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Abstract

We show that every oriented path of order n � 4 with three blocks,
in which two consecutive of them are of length 1, is contained in every
(n + 1)-chromatic digraph.

1 Introduction

Digraphs considered here are finite having no loops, multiple edges or circuits of
length 2. Let x and y be two vertices in a digraph D. The arc directed from x to y
will be denoted by (x, y). We say that xy ∈ E(G[D]), where G[D] is the underlying
graph of D, if (x, y) or (y, x) is an arc in D. We denote by N+

D (x) (respectively,
N−

D (x)), the set of out-neighbors of x in D (respectively, the set of in-neighbors of x
in D). The out-degree of x will be denoted by d+D(x) and its in-degree by d−D(x). A
block of an oriented path P is a maximal directed sub-path of P .

In this paper, we are dealing with the following problem: which oriented path of
order n is contained in any n-chromatic digraph. Havet and Thomassé [8] proved
that every tournament of order n contains any oriented path of length n− 1 except
in three cases: the directed 3-cycle; the regular tournament on 5 vertices; and the
Paley tournament on 7 vertices. In these cases it contains no antidirected path of
length n− 1.

In the general case, the situation is radically different. Gallai, Hasse, Roy and
Vitaver [6, 7, 9, 10] proved that an n-directed path is contained in any n-chromatic
digraph. Addario-Berry et al. [3] proved the same for any n-path with exactly two
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blocks. Due to a result of Burr we may show that any n-path is contained in any
(n − 1)2-chromatic digraph [2]. Beyond paths with two blocks, no linear bound is
established. As a first step in this direction, we prove in this paper that any (n+1)-
chromatic digraph contains any n-path with three blocks in which two consecutive of
them are of length 1. We denote by P (k, l, r) an oriented path formed by k forward
arcs followed by l backward arcs followed by r forward arcs. By considering a digraph
D and its complement (the digraph obtained from D by reversing the orientation of
all its arcs), it will suffice to prove that any (n + 1)-chromatic digraph contains a
path of type P (n− 3, 1, 1).

2 Maximal and final forest

An out-branching (respectively, in-branching) B is a digraph containing a vertex of
in-degree (respectively, out-degree) 0, which is called the source (respectively, the
sink) of B, and the other vertices are of in-degree (respectively, out-degree) 1.

The level of a vertex v in an out-branching B, denoted by lB(v), is the order of
the unique directed path starting from the source of B and ending at v.

An out-forest F is a digraph in which each connected component is an out-
branching. The level of a vertex v in an out-forest F , denoted by lF (v), is its level
in the out-branching containing it. For i � 1, set Li(F ) = {v ∈ V (F ) : lF (v) = i}.
We denote by �(F ) the maximum integer i such that Li(F ) �= φ. For all v ∈ V (F ),
denote by Pv the unique directed path in F , starting from the source of the out-
branching containing it and reaching v, and by Tv(F ) the sub-out-branching of F of
source v.

Note that any digraph contains a spanning out-forest. Let F be a spanning
out-forest of a digraph D. An arc (u, v) ∈ E(D) is said to be a forward arc with
respect to F if lF (u) < lF (v); otherwise it is called a backward arc with respect to F .
Addario-Berry et al. called a final forest of a digraph D each spanning out-forest F
of D such that for any backward arc (u, v) with respect to F , the forest F contains
a vu-directed path. A spanning out-forest of a digraph D is said to be maximal if∑

v∈V (D) lF (v) is maximal. After introducing the concept of maximal forest, El Sahili
and Kouider [4] proved that a maximal forest is a final forest.

It can be easily seen that if F is a final forest of a digraph D then Li(F ) is stable
in D for all i � 1, and consequently the number of levels in F should be at least
χ(D).

Note that if D contains a Hamiltonian path, then this path is maximal and so is
a final forest of D. Moreover, if F is a final forest of D, then the sub-forest F ′ of F
induced by the vertices of levels at least k (respectively, at most k), k � 1, is a final
forest of D′, the sub-digraph of D induced by the vertices of F ′. Also, if any leaf
is removed from F , the remaining forest is final in the remaining digraph. But, in
general, these properties may be not true for a maximal forest. In the following, we
will need more characteristics for final and maximal forests that will be introduced
in a sequence of lemmas.
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Lemma 2.1. Let D be a digraph with d−(v) � 2 for all v ∈ D, and suppose that D
contains a final forest F with no backward arcs with respect to F . Then there exists
a proper 3-coloring of D such that all the vertices of L1(F ) are of the same color.

Proof. We establish the proof by induction on v(D). It is trivial for v(D) = 1 and
whenever �(F ) = 1 and v(D) � 1. Now suppose that v(D) � 2 and let v ∈ Ll(F )
where l = �(F ) = max{i ∈ N∗|Li(F ) �= φ}. Then all vertices of D−v are of in-degree
at most 2, and F − v is a final forest of D− v which contains no backward arc with
respect to it. By induction, there exists a proper 3-coloring c′ of D − v such that
|c′(L1(F − v))| = 1. Since v ∈ Ll(F ) and D has no backward arc with respect to F ,
it follows that d(v) = d−(v) � 2; hence c′ can be extended to a proper 3-coloring c
such that |c(L1(F ))| = 1. �

Lemma 2.2. Let F be a maximal forest and let x be a leaf of F such that (x, y) ∈
E(D) with y ∈ L1(F ). Then Ty(F ) = Px.

Proof. If the theorem is false, then Ty(F ) \Px �= φ. Set Px = v1 . . . vs, where vs = x.
Since F is a maximal forest and (x, y) is a backward arci, we have v1 = y. Consider
the spanning out-forest of D, F ′ = F + (x, y)− (w, x), where w is the in-neighbor of
x in F . Then lF ′(x) = lF (x)− (s− 1), lF ′(z) = lF (z) + 1 for all z ∈ Ty(F ) \ {x}, and
lF ′(z) = lF (z) for all z /∈ Ty(F ). Thus,

∑

z∈D
lF ′(z) = lF ′(x) +

∑

z∈Px\x
lF ′(z) +

∑

z∈Ty(F )\Px

lF ′(z) +
∑

z /∈Ty(F )

lF ′(z)

= lF (x)− (s− 1) +
∑

z∈Px\x
(lF (z) + 1) +

∑

z∈Ty(F )\Px

(lF (z) + 1)

+
∑

z /∈Ty(F )

lF (z)

= lF (x)− (s− 1) +
∑

z∈Px\x
lF (z) + (s− 1) +

∑

z∈Ty(F )\Px

lF (z)

+|Ty(F ) \ Px|+
∑

z /∈Ty(F )

lF (z)

�
∑

z∈D
lF (z) + 1,

a contradiction. �

Note that the above proof indicates that F ′ is a maximal forest.

Lemma 2.3. Let F be a maximal forest of a digraph D, and let x be a leaf in F and
y ∈ L1(F ). If (x, y) ∈ E(D), then uv /∈ E(G[D]) for all u ∈ V (C) and v /∈ V (C)
with lF (v) � lF (x), where C is the circuit formed by Px and (x, y).

Proof. If the theorem is false, let u ∈ C and v /∈ C such that uv ∈ E(G[D]) with
lF (v) � lF (x). Note that the maximal forest F ′ = F +(x, y)− (w, x), where w is the
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in-neighbor of x in F , can be viewed as the forest obtained from F by rotating the
circuit C exactly once. The same argument proves that the forest obtained from F
after rotating C any number of times is maximal. So we rotate C until we reach the
maximal forest F ′ in which u and v are in the same level, a contradiction. �

Note that if the digraph D considered in the above lemma is connected and
lF (x) = �(F ), then D is Hamiltonian due to the fact that uv /∈ E(G[D]) for all
u ∈ C and v /∈ C.

3 The main result

Theorem 3.1. Let D be an (n + 1)-chromatic digraph, n � 4. Then D contains a
path P (n− 3, 1, 1).

Proof. For the case n = 4, dealing with the existence of the antidirected path
P (1, 1, 1) in a 5-chromatic digraph, we may prove even more: the existence of such a
path in a 4-chromatic digraph based on [5]. In fact, consider a 4-chromatic digraph
D and let D3 be the sub-digraph of D induced by the vertices of degree at least 3.
Suppose to the contrary that D contains no P (1, 1, 1); then D3 contains no acyclic
triangle. Indeed, if x, y, z is an acyclic triangle in D3 such that (x, y), (x, z) and
(y, z) ∈ E(D3), then let w /∈ {x, y, z} such that yw ∈ E(G[D]). Note that w exists
since d(y) � 3. Thus, either xzyw or wyxz is a P (1, 1, 1), a contradiction. Then by
Beineke [1], D3 is a line digraph. El Sahili in [5] proved that such a digraph is of
chromatic number 3, a contradiction.

In what follows, we may suppose that n � 5. Let D be a digraph with chromatic
number χ(D) = n+1. We are going to establish our proof by contradiction. We may
suppose that D is connected. Suppose that D contains no path P (n−3, 1, 1) and let
F be a maximal forest of D. Set l = �(F ); then l � n+1. Let H be the sub-digraph
of D induced by the vertices of level at least n−2. Set L = {x ∈ H | x is a leaf in F}
and let H ′ = D[L].

Claim 1. H ′ is an in-forest.

Proof. H ′ contains no backward arc with respect to F , since each backward arc (x, y)
generates a yx-directed path and so d+F (y) � 1, a contradiction. Thus it contains
no circuit. Now H ′ contains no vertex x such that d+H′(x) � 2, since otherwise let x
be such a vertex and let {y, z} ⊆ N+

H′(x). Then Py ∪ (x, y) ∪ (x, z) contains a path
P (n− 3, 1, 1), a contradiction. Now one can easily prove that H ′ contains no cycle,
since any non-directed cycle contains a vertex of out-degree at least 2. Thus H ′ is a
forest. But the out-degree of all vertices is at most 1, so H ′ is an in-forest. �

Consequently H ′ is a bipartite digraph. Set V (H ′) = S1∪S2 such that Si is stable
for i = 1, 2 and S1 contains all the sinks of H ′. Note that any x ∈ S2 has an out-
neighbor in S1. Let M = H−S1 and let F ′ be the sub-forest of F induced by V (M).
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Clearly, F ′ is a final forest of M . Set Sn−2
1 = S1 ∩ Ln−2(F ), Sn−1

1 = S1 ∩ Ln−1(F )
and Sn

1 = S1 − (Sn−2
1 ∪ Sn−1

1 ).

Claim 2. M has no backward arcs with respect to F ′.

Proof. If not, let (x, y) be a backward arc of M with respect to F ′. Note that (x, y)
is also a backward arc with respect to F . If x ∈ S2 then x has out-neighbor in S1,
and if x /∈ S2 then x is not a leaf in F and so d+F (x) � 1. In both cases there exists
x′ ∈ N+(x) − V (Py), and so Py ∪ (x, y) ∪ (x, x′) contains a path P (n − 3, 1, 1), a
contradiction. �

Claim 3. M has no vertex x such that d−M(x) � 3.

Proof. If not, let x ∈ V (M) such that d−M(x) � 3. Let {x′, y, z} ⊆ N−
M(x) such that

{x′} = N−
F (x). Clearly, (y, x) and (z, x) are two forward arcs with respect to F .

Without loss of generality, we can suppose lF (y) � lF (z). So if z ∈ S2, then z has an
out-neighbor in S1, and if z /∈ S2 then d+F (z) � 1, and since x′ �= z then x /∈ N+

F (z). In
both cases there exists z′ ∈ N+

D(z)−(V (Py)∪{x}) such that Py∪(y, x)∪(z, x)∪(z, z′)
contains a path P (n− 3, 1, 1), a contradiction. �

Claim 4. χ(D[V (M) ∪ Sn−2
1 ∪ Sn−1

1 ]) � 3

Proof. We proved that M contains no backward arc with respect to F ′ and all its
vertices are of in-degree at most 2. Then by Lemma 2.1, we can color the vertices of
M by a proper 3-coloring c that uses the colors {1, 2, 3} such that |c(L1(F

′))| = 1.
Let x ∈ Sn−2

1 . Then one can easily prove that x has no in-neighbor in V (M).
Thus all neighbors of x in M are out-neighbors. Moreover, x has at most one
out-neighbor in M ; otherwise, let y and z be two out-neighbors of x in M where
lF (y) � lF (z). Then Py∪(x, y)∪(x, z) contains a path P (n−3, 1, 1), a contradiction.
Thus |d+M(x)| � 1, and so we can give x an appropriate color from the set {1, 2, 3}.

Let x ∈ Sn−1
1 . Clearly L1(F

′) = Ln−2(F ) − S1. Using the same reasoning as
above, we may show that x has at most one neighbor with level at least n, and all
its neighbors in Ln−2(F ) − S1 have the same color. Thus |c(NM(x))| � 2, and we
may give x an appropriate color from the set {1, 2, 3}. �

Claim 5. D is not Hamiltonian.

Proof. If not, let C = v1v2 . . . vs be a Hamiltonian circuit in D.
If n ∈ {5, 6}, then s � 2(n− 3) + 1, since otherwise we have l(C) < χ(D), which

is impossible. In both cases, χ(D) � 6 and then D contains a vertex x such that
d−(x) � 3. Otherwise, d−(v) � 2 for every v ∈ D and this easily gives χ(D) < 5, a
contradiction. Suppose that d−(v1) � 3. If there exists vi ∈ N−(v1)∩{v2, . . . , vn−3},
then vn−1vn . . . vsv1∪(vi, v1)∪(vi, vi+1) contains a path P (n−3, 1, 1), a contradiction.
Otherwise, N−(v1) ⊆ {vn−2, . . . , vs}. Let {vi, vj} ⊆ N−(v1)−{vs} where i < j; then
v2v3 . . . vi∪(vi, v1)∪(vj, v1)∪(vj, vj+1) contains a path P (n−3, 1, 1), a contradiction.

For n � 7, χ(D) � 8. We will consider two cases:
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i) l(C) � 2(n−3). As above, D contains a vertex of indegree at least 4, say v1. If
there exists a vertex vi ∈ N−(v1)∩{v2, . . . , vn−4}, then vn−2vn . . . vs ∪ (vi, v1)∪
(vi, vi+1) contains a path P (n− 3, 1, 1). Otherwise, let {vi, vj, vk} ⊆ N−(v1)−
{vs} where n−3 � i < j < k. Then v2v3 . . . vi . . . vj∪(vj , v1)∪(vk, v1)∪(vk, vk+1)
contains a path P (n− 3, 1, 1), a contradiction.

ii) l(C) < 2(n− 3). Let x, y ∈ V (D); then either l(C[x,y]) � (n− 4) or l(C[y,x]) �
(n − 4). Without loss of generality we can suppose that l(C[x,y]) � (n − 4)
and v1 = x. Clearly, v1v2 . . . vs is a maximal forest of D. Then, by Claim 4,
we have χ(D[{vn−2, . . . , vs−1}]) � 3, and thus χ(D[{vn−2, . . . , vs}]) � 4. So,
χ(D[{v1, . . . , vn−3}]) � χ(D) − χ(D[{vn−2, . . . , vs}]) � n + 1 − 4 = n − 3,
but |{v1, . . . , vn−3}| = n − 3, so then D[{v1, .., vn−3}] is a tournament. Since
l(C[v1,y]) � (n− 4), we have y ∈ {v2, . . . , vn−3}, and so xy ∈ E(G[D]). There-
fore D is a tournament of order n + 1 containing a path P (n − 3, 1, 1) [8], a
contradiction.

�

Claim 6. D has no backward arc (x, y) where x ∈ L and y ∈ L1(F ).

Proof. If not, let C = Px ∪ (x, y) as noted in Lemma 2.2, Ty(F ) = Px, and by
Lemma 2.3, uv /∈ E(G[D]) for all u ∈ Px, v /∈ Px and lF (v) � lF (x). If there
exists uv ∈ E(G[D]) such that u ∈ C and v /∈ C, then lF (v) > lF (x) � n − 2,
and so uv represents a forward arc with respect to F , since otherwise D contains a
uv-directed path and so C � Ty(F ), contradiction. Therefore (u, v) ∈ E(D), and
so Pv ∪ (u, v) ∪ (u, u′) contains P (n− 3, 1, 1) where u′ is the successor of u on C, a
contradiction. Consequently uv /∈ E(G[D]) for all u ∈ C and v /∈ C, and so D is
Hamiltonian containing a P (n− 3, 1, 1), contradiction. �

Let N1(S
n
1 ) = N(Sn

1 )∩L1(F ) and N−
1 (S

n
1 ) = N−(Sn

1 )∩L1(F ). Then by Claim 6
we have N1(S

n
1 ) = N−

1 (S
n
1 ). Let L′

2 = L2(F ) ∪ N1(S
n
1 ). Then L′

2 is a stable set
because, if not, there exists u1 ∈ L1(F ) with at least two out-neighbors, u2 in L2(F )
and un in Sn

1 . i Since un ∈ Sn
1 , we have lF (un) � n and so l(Pun) � n − 1. Thus

Pun ∪ (u1, un) ∪ (u1, u2) contains a P (n− 3, 1, 1), a contradiction.
Let L′

1 = (L1(F )−N1(S
n
1 ))∪Sn

1 . Then L′
1, L′

2, L3(F ), . . . , Ln−3(F ) are n−3 stable
sets covering D−(V (M)∪Sn−2

1 ∪Sn−1
1 ), and χ(D[V (M)∪Sn−2

1 ∪Sn−1
1 ]) � 3 by Claim 4.

Then χ(D) � n, a contradiction. This completes the proof of Theorem 3.1. �
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