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Abstract

A geometric method for obtaining an infinite family of Cayley digraphs of
constant density on finite abelian groups is presented. The method works
for any given degree d ≥ 2, and it is based on consecutive dilates of a
minimum distance diagram associated with a given initial Cayley digraph.
The method is used to obtain infinite families of dense or asymptotically
dense Cayley digraphs. In particular, for degree d = 3, the first explicit
infinite family of maximum known density δ = 0.084 is obtained.

1 Introduction

Some discrete problems are studied by many authors using bare geometrical meth-
ods. Some of them are worth mentioning here because of the common used tool;
namely, the so-called minimum distance diagrams (MDDs), which are defined in the
next section. Some examples are in the study of numerical semigroups, that is the
Frobenius number, the set of factorizations, and the denumerant [4, 6]. Also, some
metric properties of Cayley digraphs of finite abelian groups have been studied using
MDDs, mainly the diameter and the density [2, 8, 10, 18]. Cayley digraphs of finite
abelian groups will be studied in this work.

MDDs were introduced by Wong and Coppersmith in 1974 [20] for degree d = 2.
Fiol, Yebra, Alegre, and Valero in 1987 [13] gave infinite families of digraphs of degree
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d = 2 with optimal diameter. Their results were based on geometric arguments of
the related MDDs. These results were generic for degree d = 2. The Smith normal
form was used to obtain the related generators. A digraph of degree d = 3 with
optimal diameter k = 8 was also given. This is the Cayley digraph on the cyclic
group Z111 with generating set {1, 31, 69}. It was found by computer search, and a
related MDD was also depicted. Infinitely many infinite families of optimal diameter
digraphs of degree d = 2 were given in [9] using the same geometrical approach.

Aguiló, Fiol, and Garćıa in 1997 [2] gave some infinite families of Cayley digraphs
of degree d = 3 using 3-dimensional MDDs and the Smith normal form. The under-
lying idea for obtaining an infinite family of digraphs with good metrical properties
is sketched here. From an initial digraph with good diameter, take the related MDD
H0. Then, the ‘dilation’ of the cubes that belong toH0 gives another MDDH1 whose
sides preserve their relative ratios. This approach seems to give a good diameter to
the related digraph. All the details when looking for the generators, the resulting
diameter, and related parameters depended on the particular initial H0. However,
neither a generic method for degree d = 3, nor for degree d ≥ 4 was provided.

Fiduccia, Forcade and Zito in 1998 [10] gave nice results on diameter and density
for degree d = 3. In their work, we can find many geometrical results on MDDs.
In particular, these authors use the digraph diameter k and the ‘solid diameter’ D
of the related MDD (D = k + 3). Perhaps this is the first work where geometrical
generic results on 3-dimensional MDDs were given. In particular, an upper bound
for the three dimensional MDDs density, defined as δ = Vol/D3, is also given (δ ≤
3/25 = 0.12) in [10, Sec. 1]. The authors pointed out that the best density δ0 = 0.084
for an MDD H1 of volume n1 = 84 is the same as the best density δ2 = δ0 of another
MDD H2 of volume n2 = 672 = 84× 23. The tile H2 can be seen as a dilation of H1

(each unitary cube of H1 is dilated by a 2×2×2 cube). The same is true for H3 and
H4 of volumes n3 = 2268 = 84 × 33 and n4 = 5376 = 84 × 43, respectively (similar
dilatations 3×3×3 and 4×4×4, respectively). The idea of ‘dilating’ the unit cubes of
a given MDD to obtain an infinite family of MDDs of the same density is commented
for d = 3 in [10, Sec. 5]. No proof is given, however. Besides, the resulting generators
for the related Cayley digraphs are not mentioned. In the ‘Open problems’ section
of the same work, several questions were posed. In particular, it was asked whether
the results could be generalized to four or more dimensions. Forcade and Lamoreaux
in 2000 [14] proved that the maximum density for degree d = 2 is ∆2 = 1

3
and also,

when d = 3, the density has a local maximum at ∆′3 = δ0 = 0.084. As far as we
know, for d = 3, no Cayley digraph of a finite abelian group with density larger than
δ0 has been found.

Another excellent paper on this topic is the work of Dougherty and Faber in 2004
[8]. They also use a geometrical approach by associating tiles to the directed and
undirected Cayley graphs. A table of several optimal digraphs, found by computer
search, is included for degree d = 3. In particular, there are some digraphs of density
δ0. Several asymptotic results are also given for degree d = 3 and higher degrees.
However, from the results in [8, pag. 502], no generic method for the dilating process
in the case of degree d = 3 or larger is discussed.
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In this work we introduce the Dilating Method based on minimum distance di-
agrams. It works for any degree d ≥ 2 and gives the generators that allow finding
explicit constructions of Cayley digraphs with constant density. We use it to de-
rive a dense infinite family of Cayley digraphs of degree d = 3 and constant density
δ0 = 0.084. As far as we know, this is the first infinite family of tiles (or digraphs)
with this density. An infinite set of asymptotically dense families of Cayley digraphs
is also explicitly built for any degree d ≥ 3.

An overview of the contents of the paper is as follows: Section 2 contains the
main definitions and preliminary results. The Dilating Method, together with its
proof, is presented in Section 3. As commented above, this method is valid for any
degree d ≥ 2. As far as we know, it is the first generic geometrical method in this
context. Some new dense and asymptotically dense families are constructed in the
last section as an application of the method. More precisely, when applied to the
degree d = 3, an explicit infinite family of digraphs of density δ = 0.084 is found.
To our knowledge, until now only a few digraphs having this density were known.
Concerning the employed examples, they are the same (or closely related to) ones
already used in other papers. See, for instance, [5]. The reason is that they constitute
known “optimal cases” and so, they appear when an exhaustive computer search is
carried out.

2 Preliminaries

Consider an integral matrix M ∈ Zn×n with N = | detM | 6= 0, and with Smith
normal form S = UMV , for unimodular matrices U ,V ∈ Zn×n (see, for example,
[17]). Let MZn denote the lattice generated by the columns of M which, with the
usual vector addition, is a normal subgroup of Zn. Let Zn/MZn be the quotient
group induced by the equivalence relation in Zn given by

a ≡ b (mod M ) ⇔ a− b ∈MZn (that is, ∃λ ∈ Zn : a− b = Mλ).

Let us consider the Cayley digraph GM = Cay(Zn/MZn, En) where En = {e1, . . . ,
en} is the canonical basis of Zn. Let [r, s) = {x ∈ R : r ≤ x < s}. Given a =
(a1, . . . , an) ∈ Zn, we denote the unitary cube [[a]] = [[a1, . . . , an]] = [a1, a1 + 1) ×
· · · × [an, an + 1) ⊂ Rn. In this sense, the cube [[a]] represents the vertex (a1, . . . , an)
in GM with the equivalence relation [[a]] ∼ [[b]] whenever a ≡ b (mod M ) and
[[a]] 6∼ [[b]] otherwise. For more details about congruences in Zn and their role in the
study of Cayley digraphs on abelian groups, see [9, 11, 12].

For a given pair a, b ∈ Zn, we denote by a ≤ b when the inequality holds for
each coordinate. Let N = Z≥0 denote the set of nonnegative integers. Given a ∈ Nn,
consider the set of unitary cubes ∇(a) = {[[b]] : 0 ≤ b ≤ a}.

Definition 2.1 (Hyper-L). Given a finite abelian group Γ = 〈γ1, . . . , γn〉 of order
N = |Γ|, consider the map φ : Nn −→ Γ given by φ(a) = a1γ1+ · · ·+anγn. A hyper-L
of the Cayley digraph Cay(Γ, {γ1, . . . , γn}), denoted by L, is a set of N unitary cubes
L = {[[a0]], . . . , [[aN−1]]} such that
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(i) {φ(a) : [[a]] ∈ L} = Γ,

(ii) [[a]] ∈ L ⇒ ∇(a) ⊂ L.

Given x ∈ Zn, let us consider the `1 norm ‖x‖1 = |x1|+ · · ·+ |xn|. The diameter
of the hyper-L L is defined to be k(L) = max{‖a‖1 : [[a]] ∈ L}. For the usual
definition of the diameter k(G) of a Cayley digraph G = Cay(Γ, 〈γ1, . . . , γn〉), we
have k(G) ≤ k(L) for every hyper-L L of G.

Definition 2.2 (Minimum distance diagram). A minimum distance diagram H of
the Cayley digraph G is a hyper-L satisfying ‖a‖1 = min{‖x‖1 : x ∈ φ−1(φ(a))} for
all [[a]] ∈ H.

It follows that k(G) = k(H) for each minimum distance diagram H of G, and also
k(G) = min{k(L) : L is a hyper-L of G}. When Γ is a cyclic group, Definition 2.2 is
equivalent to [19, Def. 2.1] for multiloop networks.

Figure 1: MDDs of G1 = Cay(Z84, {2, 9, 35}) and G2 = Cay(Z84, {2, 9, 33}).

Example 2.3. The Cayley digraph G1 = Cay(Z84, {2, 9, 35}) has only one minimum
distance diagram H1 which is shown on the left hand side of Figure 1. The diam-
eter is k(G1) = k(H1) = ‖(0, 0, 7)‖1 = 7. The cube [[0, 0, 7]] corresponds to vertex 77
in G1. There are 13 unit cubes in H1 with maximum norm, namely, [[0, 0, 7]], [[0, 1, 6]],
[[2, 1, 4]], [[4, 1, 2]], [[0, 6, 1]], [[1, 5, 1]], [[2, 4, 1]], [[3, 3, 1]], [[4, 2, 1]], [[0, 7, 0]], [[2, 5, 0]],
[[5, 2, 0]], and [[7, 0, 0]]. These cubes are painted in light color. Each cube a =
[[a1, a2, a3]] in H1 corresponds to the vertex 2a1 + 9a2 + 35a3 in Z84.

The minimum distance diagram H2 shown on the right hand side of Figure 1 has
diameter k(H2) = 9, and corresponds to the digraph G2 = Cay(Z84, {2, 9, 33}). It
has only two cubes with maximum norm: [[2, 6, 1]] and [[2, 0, 7]]. They correspond
to the vertices 7 and 67, respectively. Exhaustive computer search shows that the
minimum diameter for a Cayley digraph on a three generated cyclic group with order
84 is 7.
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For a Cayley digraph G of an abelian group, with order N(G), degree d(G), and
diameter k(G), Fiduccia, Forcade and Zito [10] defined its solid density as

δ(G) =
N(G)

(k(G) + d(G))d(G)
, (1)

the density of an MDD related to G. From now on, we use this expression for
computing the density. Let us denote

∆d,k = max{δ(G) : d(G) = d, k(G) = k}, and ∆d = max{∆d,k : d(G) = d}.

Forcade and Lamoreaux proved that ∆2 = 1/3 by using a generic optimal diagram
H in [14, Section 4]. This diagram was already known by Fiol, Yebra, Alegre, and
Valero [13] to derive the tight lower bound k(N) ≥ lb(N) = d

√
3Ne− 2 for a generic

Cayley digraph of degree d = 2 and order N . The density ∆2 is attained by the
digraphs GM = Cay(Z2/MZ2, E2), where M is the matrix with rows (2t,−t) and
(−t, 2t) or, equivalently, Gt = Cay(Zt ⊕ Z3t, {(1,−1), (0, 1)}), with Nt = 3t2 and
k(Gt) = 3t− 2 for each t ≥ 1 (see next section). No Cayley digraph on cyclic group
Z3t2 of degree d = 2 attains this density for t > 1.

As far as we know, ∆d remains unknown for d > 2. For d = 3 there are some
main facts: Fiduccia, Forcade, and Zito in [10, Cor. 3.6] proved that ∆3 ≤ 3/25 =
0.12. However, numerical evidences suggest that ∆3 would be a smaller value. The
maximum density attained by known Cayley digraphs is δ0 = 0.084 and they have
been found by computer search. Such digraphs are F0, F1 in [10, Table 1], and
F ′1
∼= F0, F2, F3 in [8, Table 8.2], where:

• F0
∼= G1 = Cay(Z84, {2, 9, 35});

• F1 = Cay(Z2 ⊕ Z2 ⊕ Z168, {(1, 0, 2), (0, 0, 9), (0, 1, 35)});

• F2 = Cay(Z3 ⊕ Z3 ⊕ Z252, {(0, 0, 2), (0, 1, 9), (1, 0, 35)});

• F3 = Cay(Z4 ⊕ Z4 ⊕ Z336, {(0, 1, 2), (0, 0, 9), (1, 0, 35)}).

Let NAd,k (respectively, NCd,k) be the maximum number of vertices that a Cayley
digraph of an abelian group (respectively, of a cyclic group), with degree d and
diameter k, can have. Let us denote lb(d, k) the lower bound for NAd,k. Then, from
Wong and Coppersmith [20] and Dougherty and Faber [8, Theorem 9.1], it follows
that, for d > 1,

lb(d, k) =
c

d(ln d)1+log2 e

kd

d!
+O(kd−1) ≤ NAd,k <

(
k + d

k

)
, (2)

for some constant c. As far as we know, no constructions of Cayley digraphs G of
order N(G) ∼ lb(d, k) are known.

Notice that, for a given Cayley digraph G, a large value of the ratio N(G)/k(G)
does not guarantee a high density of G. In this work we propose the Dilating Method
which allows the generation of an infinite family of dense digraphs from a given initial
dense digraph.
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3 The Dilating Method

For a given finite abelian Cayley digraph G = Cay(Γ, {γ1, . . . , γn}) of degree d = n,
with minimum distance diagram H, there is an integral matrix M ∈ Zn×n such that

G ∼= Cay(Zn/MZn, En) ∼= Cay(Zs1 ⊕ · · · ⊕ Zsn , {u1, . . . ,un}), (3)

where S = diag(s1, . . . , sn) = UMV is the Smith normal form of M , En =
{e1, . . . , en} is the canonical basis of Zn and {u1, . . . ,un} are the column vectors
of the matrix U . Let H be a minimum distance diagram of G. It is well known that
H tessellates Rn by translation through the vector set CM = {m1, . . . ,mn}, with
CM being the set of column vectors of M . The map ψ(x) = Ux plays an important
role because of the equivalence

a ≡ b (mod M) ⇔ ψ(a) ≡ ψ(b) (mod S)

and so, it follows that [[a]] ∼ [[b]]⇔ ψ(a) ≡ ψ(b) in Zs1⊕· · ·⊕Zsn . For more details,
see [9, 12].

Example 3.1. Let us consider again the Cayley digraph G1 and its minimum dis-
tance diagram H1 of Example 2.3. In this case we have S = diag(1, 1, 84) and

UMV =

 0 0 1
−2 1 10

7 −3 −38

 1 2 −6
5 2 4
2 −2 3

 2 1 26
0 1 23
−1 0 −2

 = S.

Thus, H1 tessellates R3 through the lattice generated by {(1, 5, 2)>, (2, 2,−2)>,
(−6, 4, 3)>} and G1

∼= Cay(Z3/MZ3, E3). It is not difficult to see by computer
that ψ(a) 6≡ ψ(b) in Z1 ⊕ Z1 ⊕ Z84

∼= Z84 for any pair of cubes [[a]], [[b]] ∈ H1.
The required optimality condition of Definition 2.2 can also be verified on H1 by
computer. Notice that G1

∼= Cay(Z84, {46, 81, 7}) by the isomorphism µ(x) = 53x
since 46 ≡ −38 (mod 84), 81 ≡ −3 (mod 84), and gcd(84, 53) = 1. The choice of
the optimal lattice is not unique. For instance, Daugherty and Faber [8] used the
generating set {v1,v2,v3} = {(−2, 2, 2)>, (3,−3, 3)>, (4, 3,−1)>}. Then, taking into
account that the following (column) vectors belong also to the lattice,

v4 = (6, 1,−3) = v3 − v1, v5 = (5,−5, 1) = v2 − v1, v6 = (1, 6,−4) = v3 − v2,
v7 = (2, 5, 1) = v1 + v3, v8 = (1,−1, 5) = v1 + v2, v9 = (−1, 1, 7) = 2v1 + v2,

v10 = (3, 4,−6) = v3 − v1 − v2, v11 = (−7, 7, 1) = 2v1 − v2,
v12 = (−5,−2, 8) = 2v1 + v2 − v3, v13 = (−1, 8,−2) = v1 − v2 + v3,

v14 = (8,−1,−5) = v3 − 2v1,

it is not difficult to check by hand that the hyper-L obtained represents a digraph
with diameter 7. For instance, following a similar approach as in [8], Figure 2 shows
that all integral (column) vectors x = x1x2x3 = (x1, x2, x3) at distance eight from
the origin 000 (that is, all integral points satisfying x1 + x2 + x3 = 8) are equivalent,
modulo M = (v1|v2|v3), with vectors which are at distance ≤ 7. In particular,
notice that (2, 5, 1) ≡ (0, 0, 0).
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Figure 2: Every integer vector x = (x1, x2, x3) = x1x2x3 at distance 8 from the origin
is congruent modulo M = (v1|v2|v3) with y = y1y2y3 at distance ≤ 7. The points
x are in the intersection of the plane x1 + x2 + x3 = 8 with the planes limiting the
first octant.

Given a unit cube [[a]], consider the dilate t[[a]] defined by

t[[a]] = {[[ta+ (α1, . . . , αn)]] : 0 ≤ α1, . . . , αn ≤ t− 1} (4)

for t ≥ 1, t ∈ N. Notice that t[[a]] ∩ t[[b]] = ∅ whenever [[a]] 6= [[b]].

Definition 3.2 (The dilation of a hyper-L). Let L be a hyper-L of some Cayley
digraph. The t–dilate tL of L is defined by tL = {t[[a]] : [[a]] ∈ L}.

This definition corresponds to a dilatation of L in such a way that each unit cube
[[a]] in L is dilated to another cube, t[[a]], of side t in tL according to (4).

Lemma 3.3. Given a hyper-L L of the digraph GM , consider the dilate tL for a
given integer t ≥ 1. Then, x 6≡ y (mod tM ) for any pair of cubes [[x]], [[y]] ∈ tL.

Proof. Assume that [[x]] and [[y]] are different unit cubes in tL, which can be written
in the form x = ta+(α1, . . . , αn)> and y = tb+(β1, . . . , βn)>, with [[a]], [[b]] ∈ L, 0 ≤
αi, βi < t for 1 ≤ i ≤ n. Let us assume [[x]] ∼ [[y]] in tL. Then, ta+ (α1, . . . , αn)> ≡
tb+ (β1, . . . , βn)> (mod tM), that is, t(a− b−Mλ) = (β1 − α1, . . . , βn − αn)> for
some λ ∈ Zn. As |βi − αi| ∈ [0, t) for any i = 1, . . . , n, such an identity cannot hold
except for the case β1−α1 = · · · = βn−αn = 0. But, if so, we have either [[a]] ∼ [[b]]
in L with a 6= b, which contradicts Definition 2.1 for L to be a hyper-L, or a = b
and x = y contradicting the first assumption.

Theorem 3.4 (The Dilating Method). For an integer t ≥ 1,

(a) L is a hyper-L of GM if and only if tL is a hyper-L of GtM .
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(b) k(tL) = t(k(L) + n)− n.

(c) H is an MDD (minimum distance diagram) of GM if and only if tH is an
MDD of GtM .

(d) k(GtM ) = t(k(GM ) + n)− n.

(e) When applying the Dilating Method the set of generators is preserved.

Proof. (a) The set tL = {t[[a]] : [[a]] ∈ L} fulfills property (ii) of Definition 2.1
provided that L is a hyper-L. Now we have to check property (i). Notice that, for
the digraph GM , the map φ is the ‘identity’ map φ(x) = x1e1+· · ·+xnen ∈ Zn/MZn

for x ∈ Nn. By Lemma 3.3 we have [[x]] 6∼ [[y]] for any pair of unit cubes [[x]], [[y]] ∈ tL.
Assume N = vol(L) = | detM |. Then, vol(tL) = tnN = | det(tM)| and condition
(i) holds. Analogous arguments can be used to show that L is a hyper-L of GM

whenever tL is a hyper-L of GtM .

The generators of GtM are the same as those of GM . This fact is remarked in
the proof of (e).

(b) Let us assume k(L) = ‖a‖1 for some [[a]] ∈ L. Then, by construction of tL,
we have k(tL) = ‖ta+ (t− 1, . . . , t− 1)>‖1 =

∑n
i=1(tai + t− 1) = t‖a‖1 +n(t− 1) =

t(k(L) + n)− n.

(c) Assume H is an MDD of GM . From (a), the set of cubes tH is a hyper-L of
GtM . Now we have to check the optimal property of Definition 2.2,

‖a‖1 = min{‖x‖1 : x ∈ Nn,x ≡ a (mod tM )} for each [[a]] ∈ tH.

There are two kinds of unit cubes in tH. Namely,

(c.1) [[ta]] with [[a]] ∈ H;

(c.2) [[ta+ (α1, . . . , αn)>]] with [[a]] ∈ H, 0 ≤ α1, . . . , αn < t, and α1 + · · ·+ αn > 0.

Let us fix the value t and consider a type-(c.1) cube [[ta]] ∈ tH. Those x ∈ Nn

equivalent to ta in Zn/tMZn are x = ta+ tMλ for λ ∈ Zn. Then,

min{‖x‖1 : x ∈ Nn,x ≡ ta (mod tM )} = min{‖ty‖1 : y ∈ Nn,y ≡ a (mod M )}
= tmin{‖y‖1 : y ∈ Nn,y ≡ a (mod M)}
= t‖a‖1 = ‖ta‖1,

where the last line is a consequence of H being a minimum distance diagram and
[[a]] ∈ H.

Consider now a type-(c.2) cube [[ta+ (α1, . . . , αn)>]] ∈ tH. Set bt = ta+α with
α = (α1, . . . , αn)>. Assume that there is some yt ≡ bt (mod tM ) with yt ∈ Nn

and ‖yt‖1 < ‖bt‖1 (and yt /∈ tH). Then, yt = bt + tMλ for some λ ∈ Zn and
yt = t(a + Mλ) + α = ct + α where ct must have all its entries positive for being
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yt ∈ Nn (all the entries of ct are multiple of t and 0 ≤ αi < t for all i) and ct ≡ ta
(mod tM). Then,

‖yt‖1 = ‖ct +α‖1 = ‖ct‖1 + ‖α‖1 ≥ ‖ta‖1 + ‖α‖1 = ‖ta+α‖1 = ‖bt‖1,

which is a contradiction. Therefore, tH is an MDD of GtM .

Assume now tH is an MDD of GtM . Thus tH is a hyper-L of GtM and, by (a),
H is a hyper-L of GM . Moreover, from [[ta]] ∈ tH for each a ∈ H, we have

‖ta‖1 = min{‖x‖1 : x ∈ N,x ≡ ta (mod tM)}
= min{‖ty‖1 : y ∈ N,y ≡ a (mod M )}

which is equivalent to ‖a‖1 = min{‖y‖1 : y ∈ N,y ≡ a (mod M )}. So H is also
an MDD of GM .

(d) Finally, the equality k(GtM ) = t(k(GM ) + n) − n is a direct consequence of
(b) and (c).

(e) Consider M ∈ Zn×n with Smith normal form S = UMV . Then, as a direct
consequence of the matrix product, the Smith normal form of tM is

tS = U(tM)V (5)

for an integral value t ≥ 1, which implies the result.

Moreover, following (3), we can assume that GM
∼= Cay(Zn/MZn, {u1, . . . ,un})

with u1, . . . ,un being the column vectors of S. Then, using equality (5), it follows
that GtM

∼= Cay(Zn/tMZn, {u1, . . . ,un}) and so, the set of generators is preserved
for any t ≥ 1.

This result allows us to obtain infinite families of Cayley digraphs with the same
density.

Corollary 3.5. Let G1 = GM be an initial Cayley digraph of order N , degree n and
diameter k. Then, the Cayley digraph Gt = GtM has the same density as G1 for any
integral value t ≥ 1.

Proof. From Theorem 3.4, we know that if G1 has minimum distance diagram H.
Then, the dilates tH are minimum distance diagrams related to the digraphs, of
order Nt = tnN and diameter k(GtM ) = t(k + n)− n. Thus, their densities satisfy

δ(GtM ) =
Nt

(k(GtM ) + n)n
=

tnN

(t(k(GM ) + n))n
=

N

(k(GM ) + n)n
= δ(GM ). (6)

Thus, the Dilating Method for obtaining dense families of abelian Cayley digraphs
results in the following procedure:
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1. Choose an initial (dense) digraph G1 (perhaps found by computer search).

2. Find any related minimum distance diagram H of G1.

3. Use the fact that H tessellates Rn to find the set of column vectors of M ,
CM = {m1, . . . ,mn} ⊂ Zn, such that G1

∼= GM .

4. Apply the Dilating Method to obtain an infinite family of (dense) digraphs
Gt = GtM .

Notice that the steps 1, 2, and 3 are done by using a computer search. We remark
again that all the elements of the infinite family of digraphs {Gt}t≥1 have the same
density δ(G1). Note also that the Dilating Method generates an infinite family of
non-cyclic abelian Cayley digraphs excepting, perhaps, the initial one which depends
on the selected digraph to apply the method.

4 New dense families

The criterion for a Cayley digraph GM to be dense is not established and it is applied
in the sense that δ(GM ) is as large as possible. This criterion is closely related to
the degree-diameter problem for these digraphs. The parameter α = α(GM ), where

N(GM ) = α(GM )k(GM )d +O(k(GM )d−1), (7)

is also taken into account for a given infinite family of digraphs of degree d and
diameter k(GM ) = k. In this context, notice that by (1) α(G) = limk→∞ δ(G).

In fact, for a fixed degree d = n, several authors have proposed some infinite
families of digraphs with good related values of α, see Table 1. All these proposals
are concerned with finite cyclic groups. The value α = 0.0807 applies only for
diameters k = 22t+ 12 with t 6≡ 2, 7 (mod 10). The case α = 0.084 applies only for
diameters k ≡ 2 (mod 30).

Paper α

Gómez, Gutiérrez & Ibeas [15] (2007) 0.037
Hsu & Jia [16] (1994) 0.062
Aguiló, Fiol & Garcia [2] (1997) 0.074
Chen & GU [7] (1992) 0.078
Aguiló [1] (1999) 0.080
Aguiló, Simó & Zaragozá [5] (2001) 0.084

Table 1: Several proposals for degree d = 3.

Moreover, a result of Dougherty and Faber [8, Cor. 8.2] proved the existence of
abelian Cayley digraphs of degree d = 3 and order ‘at least’ N = 0.084k3 +O(k2) for
all k (and, hence, with α = 0.084). However, as far as we know, there is no explicit
infinite family satisfying these conditions.
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Finally, it is also worth mentioning the work of Rödseth [18] on weighted loop
networks, who gave sharp lower bounds for the diameter and mean distance for
degree d = 2 and general bounds for degree d = 3.

The dense family given by Aguiló, Simó, and Zaragozá [5] can be extended to
a more general one. Using the same notation as in [5], take the integral matrix
M(m,n) given by

M (m,n) =

 n m −2m− 2n
3n+m m m+ 2n

2n −m m+ n

 . (8)

Proposition 4.1 ([5]). Consider the Cayley digraph Gm,n = GM(m,n). Then, the
order Nm,n and diameter km,n of Gm,n are given by

Nm,n = m3 + 12m2n+ 14mn2,

km,n ≤ max{m+ 8n− 3, 3m+ 4n− 3, 5m− 3}. (9)

The case M (2, 1) is given in Example 3.1, with N2,1 = 84 and k2,1 ≤ 7. The
diameter k = 7 is the minimum diameter a digraph Cay(Z84, {a, b, c}) can achieve.
In [5, Proposition 3] it is stated that, for x ≡ 0 (mod 3), the digraph GM(2x+1,x) is
isomorphic to a cyclic Cayley digraph and an explicit family is given. In the following
result we extend this family to any value of x.

Proposition 4.2. The Cayley digraph

GM(2x+1,x) = Cay(Z84x3+74x2+18x+1, {−21x2 − 15x− 2, 21x2 + 8x,−42x2 − 23x− 3})

has diameter k2x+1,x ≤ 10x+ 2, for all integral value x ≥ 1.

Proof. The result follows from the Smith normal form decomposition of the matrix
M (2x+ 1, x) in (8)

Sx = diag(1, 1, 84x3 + 74x2 + 18x+ 1) = UxM (2x+ 1, x)V x

with unimodular matrices

Ux =

 −1 1 −2
−3x− 1 3 x −6x− 1

−21x2 − 15x− 2 21x2 + 8x −42x2 − 23x− 3

 ,

V x =

 1 1 −12x2 − 10x− 2
0 −1 12x2 + 6x+ 1
0 1 −12x2 − 6x

 ,

and the upper bound (9) for the diameter in Proposition 4.1.

Notice that this proposition does not provide an infinite family with density 0.084.
Instead, this value corresponds to the parameter α, which, as commented above, is
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an asymptotic density when the diameter or the degree tend to infinity. So, from the
values of the order N(x) = 84x3+74x2+18x+1 and diameter k = k(x) = 10x+2, we
get that N(x) = 1

1000
(84k32x+1,x+236k(x)2−152k2x+1,x−312) = 0.084k(x)3+O(k(x)2)

(α = 0.084). Thus, if we look at the density of the elements of this family, we have

δ(x) = N(x)
(k(x)+3)3

. Thus, there are no elements with density exactly 0.084, as δ(x) is

strictly increasing from δ(1) = 0.052444....

Now we give other dense families using the Dilating Method of the previous
section. More precisely, Proposition 4.3 deals with a dense infinite family of digraphs
of degree d = 3 whereas Proposition 4.5 gives an infinite family for any degree d ≥ 2.

Consider the integral matrices given in Example 3.1, S, U , M and V . The
hyper-L H given in Example 2.3 is a minimum distance diagram related to the
Cayley digraph GM . This fact can be checked by computer. Now we can apply
Theorem 3.4 to obtain the following result.

Proposition 4.3. The family of abelian Cayley digraphs

Gt = Cay(Zt ⊕ Zt ⊕ Z84t, {(1, 10,−38), (0, 1,−3), (0,−2, 7)})

has order Nt = 84t3 and diameter kt = 10t− 3 for any integral value t ≥ 1.

Clearly, from (6), the density of this family is the constant value δt = 0.084
and, from t = kt+3

10
, in this case, we also obtain the parameter αt = 0.084. It can be

checked that the known Cayley digraphs of maximum density for degree d = 3, listed
in Section 2, are contained in such a family. That is, F0

∼= G1, F1
∼= G2, F2

∼= G3

and F3
∼= G4.

Recall that, as commented above, Dougherty and Faber [8, Cor. 8.2] proved a
existence (but no constructive) result about the existence of an infinite family of
abelian Cayley digraphs with degree d = 3, order N = 0.084k3 +O(k2), and density

δ(k) = 0.084

(
k

k + 3

)3

+O

(
1

k

)
< 0.084

for all k. In that paper, the authors derive their main results by using the following
notation: Sk = {x ∈ Zd : ‖x‖1 ≤ k}, and S ′k = Sk ∩ P , where P is the positive
octant of Rd. Then, it is stated that S ′k is a “covering” of the lattice Zd, that is,
S ′k + N = Zd, so that, in contrast with our method, this is not a proper ‘tiling’ of
Zd, as overlapping is allowed. (Really, in [8, Lem. 3.1], it is said that we can find
T ′k ⊂ S ′k that tessellates Zd. However, Proposition 4.2(b) of the same paper deals
with S ′k and, hence, with possible overlapping.)

Example 4.4. An MDD related to G2 of Proposition 4.3 is shown in Figure 3. From
the geometrical point of view, this diagram can be seen as the 2-dilate of the diagram
H1 related to G1 of Figure 1, where each unitary cube has been dilated into four
regular unitary cubes. The 13 cubes with maximum norm 17 = k(G2) are [[1, 1, 15]],
[[1, 3, 13]], [[5, 3, 9]], [[9, 3, 5]], [[1, 13, 3]], [[3, 11, 3]], [[5, 9, 3]], [[7, 7, 3]], [[9, 5, 3]], [[1, 15, 1]],
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Figure 3: Minimum distance diagram related to G2 of Proposition 4.3.

[[5, 11, 1]], [[11, 7, 1]], and [[15, 1, 1]]. Each cube [[a1, a2, a3]] corresponds to the vertex 1 0 0
10 1 −2
−38 −3 7

 a1
a2
a3

 ∈ Z2 ⊕ Z2 ⊕ Z168.

In the following proposition we use the notation Zd−1
m = Zm⊕

(d−1)
· · · ⊕Zm.

Proposition 4.5. Consider

Ad = {(1, 1, 1, . . . , 1), (1, 2, 1, . . . , 1), . . . , (1, 1, . . . , 1, 2)} ⊂ Zd.

Then the Cayley digraph Gd,t = Cay(Zt⊕Zd−1
t(d+1), Ad) has diameter kd,t = t

(
d+1
2

)
− d,

for d ≥ 2 and t ≥ 1.

Proof. Consider the family of digraphs given in [3, Theorem 3.2], Fd = Cay(Zd−1
d+1, Bd)

with Bd = {(1, 1, . . . , 1), (2, 1, . . . , 1), . . . , (1, . . . , 1, 2)} ⊂ Zd−1 and k(Fd) =
(
d
2

)
,

defined for d ≥ 2. Use the digraph isomorphism Fd
∼= Gd,1 and apply the Dilating

Method to Gd,1 for t ≥ 1. From Theorem 3.4(d) it follows that k(Gd,t) = t(k(Fd) +
d)− d = t

(
d+1
2

)
− d.
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Figure 4: Minimum distance diagrams related to G1 = Cay(Z4 ⊕ Z4, {(1, 1), (2, 1),
(1, 2)}) and G2 = Cay(Z2 ⊕ Z8 ⊕ Z8, {(1, 1, 1), (1, 2, 1), (1, 1, 2)}) of Proposition 4.5.

Notice the identity α(Gd,t) = δ(Gd,t) = 1
d+1

(2/d)d, for all t ≥ 1.

By using Stirling’s formula, the lower bound expression lb(d, k) in (2), gives

lb(d, k) ∼ c√
2π
ed−

3
2
ln d−(ln ln d)(1+log2 e)

(
k

d

)d

+O(kd−1),

with the multiplicative factor of
(
k
d

)d
being

c√
2π
ed−

3
2
ln d−(ln ln d)(1+log2 e) ∼ c√

2π
ed−

3
2
ln d.

Notice that N(Gd,t) = td(d + 1)d−1 and kd,t = k(Gd,t) = t
(
d+1
2

)
− d hold for all t.

Thus, as t =
kd,t+d

(d+1
2 )

, we get

N(Gd.t) =
2d

d+ 1

(
kd,t
d

+ 1

)d

=
2d

d+ 1

(
kd,t
d

)d

+O(kd−1d,t ),

with the multiplicative factor of
(

kd,t
d

)d
being ed ln 2−ln(d+1). This is to be compared

with (2).

5 Final comments

Although the diameter of a digraph is a good measure of its metric properties, it is
only a ‘local’ measure. That is, two digraphs having the same order can be compared
in terms of the best metric properties through the diameter. Roughly speaking, the
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lower the diameter, the better. However, when we want to compare two graphs
having optimal diameter, but different orders, we need a ratio parameter such as the
density considered in this work. This is because the density is a ‘global’ parameter
among all the digraphs with the same degree and optimal diameter.

Moreover, by using the density, we believe that a deeper knowledge of the tight
lower bound expression, lb(d, n) in (2), can be reached. In this sense, when d is fixed,
computer search would complement and give light to this future work.
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