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Abstract

The complete 3-uniform hypergraph of order v, denoted by K
(3)
v , has a

set V of size v as its vertex set and the set of all 3-element subsets of V as
its edge set. A 3-uniform tight 9-cycle has vertex set {v1, v2, v3, v4, v5, v6,
v7, v8, v9} and edge set

{{v1, v2, v3}, {v2, v3, v4}, {v3, v4, v5}, {v4, v5, v6},
{v5, v6, v7}, {v6, v7, v8}, {v7, v8, v9}, {v8, v9, v1}, {v9, v1, v2}

}
. We show

there exists a tight 9-cycle decomposition of K
(3)
v if and only if v ≡ 1 or

2 (mod 27).

1 Introduction

A commonly studied problem in combinatorics concerns decompositions of complete
graphs or other similar structures into isomorphic copies of other smaller graphs.
Some of the best known unsolved problems in combinatorics relate to this area.
For example, a projective plane of order v is equivalent to a decomposition of the
complete graph Kv2+v+1 into isomorphic copies of Kv+1. One of the more celebrated
decomposition problems for graphs pertains to decomposing Kv into m-cycles. This
cycle decomposition problem originated with Walecki’s solution of the problem of
decomposing Kv into Hamiltonian cycles in the 1890s (see Lucas [13] or the more
recent article by Alspach [2]). After decades of partial results by numerous authors,
the cycle decomposition problem was fully settled by Alspach and Gavlas [3] and by
Šajna [16] in the early 2000s.
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Because k-uniform hypergraphs are generalizations of the concept of a graph, au-
thors have investigated the corresponding decomposition problems for hypergraphs.
A hypergraph H consists of a finite nonempty set V of vertices and a set E of
nonempty subsets of V called hyperedges or simply edges. If for each e ∈ E, we have
|e| = t, then H is said to be t-uniform. Thus graphs are 2-uniform hypergraphs. Let

V be a nonempty set and let t ≥ 2 be an integer. Let K
(t)
V denote the hypergraph

with vertex set V and edge set the set of all t-element subsets of V . If |V | = v,

we use K
(t)
v denote any hypergraph isomorphic to K

(t)
V , and we refer to K

(t)
v as the

complete t-uniform hypergraph of order v.
A decomposition of a hypergraph K is a set Δ = {H1, H2, . . . , Hs} of subhyper-

graphs of K such that E(H1)∪E(H2)∪· · ·∪E(Hs) = E(K) and E(Hi)∩E(Hj) = ∅

for all 1 ≤ i < j ≤ s. If each element Hi of Δ is isomorphic to a fixed hypergraph
H , then Hi is called an H-block, and Δ is called an H-decomposition of K. We may
in this case say that H decomposes K. An H-decomposition of K

(t)
v is also known as

an H-design of order v. The problem of determining all values of v for which there
exists an H-design of order v is known as the spectrum problem for H .

We note that a K
(t)
k -design of order v is a generalization of Steiner systems and is

equivalent to an S(t, k, v)-design. A summary of results on S(t, k, v)-designs appears
in [5]. Keevash [11] has recently shown that for all t and k the obvious necessary
conditions for the existence of an S(t, k, v)-design are sufficient for sufficiently large
values of v. Similar results were obtained by Glock, Kühn, Lo, and Osthus [7, 8]
and extended to include the corresponding asymptotic results for H-designs of order
v for all uniform hypergraphs H . These results for t-uniform hypergraphs mirror
the celebrated results of Wilson [17] for graphs. Although these asymptotic results
assure the existence of H-designs for sufficiently large values of v for any uniform
hypergraph H , the spectrum problem has been settled for very few hypergraphs of
uniformity larger than 2.

There are several ways of defining an m-cycle in a t-uniform hypergraph. We
focus on tight m-cycles, which generalize the Katona-Kierstead [10] definition of
a Hamilton cycle (also called a Hamiltonian chain in [10]). For m > t ≥ 2, let Zm

denote the group of integers modulom and let TC
(t)
m denote the t-uniform hypergraph

with vertex set Zm and (hyper)edge-set {{i, i + 1, . . . , i + t − 1} : i ∈ Zm}. Any

hypergraph isomorphic to TC
(t)
m is a t-uniform tight m-cycle.

The problem of decomposing K
(3)
v into TC

(3)
v ’s was first investigated by Bailey

and Stevens in [4]. Meszka and Rosa [15] added to the results from [4] and introduced

the idea of TC
(3)
m -decompositions of K

(3)
v with particular focus on the case m = 5.

It is noted in [15] that as a consequence of Hanani’s classic result on the existence

of Steiner quadruple systems [9], there exists a TC
(3)
4 -decomposition of K

(3)
v if and

only if v ≡ 2 or 4 (mod 6). More recently, several authors have given partial results

on TC
(3)
5 - and TC

(3)
7 -decompositions of K

(3)
v (see [12], [6], and [14]). For m > 4, the

first complete results on TC
(3)
m -decompositions of K

(3)
v were given in [1], where it is

shown that there exists a TC
(3)
6 -decomposition of K

(3)
v if and only if v ≡ 1, 2, 10, 20,

28, or 29 (mod 36).
In this work, we focus on the case m = 9 and show that there exists a tight
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9-cycle decomposition of K
(3)
v if and only if v ≡ 1 or 2 (mod 27).

2 Additional Notation and Terminology

If H is a hypergraph and r is a nonnegative integer, we let rH denote the edge-
disjoint union of r copies of H . We next define some notation for certain types of
3-uniform hypergraphs.

Let A,B,C be pairwise-disjoint sets. The hypergraph with vertex set A∪B ∪C
and edge set consisting of all 3-element sets having exactly one vertex in each of
A,B,C is denoted by K

(3)
A,B,C . The hypergraph with vertex set A ∪ B and edge

set consisting of all 3-element sets having at most 2 vertices in each of A and B is
denoted by L

(3)
A,B. If |A| = a, |B| = b, and |C| = c, we may use K

(3)
a,b,c to denote any

hypergraph that is isomorphic to K
(3)
A,B,C and L

(3)
a,b to denote any hypergraph that is

isomorphic to L
(3)
A,B. We use K

(3)

a,b,c
∪ L

(3)

b,c
to denote any hypergraph isomorphic to

K
(3)
A,B,C ∪ L

(3)
B,C .

It is simple to observe that if A,B,B′, and C are pairwise-disjoint, then K
(3)
A,B∪B′,C

= K
(3)
A,B,C∪K

(3)
A,B′,C and L

(3)
A,B∪B′ = L

(3)
A,B∪L

(3)
A,B′∪K

(3)
A,B,B′ . Thus we have the following

basic lemmas.

Lemma 1. If a, b, b′, c, and z are positive integers, then

K
(3)
a,b+b′,zc = z

(
K

(3)
a,b,c ∪K

(3)
a,b′,c

)
.

Lemma 2. If a, b, x, and y are positive integers, then

L
(3)
xa,yb = xyL

(3)
a,b ∪

(
x

2

)
yK

(3)
a,a,b ∪ x

(
y

2

)
K

(3)
a,b,b.

3 Some Small Examples

Because all our tight 9-cycles are 3-uniform, we will henceforth use TC9 in place of
TC

(3)
9 . Moreover, we will use [a, b, c, d, e, f, g, h, i] to denote any hypergraph isomor-

phic to the TC9 with vertex set {a, b, c, d, e, f, g, h, i} and edge set
{{a, b, c}, {b, c, d},

{c, d, e}, {d, e, f}, {e, f, g}, {f, g, h}, {g, h, i}, {h, i, a}, {i, a, b}} as seen in Figure 1.
Next, we give several examples of TC9-decompositions that are used in proving

our main result.

Example 1. Let V
(
K

(3)
28

)
= Z28 and let

B =
{
[0, 1, 2, 16, 25, 27, 3, 5, 14], [0, 26, 24, 4, 21, 5, 19, 3, 20], [0, 3, 6, 20, 2, 5, 1, 4, 14],

[0, 4, 8, 14, 7, 9, 27, 1, 22], [0, 5, 10, 23, 4, 16, 22, 6, 15], [0, 6, 12, 7, 1, 24, 9, 4, 5],

[0, 7, 14, 18, 5, 6, 8, 9, 24], [0, 8, 16, 23, 26, 4, 12, 18, 21], [0, 9, 18, 17, 8, 15, 3, 10, 1],

[0, 10, 20, 22, 25, 6, 14, 23, 26], [0, 17, 6, 16, 5, 26, 2, 23, 12],

[0, 12, 24, 27, 4, 8, 16, 20, 25], [0, 13, 26, 9, 24, 3, 23, 2, 17]
}
.
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Figure 1: The 3-uniform tight 9-cycle TC9 denoted [a, b, c, d, e, f, g, h, i].

Then a TC9-decomposition of K
(3)
28 consists of the orbits of the TC9-blocks in B

under the action of the map j �→ j + 1 (mod 28).

Example 2. Let V
(
K

(3)
29

)
= Z29 and let

B =
{
[0, 8, 16, 17, 21, 22, 24, 25, 28], [0, 16, 3, 5, 13, 15, 19, 21, 27],
[0, 24, 19, 22, 5, 8, 14, 17, 26], [0, 3, 6, 10, 26, 1, 9, 13, 25],
[0, 11, 22, 27, 18, 23, 4, 9, 24], [0, 19, 9, 15, 10, 16, 28, 5, 23],
[0, 27, 25, 3, 2, 9, 23, 1, 22], [0, 6, 12, 20, 23, 2, 18, 26, 21],
[0, 14, 28, 8, 15, 24, 13, 22, 20], [0, 22, 15, 25, 7, 17, 8, 18, 19],
[0, 1, 2, 13, 28, 10, 3, 14, 18], [0, 9, 18, 1, 20, 3, 27, 10, 17],
[0, 17, 5, 18, 12, 25, 22, 6, 16], [0, 25, 21, 6, 4, 18, 17, 2, 15]

}
.

Then a TC9-decomposition of K
(3)
29 consists of the orbits of the TC9-blocks in B

under the action of the map j �→ j + 1 (mod 29).

Example 3. Let V
(
K

(3)
1,9,9

)
= {∞} ∪ Z18 with vertex partition

{{∞}, {0, 2, . . . , 16}, {1, 3, . . . , 17}}

and let V
(
L
(3)
9,9

)
= Z18 with vertex partition

{{0, 2, . . . , 16}, {1, 3, . . . , 17}}. Let

B0 =
{
[0, 5,∞, 12, 15, 14, 11, 2, 9], [0, 11, 7, 6, 17, 3, 4, 12, 5],
[0, 1, 2, 8, 11, 16, 6, 3, 10], [0, 3, 15, 4, 2, 7, 8, 13, 11]

}
,

B1 =
{
[0, 1,∞, 10, 9, 12, 8, 17, 3], [1, 2,∞, 11, 10, 13, 9, 0, 4],
[2, 3,∞, 12, 11, 14, 10, 1, 5], [3, 4,∞, 13, 12, 15, 11, 2, 6],
[4, 5,∞, 14, 13, 16, 12, 3, 7], [5, 6,∞, 15, 14, 17, 13, 4, 8],
[6, 7,∞, 16, 15, 0, 14, 5, 9], [7, 8,∞, 17, 16, 1, 15, 6, 10],
[8, 9,∞, 0, 17, 2, 16, 7, 11]

}
.
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Then a TC9-decomposition of L
(3)

9,9
∪K

(3)

1,9,9
consists of the TC9-blocks in B1 and the

orbits of the TC9-blocks in B0 under the action of the map ∞ �→ ∞ and j �→ j + 1
(mod 18), for j ∈ Z18.

Example 4. Let V
(
K

(3)
2,9,9

)
= {∞1,∞2} ∪ Z18 with vertex partition

{{∞1,∞2},
{0, 2, . . . , 16}, {1, 3, . . . , 17}} and let V

(
L
(3)
9,9

)
= Z18 with vertex partition

{{0, 2, . . . ,
16}, {1, 3, . . . , 17}}. Let

B0 =
{
[0, 5,∞2, 12, 11, 10, 2, 7, 15], [0, 5,∞1, 12, 15, 14, 11, 2, 9],
[0, 11, 7, 6, 17, 3, 4, 12, 5], [0, 3, 15, 4, 2, 7, 8, 13, 11]

}
,

B1 =
{
[0, 1,∞1, 10, 9, 12, 8, 17, 3], [1, 2,∞1, 11, 10, 13, 9, 0, 4],
[2, 3,∞1, 12, 11, 14, 10, 1, 5], [3, 4,∞1, 13, 12, 15, 11, 2, 6],
[4, 5,∞1, 14, 13, 16, 12, 3, 7], [5, 6,∞1, 15, 14, 17, 13, 4, 8],
[6, 7,∞1, 16, 15, 0, 14, 5, 9], [7, 8,∞1, 17, 16, 1, 15, 6, 10],
[8, 9,∞1, 0, 17, 2, 16, 7, 11], [0, 3,∞2, 12, 9, 16, 10, 1, 7],
[1, 4,∞2, 13, 10, 17, 11, 2, 8], [2, 5,∞2, 14, 11, 0, 12, 3, 9],
[3, 6,∞2, 15, 12, 1, 13, 4, 10], [4, 7,∞2, 16, 13, 2, 14, 5, 11],
[5, 8,∞2, 17, 14, 3, 15, 6, 12], [6, 9,∞2, 0, 15, 4, 16, 7, 13],
[7, 10,∞2, 1, 16, 5, 17, 8, 14], [8, 11,∞2, 2, 17, 6, 0, 9, 15]

}
.

Then a TC9-decomposition of L
(3)

9,9
∪K

(3)

2,9,9
consists of the TC9-blocks in B1 and the

orbits of the TC9-blocks in B0 under the action of the map ∞i �→ ∞i, for i ∈ {1, 2},
and j �→ j + 1 (mod 18), for j ∈ Z18.

Example 5. Let V
(
K

(3)
3,3,3

)
= Z9 and let

B =
{
[0, 1, 2, 3, 4, 5, 6, 7, 8], [0, 2, 4, 6, 8, 1, 3, 5, 7], [0, 4, 8, 3, 7, 2, 6, 1, 5]

}
.

Then B is a TC9-decomposition of K
(3)
3,3,3.

4 Main Results

We give necessary and sufficient conditions for the existence of a TC9-decomposition
of K

(3)
v . We begin with the necessary conditions.

Lemma 3. There exists a TC9-decomposition of K
(3)
v only if v ≡ 1 or 2 (mod 27).

Proof. Consider that TC9 has size 9 and is 3-regular; whereas, K
(3)
v has size

(
v
3

)
and

is
(
v−1
2

)
-regular. Hence, for a TC9-decomposition of K

(3)
v to exist, we must have

9 | v(v − 1)(v − 2)/6 and 3 | (v − 1)(v − 2)/2. Thus, v ≡ 1 or 2 (mod 27).

We prove that the above conditions are sufficient by showing how to construct a
TC9-decomposition for K

(3)
v for all admissible values of v. These constructions are

dependent on the small examples we gave in Section 3. First, we prove a lemma that
is fundamental to our constructions.
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Lemma 4. Let v = 27x + r for some positive integer x and for r ∈ {1, 2}. Then

there exists a decomposition of K
(3)
v that is comprised of isomorphic copies of each

of the following hypergraphs under the given conditions:

• one copy of K
(3)
27+r,

• (
x
2

)
copies of K

(3)

r,27,27
∪ L

(3)

27,27
if x ≥ 2,

• (
x
3

)
copies of K

(3)
27,27,27 if x ≥ 3.

Proof. Let R, V1, . . . , Vx be pairwise-disjoint sets of vertices with |R| = r and |V1| =
|V2| = · · · = |Vx| = 27 and let V = R ∪ V1 ∪ · · · ∪ Vx. Then, the result follows from

the fact that K
(3)
V can be viewed as the edge-disjoint union

K
(3)
V1∪R ∪

⋃
1≤i<j≤x

(
K

(3)
R,Vi,Vj

∪ L
(3)
Vi,Vj

)
∪

⋃
1≤i<j<k≤x

(
K

(3)
Vi,Vj ,Vk

)
.

Before proceeding to our main result, we prove the following basic lemma.

Lemma 5. There exists a TC9-decomposition of K
(3)

r,27,27
∪ L

(3)

27,27
for r ∈ {1, 2}.

Proof. Let R,A1, A2, A3, B1, B2, B3 be pairwise-disjoint sets of 9 vertices each except
that |R| ∈ {1, 2} and let A = A1 ∪ A2 ∪ A3 and B = B1 ∪B2 ∪B3. Then

K
(3)
R,A,B =

⋃
1≤j≤3
1≤k≤3

K
(3)
R,Aj ,Bk

and
L
(3)
A,B =

⋃
1≤j≤3
1≤k≤3

(
L
(3)
Aj ,Bk

)
∪

⋃
1≤i<j≤3
1≤k≤3

(
K

(3)
Ai,Aj ,Bk

)
∪

⋃
1≤i≤3

1≤j<k≤3

(
K

(3)
Ai,Bj ,Bk

)
.

Thus,

K
(3)
R,A,B∪L

(3)
A,B =

⋃
1≤j≤3
1≤k≤3

(
K

(3)
R,Aj ,Bk

∪L
(3)
Aj ,Bk

)
∪

⋃
1≤i<j≤3
1≤k≤3

(
K

(3)
Ai,Aj ,Bk

)
∪

⋃
1≤i≤3

1≤j<k≤3

(
K

(3)
Ai,Bj ,Bk

)
.

Therefore, for r ∈ {1, 2}, K(3)

r,27,27
∪L

(3)

27,27
can be decomposed into copies of K

(3)

r,9,9
∪

L
(3)

9,9
and copies of K

(3)
9,9,9. By Examples 3 and 4, TC9 decomposes K

(3)

1,9,9
∪ L

(3)

9,9
and

K
(3)

2,9,9
∪ L

(3)

9,9
, respectively. Thus, TC9 decomposes K

(3)

r,27,27
∪ L

(3)

27,27
, where r ∈ {1, 2}.

Finally, we give our main result.

Theorem 6. There exists a TC9-decomposition of K
(3)
v if and only if v ≡ 1 or 2

(mod 27).
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Proof. The necessary conditions for the existence of a TC9-decomposition of K
(3)
v

are established in Lemma 3. Thus, we need only establish their sufficiency.
Suppose v ≡ 1 or 2 (mod 27). If v ≤ 2, the result is vacuously true. Otherwise,

let v = 27x+r where r ∈ {1, 2}. By Lemma 4, it suffices to find TC9-decompositions

of K
(3)
27+r, K

(3)

r,27,27
∪ L

(3)

27,27
, and K

(3)
27,27,27. We give TC9-decompositions of K

(3)
28 and of

K
(3)
29 in Examples 1 and 2, respectively. By Lemma 5 we have that TC9 decomposes

K
(3)

r,27,27
∪ L

(3)

27,27
for r ∈ {1, 2}, and by Lemma 1 we have that K

(3)
3,3,3 decomposes

K
(3)
27,27,27. Since TC9 decomposes K

(3)
3,3,3 (by Example 5), the result then follows.
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