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Abstract

Given a collection of graphs H, a uniformly resolvable H-design of order
v is a decomposition of the edges of Kv into isomorphic copies of graphs
fromH (also called blocks) in such a way that all blocks in a given parallel
class are isomorphic to the same graph from H. We consider the case
H = {P4, C6}, and prove that the necessary conditions on the existence
of such designs are also sufficient.

1 Introduction

Given a collection of graphsH, anH-design of order v (also called anH-decomposition
of Kv) is a decomposition of the edges of Kv into isomorphic copies of graphs from
H; the copies of H ∈ H in the decomposition are called blocks. An H-design is called
resolvable if it is possible to partition the blocks into classes Pi such that every point
of Kv appears exactly once in some block of each Pi.

A resolvable H-decomposition of Kv is sometimes also referred to as an H-
factorization of Kv, and a class can be called an H-factor of Kv. A resolvable
H-design is called uniform if every block of the class is isomorphic to the same
graph from H. Uniformly resolvable decompositions of Kv have also been studied in
[4, 7–14, 16]. In what follows, we will denote by (a1, a2, . . . , an) the n-cycle on
{a1, a2, . . . ,
an} with edge-set {{a1, a2}, {a2, a3}, . . . , {an−1, an}, {an, a1}} and by [a1, . . . , an],
n ≥ 2, the path Pn having vertex set {a1, . . . , an} and edge set {{a1, a2}, {a2, a3}, . . . ,
{an−1, an}}. In this paper we study the existence of uniformly resolvable decompo-
sitions into paths P4 and cycles C6 for the complete graph Kv.

The existence of resolvable decompositions for each of Pk and Ck has been studied
separately, some time ago.
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• There exists a resolvable Ck-decomposition of Kv − I if and only if v ≡ 0
(mod 2) and k divides v (see [5]).

• There exists a resolvable Pk-decomposition of λKv if and only if v ≡ 0 (mod k)
and λk(v − 1) ≡ 0 (mod 2(k − 1)) (see [1, 6]).

A uniformly resolvable (P4, C6)-decomposition of Kv into exactly r P4-factors and
s C6-factors is abbreviated (P4, C6)-URD(v; r, s). Since the results for the extremal
cases r = 0 and s = 0 are known (see, for instance, [1, 5, 6]) we deal with (P4, C6)-
URD(v; r, s) where r, s > 0. For v ≡ 0 (mod 12), we define the set

J(v) =

{
(
2(v − 3)

3
− 4x, 1 + 3x), x = 0, 1, . . . ,

v − 6

6

}
.

In this paper we completely solve the existence problem of a (P4, C6)-URD(v; r, s) of
Kv by proving the following result:

Main Theorem. Let v ≡ 0 (mod 12). There exists a (P4, C6)-URD(v; r, s) of Kv

if and only if (r, s) ∈ J(v).

2 Necessary conditions

Lemma 2.1. If there exists a (P4, C6)-URD(v; r, s), then v ≡ 0 (mod 12) and
(r, s) ∈ J(v).

Proof. The condition v ≡ 0 (mod 12) is trivial. Assume that there exists a (P4, C6)-
URD(v; r, s). By resolvability, it follows that

3rv

4
+

6sv

6
=

v(v − 1)

2

and hence
3r + 4s = 2(v − 1). (1)

This equation implies that 3r ≡ 2(v − 1) (mod 4) and 4s ≡ 2(v − 1) (mod 3).
Then we obtain r ≡ 2 (mod 4) and s ≡ 1 (mod 3). Now letting s = 1 + 3x, the

equation (1) yields r = 2(v−3)
3

− 4x. Since r and s cannot be negative, and x is an
integer, the value of x has to be in the range as given in the definition of J(v). This
completes the proof.

3 Preliminaries and constructions

An H-decomposition of the complete multipartite graph with u parts each of size
g is known as a group divisible design H-GDD of type gu, and the parts of size g
are called the groups of the design. When H = {H}, we simply write H-GDD and
when H = Kn we refer to such a group divisible design as an n-GDD. We denote a
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(uniformly) resolvable H-GDD by H-(U)RGDD. It is easy to deduce that the number

of parallel classes of an H-RGDD is g(u−1)|V (H)|
2|E(H)| . A (P4, C6)-URGDD (r, s) of type

gu is a uniformly resolvable decomposition of the complete multipartite graph with
u parts each of size g into r classes containing only copies of P4-paths and s classes
containing only copies of C6-cycles .

If the blocks of an n-GDD of type gu can be partitioned into partial parallel
classes, each of them containing all points except those of one group, we refer to the
decomposition as an n-frame. It is easy to deduce that the number of partial factors
missing a specified group is g

n−1
( [3]). It is well–known that a 2-frame of type gu

exists if and only if u ≥ 3 and g(u− 1) ≡ 0 (mod 2) ( [3]).

An incomplete resolvable (P4, C6)-decomposition of Kv with a hole of size h is
a (P4, C6)-decomposition of Kv+h − Kh in which there are two types of classes,
full classes and partial classes which cover every point except those in the hole
(the points of Kh are referred to as the hole). Specifically, a (P4, C6)-IURD(v +
h, h; [r1, s1], [r̄1, s̄1]) is a uniformly resolvable (P4, C6)-decomposition of Kv+h − Kh

with r1 partial classes of paths P4 and s1 partial classes of cycles C6 which cover
only the points not in the hole, r̄1 full classes of paths P4 and s̄1 full classes cycles
C6 which cover every point of Kv+h.

We also recall the following definitions. Let (s1, t1) and (s2, t2) be two pairs of
non-negative integers. Define (s1, t1)+(s2, t2) = (s1+s2, t1+ t2). If X and Y are two
sets of pairs of non-negative integers, then X + Y denotes the set {(s1, t1) + (s2, t2) :
(s1, t1) ∈ X, (s2, t2) ∈ Y }. If X is a set of pairs of non-negative integers and h is a
positive integer, then h∗X denotes the set of all pairs of non-negative integers which
can be obtained by adding any h elements of X together (repetitions of elements of
X are allowed).

The following three constructions have been proved in a more general setting
in [7]. For the ease of the reader, since we will make use of them, we adapt their
proofs in our case.

Construction 3.1. Let t be a positive integer and G be an n-RGDD of type gu. If
there exists a (P4, C6)-URGDD(r̄, s̄) of type tn for each (r̄, s̄) ∈ J1, then so does a

(P4, C6)-URGDD(r, s) of type (gt)u for each (r, s) ∈ h ∗ J , where h = g(u−1)
n−1

.

Proof. Let G be an n-RGDD of type gu, with u groups Gi, i = 1, 2, . . . , u, of size
g; let R1, R2, . . . , Rh, h = g(u−1)

n−1
, be the parallel classes of this n-RGDD. Expand

t times each point and for each block b of a given resolution class of G place on
b × {1, 2, . . . , t} a copy of a (P4, C6)-URGDD(r1, s1) of type tn with (r1, s1) ∈ J1.
Thus we obtain a (P4, C6)-URGDD(r, s) of type (gt)u with (r, s) ∈ h ∗ J1.

Construction 3.2. Let v, g, t and u be non-negative integers such that v = gtu. If
there exist

(1) an n-RGDD of type gu;

(2) a (P4, C6)-URGDD(r1, s1) of type tn with (r1, s1) ∈ J1;
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(3) a (P4, C6)-URD(gt; r2, s2), with (r2, s2) ∈ J2;

then there exists a (P4, C6)-URD(v; r, s) for each (r, s) ∈ J2+h∗J1, where h = g(u−1)
n−1

is the number of parallel classes of an n-RGDD of type gu.

Proof. Let G be an n-RGDD of type gu, with u groups Gi, i = 1, 2, . . . , u, of size
g with h = g(u−1)

n−1
parallel classes. Expand each point t times and for each block

b of a given resolution class of G place on b × {1, 2, . . . , t} a copy of a (P4, C6)-
URGDD(r1, s1) of type tn with (r1, s1) ∈ J1. For each i = 1, 2, . . . , u, place on
Gi × {1, 2, . . . , t} a copy of a (P4, C6)-URD(gt; r2, s2) with (r2, s2) ∈ J2. The result
is a (K2, K1,3)-URD(v; r, s) with (r, s) ∈ J2 + h ∗ J1.

Construction 3.3. Let v, g, t, h and u be non-negative integers such that v =
gtu+ h. If there exist

(1) a 2-frame F of type gu;

(2) a (P4, C6)-URD(h; r1, s1) with (r1, s1) ∈ J1;

(3) a (P4, C6)-URGDD(r2, s2) of type t2 with (r2, s2) ∈ J2;

(4) a (P4, C6)-IURD(gt+ h, h; [r1, s1], [r3, s3]) with (r1, s1) ∈ J1 and (r3, s3) ∈ J3=
g ∗ J2;

then there exists a (P4, C6)-URD(v; r, s) for each (r, s) ∈ J1 + u ∗ J3.

Proof. Let F be a 2-frame of type gu with groups Gi, i = 1, 2, . . . , u; expand each
point t times and add a set H = {a1, a2, . . . , ah}. For j = 1, 2, let pi,j be the j-
th partial parallel class which miss the group Gi; for each b ∈ pi,j , place on b ×
{1, 2, . . . , t} a copy Db

i,j of a (P4, C6)-URGDD(r2, s2) of type t2, with (r2, s2) ∈ J2;
place on Gi×{1, 2, . . . , t}∪H a copy Di of a (P4, C6)-IURD(gt+h, h; [r1, s1], [r3, s3])
with H as hole, (r1, s1) ∈ J1 and (r3, s3) ∈ J3= g ∗ J2. Now combine all together the
parallel classes of Db

i,j, b ∈ pi,j, along with the full classes of Di. We obtain r3 classes
of paths P4 and s3 classes of 6-cycles, (r3, s3) ∈ J3, on ∪u

i=1Gi × {1, 2, . . . , t} ∪ H .
Fill the hole H with a copy D of (P4, C6)-URD(h; r1, s1) with (r1, s1) ∈ J1 and
combine the classes of D with the partial classes of Di. Then we obtain r1 classes
of paths P4 and s1 classes of 6-cycles, on ∪u

i=1Gi × {1, 2, . . . , t} ∪H . The result is a
(P4, C6)-URD(v; r, s) for each (r, s) ∈ J1 + u ∗ J3.

We also recall the following two results that we use to prove the main theorem.

Lemma 3.4. ( [2]) For l ≥ 3 and u ≥ 2, there exists a Cl-RGDD of type gu if
and only if g(u − 1) ≡ 0 (mod 2), gu ≡ 0 (mod l), l ≡ 0 (mod 2) if u = 2, and
(g, u, l) /∈ {(2, 3, 3), (6, 3, 3), (2, 6, 3), (6, 2, 6)}.
Lemma 3.5. ( [15]) Km,n has a P2k-factorization if and only if m = n and m ≡ 0
(mod k(2k − 1)).
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4 Small cases

Lemma 4.1. A (P4, C6)-URGDD(r, s) of type 43exists for every (r, s)∈{(4, 1), (0, 4)}.

Proof. The case (0, 4) follows by Lemma 3.4. For the case (4, 1) take the groups to
be {1, 2, 3, 4}, {5, 6, 7, 8}, {x, y, z, t} and the following factors:

{(1, x, 2, 6, y, 5), (3, t, 4, 7, z, 8)},
{[y, 1, 6, t], [7, 2, 8, x], [4, z, 5, 3]}, {[1, 7, x, 4], [t, 5, 2, z], [8, y, 3, 6]},
{[y, 7, t, 2], [1, 8, 4, 5], [3, z, 6, x]},{[7, 3, x, 5], [6, 4, y, 2], [z, 1, t, 8]}.

Lemma 4.2. A (P4, C6)-URD(12; r, s) exists for every (r, s) ∈ J(12).

Proof. Take a (P4, C6)-URGDD(r, s) of type 43 with (r, s) ∈ {(4, 1), (0, 4)}, which
exist from Lemma 4.1. Place on each group of size 4 a copy of a (P4, C6)-URD(4; 2, 0).
This gives a (P4, C6)-URD(12; r, s) for each (r, s) ∈ {(2, 0) + {(0, 4), (4, 1)}} =
{(6, 1), (2, 4)} = J(12).

Lemma 4.3. A (P4, C6)-URGDD(r, s) of type 122 exists for every (r, s) ∈ {(8, 0),
(4, 3), (0, 6)}.

Proof. The cases (0, 6) and (8, 0) are covered by Lemmas 3.4 and 3.5, respectively.
For the case (4, 3), we take the groups to be

{a1, a2, a3, a4, b1, b2, b3, b4, c1, c2, c3, c4}, {x1, x2, x3, x4, y1, y2, y3, y4, z1, z2, z3, z4}
and the following factors :

{(ai, x1+i, bi, y1+i, ci, z1+i), i = 1, 2, 3, 4},
{(ai, x2+i, bi, y2+i, ci, z2+i), i = 1, 2, 3, 4},
{(ai, x3+i, bi, y3+i, ci, z3+i), i = 1, 2, 3, 4},

{[y2, a1, y1, a4], [a2, y3, a3, y4], [z4, b1, z3, b4], [b2, z1, b3, z2], [x4, c3, x3, c2], [c4, x1, c1, x2]},
{[a1, y4, a4, y3], [y1, a2, y2, a3], [b1, z2, b4, z1], [z3, b2, z4, b3], [c3, x2, c2, x1], [x3, c4, x4, c1]},
{[z1, a1, x1, b1], [z2, a2, x2, b2], [x3, c1, y1, a3], [x4, c2, y2, a4], [y3, b3, z3, c3], [y4, b4, z4, c4]},
{[a1, y3, c3, x1], [a2, y4, c4, x2], [b3, x3, a3, z3], [b4, x4, a4, z4], [y1, b1, z1, c1], [y2, b2, z2, c2]}.

Lemma 4.4. A (P4, C6)-URGDD(r, s) of type 123 exists for every (r, s) ∈ {(16 −
4x, 3x), x = 0, 1, 2, 3, 4}.

Proof. For the case (16, 0), we apply Construction 3.1 with t = 6 to a 2-RGDD of
type 23 (with 4 parallel classes) to obtain a (P4, C6)-URGDD(16, 0) of type 123. For
the remaining cases we apply Construction 3.1 with t = 4 to a 3-RGDD of type
33 (with 3 parallel classes) to obtain a (P4, C6)-URGDD(r̄, s̄) of type 123 for each
(r̄, s̄) ∈ 3 ∗ {(4, 1), (0, 4)}={(16− 4y, 3y), y = 1, 2, 3, 4}. The input designs are given
by Lemma 4.1.
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Lemma 4.5. A (P4, C6)-URD(36; r, s) exists for every (r, s) ∈ J(36).

Proof. Construction 3.2 applied to a (P4, C6)-URGDD(r1, s1) of type 12
3 with (r1, s1)

∈ {(16 − 4y, 3y), y = 0, 1, 2, 3, 4} (from Lemma 4.4) gives a (P4, C6)-URD(36; r, s)
for each (r, s) with

(r, s) ∈ J(12) + {(16− 4x, 3x), x = 0, 1, 2, 3, 4}
= {{(6, 1), (2, 4)}+ {(16− 4x, 3x), x = 0, 1, 2, 3, 4}}
= {(22− 4x, 1 + 3x), x = 0, 1, 2, 3, 4, 5}
= J(36).

The input designs are given by Lemmas 4.2 and 4.4.

Lemma 4.6. A (P4, C6)-URGDD(r, s) of type 125 exists for every (r, s) ∈ {(32 −
4x, 3x), x = 0, 2, 3, 4, 5, 6, 7, 8}.

Proof. For the case (32, 0) apply Construction 3.1 with t = 6 to a 2-RGDD of
type 25 (with 8 parallel classes) to obtain a (P4, C6)-URGDD(32, 0) of type 125.
For the remaining cases apply Construction 3.1 with t = 4 to a 3-RGDD of type
35 (with 6 parallel classes) to obtain a (P4, C6)-URGDD(r̄, s̄) of type 125 for each
(r̄, s̄) ∈ 6 ∗ {(4, 1), (0, 4)}={(32− 4y, 3y), y = 2, 3, 4, 5, 6, 7, 8}. The input designs are
given by Lemma 4.1.

Lemma 4.7. A (P4, C6)-URD(60; r, s) exists for every (r, s) ∈ J(60).

Proof. Construction 3.2 applied to a (P4, C6)-URGDD(r1, s1) of type 12
5 with (r1, s1)

∈ {(32− 4x, 3x), x = 0, 2, 3, 4, 5, 6, 7, 8} (from Lemma 4.6) gives a (P4, C6)-URD(36;
r, s) for each (r, s) with

(r, s) ∈ J(12) + {(32− 4y, 3y), y = 0, 2, 3, 4, 5, 6, 7, 8}
= {{(6, 1), (2, 4)}+ {(32− 4y, 3y), y = 0, 2, 3, 4, 5, 6, 7, 8}}
= {(38− 4x, 1 + 3x), x = 0, 1, 2, 3, 4, 5, 6, 7, 8}
= J(60).

The input designs are given by Lemmas 4.2 and 4.6.

5 Proof of Main Result

Lemma 5.1. Let v ≡ 0 (mod 24). Then a (P4, C6)-URD(v; r, s) exists for every
(r, s) ∈ J(v).

Proof. Let v = 24t. Apply Construction 3.1 with t = 12 to a 2-RGDD of type 12
v
12

with v−12
12

parallel classes to obtain a (P4, C6)-URGDD(r̄, s̄) of type 12
v
12 for each

(r̄, s̄) ∈ v−12
12

∗ {(8, 0), (4, 3), (0, 6)}} (the input designs are given by Lemma 4.3).
Now fill the groups with a (P4, C6)-URD(12; r1, s1) for each (r1, s1) ∈ {(6, 1), (2, 4)}
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(see Lemma 4.2). Apply Construction 3.2 to get a (P4, C6)-URD(v; r, s) ofKv for each

(r, s) ∈ J(12)+ v−12
12

∗{(8, 0), (4, 3), (0, 6)}}= {{(6, 1), (2, 4)}+{(2(v−12)
3

−4x, 3x), x =

0, 1, . . . , v−12
6

}}={(2(v−3)
3

− 4x, 1 + 3x), x = 0, 1, . . . , v−6
6
} = J(v).

Lemma 5.2. Let v ≡ 12 (mod 24). Then a (P4, C6)-URD(v; r, s) exists for every
(r, s) ∈ J(v).

Proof. Let v = 12 + 24t. The cases v = 12, 36, 60 follow by Lemmas 4.2,4.5 and 4.7.
For t ≥ 3 apply Construction 3.3 with t = 12 and h = 12 to a 2-frame of type 2

v−12
24

to obtain a (P4, C6)-URD (v; r, s) for each (r, s) ∈ J(12) + v−12
24

∗ {(16− 4y, 3y), y =

0, 1, 2, 3, 4}}={{(6, 1), (2, 4)} + {(2(v−12)
3

− 4x, 3x), x = 0, 1, . . . , v−12
6

}}={(2(v−3)
3

−
4x, 1 + 3x), x = 0, 1, . . . , v−6

6
}=J(v). The input designs are given by Lemmas 4.1,

4.2, 4.5 and 4.7.

As a consequence of Lemmas 2.1, 5.1, and 5.2 our main result immediately follows.

Theorem 5.3. A (P4, C6)-URD(v; r, s), with r, s > 0, exists if and only if v ≡ 0
(mod 12) and (r, s) ∈ J(v).

Remark 5.4. Note that the existence of uniformly resolvable {P2t, C2(2t−1)}-designs
with t ≥ 3 is currently under investigation.
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