Generalized path pairs and Fuss-Catalan triangles

Paul Drube
Department of Mathematics and Statistics
Valparaiso University
Valparaiso, Indiana
U.S.A.
paul.drube@valpo.edu

Abstract

Path pairs are a modification of parallelogram polyominoes that provide yet another combinatorial interpretation of the Catalan numbers. More specifically, the number of path pairs of length n and distance δ corresponds to the $(n-1, \delta-1)$ entry of Shapiro's so-called Catalan triangle. In this paper, we widen the notion of path pairs $\left(\gamma_{1}, \gamma_{2}\right)$ to the situation where γ_{1} and γ_{2} may have different lengths, and then enforce divisibility conditions on runs of vertical steps in γ_{2}. This creates a two-parameter family of integer triangles that generalize the Catalan triangle and qualify as proper Riordan arrays for many choices of parameters. In particular, we use generalized path pairs to provide a new combinatorial interpretation for all entries in every proper Riordan array $\mathcal{R}(d(t), h(t))$ of the form $d(t)=C_{k}(t)^{i}, h(t)=t C_{k}(t)^{k}$, where $1 \leq i \leq k$ and $C_{k}(t)$ is the generating function for some sequence of Fuss-Catalan numbers (some $k \geq 2$). Closed formulas are then provided for the number of generalized path pairs across an even broader range of parameters, as well as for the number of "weak" path pairs with a fixed number of non-initial intersections.

1 Introduction

The Catalan numbers are a seemingly ubiquitous sequence of positive integers whose $n^{\text {th }}$ entry is $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$. The Catalan numbers satisfy the recurrence $C_{n+1}=$ $\sum_{i+j=n} C_{i} C_{j}$ for all $n \geq 0$, which translates to the ordinary generating function $C(t)=\sum_{n=0}^{\infty} C_{n} t^{n}$ as the relation $C(t)=t C(t)^{2}+1$. It follows that $C(t)=\frac{1-\sqrt{1-4 t}}{2 t}$.

Hundreds of combinatorial interpretations for the Catalan numbers have been compiled by Stanley [13]. One such interpretation identifies C_{n} with the number of parallelogram polyominoes with semiperimeter $n+1$. These are ordered pairs of lattice paths $\left(\gamma_{1}, \gamma_{2}\right)$ that satisfy all of the following:

1. Both γ_{1} and γ_{2} are composed of $n+1$ steps from the step set $\{E=(1,0), N=(0,1)\}$, where γ_{1} must begin with an N step and γ_{2} must begin with an E step.
2. Both γ_{1} and γ_{2} begin at $(0,0)$ and end at the same point.
3. γ_{1} and γ_{2} only intersect at their initial and final points.

See Figure 1 for an illustration of all parallelogram polyominoes with semiperimeter 4, noting that the number of such paths is $C_{3}=5$.

Figure 1: The $C_{3}=5$ parallelogram polyominoes with semiperimeter 4, with the corresponding path pairs of length 3 (and $\delta=1$) appearing as the bold edges.

Generalizing the notion of parallelogram polyominoes are (fat) path pairs, as introduced by Shapiro [11] and developed by Deutsch and Shapiro [4]. A path pair of length n is an ordered pair $\left(\gamma_{1}, \gamma_{2}\right)$ of lattice paths that satisfy all of the following:

1. Both γ_{1} and γ_{2} are composed of n steps from the step set $\{E=(1,0), N=(0,1)\}$.
2. Both γ_{1} and γ_{2} begin at $(0,0)$.
3. Apart from at $(0,0), \gamma_{1}$ stays strongly above γ_{2}.

Now consider the path pair $\left(\gamma_{1}, \gamma_{2}\right)$, and suppose that γ_{1} terminates at $\left(x_{1}, y_{1}\right)$ while γ_{2} terminates at $\left(x_{2}, y_{2}\right)$. Clearly $x_{1}<x_{2}$ and $y_{1}>y_{2}$. The path pair $\left(\gamma_{1}, \gamma_{2}\right)$ is said to have distance δ if $x_{2}-x_{1}=\delta$, and in this case we write $\left|\gamma_{2}-\gamma_{1}\right|=\delta$. We henceforth use $\mathcal{P}_{n, \delta}$ to denote the set of all path pairs of length n and distance δ.

There is a simple bijection between $\mathcal{P}_{n, 1}$ and parallelogram polynomials of semiperimeter $n+1$, via a map that adds an E step to the end of γ_{1} and an N step to the end of γ_{2}. See Figure 1 for an illustration of the $n=3$ case. It follows that $\mathcal{P}_{n, 1}=C_{n}$ for all $n \geq 0$.

Enumeration of $\mathcal{P}_{n, \delta}$ for all $\delta \geq 1$ and $n \geq 1$ was addressed by Shapiro [11], who identified $\left|\mathcal{P}_{n, \delta}\right|=\frac{2 \delta}{2 n}\binom{2 n}{n-\delta}$ with the ($n-1, \delta-1$) entry of his so-called Catalan triangle. See Figure 2 for the first five rows of Shapiro's Catalan triangle, an infinite lowertriangular matrix (with zero entries suppressed) whose entries $d_{i, j}$ are generated by the recurrence $d_{0,0}=1$ and $d_{i, j}=d_{i-1, j-1}+2 d_{i-1, j}+d_{i-1, j+1}$ for all $i \geq 1,0 \leq j \leq i .{ }^{1}$

[^0]```
1
2 1
5}44
14}144\quad6\quad
42 48 27 8 1
```

Figure 2: The first five rows of Shapiro's Catalan triangle.

The Catalan triangle is a well-known example of a proper Riordan array. Given a pair of generating functions $d(t)$ and $h(t)$ such that $d(0) \neq 0, h(0)=0$, and $h^{\prime}(0) \neq 0$, the associated proper Riordan array $\mathcal{R}(d(t), h(t))$ is the infinite lowertriangular matrix whose $(i, j)$ entry is $d_{i, j}=\left[t^{i}\right] d(t) h(t)^{j}$. Here we use the standard notation in which $\left[t^{i}\right]$ identifies the coefficient of $t^{i}$ in a power series. It may be verified that Shapiro's Catalan triangle is the proper Riordan array with $d(t)=C(t)^{2}$ and $h(t)=t C(t)^{2}$.

For general information about Riordan arrays, see Rogers [10], Merlini et al. [9], or Shapiro et al. [12]. For a more focused discussion about how Riordan arrays similar to the Catalan triangle may be used to define so-called "Catalan-like numbers", see Aigner [2].

Central to our work is the fact that every proper Riordan array $\mathcal{R}(d(t), h(t))$ possesses sequences of integers $\left\{z_{i}\right\}_{i=0}^{\infty}$ and $\left\{a_{i}\right\}_{i=0}^{\infty}$ such that

$$
d_{n, k}= \begin{cases}z_{0} d_{n-1, k}+z_{1} d_{n-1, k+1}+z_{2} d_{n-1, k+2}+\ldots & \text { for } k=0 \text { and all } n \geq 1  \tag{1}\\ a_{0} d_{n-1, k-1}+a_{1} d_{n-1, k}+a_{2} d_{n-1, k+1}+\ldots & \text { for all } k \geq 1 \text { and } n \geq 1\end{cases}
$$

These sequences are referred to as the $Z$-sequence and the $A$-sequence of $\mathcal{R}(d(t), h(t))$, respectively. When represented as generating functions $Z(t)=\sum_{i} z_{i} t^{i}$ and $A(t)=\sum_{i} a_{i} t^{i}$, the $Z$ - and $A$-sequences of a proper Riordan array are known to satisfy the relations

$$
\begin{equation*}
d(t)=\frac{d(0)}{1-t Z(h(t))}, \quad h(t)=t A(h(t)) . \tag{2}
\end{equation*}
$$

The defining recurrence of the Catalan triangle implies that it is a proper Riordan array with $Z(t)=2+t$ and $A(t)=1+2 t=t^{2}=(1+t)^{2}$.

We pause to recap a few facts about the one-parameter Fuss-Catalan numbers, also known as the $k$-Catalan numbers, since they will play a major role in what follows. For any $k \geq 2$, the $k$-Catalan numbers are an integer sequence whose $n^{\text {th }}$ entry is $C_{n}^{k}=\frac{1}{k n+1}\binom{k n+1}{n}$. Observe that the $k=2$ case corresponds to the "original" Catalan numbers. For any $k \geq 2$, the $k$-Catalan numbers satisfy the recurrence $C_{n+1}^{k}=\sum_{i_{1}+\ldots+i_{k}} C_{i_{1}}^{k} \ldots C_{i_{k}}^{k}$ for all $n \geq 0$, implying that their generating functions $C_{k}(t)=\sum_{n=0}^{\infty} C_{n}^{k} t^{n}$ satisfy $C_{k}(t)=t C_{k}(t)^{k}+1$. For an introduction to the $k$-Catalan numbers, see Hilton and Pederson [8]. For a list of combinatorial interpretations for the $k$-Catalan numbers, see Heubach, Li and Mansour [7].

The goal of this paper is to simultaneously explore several generalizations of path pairs. Firstly, we eliminate the requirement that the two paths of $\left(\gamma_{1}, \gamma_{2}\right)$ have equal length, setting $\epsilon=\left|\gamma_{2}\right|-\left|\gamma_{1}\right|$ and examining the full range of differences $\epsilon \geq 0$ with $\left|\gamma_{1}\right| \geq 0$. We also enforce conditions on the $N$ steps of $\gamma_{2}$ that are designed to mirror the generalization of the Catalan numbers to the $k$-Catalan numbers. We refer to the resulting combinatorial objects as $k$-path pairs of length $(n-\epsilon, n)$.

Section 2 focuses upon the enumeration of $k$-path pairs. In Subection 2.1, we construct a two-parameter collection of infinite lower-triangular arrays $A^{k, \epsilon}$, whose entries correspond to the number of $k$-path pairs of varying lengths and distances. For all $0 \leq \epsilon \leq k-1$, Theorem 2.2 identifies the triangle $A^{k, \epsilon}$ with the proper Riordan array $\mathcal{R}(d(t), h(t))$ where $d(t)=C_{k}(t)^{k-\epsilon}$ and $h(t)=t C_{k}(t)^{k}$. In Subsection 2.2 , we directly enumerate sets of $k$-path pairs for all $k \geq 2$ and $\epsilon \leq 0$. Theorem 2.5 uses the results of Subsection 2.2 to derive a closed formula for the size of all such sets, and Theorem 2.6 provides a significantly simplified formula within the range of $0 \leq \epsilon \leq(k-1) \delta$.

Section 3 introduces a related generalization where we now allow the two paths $\left(\gamma_{1}, \gamma_{2}\right)$ to intersect away from $(0,0)$, so long as $\gamma_{1}$ stays weakly above $\gamma_{2}$ for the entirety of its length. Theorem 3.2 applies the techniques of Section 2 to derive a closed formula for the number of "weak $k$-path pairs" whose paths intersect precisely $m$ times away from ( 0,0 ), assuming that we restrict ourselves to the range $0 \leq \epsilon \leq(k-1) \delta$.

## 2 Generalized $k$-Path Pairs

Take any pair of integers $n, \epsilon$ such that $0 \leq \epsilon<n$. Then define $\mathcal{P}_{n, \delta}^{\epsilon}$ to be the collection of ordered pairs $\left(\gamma_{1}, \gamma_{2}\right)$ of lattice paths that satisfy all of the following:

1. Both $\gamma_{1}$ and $\gamma_{2}$ begin at $(0,0)$ and use steps from $\{E=(1,0), N=(0,1)\}$.
2. $\gamma_{2}$ is composed of precisely $n$ steps, the first of which is an $E$ step.
3. $\gamma_{1}$ is composed of precisely $n-\epsilon$ steps, the first of which is a $N$ step.
4. $\gamma_{1}$ and $\gamma_{2}$ do not intersect apart from at $(0,0)$.
5. The difference between the terminal $x$ coordinates of $\gamma_{1}$ and $\gamma_{2}$ is $\delta$.

The case $\epsilon=0$ obviously corresponds to the original notion of path pairs. If $\gamma_{2}$ terminates at $\left(x_{2}, y_{2}\right)$, then $\gamma_{1}$ terminates at $\left(x_{1}, y_{1}\right)=\left(x_{2}-\delta, y_{2}+\delta-\epsilon\right)$. In particular, $y_{1}-y_{2} \geq 0$ precisely when $\delta \geq \epsilon$.

Now fix $k \geq 2$, and consider some $\left(\gamma_{1}, \gamma_{2}\right) \in \mathcal{P}_{n, \delta}^{\epsilon}$. The path pair $\left(\gamma_{1}, \gamma_{2}\right)$ is said to be a $k$-path pair of length $(n-\epsilon, n)$ and distance $\delta$ if the bottom path $\gamma_{2}=$ $E^{1} N^{b_{1}} E^{1} N^{b_{2}} \ldots E^{1} N^{b_{m}}$ satisfies $b_{i}=(k-2) \bmod (k-1)$ for all $i$. Clearly, 2-path pairs correspond to the notion of path pairs discussed above.

For any $k$-path pair $\left(\gamma_{1}, \gamma_{2}\right)$, the bottom path $\gamma_{2}$ must decompose into a sequence of length- $(k-1)$ subpaths, each of which is either $N^{k-1}$ or $E^{1} N^{k-2}$. In particular,
the length $n$ of $\gamma_{2}$ must be divisible by $k-1$. To avoid a large number of empty sets, we define $\mathcal{P}_{n, \delta}^{k, \epsilon}$ to be the collection of all $k$-path pairs of length $((k-1) n-\epsilon,(k-1) n)$ and distance $\delta$.

We continue to use the notation $\delta=\left|\gamma_{2}-\gamma_{1}\right|$ for the distance of $k$-path pairs. For any $\left(\gamma_{1}, \gamma_{2}\right) \in \mathcal{P}_{n, \delta}^{k, \epsilon}$, it is always the case that $1 \leq \delta \leq n$, with the maximum distance of $n$ only being obtained by the pair with $\gamma_{1}=N^{n-\epsilon}$ and $\gamma_{2}=\left(E N^{k-2}\right)^{n}$. It follows that the sets $\mathcal{P}_{n, \delta}^{k, \epsilon}$ encompass all nonempty collections of $k$-path pairs if we range over $1 \leq \delta \leq n$ and $0 \leq \epsilon \leq(k-1) n$.

### 2.1 Generalized $k$-Path Pairs with $0 \leq \epsilon \leq k-1$

In order to enumerate arbitrary $\mathcal{P}_{n, \delta}^{k, \epsilon}$, we fix $k, \epsilon$ and define a recurrence with respect to $n, \delta$. This recurrence will directly generalize Shapiro's original recurrence for the Catalan triangle [11]. We begin with the range $0 \leq \epsilon \leq k-1$, where the recursion will eventually correspond to the $Z$ - and $A$-sequences of a proper Riordan array.

Theorem 2.1. For any $k \geq 2, n \geq 1$, and $0 \leq \epsilon \leq k-1$,

$$
\left|\mathcal{P}_{n, \delta}^{k, \epsilon}\right|= \begin{cases}\sum_{j=1}^{k}\binom{k}{j}\left|\mathcal{P}_{n-1, j}^{k, \epsilon}\right|-\sum_{j=1}^{\epsilon}\binom{\epsilon}{j}\left|\mathcal{P}_{n-1, j}^{k, \epsilon}\right| & \text { for } \delta=1, \text { and } \\ \sum_{j=0}^{k}\binom{k}{j}\left|\mathcal{P}_{n-1, \delta-1+j}^{k, \epsilon}\right| & \text { for } \delta>1\end{cases}
$$

Proof. For any length- $(k-1)$ word $w$ in the alphabet $\{E, N\}$, define $U_{w}$ to be the set of all $\left(\gamma_{1}, \gamma_{2}\right) \in \mathcal{P}_{n, \delta}^{k, \epsilon}$ such that $\gamma_{1}$ terminates with $w$ and $\gamma_{2}$ terminates with $N^{k-1}$. If $w$ contains precisely $j$ instances of $E$, this implies $\gamma_{1}=\eta_{1} w$ and $\gamma_{2}=\eta_{2} N^{k-1}$ for some $\left(\eta_{1}, \eta_{2}\right) \in \mathcal{P}_{n-1, \delta+j}^{k, \epsilon}$. Similarly define $V_{w}$ to be all $\left(\gamma_{1}, \gamma_{2}\right) \in \mathcal{P}_{n, \delta}^{k, \epsilon}$ such that $\gamma_{1}$ terminates with $w$ and $\gamma_{2}$ terminates with $E N^{k-2}$. If $w$ contains precisely $j$ instances of $E$, then $\gamma_{1}=\eta_{1} w$ and $\gamma_{2}=\eta_{2} E N^{k-2}$ for some $k$-path pair $\left(\eta_{1}, \eta_{2}\right) \in \mathcal{P}_{n-1, \delta+j-1}^{k, \epsilon}$. By construction, $\mathcal{P}_{n, \delta}^{k, \epsilon}=\left(\bigcup_{w} U_{w}\right) \cup\left(\bigcup_{w} V_{w}\right)$.

See Figure 3 for the general form of terminal subpaths in an element $\left(\gamma_{1}, \gamma_{2}\right)$ of $U_{w}$ or $V_{w}$. In both diagrams, $(a, b)$ is fixed as the terminal point of $\gamma_{1}$, whereas the final $k-1$ steps of $\gamma_{1}$ are determined by $w$ and lie within the dotted triangle in the upper-left of each image.

Now take any length- $(k-1)$ word $w$ with precisely $j$ instances of $E$. Our strategy is to enumerate $U_{w}$ and $V_{w}$ via consideration of the injective maps $g_{w}: \mathcal{P}_{n-1, \delta+j}^{k, \epsilon} \rightarrow S$, $g_{w}\left(\eta_{1}, \eta_{2}\right)=\left(\eta_{1} w, \eta_{2} N^{k-1}\right)$ and $h_{w}: \mathcal{P}_{n-1, \delta+j-1}^{k, \epsilon} \rightarrow S, h_{w}\left(\eta_{1}, \eta_{2}\right)=\left(\eta_{1} w, \eta_{2} E N^{k-2}\right)$. Here $S$ denotes some collection of path-pairs whose elements may intersect apart from at $(0,0)$. We clearly have $U_{w} \subseteq \operatorname{Im}\left(g_{w}\right)$ and $V_{w} \subseteq \operatorname{Im}\left(h_{w}\right)$ for any word $w$. We also have $U_{w}=\operatorname{Im}\left(g_{w}\right)$ if and only if every path pair in $\operatorname{Im}\left(g_{w}\right)$ is non-intersecting apart from $(0,0)$, and $\operatorname{Im}\left(h_{w}\right)=V_{w}$ if and only if every path pair in $\operatorname{Im}\left(h_{w}\right)$ is non-intersecting apart from $(0,0)$.

Begin with $g_{w}$. The path pair $g\left(\eta_{1}, \eta_{2}\right)=\left(\eta_{1} w, \eta_{2} N^{k-1}\right)$ can only feature an intersection away from $(0,0)$ if the final $k-1$ steps of $\eta_{1} w$ pass through some northwest corner of $\eta_{2} N^{k-1}$. As seen in Figure 3, the largest possible $y$-coordinate for a northwest corner of $\eta_{2} N^{k-1}$ is $b-\delta+\epsilon-2 k+3$, whereas the terminal point of $\eta_{1}$ has a $y$-coordinate of at least $b-k+1$. Since we are assuming $\epsilon \leq k-1$, we have $\epsilon \leq \delta(k-1)$ for all $\delta \geq 1$. It follows that $b-\delta+\epsilon-2 k+3 \leq b-k+1$ for all $\delta \geq 1$, with the case of $b-d+\epsilon-2 k+3=b-k+1$ being impossible because the input path $\left(\eta_{1}, \eta_{2}\right)$ was assumed to be non-intersecting away from ( 0,0 ). This implies that $\eta_{1} w$ cannot intersect $\eta_{2} N^{k-1}$ away from $(0,0)$ for any word $w$.


Figure 3: Terminal subpaths for arbitrary $\left(\gamma_{1}, \gamma_{2}\right) \in U_{w}$ (left side) and arbitrary $\left(\gamma_{1}, \gamma_{2}\right) \in V_{w}$ (right side), as referenced in the proof of Theorem 2.1.

It follows that $g_{w}$ represents a bijection from $\mathcal{P}_{n-1, \delta+j}^{k, \epsilon}$ onto $U_{w}$ for every word $w$ when $\epsilon \leq k-1$. Since there are $\binom{k-1}{j}$ words $w$ with precisely $j$ instances of $E$, a total of $\binom{k-1}{j}$ sets $U_{w}$ lie in bijection with $\mathcal{P}_{n-1, \delta+j}^{k, \epsilon}$ for each $0 \leq j \leq j-1$. This gives

$$
\begin{equation*}
\sum_{w}\left|U_{w}\right|=\sum_{j=0}^{k-1}\binom{k-1}{j}\left|\mathcal{P}_{n-1, \delta+j}^{k, \epsilon}\right|=\sum_{j=1}^{k}\binom{k-1}{j-1}\left|\mathcal{P}_{n-1, \delta+j-1}^{k, \epsilon}\right| . \tag{3}
\end{equation*}
$$

For $h_{w}$, we separately consider the cases of $\delta=1$ and $\delta \geq 2$. Begin by assuming $\delta \geq 2$. We once again note that $h_{w}\left(\eta_{1}, \eta_{2}\right)=\left(\eta_{1} w, \eta_{2} E N^{k-2}\right)$ has intersections away from $(0,0)$ only when the final $k-1$ steps of $\eta_{1} w$ intersect some northwest corner of $\eta_{2} E N^{k-2}$. From Figure 3, since $\delta \geq 2$ we see that the $y$-coordinate of such a corner can be at most $b-\delta+\epsilon-2 k+4$. Our assumptions of $\epsilon \leq k-1$ and $\delta \leq 2$ together ensure $\epsilon \leq k-3+\delta$ and thus that $b-\delta+\epsilon-2 k+4 \leq b-k+1$, with the case of $b-\delta+\epsilon-2 k+4=b-k+1$ being impossible because we've assumed that $\left(\eta_{1}, \eta_{2}\right)$ lacks intersections away from $(0,0)$. This implies that $\eta_{1} w$ cannot intersect $\eta_{2} E N^{k-2}$ away from $(0,0)$ for any word $w$ when $\delta \geq 2$, and thus that $h_{w}$ is a bijection from $\mathcal{P}_{n-1, \delta+j-1}^{k, \epsilon}$ onto $V_{w}$ for every word $w$ when $\delta \geq 2$.

When $\delta=1$, the map $h_{w}$ may introduce new intersections. Fixing $w$, either every image $h_{w}\left(\eta_{1}, \eta_{2}\right)=\left(\eta_{1} w, \eta_{2} E N^{k-2}\right)$ will have an intersection away from $(0,0)$, or every image $h_{w}\left(\eta_{1}, \eta_{2}\right)$ will lack such an intersection. That first subcase implies
that the corresponding set $V_{w}$ is empty, whereas that second subcase implies that $V_{w}$ is nonempty and in bijection with $\mathcal{P}_{n-1, \delta+j-1}^{k, \epsilon}$. We only need to enumerate how many words $w$ fall into each subcase (for each choice of $0 \leq j \leq k-1$ ).

As seen on the right side of Figure 3, when $\delta=1$ the final northwest corner of $\eta_{2} E N^{k-2}$ occurs at ( $a, b+\epsilon-k+1$ ). Fixing a word $w$ with precisely $j$ instances of $E$, we also see that $\eta_{1}$ terminates at $(a-j, b-k+j+1)$. This means that $\eta_{1}$ can only pass through $(a, b+\epsilon-k+1)$ if $j \leq \epsilon$. For any such $j \leq \epsilon$, there are precisely $\binom{\epsilon}{j}$ words $w$ in which this additional intersection occurs. As there are $\binom{k-1}{j}$ words $w$ with precisely $j$ instances of $E$, if $\epsilon \leq k-1$ we know that $V_{w}$ is nonempty for precisely $\binom{k-1}{j}-\binom{\epsilon}{j}$ choices of $w$. Combining our results for $\delta \geq 2$ and $\delta=1$ gives

$$
\sum_{w}\left|V_{w}\right|= \begin{cases}\sum_{j=0}^{k-1}\binom{k-1}{j}\left|\mathcal{P}_{n-1, \delta+j-1}^{k, \epsilon}\right| & \text { for } \delta \geq 2, \text { and }  \tag{4}\\ \sum_{j=0}^{k-1}\left(\binom{k-1}{j}-\binom{\epsilon}{j}\right)\left|\mathcal{P}_{n-1, \delta+j-1}^{k, \epsilon}\right| & \text { for } \delta=1\end{cases}
$$

Once again noting that $\mathcal{P}_{n, \delta}^{k, \epsilon}=\left(\bigcup_{w} U_{w}\right) \cup\left(\bigcup_{w} V_{w}\right)$, for $\delta \geq 2$ we have

$$
\begin{aligned}
\left|\mathcal{P}_{n, \delta}^{k, \epsilon}\right| & =\sum_{w}\left|U_{w}\right|+\sum_{w}\left|V_{w}\right|=\sum_{j=1}^{k}\binom{k-1}{j-1}\left|\mathcal{P}_{n-1, \delta+j-1}^{k, \epsilon}\right|+\sum_{j=0}^{k-1}\binom{k-1}{j}\left|\mathcal{P}_{n-1, \delta+j-1}^{k, \epsilon}\right| \\
& =\sum_{j=0}^{k}\left(\binom{k-1}{j-1}+\binom{k-1}{j}\right)\left|\mathcal{P}_{n-1, \delta+j-1}^{k, \epsilon}\right|=\sum_{j=0}^{k}\binom{k}{j}\left|\mathcal{P}_{n-1, \delta+j-1}^{k, \epsilon}\right| .
\end{aligned}
$$

For $\delta=1$, the facts that $0 \leq \epsilon \leq k-1$ and $\left|\mathcal{P}_{n-1,0}^{k, \epsilon}\right|=0$ prompt the similar result

$$
\begin{aligned}
\left|\mathcal{P}_{n, 1}^{k, \epsilon}\right| & =\sum_{w}\left|U_{w}\right|+\sum_{w}\left|V_{w}\right| \\
& =\sum_{j=1}^{k}\binom{k-1}{j-1}\left|\mathcal{P}_{n-1, j}^{k, \epsilon}\right|+\sum_{j=0}^{k-1}\left(\binom{k-1}{j}-\binom{\epsilon}{j}\right)\left|\mathcal{P}_{n-1, j}^{k, \epsilon}\right| \\
& =\sum_{j=0}^{k}\left(\binom{k-1}{j-1}-\binom{k-1}{j}\right)\left|\mathcal{P}_{n-1, j}^{k, \epsilon}\right|-\sum_{j=0}^{k-1}\binom{\epsilon}{j}\left|\mathcal{P}_{n-1, j}^{k, \epsilon}\right| \\
& =\sum_{j=1}^{k}\binom{k}{j}\left|\mathcal{P}_{n-1, j}^{k, \epsilon}\right|-\sum_{j=1}^{\epsilon}\binom{\epsilon}{j}\left|\mathcal{P}_{n-1, j}^{k, \epsilon}\right| .
\end{aligned}
$$

It should be noted that the methods from Theorem 2.1 may be extended to a somewhat broader range of parameters than $\epsilon \leq k-1$. In particular, the summation of (3) may be shown to hold for all $\epsilon \leq(k-1) \delta$, whereas the $\delta \geq 2$ summation of
(4) may be shown to hold for all $\epsilon \leq(k-1)(\delta-1)$. Sadly, developing a general recursive relation for the full $\epsilon \leq \delta(k-1)$ range of Theorem 2.6 is extremely involved. The enumerative usage of those recursions is also limited when $\epsilon>k-1$, as they no longer qualify as the $A$ - and $Z$-sequences of a proper Riordan array. As such, we delay the $\epsilon>k-1$ case until Subsection 2.2, where generating function techniques may be applied to directly derive closed formulas from pre-existing results for the general case.

For each choice of $k \geq 2$ and $0 \leq \epsilon \leq k-1$, the recursive relations of Theorem 2.1 may be used to generate an infinite lower-triangular matrix $A^{k, \epsilon}$ whose $(i, j)$ entry is $a_{i, j}^{k, \epsilon}=\left|\mathcal{P}_{i+1, j+1}^{k, \epsilon}\right|$. These $A^{k, \epsilon}$ qualify as proper Riordan arrays:
Theorem 2.2. For any $k \geq 2$ and $0 \leq \epsilon \leq k-1$, the integer triangle $A^{k, \epsilon}$ with $(i, j)$ entry $\left|\mathcal{P}_{i+1, j+1}^{k, \epsilon}\right|$ is the proper Riordan array $\mathcal{R}\left(C_{k}(t)^{k-\epsilon}, t C_{k}(t)^{k}\right)$, where $C_{k}(t)$ is the generating function for the $k$-Catalan numbers.

Proof. By Theorem 2.1, the array $A^{k, \epsilon}$ has $A$-sequence $A(t)=(1+t)^{k}$ and $Z$-sequence $Z(t)=\frac{(1+t)^{k}-(1+t)^{\epsilon}}{t}$. The $k$-Catalan relation $C_{k}(t)=t C_{k}(t)^{k}+1$ may then be used to verify the identities of (2):

$$
\begin{gathered}
t A(h(t))=t\left(1+t C_{k}(t)^{k}\right)^{k}=t C_{k}(t)^{k}=h(t), \\
\frac{d(0)}{1+t Z(h(t))}=\frac{1}{1-t \frac{\left(1+t C_{k}(t)^{k}\right)^{k}-\left(1+C_{k}(t)^{k}\right)^{\epsilon}}{t C_{k}(t)^{k}}}=\frac{1}{1-\frac{C_{k}(t)^{k}-C_{k}(t)^{\epsilon}}{C_{k}(t)^{k}}}=\frac{C_{k}(t)^{k}}{C_{k}(t)^{\epsilon}}=d(t)
\end{gathered}
$$

Every integer triangle $A^{k, \epsilon}$ is a Fuss-Catalan triangle of the type introduced by He and Shapiro [5], seeing as they all take the form $\mathcal{R}\left(C_{k}^{i}, C_{k}^{j}\right)$ for some $k \geq 2$ and some $i, j>0$. Many specific triangles $A^{k, \epsilon}$ also correspond to Riordan arrays that are well-represented in the literature. The triangle $A^{2,0}$ is Shapiro's Catalan triangle, while $A^{2,0}$ and $A^{2,1}$ are two of the admissible matrices discussed by Aigner [1]. More generally, whenever $\epsilon=0$ the triangle $A^{k, \epsilon}$ is a renewal array with "identical" $A$ - and $Z$-sequences, as investigated by Cheon, Kim and Shapiro [3]. For additional results of this type, see He and Sprugnoli [6]

In a slight deviation from He and Shapiro [5], we refer to $A^{k, \epsilon}$ as the ( $k, \epsilon$ )-Catalan triangle. See Figure 4 for all $(k, \epsilon)$-Catalan triangles with $k=2,3,4$.

One immediate consequence of Theorem 2.2 is a closed formula for the size of every set $\mathcal{P}_{n, \delta}^{k, \epsilon}$ when $0 \leq \epsilon \leq k-1$. Observe that every cardinality $\left|\mathcal{P}_{n, \delta}^{k, \epsilon}\right|=\frac{k \delta-\epsilon}{k n-\epsilon}\binom{k n-\epsilon}{n-\delta}$ from Corollary 2.3 is the Raney number $R_{k, k \delta-\epsilon}(n-\delta)$. As defined by Hilton and Pedersen [8], the Raney numbers (two-parameter Fuss-Catalan numbers) are defined to be $R_{k, r}(n)=\left[t^{n}\right] C_{k}(t)^{r}$, with the original $k$-Catalan numbers corresponding to $C_{n}^{k}=R_{k, 1}(n)=R_{k, k}(n-1)$.
Corollary 2.3. For any $k \geq 2$ and $0 \leq \epsilon \leq k-1$,

$$
\left|\mathcal{P}_{n, \delta}^{k, \epsilon}\right|=\left[t^{n-\delta}\right] C_{k}(t)^{k \delta-\epsilon}=\frac{k \delta-\epsilon}{k n-\epsilon}\binom{k n-\epsilon}{n-\delta}
$$

$$
\begin{aligned}
& \epsilon=0 \quad \epsilon=1 \quad \epsilon=2 \quad \epsilon=3
\end{aligned}
$$

Figure 4: Top five rows for all $(k, \epsilon)$-Catalan triangles $A^{k, \epsilon}$ with $k=2,3,4$.
Proof. By the definition of $A^{k, \epsilon}$ we have

$$
a_{i, j}^{k, \epsilon}=\left[t^{i}\right] C_{k}(t)^{k-\epsilon}\left(t C_{k}(t)^{k}\right)^{j}=\left[t^{i-j}\right] C_{k}(t)^{k-\epsilon+k j} .
$$

The corollary then follows from the fact that $\left|\mathcal{P}_{n, \delta}^{k, \epsilon}\right|=a_{n-1, \delta-1}^{k, \epsilon}$.

### 2.2 Generalized $k$-Path Pairs, all $\epsilon \geq 0$

If $\epsilon>k-1$, there need not be a bijection between $\mathcal{P}_{n, \delta}^{k, \epsilon}$ and some Raney number $R_{k, r}(n)=\left[t^{n}\right] C_{k}(t)^{r}$. This implies that the cardinalities $\left|\mathcal{P}_{n, \delta}^{k, \epsilon}\right|$ cannot be organized into any Fuss-Catalan triangle. One may still define an infinite lower-triangular array $A^{k, \epsilon}$ whose $(i, j)$ entry is $a_{i, j}^{k, \epsilon}=\left|\mathcal{P}_{i+1, j+1}^{k, \epsilon}\right|$, but for $\epsilon>k-1$ we always have $a_{0,0}^{k, \epsilon}=0$ and the resulting arrays never qualify as a proper Riordan array.

For general $\epsilon$, we still have the following decomposition for $\left|\mathcal{P}_{n, \delta}^{k, \epsilon}\right|$ :
Proposition 2.4. Fix $n \geq 1,1 \leq \delta \leq n$, and $0 \leq \epsilon \leq(k-1) n$. For any pair of non-negative integers $\epsilon_{1}$, $\epsilon_{2}$ such that $\epsilon=(k-1) \epsilon_{1}+\epsilon_{2}$,

$$
\left|\mathcal{P}_{n, \delta}^{k, \epsilon}\right|=\sum_{i=1}^{\delta}\binom{\epsilon_{1}}{\delta-i}\left|\mathcal{P}_{n-\epsilon_{1}, i}^{k, \epsilon_{2}}\right| .
$$

Proof. As seen in Figure 5, for any $\left(\gamma_{1}, \gamma_{2}\right) \in \mathcal{P}_{n, \delta}^{k, \epsilon}$ we may divide $\gamma_{2}$ into an initial subpath $\eta_{1}$ of length $n-(k-1) \epsilon_{1}$ and a terminal subpath $\eta_{2}$ of length $(k-1) \epsilon_{1}$. As the length of $\eta_{1}$ is divisible by $k-1$, it is always the case that $\left(\gamma_{1}, \eta_{1}\right) \in \mathcal{P}_{n-\epsilon_{1}, i}^{k, \epsilon_{2}}$ for some $1 \leq i \leq \delta$.

Then consider the map $f: \mathcal{P}_{n, \delta}^{k, \epsilon} \rightarrow \bigcup_{i=1}^{\delta} \mathcal{P}_{n-\epsilon_{1}, i}^{k, \epsilon_{2}}$ where $f\left(\gamma_{1}, \gamma_{2}\right)=\left(\gamma_{1}, \eta_{1}\right)$. This map is clearly surjective. For any $1 \leq i \leq \delta$ and any $\left(\gamma_{1}, \eta_{1}\right) \in \mathcal{P}_{n-\epsilon_{1}, i}^{k, \epsilon_{2}}$, every way of
appending precisely $\delta-i$ copies of $E^{1} N^{k-2}$ and $\epsilon_{1}-\delta+i$ copies of $N^{k-1}$ to the end of $\eta_{1}$ (in any order) produces an element of $\mathcal{P}_{n, \delta}^{k, \epsilon}$. It follows that the inverse image $f^{-1}\left(\gamma_{1}^{\prime}, \gamma_{2}^{\prime}\right)$ of every $\left(\gamma_{1}^{\prime}, \gamma_{2}^{\prime}\right) \in \mathcal{P}_{n-\epsilon_{1}, i}^{k, \epsilon_{2}}$ has size $\binom{\epsilon_{1}}{\delta-i}$. Ranging over $1 \leq i \leq \delta$ gives the required summation.


Figure 5: The decomposition of $\gamma_{2}$ for some $\left(\gamma_{1}, \gamma_{2}\right) \in \mathcal{P}_{10,4}^{2,5}$, as in the proof to Proposition 2.4. If $k>2$, note that the initial subpath of $\gamma_{2}$ extends beyond the dotted diagonal line, until its length is divisible by $k-1$.

The summation on the right side of Proposition 2.4 may feature fewer than $\delta$ nonzero terms, as $\left|P_{n-\epsilon_{1}, i}^{k, \epsilon_{2}}\right|=0$ when $n-\epsilon_{1}<i$. The decomposition $\epsilon=(k-1) \epsilon_{1}+\epsilon_{2}$ also fails be be unique when $\epsilon \geq k-1$. However, there always exists at least one decomposition of $\epsilon$ in which $\epsilon_{2} \leq k-1$.

When $\epsilon \leq k-1$, this preferred decomposition of $\epsilon$ with $\epsilon_{2} \leq k-1$ corresponds to $\epsilon_{1}=0$ and reduces the summation of Proposition 2.4 to the single term $\left|\mathcal{P}_{n, \delta}^{k, \epsilon}\right|$. When $\epsilon>k-1$, choosing $\epsilon_{1}$ so that $\epsilon \leq k-1$ allows us to apply Corollary 2.3 to each term in the summation:

Theorem 2.5. Fix $n \geq 1,1 \leq \delta \leq n$, and $0 \leq \epsilon \leq(k-1) n$. For any pair of non-negative integers $\epsilon_{1}, \epsilon_{2}$ such that $\epsilon=(k-1) \epsilon_{1}+\epsilon_{2}$ and $0 \leq \epsilon_{2} \leq k-1$,

$$
\begin{aligned}
\left|\mathcal{P}_{n, \delta}^{k, \epsilon}\right| & =\left[t^{n-\epsilon_{1}}\right] \sum_{i=1}^{\delta}\binom{\epsilon_{1}}{\delta-i} t^{i} C_{k}(t)^{k i-\epsilon_{2}} \\
& =\sum_{i=1}^{\delta} \frac{k i-\epsilon_{2}}{k\left(n-\epsilon_{1}\right)-\epsilon_{2}}\binom{\epsilon_{1}}{\delta-i}\binom{k\left(n-\epsilon_{1}\right)-\epsilon_{2}}{n-\epsilon_{1}-i} .
\end{aligned}
$$

Beyond the $\epsilon \leq k-1$ case of Subsection 2.1, there are several situations where the general identity of Theorem 2.5 simplifies to give an enumeration equivalent to Corollary 2.3.

Theorem 2.6. Fix $n \geq 1$ and $0 \leq \epsilon \leq(k-1) n$, and take any pair of non-negative integers $\epsilon_{1}, \epsilon_{2}$ such that $\epsilon=(k-1) \epsilon_{1}+\epsilon_{2}$ and $0 \leq \epsilon_{2} \leq k-1$. For all $\delta>\epsilon_{1}$, as well as for all $0 \leq \epsilon \leq(k-1) \delta$, we have

$$
\left|\mathcal{P}_{n, \delta}^{k, \epsilon}\right|=\left[t^{n-\delta}\right] C_{k}(t)^{k \delta-\epsilon}=\frac{k \delta-\epsilon}{k n-\epsilon}\binom{k n-\epsilon}{n-\delta}
$$

Proof. Beginning with Theorem 2.5, when $\delta-\epsilon_{1}>0$ we may rewrite the bounds of the summation and then perform the change of variables $j=\epsilon_{1}-\delta+i$ to give

$$
\begin{aligned}
\left|\mathcal{P}_{n, \delta}^{k, \epsilon}\right| & =\left[t^{n-\epsilon_{1}}\right] \sum_{i=1}^{\delta}\binom{\epsilon_{1}}{\delta-i} t^{i} C_{k}(t)^{k i-\epsilon_{2}}=\left[t^{n-\epsilon_{1}}\right] \sum_{i=\delta-\epsilon_{1}}^{\delta}\binom{\epsilon_{1}}{\delta-i} t^{i} C_{k}(t)^{k i-\epsilon_{2}} \\
& =\left[t^{n-\epsilon_{1}}\right] \sum_{j=0}^{\epsilon_{1}}\binom{\epsilon_{1}}{j} t^{j+\delta-\epsilon_{1}} C_{k}(t)^{k\left(j+\delta-\epsilon_{1}\right)-\epsilon_{2}} \\
& =\left[t^{n-\epsilon_{1}}\right] t^{\delta-\epsilon_{1}} C_{k}(t)^{k \delta-k \epsilon_{1}-\epsilon_{2}} \sum_{j=0}^{\epsilon_{1}}\binom{\epsilon_{1}}{j}\left(t C_{k}(t)^{k}\right)^{j} .
\end{aligned}
$$

Recognizing the binomial expansion and applying the identity $C_{k}(t)=t C_{k}(t)^{k}+1$ yields

$$
\begin{aligned}
\left|\mathcal{P}_{n, \delta}^{k, \epsilon}\right| & =\left[t^{n-\delta}\right] C_{k}(t)^{k \delta-k \epsilon_{1}-\epsilon_{2}}\left(1+t C_{k}(t)^{k}\right)^{\epsilon_{1}} \\
& =\left[t^{n-\delta}\right] C_{k}(t)^{k \delta-k \epsilon_{1}-\epsilon_{2}} C_{k}(t)^{\epsilon_{1}}=\left[t^{n-\delta}\right] C_{k}(t)^{k \delta-\epsilon} .
\end{aligned}
$$

For the second range of parameters given, we separately consider $\epsilon<(k-1) \delta$ and $\epsilon=(k-1) \delta$. For the first subcase we always have $\epsilon<(k-1) \delta \leq(k-1) \delta+\epsilon_{2}$ and $\epsilon-\epsilon_{2}=(k-1) \epsilon_{1}<(k-1) \delta$, which implies $\epsilon_{1}<\delta$ and allows us to apply our first result. When $\epsilon=(k-1) \delta$ we may choose $\epsilon_{1}=\delta-1$ and $\epsilon_{2}=k-1$, which again implies $\epsilon_{1}<\delta$.

## 3 Weak $k$-Path Pairs

In this section, we loosen our restriction that generalized $k$-path pairs ( $\gamma_{1}, \gamma_{2}$ ) cannot intersect apart from $(0,0)$ and merely require that $\gamma_{1}$ stays weakly above $\gamma_{2}$. Formally, for any $k \geq 2$ and any set of non-negative integers $n, \epsilon, \delta$ such that $0 \leq \epsilon \leq(k-1) n$ and $0 \leq \delta \leq n$, we define $\widetilde{\mathcal{P}}_{n, \delta}^{k, \epsilon}$ to be the collection of ordered pairs $\left(\gamma_{1}, \gamma_{2}\right)$ of lattice paths that satisfy all of the following:

1. Both $\gamma_{1}$ and $\gamma_{2}$ begin at $(0,0)$ and use steps from $\{E=(1,0), N=(0,1)\}$.
2. $\gamma_{2}$ is composed of precisely $(k-1) n$ steps, the first of which is an $E$ step.
3. $\gamma_{1}$ is composed of precisely $(k-1) n-\epsilon$ steps, the first of which is an $N$ step.
4. $\gamma_{1}$ stays weakly above $\gamma_{2}$.
5. The difference between the terminal $x$ coordinates of $\gamma_{1}$ and $\gamma_{2}$ is $\delta$.
6. $\gamma_{2}=E^{1} N^{b_{1}} E^{1} N^{b_{2}} \ldots E^{1} N^{b_{m}}$ satisfies $b_{i}=(k-2) \bmod (k-1)$ for all $i$.

We refer to any element $\left(\gamma_{1}, \gamma_{2}\right) \in \widetilde{\mathcal{P}}_{n, \delta}^{k, \epsilon}$ as a weak $k$-path pair of distance $\delta$. Notice that $\delta=0$ is now possible when we also have $\epsilon=0$, corresponding to the case where $\gamma_{1}$ and $\gamma_{2}$ terminate at the same point. We refer to this special case of $\delta=\epsilon=0$ as a closed (weak) $k$-path pair. All nonempty sets $\widetilde{\mathcal{P}}_{n, \delta}^{k, \epsilon}$ fall within the ranges $0 \leq \delta \leq n$ and $0 \leq \epsilon \leq(k-1) n$.

Elements of $\left(\gamma_{1}, \gamma_{2}\right) \in \widetilde{\mathcal{P}}_{n, \delta}^{k, \epsilon}$ may then be subdivided according to the number of intersections between $\gamma_{1}$ and $\gamma_{2}$. We let $\widetilde{\mathcal{P}}_{n, \delta, m}^{k, \epsilon}$ denote the collection of $\left(\gamma_{1}, \gamma_{2}\right) \in \widetilde{\mathcal{P}}_{n, \delta}^{k, \epsilon}$ where $\gamma_{1}$ and $\gamma_{2}$ intersect precisely $m$ times away from ( 0,0 ), and we define such path pairs to be weak $k$-path pairs with $m$ returns. It is easy to show that $\widetilde{\mathcal{P}}_{n, \delta, m}^{k, \epsilon}$ is empty unless $0 \leq m \leq n$, and that $\epsilon$ places further restrictions on which $m$ are possible. For example, $m=n$ is only possible when $\epsilon=0$.

We henceforth call a closed $k$-path pair with only $m=1$ return as an irreducible (closed) $k$-path pair. Any weak $k$-path pair $\left(\gamma_{1}, \gamma_{2}\right) \in \widetilde{\mathcal{P}}_{n, \delta, m}^{k, \epsilon}$ with precisely $m$ returns may be uniquely decomposed into a sequence of subpath pairs $\left(\gamma_{1,1}, \gamma_{2,1}\right), \ldots,\left(\gamma_{1, m+1}, \gamma_{2, m+1}\right)$ such that $\left(\gamma_{1, i}, \gamma_{2, i}\right)$ corresponds to an irreducible $k$ path pair for each $1 \leq i \leq m$ (after translating each subpath pair so that it begins at the origin). If $\left(\gamma_{1}, \gamma_{2}\right)$ is a closed $k$-path pair, then the final subpath pair $\left(\gamma_{1, m+1}, \gamma_{2, m+1}\right)$ is empty. Otherwise, that final subpath pair corresponds to some $k$-path pair $\left(\gamma_{1}^{\prime}, \gamma_{2}^{\prime}\right) \in \mathcal{P}_{n^{\prime}, \delta}^{k, \epsilon}$ for some $n^{\prime}>0$.

To enumerate $\widetilde{\mathcal{P}}_{n, \delta}^{k, \epsilon}$ and the $\widetilde{\mathcal{P}}_{n, \delta, m}^{k, \epsilon}$, we begin by enumerating irreducible $k$-path pairs:
Proposition 3.1. Fix $k \geq 2$. For any $n \geq 1$,

$$
\left|\widetilde{\mathcal{P}}_{n, 0,1}^{k, 0}\right|=\left[t^{n-1}\right] C_{k}(t)^{k-1}=\frac{k-1}{k n-1}\binom{k n-1}{n-1} .
$$

Proof. For any $\left(\gamma_{1}, \gamma_{2}\right) \in \widetilde{\mathcal{P}}_{n, 0,1}^{k, 0}$, observe that the final step of $\gamma_{1}$ must be an $E$ step. This means that $\widetilde{\mathcal{P}}_{n, 0,1}^{k, 0}$ lies in bijection with $\mathcal{P}_{n, 1}^{k, 1}$, via the map the deletes the final step of $\gamma_{1}$. The result then follows from Corollary 2.3.

Observe that $\widetilde{\mathcal{P}}_{n, 0,1}^{2,0}$ is equivalent to the original notion of parallelogram polynominoes with semiperimeter $n$. Proposition 3.1 recovers this preexisting combinatorial interpretation of the Catalan numbers as $\left|\widetilde{\mathcal{P}}_{n, 0,1}^{2,0}\right|=\left[t^{n-1}\right] C(t)=C_{n-1}$. For any $k \geq 2$, one could define the elements of $\widetilde{\mathcal{P}}_{n, 0,1}^{k, 0}$ as $k$-parallelogram polyominoes with semiperimeter $(k-1) n$, although for $k>2$ these objects do not provide a combinatorial interpretation for the $k$-Catalan numbers.

The primary application of Proposition 3.1 is that it may be used to quickly enumerate any collection $\widetilde{\mathcal{P}}_{n, \delta, m}^{k, \epsilon}$, assuming $\epsilon$ and $\delta$ fall within the range proscribed by Theorem 2.6:

Theorem 3.2. Fix $n \geq 1$ and $k \geq 2$. For any non-negative integers $\delta, \epsilon, m$ such that $\epsilon=\delta=0$ or $0 \leq \epsilon \leq(k-1) \delta$,

$$
\left|\widetilde{\mathcal{P}}_{n, \delta, m}^{k, \epsilon}\right|=\left[t^{n-\delta-m}\right] C_{k}(t)^{k \delta-\epsilon+(k-1) m}=\frac{k \delta-\epsilon+(k-1) m}{k n-\epsilon-m}\binom{k n-\epsilon-m}{n-m-\delta} .
$$

Proof. By Proposition 3.1, for any $k \geq 2$ the generating function of irreducible $k$ path pairs is $\sum_{i=0}^{\infty}\left|\widetilde{\mathcal{P}}_{n, 0,1}^{k, 0}\right| t^{i}=t C_{k}(t)^{k-1}$. From Theorem 2.6, when $0 \leq \epsilon<(k-1) \delta$ we also have the generating function $\sum_{i=0}^{\infty}\left|\mathcal{P}_{n, \delta}^{k, \epsilon}\right| t^{i}=t^{\delta} C_{k}(t)^{k \delta-\epsilon}$. We treat the two cases of the theorem statement separately.

For the $\epsilon=\delta=0$ case, every element of $\widetilde{\mathcal{P}}_{n, 0, m}^{k, 0}$ may be uniquely decomposed into a sequence of $m$ non-empty irreducible $k$-path pairs. It follows that

$$
\sum_{i=0}^{\infty}\left|\widetilde{\mathcal{P}}_{i, 0, m}^{k, 0}\right| t^{i}=\left(t C_{k}(t)^{k-1}\right)^{m}=t^{m} C_{k}(t)^{(k-1) m}
$$

In this case we then have

$$
\left|\widetilde{\mathcal{P}}_{n, 0, m}^{k, 0}\right|=\left[t^{n}\right] t^{m} C_{k}(t)^{(k-1) m}=\left[t^{n-m}\right] C_{k}(t)^{(k-1) m}
$$

For the $0 \leq \epsilon<(k-1) \delta$ case, every element of $\widetilde{\mathcal{P}}_{n, \epsilon, m}^{k, \delta}$ may be uniquely decomposed into a sequence of $m$ non-empty irreducible $k$-path pairs and an element of $\mathcal{P}_{n^{\prime}, \delta}^{k, \epsilon}$ for some $0<n^{\prime}<n-m$. Here we have

$$
\sum_{i=0}^{\infty}\left|\widetilde{\mathcal{P}}_{i, \epsilon, m}^{k, \delta}\right| t^{i}=\left(t C_{k}(t)^{k-1}\right)^{m} t^{\delta} C_{k}(t)^{k \delta-\epsilon}=t^{\delta+m} C_{k}(t)^{k \delta-\epsilon+(k-1) m}
$$

For this second case we then have

$$
\left|\widetilde{\mathcal{P}}_{n, \epsilon, m}^{k, \delta}\right|=\left[t^{n}\right] t^{\delta+m} C_{k}(t)^{k \delta-\epsilon+(k-1) m}=\left[t^{n-\delta-m}\right] C_{k}(t)^{k \delta-\epsilon+(k-1) m} .
$$

## References

[1] M. Aigner, Catalan-like numbers and determinants, J. Combin. Theory Ser. A 87 (1999), 33-51.
[2] M. Aigner, Enumeration via ballot numbers, Discrete Math. 308 (2008), 25442563.
[3] G.-S. Cheon, H. Kim and L. W. Shapiro, Combinatorics of Riordan arrays with identical A and Z sequences, Discrete Math. 312(12-13) (2012), 2040-2049.
[4] E. Deutsch and L. W. Shapiro, A Survey of the Fine numbers, Discrete Math. 241 (2001), 241-265.
[5] T.-X. He and L. W. Shapiro, Fuss-Catalan matrices, their weighted sums, and stabilizer subgroups of the Riordan group, Linear Algebra Appl. 532 (2017), 25-42.
[6] T.-X. He and R. Sprungoli, Sequence characterization of Riordan arrays, Discrete Math. 309 (2009), no. 12, 3962-3974.
[7] S. Heubach, N. Y. Li and T. Mansour, Staircase tilings and $k$-Catalan structures, Discrete Math. 308 (2008), no. 24, 5954-5964.
[8] P. Hilton and J. Pedersen, Catalan numbers, their generalizations, and their uses, Math. Intelligencer 13 (1991), no. 2, 64-75.
[9] D. Merlini, D. G. Rogers, R. Sprugnoli and M. C. Verri, On some alternative characterizations of Riordan arrays, Canad. J. Math. 49(2) (1997), 301-320.
[10] D. G. Rogers, Pascal triangles, Catalan numbers, and renewal arrays, Discrete Math 22 (1978), 301-310.
[11] L. W. Shapiro, A Catalan triangle, Discrete Math. 14 (1976), 83-90.
[12] L. W. Shapiro, S. Getu, W. J. Woan and L. Woodson, The Riordan group, Discrete Appl. Math. 34 (1991), 229-239.
[13] R. P. Stanley, Catalan Numbers, Cambridge University Press, 2015.
(Received 7 July 2020; revised 1 Feb 2021)


[^0]:    ${ }^{1}$ Shapiro's Catalan triangle should not be confused with the "Catalan triangle" whose $(i, j)$ entry is the ballot number $d_{i, j}=\frac{j+1}{i+1}\binom{2 i-j}{i}$. We alternatively refer to this second infinite lower-triangular matrix as the ballot triangle. See Aigner [1] for connections between the ballot triangle and the Catalan triangle.

