\mathcal{B}_{1}=S+(S \pm \ell)+(S \pm 2 \ell)+\ldots+\left(S \pm \frac{t-3}{2} \ell\right)+\left(Y \pm \frac{t-1}{2} \ell\right)
$$

In both cases, \mathcal{B}_{1} is a sequence of length $\frac{(\ell-1) t}{8}=\frac{m}{2 \lambda_{1}}$ such that $\mu\left(\mathcal{B}_{1}\right)=\frac{s}{2}$ and $\operatorname{supp}\left(\mathcal{B}_{1}\right)=\Phi$. The sequence \mathcal{B}_{2} is obtained by replacing in \mathcal{B}_{1} the block E with the block E^{\prime}.
Assume $\ell \equiv 3(\bmod 4)$. Note that, in this case, $8 \frac{m}{2 \lambda_{1} t} \equiv 2(\bmod 4)$ and so $t \equiv$ $0(\bmod 4)$. Take $S=\left(B, B \pm 4, B \pm 8, \ldots, B \pm 4 \frac{\ell-7}{4}, C \pm(\ell-3), B \pm(\ell+2), B \pm\right.$ $(\ell+6), B \pm(\ell+10), \ldots, B \pm(2 \ell-5))$. Then $|S|=\frac{\ell-1}{2}$ and $\operatorname{supp}(S)=[1,2 \ell] \backslash$ $\{\ell, 2 \ell\}$. Define

$$
\mathcal{B}_{1}=S \#(S \pm 2 \ell)+(S \pm 4 \ell)+\ldots+\left(S \pm 2 \frac{t-4}{4} \ell\right)
$$

So, \mathcal{B}_{1} is a sequence of length $\frac{(\ell-1) t}{8}=\frac{m}{2 \lambda_{1}}$ such that $\mu\left(\mathcal{B}_{1}\right)=\frac{s}{2}$ and $\operatorname{supp}\left(\mathcal{B}_{1}\right)=\Phi$. The sequence \mathcal{B}_{2} is obtained by replacing in \mathcal{B}_{1} the block G with the block G^{\prime}.

Finally, assume that ℓ is even. Note that, in this case, $t \equiv 0(\bmod 8)$. Consider the shiftable blocks:

$$
\begin{aligned}
H & =\begin{array}{|c|c|c|c|c|c|}
\hline 1 & -(\ell+1) & -(2 \ell+1) & 3 \ell+1 \\
\hline-1 & \ell+1 & 2 \ell+1 & -(3 \ell+1) \\
L & =\begin{array}{|c|c|c|c|c|}
\hline 1 & 3 \ell+1 & -(\ell+1) & \ell+1 & -1 \\
\hline \hline-(\ell+1) & -(2 \ell+1) & 2 \ell+1 & -(2 \ell+1) & 1
\end{array} & 3 \ell+1 \\
\hline
\end{array} .
\end{aligned}
$$

Note that the blocks H and L satisfy both (4.2) and (4.3). Let K be the block obtained by juxtaposing the block L and $\frac{s-6}{4}$ copies of the block H. Then K is a block of size $2 \times s$ such that $\operatorname{supp}(K)=\{1, \ell+1,2 \ell+1,3 \ell+1\}$ and $\mu(K)=\frac{s}{2}$. Let $S=(K, K \pm 1, K \pm 2, \ldots, K \pm(\ell-2))$. Then $|S|=\ell-1$ and $\operatorname{supp}(S)=$ $[1,4 \ell] \backslash\{\ell, 2 \ell, 3 \ell, 4 \ell\}$. Define

$$
\mathcal{B}_{1}=\mathcal{B}_{2}=S+(S \pm 4 \ell)+(S \pm 8 \ell)+\ldots+\left(S \pm 4 \frac{t-8}{8} \ell\right) .
$$

So, \mathcal{B}_{i} is a sequence of length $\frac{(\ell-1) t}{8}=\frac{m}{2 \lambda_{1}}$ such that $\mu\left(\mathcal{B}_{i}\right)=\frac{s}{2}$ and $\operatorname{supp}\left(\mathcal{B}_{i}\right)=\Phi$.
For instance, using the previous lemma with $m=30, s=10, \lambda_{1}=3$ and $t=5$, we have $\ell=9$. The sequence \mathcal{B}_{1} consists of the following five shiftable blocks:

We now deal with the case $\lambda_{2} \equiv 2(\bmod 4)$.

Lemma 4.5 Let $\lambda=\lambda_{1} \lambda_{2}$ be as in (4.1) with $\lambda_{2} \equiv 2(\bmod 4)$ and $\lambda_{2} \geq 6$. There exists a nice pair $(\mathcal{B}, \mathcal{B})$, where \mathcal{B} is a sequence of length $\frac{m}{2 \lambda_{1}}$ consisting of blocks of size $2 \times s$ such that $\mu(\mathcal{B})=\lambda_{2}$ and $\operatorname{supp}(\mathcal{B})=\Phi$.

Proof: We first consider the case when ℓ is odd. Consider the following shiftable blocks:

$$
A=\begin{array}{|c|c|c|c|}
\hline 1 & -1 & 2 & -2 \\
\hline-1 & 1 & -2 & 2 \\
\hline
\end{array}, \quad E=\begin{array}{|c|c|c|c|c|c|}
\hline 1 & 2 & -1 & 1 & -1 & -2 \\
\hline-2 & -1 & 2 & -2 & 1 & 2 \\
\hline
\end{array} .
$$

Note that A and E satisfy both (4.2) and (4.3). To construct the sequence \mathcal{B}, first take the block C obtained by juxtaposing the block E and $\frac{\lambda_{2}-6}{4}$ copies of the block A. We obtain a block of size $2 \times \lambda_{2}$ such that supp $(C)=\{1,2\}$ and $\mu(C)=\lambda_{2}$. Consider the sequence $S=\left(C, C \pm 2, C \pm 4, \ldots, C \pm 2 \frac{\ell-3}{2}\right)$. Then $|S|=\frac{\ell-1}{2}, \mu(S)=\lambda_{2}$ and $\operatorname{supp}(S)=[1, \ell] \backslash\{\ell\}$. If t is even, take

$$
\tilde{\mathcal{B}}=S+(S \pm \ell)+(S \pm 2 \ell)+\ldots+\left(S \pm \frac{t-2}{2} \ell\right) .
$$

If t is odd, then $\ell-1=4 \frac{\frac{m}{2 \lambda_{1}} \cdot \frac{s}{\lambda_{2}}}{t} \equiv 0(\bmod 4)$. Let

$$
Y=\left(C, C \pm 2, C \pm 4, \ldots, C \pm\left(2 \frac{\ell-5}{4}\right)\right)
$$

and

$$
\tilde{\mathcal{B}}=S \#(S \pm \ell) \#(S \pm 2 \ell)+\ldots+\left(S \pm \frac{t-3}{2} \ell\right)+\left(Y \pm \frac{t-1}{2} \ell\right) .
$$

In both cases, $\tilde{\mathcal{B}}$ is a sequence of length $\frac{(\ell-1) t}{4}=\frac{m s}{2 \lambda}$ such that $\mu(\tilde{\mathcal{B}})=\lambda_{2}$ and $\operatorname{supp}(\tilde{\mathcal{B}})=\Phi$.

Suppose now that ℓ is even. Note that, in this case, $t \equiv 0(\bmod 4)$. Consider the shiftable blocks:

$$
\begin{aligned}
& F= .
\end{aligned}
$$

Note that the blocks F and G satisfy both (4.2) and (4.3). Take the block H obtained by juxtaposing the block G and $\frac{\lambda_{2}-6}{4}$ copies of the block F. We obtain a block of size $2 \times \lambda_{2}$ such that $\operatorname{supp}(H)=\{1, \ell+1\}$ and $\mu(H)=\lambda_{2}$. Consider the sequence $S=(H, H \pm 1, H \pm 2, \ldots, H \pm(\ell-2))$. Then $|S|=\ell-1, \mu(S)=\lambda_{2}$ and $\operatorname{supp}(S)=[1,2 \ell] \backslash\{\ell, 2 \ell\}$. Take

$$
\tilde{\mathcal{B}}=S+(S \pm 2 \ell)+(S \pm 4 \ell)+\ldots+\left(S \pm 2 \frac{t-4}{4} \ell\right) .
$$

Hence, $\tilde{\mathcal{B}}$ is a sequence of length $\frac{(\ell-1) t}{4}=\frac{m s}{2 \lambda}$ such that $\mu(\tilde{\mathcal{B}})=\lambda_{2}$ and $\operatorname{supp}(\tilde{\mathcal{B}})=\Phi$. Finally, for every ℓ, writing $\tilde{\mathcal{B}}=\left(K_{1}, K_{2}, \ldots, K_{\frac{m s}{2 \lambda}}\right)$ and $q=\frac{s}{\lambda_{2}}$, for every $i \in\left[1, \frac{m}{2 \lambda_{1}}\right]$ we construct the block B_{i} juxtaposing the q blocks $K_{1+(i-1) q}, K_{2+(i-1) q}, \ldots, K_{i q}$. The blocks B_{i} are of size $2 \times q \lambda_{2}$, that is, of size $2 \times s$. So, we can set $\mathcal{B}=$ $\left(B_{1}, B_{2}, B_{3}, \ldots, B_{\frac{m}{2 \lambda_{1}}}\right)$.

For instance, using the previous lemma with $m=84, s=10, \lambda_{1}=7, \lambda_{2}=10$ and $t=8$, we have $\ell=4$. The sequence \mathcal{B} consists of the following six shiftable blocks:

We now deal with the case $\lambda_{2}=2$.
Lemma 4.6 Let $\lambda=\lambda_{1} \lambda_{2}$ be as in (4.1) with $\lambda_{2}=2$. Suppose that t divides $\frac{m s}{2 \lambda_{1}}$. There exists a nice pair $\left(\mathcal{B}_{1}, \mathcal{B}_{2}\right)$ of sequences of length $\frac{m}{2 \lambda_{1}}$, where \mathcal{B}_{1} and \mathcal{B}_{2} consist of blocks of size $2 \times s, \mu\left(\mathcal{B}_{1}\right)=\mu\left(\mathcal{B}_{2}\right)=2$ and $\operatorname{supp}\left(\mathcal{B}_{1}\right)=\operatorname{supp}\left(\mathcal{B}_{2}\right)=\Phi$.

Proof: Write $s=4 q+6$ where $q \geq 0$ and take the following shiftable blocks:

$U_{3}=$	1	-2	-4	5			U_{5}	1	-2	-3	4			
	-1	2	4	-5			-1	2	3	-4				
$V_{1}=$	2	-2	-5	-6	4	7		V_{3}	1	-1	-5	-6	4	7
	-3	3	6	5	-4	-7	-2		2	6	5	-4	-7	
$V_{5}=$	6	-6	-2	-3	1	4	$V_{7}=$	1	-1	-4	-5	3	6	
	-7	7	3	2	-1	-4		-2	2	5	4	-3	-6	
$Z=$	1	-1	4	-5	-7	8	Z^{\prime}	1	4	-1	-5	-7	8	
	-2	2	-4	5	7	-8		-2	-4	2	5	7	-8	

Note that, since t divides $\frac{m s}{2 \lambda_{1}}, \ell$ is an odd integer.
If $\ell=4 x+1 \geq 5$, take $\tilde{S}=\left(U_{5}, U_{5} \pm 4, U_{5} \pm 8, \ldots, U_{5} \pm 4(x-1)\right)$. Then $|\tilde{S}|=x$, $\mu(\tilde{S})=2$ and $\operatorname{supp}(\tilde{S})=[1, \ell] \backslash\{\ell\}$. Let $\tilde{\mathcal{B}}$ be the sequence obtained by taking the
first $\frac{m q}{2 \lambda_{1}}$ blocks in $\underset{c \geq 0}{+}(\tilde{S} \pm \ell c)$. If $\ell=4 x+3 \geq 3$, take $\tilde{S}=\left(U_{5}, U_{5} \pm 4, U_{5} \pm 8, \ldots, U_{5} \pm\right.$ $\left.4(x-1), U_{3} \pm 4 x, U_{5} \pm(4 x+5), U_{5} \pm(4 x+9), \ldots, U_{5} \pm(8 x+1)\right)$. Then $|\tilde{S}|=2 x+1$, $\mu(\tilde{S})=2$ and $\operatorname{supp}(\tilde{S})=[1,2 \ell] \backslash\{\ell, 2 \ell\}$. Let $\tilde{\mathcal{B}}$ be the sequence obtained by taking the first $\frac{m q}{2 \lambda_{1}}$ blocks in $\underset{c \geq 0}{+}(\tilde{S} \pm 2 \ell c)$. In both cases we obtain a sequence $\tilde{\mathcal{B}}$ of blocks of size 2×4 that satisfy both (4.2) and (4.3) and such that $\operatorname{supp}(\tilde{\mathcal{B}})=[1, N]$ where $N=\frac{2 m q}{\lambda_{1}}+\eta$ with $\eta=\left\lfloor\frac{2 q t}{s}\right\rfloor$.
Now, we have to construct a sequence $S^{\prime \prime}$ of shiftable blocks of size 2×6 satisfying condition (4.2) in such a way that $\left|S^{\prime}\right|=\frac{m}{2 \lambda_{1}}$ and

$$
\left.\operatorname{supp}\left(S^{\prime}\right)=\left[N+1, \frac{m s}{2 \lambda_{1}}+\left\lfloor\frac{t}{2}\right\rfloor\right] \backslash\left\{j \ell: j \in\left[\eta+1,\left\lfloor\frac{t}{2}\right\rfloor\right\rfloor\right]\right\}
$$

If $\ell=3$, then $t=\frac{m s}{2 \lambda_{1}}$ and $N=3 \frac{m q}{\lambda_{1}} \equiv 0(\bmod 3)$. We can take $S^{\prime}=\underset{c=0}{\frac{m}{2 \lambda_{1}}-1}(Z \pm(N+$ $9 c)$). If $\ell=5$, then $t=\frac{m s}{4 \lambda_{1}}$ and $N=5 \frac{m q}{2 \lambda_{1}} \equiv 0(\bmod 5)$. Define $T=\left(V_{5}, V_{3} \pm 7\right)$. If $\frac{m}{2 \lambda_{1}}$ is even, we can take $S^{\prime}=\underset{c=0}{\frac{m}{4 \lambda_{1}}-1} \prod_{c=0}(T \pm(N+15 c))$. If $\frac{m}{2 \lambda_{1}}$ is odd, we can take $S^{\prime}=\left(\begin{array}{c}\frac{m-6 \lambda_{1}}{4 \lambda_{1}} \\ \underset{c=0}{\#}\end{array}(T \pm(N+15 c))\right)+\left(V_{5} \pm\left(\frac{m s}{2 \lambda_{1}}+\frac{t-15}{2}\right)\right)$.
Suppose now that $\ell \geq 7$: in this case, any set of 6 consecutive integers contains at most one multiple of ℓ. We start considering the interval $[N+1, N+6]$ and the first multiple of ℓ belonging to the interval $\left[N+1, \frac{m s}{2 \lambda_{1}}+\lfloor t / 2\rfloor\right]$. So, if $(\eta+1) \ell$ is an element of $[N+1, N+6]$ we take the block V_{r} where r must be chosen in such a way that $\operatorname{supp}\left(V_{r} \pm N\right)$ does not contain $(\eta+1) \ell$. Otherwise, we take the block V_{7} and repeat this process considering the interval $[N+7, N+12]$.
It will be useful to define, for all $b \geq 1$, the sequence

$$
H(b)=\left(V_{7}, V_{7} \pm 6, V_{7} \pm 12, \ldots, V_{7} \pm 6(b-1)\right)
$$

Also, we set $H(0)$ to be the empty sequence: so, for all $b \geq 0$ the sequence $H(b)$ contains b elements and $\operatorname{supp}(H(b))=[1,6 b]$.
Write $(\eta+1) \ell-N=6 h_{0}+r_{0}$, where $0 \leq r_{0}<6$, and define the sequence

$$
S_{0}^{\prime}=\left(H\left(h_{0}\right), V_{r_{0}} \pm 6 h_{0}\right) .
$$

Note that r_{0} is odd, since ℓ is odd and $(\eta+1) \ell-N \equiv(\eta+1) \ell+\eta \equiv 1(\bmod 2)$. Furthermore, $\operatorname{supp}\left(S_{0}^{\prime} \pm N\right)=\left[N+1, N+6 h_{0}+7\right] \backslash\{(\eta+1) \ell\}$.
Now, for all $j \in[1,\lfloor t / 2\rfloor-\eta]$, write $\ell-7+r_{j-1}=6 h_{j}+r_{j}$, where $0 \leq r_{j}<6$, and define the sequence

$$
S_{j}^{\prime}=\left(H\left(h_{j}\right) \pm\left(7 j+6 \sum_{i=0}^{j-1} h_{i}\right), V_{r_{j}} \pm\left(7 j+6 \sum_{i=0}^{j} h_{i}\right)\right) .
$$

Note that $(\eta+j+1) \ell-N=6 \sum_{i=0}^{j} h_{i}+7 j+r_{j}$ and

$$
\operatorname{supp}\left(S_{j}^{\prime} \pm N\right)=\left[N+1+7 j+6 \sum_{i=0}^{j-1} h_{i}, N+7(j+1)+6 \sum_{i=0}^{j} h_{i}\right] \backslash\{(\eta+j+1) \ell\}
$$

The elements of S^{\prime} are the first $\frac{m}{2 \lambda_{1}}$ blocks in $\underset{c=0}{\stackrel{\lfloor t / 2\rfloor-\eta}{\#}}\left(S_{c}^{\prime} \pm N\right)$.
Finally, writing $\tilde{\mathcal{B}}=\left(A_{1}, \ldots, A_{\frac{m q}{2 \lambda_{1}}}^{2 \lambda_{1}}\right)$ and $S^{\prime}=\left(G_{1}, \ldots, G_{\frac{m}{2 \lambda_{1}}}\right)$, for all $i=1, \ldots, \frac{m}{2 \lambda_{1}}$, let B_{i} be the block of size $2 \times s$ obtained by juxtaposing the q blocks

$$
A_{(i-1) q+1}, A_{(i-1) q+2}, A_{(i-1) q+3}, \ldots, A_{i q}
$$

and the block G_{i}. By construction, the sequence $\mathcal{B}_{1}=\left(B_{1}, \ldots, B_{\frac{m}{2 \lambda_{1}}}\right)$ satisfies condition (4.2), has cardinality $\frac{m}{2 \lambda_{1}}, \mu\left(\mathcal{B}_{1}\right)=2$ and $\operatorname{supp}\left(\mathcal{B}_{1}\right)=\operatorname{supp}(S) \cup \operatorname{supp}\left(S^{\prime}\right)=\Phi$. The sequence \mathcal{B}_{2} is obtained from \mathcal{B}_{1} by replacing the block Z with the block Z^{\prime} (case $\ell=3$).

Lemma 4.7 Let $\lambda=\lambda_{1} \lambda_{2}$ be as in (4.1) with $\lambda_{2}=2$. Let p be an odd prime dividing s and suppose that t is a divisor of $\frac{m s}{\lambda_{1}}$ such that $t \equiv 0(\bmod 4 p)$. There exists a nice pair $(\mathcal{B}, \mathcal{B})$, where \mathcal{B} is a sequence of length $\frac{m}{2 \lambda_{1}}$ consisting of blocks of size $2 \times s$ such that $\mu(\mathcal{B})=2$ and $\operatorname{supp}(\mathcal{B})=\Phi$.

Proof: Take the following blocks:

$$
\begin{aligned}
W_{4} & =\begin{array}{|c|c|c|c|c|c|}
\hline 1 & -(\ell+1) & -(2 \ell+1) & 3 \ell+1 \\
\hline-1 & \ell+1 & 2 \ell+1 & -(3 \ell+1) \\
\hline
\end{array} \\
W_{6} & =\begin{array}{|c|c|c|c|c|}
\hline 1 & -1 & -(3 \ell+1) & -(4 \ell+1) & 2 \ell+1 \\
\hline-(\ell+1) & \ell+1 & 4 \ell+1 & 3 \ell+1 & -(2 \ell+1) \\
\hline-(5 \ell+1) \\
\hline
\end{array} .
\end{aligned}
$$

Then W_{4} and W_{6} satisfy both properties (4.2) and (4.3) with column sums ($0,0,0,0$) and $(-\ell, \ell, \ell,-\ell, 0,0)$, respectively. Furthermore, $\mu\left(W_{4}\right)=\mu\left(W_{6}\right)=2$ and

$$
\operatorname{supp}\left(W_{4}\right)=\{j \ell+1: j \in[0,3]\} \quad \text { and } \quad \operatorname{supp}\left(W_{6}\right)=\{j \ell+1: j \in[0,5]\}
$$

Let V be the following $2 \times 2 p$ block:

$$
V=\begin{array}{|l|l|l|l|l|}
\hline W_{6} & W_{4} \pm 6 \ell & W_{4} \pm 10 \ell & \cdots & W_{4} \pm(2 p-4) \ell \\
\hline
\end{array}
$$

Clearly, also V satisfies both (4.2) and (4.3) and its support is $\operatorname{supp}(V)=\{j \ell+1$: $j \in[0,2 p-1]\}$. We can use this block V for constructing our sequence \mathcal{B} : the $2 \times s$ blocks of \mathcal{B} are obtained simply by juxtaposing $h=\frac{s}{2 p}$ blocks of type $V \pm x$, for $x \in X \subset \mathbb{N}$, following the natural ordering of (X, \leq). So, we are left to exhibit a suitable set X of size $\frac{m h}{2 \lambda_{1}}$ such that the support of the corresponding sequence \mathcal{B} is Φ.

Let $X_{0}=[0, \ell-2]$. Then $\operatorname{supp}\left(V \pm x_{i_{1}}\right) \cap \operatorname{supp}\left(V \pm x_{i_{2}}\right)=\emptyset$ for each $x_{i_{1}}, x_{i_{2}} \in X_{0}$ such that $x_{i_{1}} \neq x_{i_{2}}$. Furthermore,

$$
\bigcup_{x \in X_{0}} \operatorname{supp}(V \pm x)=[1,2 p \ell] \backslash\{j \ell: j \in[1,2 p]\} .
$$

Similarly, for any $i \in \mathbb{N}$, if $X_{i}=[2 p i \ell,(2 p i+1) \ell-2]$ then

$$
\bigcup_{x \in X_{i}} \operatorname{supp}(V \pm x)=[1+2 p i \ell, 2 p \ell+2 p i \ell] \backslash\{j \ell: j \in[1+2 p i, 2 p+2 p i]\} .
$$

Clearly, $X_{i_{1}} \cap X_{i_{2}}=\emptyset$ if $i_{1} \neq i_{2}$. Therefore, take $X=\bigcup_{i=0}^{\frac{t}{4 p}-1} X_{i}$: this is a set of size $\frac{t}{4 p} \cdot(\ell-1)=\frac{t}{4 p} \cdot \frac{4 m p h}{2 \lambda_{1} t}=\frac{m h}{2 \lambda_{1}}$. It follows that the sequence \mathcal{B} obtained, as previously described, from the blocks $V \pm x$, with $x \in X$, has support equal to

$$
\begin{aligned}
\operatorname{supp}(\mathcal{B}) & =\bigcup_{i=0}^{\frac{t}{4 p}-1}([1+2 p i \ell, 2 p \ell+2 p i \ell] \backslash\{j \ell: j \in[1+2 p i, 2 p+2 p i]\}) \\
& =\left[1, \frac{t}{2} \ell\right] \backslash\left\{j \ell: j \in\left[1, \frac{t}{2}\right]\right\}=\left[1, \frac{m s}{2 \lambda_{1}}+\frac{t}{2}\right] \backslash\left\{\ell, 2 \ell, \ldots, \frac{t}{2} \ell\right\},
\end{aligned}
$$

as required.
Example 4.8 Using the previous lemma with $m=18, s=10, \lambda_{1}=3$ and $t=20$, we can choose $p=5$ so that $t \equiv 0(\bmod 20)$. Hence $\ell=4$ and \mathcal{B} consists of the following three shiftable blocks:

B_{1}	1	-1	-13	-17	9	21	25	-29	-33	37
	-5	5	17	13	-9	-21	-25	29	33	-37
B_{2}	2	-2	-14	-18	10	22	26	-30	-34	38
	-6	6	18	14	-10	-22	-26	30	34	-38
	3	-3	-15	-19	11	23	27	-31	-35	39
	-7	7	19	15	-11	-23	-27	31	35	-39

Lemma 4.9 Let $\lambda=\lambda_{1} \lambda_{2}$ be as in (4.1) with $\lambda_{2}=2$. Let p be an odd prime dividing s and suppose that t is a divisor of $\frac{m s}{\lambda_{1} p}$ such that $t \equiv 0(\bmod 4)$. There exists a nice pair $\left(\mathcal{B}_{1}, \mathcal{B}_{2}\right)$ of sequences of length $\frac{m}{2 \lambda_{1}}$, where \mathcal{B}_{1} and \mathcal{B}_{2} consist of blocks of size $2 \times s, \mu\left(\mathcal{B}_{1}\right)=\mu\left(\mathcal{B}_{2}\right)=2$ and $\operatorname{supp}\left(\mathcal{B}_{1}\right)=\operatorname{supp}\left(\mathcal{B}_{2}\right)=\Phi$.

Proof: By hypothesis we can write $\ell=p y+1$. Consider the following blocks:

$$
\begin{aligned}
& W_{4}=\begin{array}{|c|c|c|c|c|c|}
\hline y+1 & -(2 y+1) & -((p+1) y+2) & (p+2) y+2 & \\
\hline-(y+1) & 2 y+1 & (p+1) y+2 & -((p+2) y+2) & \\
W_{6} & =\begin{array}{|c|c|c|c|c|}
\hline 2 y+1 & -(2 y+1) & 1 & -(y+1) & -((p+1) y+2) \\
\hline-(p y+2) & p y+2 & -1 & y+1 & (p+1) y+2 \\
\hline \hline 2 y+1 & 1 & -(2 y+1) & -((p+2) y+2) \\
\hline \hline-(p y+2) & -1 & p y+2 & -(y+1) & -((p+1) y+2) \\
\hline-2 & (p+2) y+2 \\
\hline
\end{array} \\
W_{6}^{\prime}=
\end{array}
\end{aligned}
$$

Note that the block W_{4} satisfies both conditions (4.2) and (4.3), while W_{6} satisfies condition (4.2) and W_{6}^{\prime} satisfies condition (4.3). Furthermore,

$$
\begin{aligned}
\operatorname{supp}\left(W_{4}\right)= & \{(j p+1) y+j+1,(j p+2) y+j+1: j \in[0,1]\}, \\
\operatorname{supp}\left(W_{6}\right)=\operatorname{supp}\left(W_{6}^{\prime}\right)= & \{j p y+j+1,(j p+1) y+j+1,(j p+2) y+j+1: \\
& j \in[0,1]\} .
\end{aligned}
$$

Let V be the following $2 \times 2 p$ block:

$$
V=\begin{array}{|l|l|l|l|l|}
\hline W_{6} & W_{4} \pm 2 y & W_{4} \pm 4 y & \cdots & W_{4} \pm(p-3) y . \\
\hline
\end{array}
$$

Clearly, V satisfies (4.2) and its support is

$$
\begin{aligned}
\operatorname{supp}(V) & =\{i y+1,(p+i) y+2: i \in[0, p-1]\} \\
& =\{i y+1, \ell+(i y+1): i \in[0, p-1]\}
\end{aligned}
$$

We can use this block V for constructing the sequence \mathcal{B}_{1} as done in Lemma 4.7: it suffices to exhibit a suitable set X of size $\frac{m h}{2 \lambda_{1}}$, where $h=\frac{s}{2 p}$, such that the support of the corresponding sequence \mathcal{B}_{1} is Φ.
Let $X_{0}=[0, y-1]$. Then $\operatorname{supp}\left(V \pm x_{i_{1}}\right) \cap \operatorname{supp}\left(V \pm x_{i_{2}}\right)=\emptyset$ for each $x_{i_{1}}, x_{i_{2}} \in X_{0}$ such that $x_{i_{1}} \neq x_{i_{2}}$. Furthermore,

$$
\bigcup_{x \in X_{0}} \operatorname{supp}(V \pm x)=[1, p y] \cup[\ell+1, \ell+p y]=[1,2 \ell] \backslash\{\ell, 2 \ell\} .
$$

Similarly, for any $i \in \mathbb{N}$, if $X_{i}=[2 i \ell, 2 i \ell+y-1]$ then

$$
\bigcup_{x \in X_{i}} \operatorname{supp}(V \pm x)=[1+2 i \ell,(2 i+2) \ell] \backslash\{(2 i+1) \ell,(2 i+2) \ell\} .
$$

Clearly, $X_{i_{1}} \cap X_{i_{2}}=\emptyset$ if $i_{1} \neq i_{2}$. Therefore, take $X=\bigcup_{i=0}^{\frac{t}{4}-1} X_{i}$: this is a set of size $\frac{t}{4} \cdot y=\frac{t}{4} \cdot \frac{\ell-1}{p}=\frac{t}{4} \cdot \frac{2 m h}{\lambda_{1} t}=\frac{m h}{2 \lambda_{1}}$. It follows that the sequence \mathcal{B}_{1} obtained from the blocks $V \pm x$, with $x \in X$, has support equal to

$$
\begin{aligned}
\operatorname{supp}\left(\mathcal{B}_{1}\right) & =\bigcup_{i=0}^{\frac{t}{4}-1}([1+2 i \ell, 2 \ell(i+1)] \backslash\{(2 i+1) \ell,(2 i+2) \ell\}) \\
& =\left[1, \frac{t}{2} \ell\right] \backslash\left\{\ell, 2 \ell, \ldots, \frac{t}{2} \ell\right\}=\Phi
\end{aligned}
$$

as required. The sequence \mathcal{B}_{2} is obtained by using W_{6}^{\prime} instead of W_{6}.
The last case we need is when $\lambda_{2} \equiv 0(\bmod 4)$.
Lemma 4.10 Let $\lambda=\lambda_{1} \lambda_{2}$ be as in (4.1) with $\lambda_{2} \equiv 0(\bmod 4)$. There exists a nice pair $(\mathcal{B}, \mathcal{B})$, where \mathcal{B} is a sequence of length $\frac{m}{2 \lambda_{1}}$ consisting of blocks of size $2 \times s$ such that $\mu(\mathcal{B})=\lambda_{2}$ and $\operatorname{supp}(\mathcal{B})=\Phi$.

Proof: Let Q be the $2 \times \frac{\lambda_{2}}{2}$ block obtained by juxtaposing $\frac{\lambda_{2}}{4}$ copies of the shiftable block

$$
\begin{array}{|c|c|}
\hline 1 & -1 \\
\hline-1 & 1 \\
\hline
\end{array}
$$

Clearly, Q satisfies both conditions (4.2) and (4.3). Furthermore, $\operatorname{supp}(Q)=\{1\}$ and $\mu(Q)=\lambda_{2}$. Take a partition of Φ into $\frac{m}{2 \lambda_{1}}$ subsets X_{i}, each of cardinality $\frac{2 s}{\lambda_{2}}$. Writing, for all $i \in\left[1, \frac{m}{2 \lambda_{1}}\right], X_{i}=\left\{x_{i, 1}, x_{i, 2}, \ldots, x_{i, \frac{2 s}{\lambda_{2}}}\right\}$, let B_{i} the block

$$
B_{i}=\begin{array}{|l|l|l|l|l|}
\hline Q \pm\left(x_{i, 1}-1\right) & Q \pm\left(x_{i, 2}-1\right) & Q \pm\left(x_{i, 3}-1\right) & \cdots & Q \pm\left(x_{i, \frac{2 s}{\lambda_{2}}}-1\right) . \\
\hline
\end{array}
$$

Then each B_{i} is a block of size $2 \times s$ such that $\operatorname{supp}\left(B_{i}\right)=X_{i}$ and $\mu\left(B_{i}\right)=\lambda_{2}$. Finally, it suffices to take the sequence $\mathcal{B}=\left(B_{1}, B_{2}, \ldots, B_{\frac{m}{2 \lambda_{1}}}\right)$.

Example 4.11 Using the previous lemma with $m=16, s=10, \lambda_{1}=2, \lambda_{2}=4$ and $t=5$, we have $\ell=9$ and $\Phi=[1,22] \backslash\{9,18\}$. So, can take $X_{1}=[1,5]$, $X_{2}=[6,11] \backslash\{9\}, X_{3}=[12,16]$ and $X_{4}=[17,22] \backslash\{18\}$. Hence, the sequence \mathcal{B} consists of the following four shiftable blocks:

B_{1}		1	-1	2	-2	3	-3	4	-4	$5{ }^{5}$		
		-1	1	-2	2	-3	3	-4	$4-$	-5 5		
B_{2}		6	-6	7	-7	8	-8	10	-10	11	-11	
		-6	6	-7	77	-8	8	-10	10	-11	11	
B_{3}		12	-12		13	-13	14	-14	15	-15	16	-16
		-12	12		-13	13	-14	14	-15	15	-16	16
B_{4}		17	-17		19	-19	20	-20	21	-21	22	-22
		-17	17		-19	19	-20	20	-21	1.21	-22	22

Proposition 4.12 Suppose that λ divides $m s$ and write $\lambda=\lambda_{1} \lambda_{2}$ be as in (4.1). There exists a nice pair $\left(\mathcal{B}_{1}, \mathcal{B}_{2}\right)$ of sequences of length $\frac{m}{2 \lambda_{1}}$, where \mathcal{B}_{1} and \mathcal{B}_{2} consist of blocks of size $2 \times s, \mu\left(\mathcal{B}_{1}\right)=\mu\left(\mathcal{B}_{2}\right)=\lambda_{2}$ and

$$
\operatorname{supp}\left(\mathcal{B}_{1}\right)=\operatorname{supp}\left(\mathcal{B}_{2}\right)=\left[1, \frac{m s}{\lambda}+\left\lfloor\frac{t}{2}\right\rfloor\right] \backslash\left\{\ell, 2 \ell, \ldots\left\lfloor\frac{t}{2}\right\rfloor \ell\right\}=\Phi .
$$

Proof: If $\lambda_{2}=\frac{s}{2}$, the statement follows from Lemma 4.4. If $\lambda_{2} \neq \frac{s}{2}$ is odd, we apply Corollary 4.3. If $\lambda_{2} \equiv 0(\bmod 4)$, we use Lemma 4.10. So, we may assume $\lambda_{2} \equiv 2(\bmod 4)$. If $\lambda_{2} \geq 6$, the statement follows from Lemma 4.5. Finally, suppose $\lambda_{2}=2$. Since $s \geq 6$ and $s \equiv 2(\bmod 4)$, there exists an odd prime p that divides s. Now, our analysis depends on t; recall that t is a divisor of $\frac{m s}{\lambda_{1}}$. If t divides $\frac{m s}{2 \lambda_{1}}$, we apply Lemma 4.6. Otherwise, we must have $t \equiv 0(\bmod 4)$. If t divides $\frac{m s}{\lambda_{1} p}$, the result follows from Lemma 4.9. If t does not divide $\frac{m s}{\lambda_{1} p}$, then t is divisible by p. In particular, $t \equiv 0(\bmod 4 p)$ and so we can apply Lemma 4.7.

Proposition 4.13 Suppose that λ does not divide ms. There exists a nice pair $(\mathcal{B}, \mathcal{B})$, where \mathcal{B} is a sequence of length $\frac{m}{2}$ consisting of blocks of size $2 \times s$, such that $\operatorname{supp}(\mathcal{B})=\Phi$ and condition (2.1) is satisfied.

Proof: As previously observed, we have $\lambda \equiv 0(\bmod 8)$. Let Q be the following shiftable block:

$$
Q=\begin{array}{|c|c|}
\hline 1 & -1 \\
\hline-1 & 1 \\
\hline
\end{array} .
$$

Clearly, Q satisfies both conditions (4.2) and (4.3). Furthermore, $\operatorname{supp}(Q)=\{1\}$ and $\mu(Q)=4$.
Suppose that ℓ is odd or t is even. Consider the sequence X obtained by taking the natural ordering \leq of $\{i-1 \mid i \in \Phi\} \subset \mathbb{N}$ and define $Y=\frac{\lambda}{4} * X$.
Suppose that ℓ is even and t is odd. Let X_{1} be the sequence obtained by taking the natural ordering \leq of $\{i-1 \mid i \in \Psi\} \subset \mathbb{N}$, where $\Psi=\Phi \backslash\left\{\frac{t \ell}{2}\right\}$. Also, let $Y_{1}=\frac{\lambda}{4} * X_{1}$ and let Y_{2} be the sequence obtained by repeating $\frac{\lambda}{8}$ times the integer $\frac{t \ell}{2}-1$. Define $Y=Y_{1}+Y_{2}$ and note that $|Y|=\frac{m s}{4}$.
In both cases, write $Y=\left(y_{1}, y_{2}, \ldots, y \frac{m s}{4}\right)$. For all $i \in\left[1, \frac{m}{2}\right]$, let B_{i} the block

$$
B_{i}=\begin{array}{|l|l|l|l|}
\hline Q \pm y_{1+(i-1) \frac{s}{2}} & Q \pm y_{2+(i-1) \frac{s}{2}} & \cdots & Q \pm y_{i \frac{s}{2}} \\
\hline
\end{array}
$$

Then each B_{i} is a block of size $2 \times s$: it suffices to take the sequence $\mathcal{B}=\left(B_{1}, B_{2}, \ldots\right.$, $\left.B_{\frac{m}{2}}\right)$.

4.2 The subcase $k \equiv 0(\bmod 4)$

Assuming $k \equiv 0(\bmod 4)$, from $m s=n k$ it follows that m must be even. We now explain how to arrange the blocks of the sequences previously constructed, in order to build an integer ${ }^{\lambda} \mathrm{H}_{t}(m, n ; s, k)$. To this purpose, we define a 'base unit' that we will fill with the elements of the blocks.

Let $\mathcal{G}=\left(G_{1}, \ldots, G_{d}\right)$ be a sequence of blocks such that the following property is satisfied:
there exist b integers $\sigma_{1}, \ldots, \sigma_{b}$ such that the elements of \mathcal{G} are blocks
G_{r} of size $2 \times 2 b$ with $\gamma_{2 i-1}\left(G_{r}\right)=-\gamma_{2 i}\left(G_{r}\right)=\sigma_{i}$ for all $i \in[1, b]$.
So, let \mathcal{G} be a sequence satisfying (4.4), where the blocks $G_{r}=\left(g_{i, j}^{(r)}\right)$ are all of size $2 \times 2 b$, with $2 b \leq d$. Let $P=P(\mathcal{G})$ be the pf array of size $2 d \times d$ defined as follows. For all $i \in[1, b]$ and all $j \in[1,2 b]$, the cell $(i, i+j-1)$ of P is filled with the element $g_{1, j}^{(i)}$ and the cell $(d+i, i+j-1)$ is filled with the element $g_{2, j}^{(i)}$; here, the column indices are taken modulo d. The remaining cells of P are empty. An example of such construction is given in Figure 2.

We prove that P is a pf array whose columns all sum to zero. Observe that every row of P contains exactly $2 b$ filled cells and every column contains exactly $4 b$

$g_{1,1}^{(1)}$	$g_{1,2}^{(1)}$	$g_{1,3}^{(1)}$	$g_{1,4}^{(1)}$		
	$g_{1,1}^{(2)}$	$g_{1,2}^{(2)}$	$g_{1,3}^{(2)}$	$g_{1,4}^{(2)}$	
		$g_{1,1}^{(3)}$	$g_{1,2}^{(3)}$	$g_{1,3}^{(3)}$	$g_{1,4}^{(3)}$
$g_{1,4}^{(4)}$			$g_{1,1}^{(4)}$	$g_{1,2}^{(4)}$	$g_{1,3}^{(4)}$
$g_{1,3}^{(5)}$	$g_{1,4}^{(5)}$			$g_{1,1}^{(5)}$	$g_{1,2}^{(5)}$
$g_{1,2}^{(6)}$	$g_{1,3}^{(6)}$	$g_{1,4}^{(6)}$			$g_{1,1}^{(6)}$
$g_{2,1}^{(1)}$	$g_{2,2}^{(1)}$	$g_{2,3}^{(1)}$	$g_{2,4}^{(1)}$		
	$g_{2,1}^{(2)}$	$g_{2,2}^{(2)}$	$g_{2,3}^{(2)}$	$g_{2,4}^{(2)}$	
		$g_{2,1}^{(3)}$	$g_{2,2}^{(3)}$	$g_{2,3}^{(3)}$	$g_{2,4}^{(3)}$
			$g_{2,1}^{(4)}$	$g_{2,2}^{(4)}$	$g_{2,3}^{(4)}$
$g_{2,4}^{(4)}$				$g_{2,1}^{(5)}$	$g_{2,2}^{(5)}$
$g_{2,3}^{(5)}$	$g_{2,4}^{(5)}$				$g_{2,1}^{(6)}$
$g_{2,2}^{(6)}$	$g_{2,3}^{(6)}$	$g_{2,4}^{(6)}$			

Figure 2: This is a $P\left(G_{1}, \ldots, G_{6}\right)$, where G_{1}, \ldots, G_{6} are arrays of size 2×4.
elements. The elements of the i-th column of P are

$$
g_{1,1}^{(i)}, g_{1,2}^{(i-1)}, \ldots, g_{1,2 b}^{(i+1-2 b)}, g_{2,1}^{(i)}, g_{2,2}^{(i-1)}, \ldots, g_{2,2 b}^{(i+1-2 b)}
$$

where the exponents must be read modulo d, with residues in $[1, d]$. Since the sequence \mathcal{G} satisfies (4.4), we obtain

$$
\gamma_{i}(P)=\sum_{j=1}^{2 b} \gamma_{j}\left(G_{i+1-j}\right)=\sum_{j=1}^{2 b} \gamma_{j}\left(G_{i}\right)=\sum_{u=1}^{b}\left(\sigma_{u}-\sigma_{u}\right)=0 .
$$

Furthermore, notice that $\tau_{j}(P)=\tau_{1}\left(G_{j}\right)$ and $\tau_{d+j}(P)=\tau_{2}\left(G_{j}\right)$ for all $j \in[1, d]$.
Proposition 4.14 Suppose $4 \leq s \leq n, 4 \leq k \leq m$ and $m s=n k$. Let λ be a divisor of $2 m s$ and let t be a divisor of $\frac{2 m s}{\lambda}$. There exists a shiftable integer ${ }^{\lambda} \mathrm{H}_{t}(m, n ; s, k)$ in each of the following cases:
(1) $s \equiv 2(\bmod 4)$ and $k \equiv 0(\bmod 4)$;
(2) $s \equiv 0(\bmod 4)$ and $k \equiv 2(\bmod 4)$.

Proof: (1) If λ divides $m s$, let $\left(\mathcal{B}_{1}, \mathcal{B}_{2}\right)$ be the nice pair of sequences constructed in Proposition 4.12 and set $\mathcal{B}=\lambda_{1} * \mathcal{B}_{1}$. If λ does not divide $m s$, let \mathcal{B} be the sequence constructed in Proposition 4.13. Write $d=\operatorname{gcd}\left(\frac{m}{2}, n\right)$ and $a=\frac{s d}{n}$. Note that a is even integer. In fact, write $m=2 \bar{m} d$ and $n=d \bar{n}$. Since $k \equiv 0(\bmod 4)$, from $\frac{s}{2} \cdot \frac{m}{2}=n \frac{k}{4}$ we obtain \bar{n} divides $\frac{s}{2}$.
Given a block $B_{h} \in \mathcal{B}$, define for every $j \in[1, \bar{n}]$ the block $T_{j}\left(B_{h}\right)$ of size $2 \times a$ consisting of the columns C_{i} of B_{h} with $i \in[a(j-1)+1, a j]$. So, the block B_{h} of size

1	-1		-13	-17		9	21		25	-29		-33	37	
	2	-2		-14	-18		10	22		26	-30		-34	38
-3		3	-19		-15	23		11	-31		27	39		-35
-5	5		17	13		-9	-21		-25	29		33	-37	
	-6	6		18	14		-10	-22		-26	30		34	-38
7		-7	15		19	-23		-11	31		-27	-39		35
1	-1		-13	-17		9	21		25	-29		-33	37	
	2	-2		-14	-18		10	22		26	-30		-34	38
-3		3	-19		-15	23		11	-31		27	39		-35
-5	5		17	13		-9	-21		-25	29		33	-37	
	-6	6		18	14		-10	-22		-26	30		34	-38
7		-7	15		19	-23		-11	31		-27	-39		35
1	-1		-13	-17		9	21		25	-29		-33	37	
	2	-2		-14	-18		10	22		26	-30		-34	38
-3		3	-19		-15	23		11	-31		27	39		-35
-5	5		17	13		-9	-21		-25	29		33	-37	
	-6	6		18	14		-10	-22		-26	30		34	-38
7		-7	15		19	-23		-11	31		-27	-39		35

Figure 3: An integer ${ }^{6} \mathrm{H}_{20}(18,15 ; 10,12)$.
$2 \times s$ is obtained by juxtaposing the blocks $T_{1}\left(B_{h}\right), T_{2}\left(B_{h}\right), \ldots, T_{\bar{n}}\left(B_{h}\right)$. Furthermore, for all $i \in[1, \bar{m}]$ and all $j \in[1, \bar{n}]$, each of the sequences

$$
\left(T_{j}\left(B_{(i-1) d+1}\right), T_{j}\left(B_{(i-1) d+2}\right), \ldots, T_{j}\left(B_{i d}\right)\right)
$$

of cardinality d, satisfies condition (4.4).
Let A be an empty array of size $\bar{m} \times \bar{n}$. For every $i \in[1, \bar{m}]$ and $j \in[1, \bar{n}]$, replace the cell (i, j) of A with the block $P\left(T_{j}\left(B_{(i-1) d+1}\right), T_{j}\left(B_{(i-1) d+2}\right), \ldots, T_{j}\left(B_{i d}\right)\right)$, according to the previous definition. Note that, for all $r \in\left[1, \frac{m}{2}\right]$, we have $\tau_{r}(A)=\tau_{1}\left(B_{r}\right)=0$ and $\tau_{r+\frac{m}{2}}(A)=\tau_{2}\left(B_{r}\right)=0$.
By construction, A is a pf array of size $m \times n, \operatorname{supp}(A)=\Phi$ and the rows and columns of A sum to zero. If λ divides $m s$, then every element of Φ appears, up to sign, exactly λ times. If λ does not divide $m s$, condition (2.1) is satisfied. Furthermore, each row contains $a \bar{n}=s$ elements and each column contains $2 a \bar{m}=k$ elements. We conclude that A is a shiftable integer ${ }^{\lambda} \mathrm{H}_{t}(m, n ; s, k)$.
(2) This follows from (1). In fact, if $s \equiv 0(\bmod 4)$ and $k \equiv 2(\bmod 4)$, an integer ${ }^{\lambda} \mathrm{H}_{t}(m, n ; s, k)$ can be obtained simply by taking the transpose of an integer ${ }^{\lambda} \mathrm{H}_{t}(n, m ; k, s)$.

The integer ${ }^{6} \mathrm{H}_{20}(18,15 ; 10,12)$ shown in Figure 3 has been obtained by repeating $\lambda_{1}=3$ times each of the blocks of Example 4.8. In Figure 4 we give an integer ${ }^{8} \mathrm{H}_{5}(16,20 ; 10,8)$, obtained by repeating $\lambda_{1}=2$ times each of the blocks of Example 4.11.

		$\stackrel{\square}{\square}$	ลิ				ה			$\stackrel{\square}{\square}$	N			\bigcirc	$\stackrel{\text { N }}{\text { N }}$
	$\stackrel{7}{7}$	\bigcirc				$\stackrel{-}{1}$			$\stackrel{7}{7}$	$\stackrel{-}{-1}$			\#	$\stackrel{\sim}{\square}$	
20				20	$\stackrel{7}{7}$			$\stackrel{1}{2}$	\#			20	$\stackrel{7}{7}$		
20			$\mid \underset{\substack{\mathrm{N}}}{ }$	20				20			$\stackrel{\text { N }}{\text { N }}$	1			ล
		$\stackrel{12}{1}$	$\stackrel{\rightharpoonup}{\sim}$			$\stackrel{10}{-1}$	$\stackrel{\rightharpoonup}{\text { a }}$			$\stackrel{10}{1}$	-				$\stackrel{\rightharpoonup}{\text { I }}$
	\bigcirc	$\stackrel{12}{12}$			\bigcirc	$\stackrel{10}{1}$			\bigcirc	$\stackrel{20}{\square}$			\bigcirc	$\stackrel{20}{1}$	
$\underset{i}{1}$				-	$\stackrel{\square}{1}$			$\stackrel{7}{1}$	\bigcirc			-	\bigcirc		
-			$\stackrel{\rightharpoonup}{\text { a }}$	+			ন	\checkmark			$\stackrel{\text { a }}{\text { a }}$	+			$\stackrel{\rightharpoonup}{\text { a }}$
		$\stackrel{\square}{\square}$	ค			\pm	$\underset{N}{2}$			$\underset{\square}{7}$	ค				$\stackrel{\sim}{\square}$
	∞	\pm			∞	$\stackrel{\square}{\square}$			∞	\pm			∞	$\underset{\text { - }}{\text { ® }}$	
\because	∞			\cdots	\cdots			\uparrow	∞			∞	\cdots		
∞			$\stackrel{\sim}{1}$	i				∞			$\stackrel{+}{\stackrel{\rightharpoonup}{1}}$	\bigcirc			$\stackrel{\sim}{2}$
		$\stackrel{9}{1}$	\bigcirc			$\stackrel{\sim}{9}$	$\stackrel{9}{1}$			$\stackrel{9}{1}$	\bigcirc				$\stackrel{\square}{7}$
	$\stackrel{\sim}{1}$	9				$\stackrel{\sim}{1}$			-	$\stackrel{9}{2}$			-	$\stackrel{\sim}{\square}$	
$\stackrel{\sim}{\circ}$				\sim	$\stackrel{1}{1}$			$\stackrel{1}{1}$	-			\sim	$\stackrel{ }{-}$		
N			$\stackrel{\square}{\square}$	N			9	\sim			$\stackrel{\square}{\square}$	-			\bigcirc
		$\stackrel{\sim}{\mathrm{I}}$	$\stackrel{-}{\sim}$				$\stackrel{\sim}{\sim}$			$\stackrel{\sim}{\square}$	$\stackrel{-}{\sim}$			\sim	$\stackrel{\sim}{\sim}$
	1	~				$\stackrel{\text { }}{\text { ¢ }}$			\bigcirc	~			\bigcirc	$\stackrel{\sim}{\sim}$	
7				-	\bigcirc			,	0			-	\bigcirc		
-			$\stackrel{\square}{\square}$	-			\wedge	-			$\stackrel{\sim}{\square}$	-			$\stackrel{\sim}{-}$

Figure 4: An integer ${ }^{8} \mathrm{H}_{5}(16,20 ; 10,8)$.

4.3 The subcase $k \equiv 2(\bmod 4)$

Here we only solve the case m even, which implies that also n is even.
Proposition 4.15 Suppose $6 \leq s \leq n, 6 \leq k \leq m, m s=n k$ and $s, k \equiv 2(\bmod 4)$. Let λ be a divisor of $2 m s$ and let t be a divisor of $\frac{2 m s}{\lambda}$. If m is even, there exists a shiftable integer ${ }^{\lambda} \mathrm{H}_{t}(m, n ; s, k)$.

Proof: Without loss of generality, we may assume $m \geq n$ (and so $s \leq k$). If λ divides $m s$, let $\left(\mathcal{B}_{1}, \mathcal{B}_{2}\right)$ be the nice pair of sequences constructed in Proposition 4.12. Take $\mathcal{B}_{1}^{*}=\lambda_{1} * \mathcal{B}_{1}$ and $\mathcal{B}_{2}^{*}=\lambda_{1} * \mathcal{B}_{2}$. So, \mathcal{B}_{1}^{*} and \mathcal{B}_{2}^{*} have length $\frac{m}{2}$ and $\mu\left(\mathcal{B}_{1}^{*}\right)=\mu\left(\mathcal{B}_{2}^{*}\right)=\lambda$. If λ does not divide $m s$, let $\left(\mathcal{B}_{1}^{*}, \mathcal{B}_{2}^{*}\right)$ be the nice pair of sequences constructed in Proposition 4.13. In both cases, write $\mathcal{B}_{1}^{*}=\left(B_{1}, \ldots, B_{\frac{m}{2}}\right)$ and $\mathcal{B}_{2}^{*}=\left(B_{1}^{\prime}, \ldots, B_{\frac{m}{2}}^{\prime}\right)$, where \mathcal{B}_{1}^{*} satisfies (4.2), \mathcal{B}_{2}^{*} satisfies (4.3) and

$$
\operatorname{supp}\left(\mathcal{B}_{1}^{*}\right)=\operatorname{supp}\left(\mathcal{B}_{2}^{*}\right)=\left[1,\left\lfloor\frac{t \ell}{2}\right\rfloor\right] \backslash\{j \ell: j \in[1,\lfloor t / 2\rfloor]\} \quad \text { with } \ell=\frac{2 m s}{\lambda t}+1
$$

Set

$$
\widetilde{\mathcal{B}}_{1}=\left(B_{\frac{n}{2}+1}, \ldots, B_{\frac{m}{2}}\right) \quad \text { and } \quad \widetilde{\mathcal{B}}_{2}=\left(B_{1}^{\prime}, \ldots, B_{\frac{n}{2}}^{\prime}\right)
$$

Since, by construction, $\mathcal{E}\left(B_{i}\right)=\mathcal{E}\left(B_{i}^{\prime}\right)$ for all $i \in\left[1, \frac{m}{2}\right]$, it follows that $\mathcal{E}\left(\widetilde{\mathcal{B}}_{2}+\widetilde{\mathcal{B}}_{1}\right)=$ $\mathcal{E}\left(\mathcal{B}_{1}^{*}\right)=\mathcal{E}\left(\mathcal{B}_{2}^{*}\right)$ and $\operatorname{supp}\left(\widetilde{\mathcal{B}}_{2}+\widetilde{\mathcal{B}}_{1}\right)=\left[1,\left\lfloor\frac{t \ell}{2}\right\rfloor\right] \backslash\{j \ell: j \in[1,\lfloor t / 2\rfloor]$. Furthermore, if λ divides $m s$ then $\mu\left(\widetilde{\mathcal{B}}_{2}+\widetilde{\mathcal{B}}_{1}\right)=\lambda$; the same holds if λ does not divide $m s$, and ℓ is odd or t is even; if λ does not divide $m s, \ell$ is even and t is odd, then every element of $\Phi \backslash\left\{\frac{t \ell}{2}\right\}$ appears in $\mathcal{E}\left(\widetilde{\mathcal{B}}_{2}+\widetilde{\mathcal{B}}_{1}\right)$, up to sign, exactly λ times, while the integer $\frac{t \ell}{2}$ appears, up to sign, $\frac{\lambda}{2}$ times.
Using the blocks of the sequence $\widetilde{\mathcal{B}}_{2}$, we first construct a square shiftable pf array A_{1} of size n such that each row and each column contains s filled cells and such that the elements in every row and column sum to zero. Hence, take an empty array A_{1} of size $n \times n$ and arrange the $\frac{n}{2}$ blocks $B_{r}^{\prime}=\left(b_{i, j}^{(r)}\right)$ of $\widetilde{\mathcal{B}}_{2}$ in such a way that the element $b_{1,1}^{(r)}$ fills the cell $(2 r-1,2 r-1)$ of A_{1}. This process makes A_{1} a pf array with s filled cells in each row and in each column. Since the rows of the blocks B_{r}^{\prime} sum to zero, also the rows of A_{1} sum to zero. Looking at the columns, the s elements of a column of A_{1} are

$$
b_{1, s}^{(r)}, b_{2, s}^{(r)}, b_{1, s-2}^{(r+1)}, b_{2, s-2}^{(r+1)}, b_{1, s-4}^{(r+2)}, b_{2, s-4}^{(r+2)}, \ldots, b_{1,2}^{(r+s / 2)}, b_{2,2}^{(r+s / 2)}
$$

or

$$
b_{1, s-1}^{(r)}, b_{2, s-1}^{(r)}, b_{1, s-3}^{(r+1)}, b_{2, s-3}^{(r+1)}, b_{1, s-5}^{(r+2)}, b_{2, s-5}^{(r+2)}, \ldots, b_{1,1}^{(r+s / 2)}, b_{2,1}^{(r+s / 2)}
$$

where the exponents $r, \ldots, r+s / 2$ must be read modulo $\frac{n}{2}$. Since $\widetilde{\mathcal{B}}_{2}$ satisfies condition (4.3), the sum of these elements is

$$
\sum_{j=1}^{s / 2} \sigma_{2 j}=0 \quad \text { or } \quad \sum_{j=1}^{s / 2} \sigma_{2 j-1}=0, \quad \text { respectively }
$$

By construction, $\mathcal{E}\left(A_{1}\right)=\mathcal{E}\left(\widetilde{\mathcal{B}}_{2}\right)$.
Now, if $m=n$, then A_{1} is actually a shiftable integer ${ }^{\lambda} \mathrm{H}_{t}(m, n ; k, s)$. Suppose that $m>n$. If we arrange the blocks of the sequence $\widetilde{\mathcal{B}}_{1}$ mimicking what we did for the construction of an integer ${ }^{1} \mathrm{H}_{1}(m-n, n ; s, k-s)$ in the proof of Proposition 4.14, we obtain a shiftable pf array A_{2} of size $(m-n) \times n$ such that $\mathcal{E}\left(A_{2}\right)=\mathcal{E}\left(\widetilde{\mathcal{B}}_{1}\right)$, rows and columns sum to zero, each row contains s filled cells and each column contains $k-s$ filled cells. Let A be the pf array of size $m \times n$ obtained by taking

$$
A=\begin{array}{|l|}
\hline A_{1} \\
\hline A_{2} \\
\hline
\end{array}
$$

Each row of A contains s filled cells and each of its columns contains $s+(k-s)=k$ filled cells. By the previous properties of $\widetilde{\mathcal{B}}_{2}+\widetilde{\mathcal{B}}_{1}$, it follows that A is a shiftable integer ${ }^{\lambda} \mathrm{H}_{t}(m, n ; s, k)$.

An integer ${ }^{28} \mathrm{H}_{4}(16,16 ; 14,14)$ is shown in Figure 5, choosing $\lambda_{1}=2$ and $\lambda_{2}=14$. In Figure 6 we give an integer ${ }^{10} \mathrm{H}_{3}(20,12 ; 6,10)$, where $\lambda_{1}=5$ and $\lambda_{2}=2$.

1	2	-1	1	-1	-2	1	-1	2	-2	1	-1	2	-2		
-2	-1	2	-2	1	2	-1	1	-2	2	-1	1	-2	2		
		3	4	-3	3	-3	-4	3	-3	4	-4	3	-3	4	-4
		-4	-3	4	-4	3	4	-3	3	-4	4	-3	3	-4	4
7	-7			6	7	-6	6	-6	-7	6	-6	7	-7	6	-6
-7	7			-7	-6	7	-7	6	7	-6	6	-7	7	-6	6
8	-8	9	-9			8	9	-8	8	-8	-9	8	-8	9	-9
-8	8	-9	9			-9	-8	9	-9	8	9	-8	8	-9	9
2	-2	1	-1	2	-2			1	2	-1	1	-1	-2	1	-1
-2	2	-1	1	-2	2			-2	-1	2	-2	1	2	-1	1
3	-3	4	-4	3	-3	4	-4			3	4	-3	3	-3	-4
-3	3	-4	4	-3	3	-4	4			-4	-3	4	-4	3	4
-6	-7	6	-6	7	-7	6	-6	7	-7			6	7	-6	6
6	7	-6	6	-7	7	-6	6	-7	7			-7	-6	7	-7
-8	8	-8	-9	8	-8	9	-9	8	-8	9	-9			8	9
9	-9	8	9	-8	8	-9	9	-8	8	-9	9			-9	-8

Figure 5: An integer ${ }^{28} \mathrm{H}_{4}(16,16 ; 14,14)$.

5 Conclusion

Thanks to the constructions of Sections 3 and 4, we can prove Theorem 1.10. In fact, case (1) follows from Proposition 3.8; cases (2) and (3) follow from Proposition 4.14; case (4) follows from Proposition 4.15. Unfortunately, we are not able to solve the existence of an integer ${ }^{\lambda} \mathrm{H}_{t}(m, n ; s, k)$ when $s, k \equiv 2(\bmod 4)$ and m, n are odd. However, we can prove the existence of an $\operatorname{SMA}(m, n ; s, k)$ for this choice of m, n, s, k.

1	-1	-4	-5	3	6						
-2	2	5	4	-3	-6						
		7	-7	-11	-12	10	13				
		-8	8	12	11	-10	-13				
				1	-1	-4	-5	3	6		
				-2	2	5	4	-3	-6		
						7	-7	-11	-12	10	13
						-8	8	12	11	-10	-13
3	6							1	-1	-4	-5
-3	-6							-2	2	5	4
-11	-12	10	13							7	-7
12	11	-10	-13							-8	8
1	-1			-4	-5			3	6		
	7	-7			-11	-12			10	13	
		1	-1			-4	-5			3	6
-7			7	-12			-11	13			10
-2	2			5	4			-3	-6		
	-8	8			12	11			-10	-13	
		-2	2			5	4			-3	-6
8			-8	11			12	-13			-10

Figure 6: An integer ${ }^{10} \mathrm{H}_{3}(20,12 ; 6,10)$.

Proof of Theorem 1.6: If $s, k \equiv 0(\bmod 4)$, the integer ${ }^{2} \mathrm{H}_{1}(m, n ; s, k)$ we construct in Lemma 3.3 is actually a (shiftable) $\operatorname{SMA}(m, n ; s, k)$. Similarly, if $s \equiv 2$ $(\bmod 4)$ and m is even, the integer ${ }^{2} \mathrm{H}_{1}(m, n ; s, k)$ constructed in Propositions 4.14 and 4.15 are (shiftable) signed magic arrays. So, we are left to consider the case $s, k \equiv 2(\bmod 4)$ with m, n odd.
Without loss of generality, we may assume $m \geq n$ (and so $s \leq k$). Let A_{1} be an $\operatorname{SMA}(n, n ; s, s)$, whose existence is assured by Theorem 1.2. Clearly if $m=n$ we have nothing to prove. So, suppose $m>n$. Since $m-n \geq 2$ is even and $k-s \equiv 0(\bmod 4)$ with $k-s \geq 4$, by Proposition 4.14 there exists a shiftable $\operatorname{SMA}(m-n, n ; s, k-s)$, say A_{2}. Let A be the pf array of size $m \times n$ obtained by taking

$$
A=\frac{A_{1}}{A_{2} \pm n s / 2} .
$$

Each row of A contains s filled cells and each of its columns contains $s+(k-$ $s)=k$ filled cells. Also, note that $\mathcal{E}\left(A_{1}\right)=\{ \pm 1, \pm 2, \ldots, \pm n s / 2\}$ and $\mathcal{E}\left(A_{2} \pm\right.$ $s n / 2)=\{ \pm(1+n s / 2), \pm(2+n s / 2), \ldots, \pm m s / 2\}$. Since $\mathcal{E}(A)=\mathcal{E}\left(A_{1}\right) \cup \mathcal{E}\left(A_{2}\right)=$ $\{ \pm 1, \pm 2, \ldots, \pm m s / 2\}, A$ is an $\operatorname{SMA}(m, n ; s, k)$.

We can now prove the existence of magic rectangles.
Proof of Theorem 1.12: Let A be a shiftable $\operatorname{SMA}(m, n ; s, k)$, whose existence was proved in Theorem 1.6, and let A^{*} be the pf array obtained by replacing every negative entry x of A with $x+\frac{m s}{2}$ and by replacing every positive entry y with
$y+\frac{m s}{2}-1$. Since $\mathcal{E}(A)=\left\{-1,-2, \ldots,-\frac{m s}{2}\right\} \cup\left\{1,2, \ldots, \frac{m s}{2}\right\}$, we obtain $\mathcal{E}\left(A^{*}\right)=$ $\left\{0,1, \ldots, \frac{m s}{2}-1\right\} \cup\left\{\frac{m s}{2}, \frac{m s}{2}+1, \ldots, m s-1\right\}$. This means that every element of [$0, m s-1$] appears just once in A^{*}. Obviously, every row of A^{*} contains exactly s filled cells and every column of A^{*} contains exactly k filled cells. Now, since A is shiftable, every row of A contains $\frac{s}{2}$ negative entries and $\frac{s}{2}$ positive entries. So, the elements of every row of A^{*} sum to $\frac{s}{2}\left(\frac{m s}{2}+\frac{m s}{2}-1\right)=\frac{s(m s-1)}{2}$. Analogously, the elements of every column of A^{*} sum to $\frac{k(m s-1)}{2}$. We conclude that A^{*} is an $\operatorname{MR}(m, n ; s, k)$.

Example 5.1 Take the shiftable $\operatorname{SMA}(5,10 ; 8,4)$ of Figure 1, whose construction is given in Lemma 3.3. Proceeding as described in the proof of Theorem 1.12, we obtain the following $\operatorname{MR}(5,10 ; 8,4)$:

$A^{*}=$| 20 | 18 | | 13 | 27 | 30 | 8 | | 3 | 37 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 39 | 22 | 16 | | 11 | 29 | 32 | 6 | | 1 |
| 19 | 21 | 24 | 14 | | 9 | 31 | 34 | 4 | |
| | 17 | 23 | 26 | 12 | | 7 | 33 | 36 | 2 |
| 0 | | 15 | 25 | 28 | 10 | | 5 | 35 | 38 |.

References

[1] D. S. Archdeacon, Heffter arrays and biembedding graphs on surfaces, Electron. J. Combin. 22 (2015), \#P1.74.
[2] D. S. Archdeacon, T. Boothby and J. H. Dinitz, Tight Heffter arrays exist for all possible values, J. Combin. Des. 25 (2017), 5-35.
[3] D. S. Archdeacon, J. H. Dinitz, D. M. Donovan and E. Ş. Yazıcı, Square integer Heffter arrays with empty cells, Des. Codes Cryptogr. 77 (2015), 409-426.
[4] K. Burrage, D. M. Donovan, N. J. Cavenagh and E. Ş. Yazıcı, Globally simple Heffter arrays $H(n ; k)$ when $k \equiv 0,3(\bmod 4)$, Discrete Math. 343 (2020), \#111787.
[5] N. J. Cavenagh, J. H. Dinitz, D. M. Donovan and E. Ş. Yazıcı, The existence of square non-integer Heffter arrays, Ars Math. Contemp. 17 (2019), 369-395.
[6] N. J. Cavenagh, D. M. Donovan and E. Ş. Yazıcı, Biembeddings of cycle systems using integer Heffter arrays, J. Combin. Des, 28 (2020), 900-922.
[7] S. Costa, F. Morini, A. Pasotti and M. A. Pellegrini, Globally simple Heffter arrays and orthogonal cyclic cycle decompositions, Australas. J. Combin. 72 (2018), 549-593.
[8] S. Costa, F. Morini, A. Pasotti and M. A. Pellegrini, A generalization of Heffter arrays, J. Combin. Des. 28 (2020), 171-206.
[9] S. Costa and A. Pasotti, On λ-fold relative Heffter arrays and biembedding multigraphs on surfaces, European J. Combin. (to appear); preprint: https://arxiv.org/abs/2010.10948.
[10] S. Costa, A. Pasotti and M. A. Pellegrini, Relative Heffter arrays and biembeddings, Ars Math. Contemp. 18 (2020), 241-271.
[11] J. H. Dinitz and A. R. W. Mattern, Biembedding Steiner triple systems and n cycle systems on orientable surfaces, Australas. J. Combin. 67 (2017), 327-344.
[12] J. H. Dinitz and I. M. Wanless, The existence of square integer Heffter arrays, Ars Math. Contemp. 13 (2017), 81-93.
[13] A. Khodkar and B. Ellis, Signed magic rectangles with two filled cells in each column, (preprint), https://arxiv.org/abs/1901.05502.
[14] A. Khodkar and D. Leach, Magic rectangles with empty cells, Util. Math. 116 (2020), 45-56.
[15] A. Khodkar and D. Leach, Magic squares with empty cells, Ars Combin. (to appear); preprint: https://arxiv.org/abs/1804.11189.
[16] A. Khodkar, D. Leach and B. Ellis, Signed magic rectangles with three filled cells in each column, Bull. Inst. Combin. Appl. 90 (2020), 87-106.
[17] A. Khodkar, C. Schulz and N. Wagner, Existence of some signed magic arrays, Discrete Math. 340 (2017), 906-926.
[18] F. Morini and M. A. Pellegrini, On the existence of integer relative Heffter arrays, Discrete Math. 343 (2020), \#112088.

