About paths with three blocks

Maidoun Mortada Amine El Sahili
Lebanese University
KALMA Laboratory
Beirut
Lebanon

Mouhamad El Joubbeh
Paris Diderot University
IRIF Laboratory
Paris
France

Abstract

We show that every oriented path of order $n \geqslant 4$ with three blocks, in which two consecutive of them are of length 1, is contained in every $(n+1)$-chromatic digraph.

1 Introduction

Digraphs considered here are finite having no loops, multiple edges or circuits of length 2. Let x and y be two vertices in a digraph D. The arc directed from x to y will be denoted by (x, y). We say that $x y \in E(G[D])$, where $G[D]$ is the underlying graph of D, if (x, y) or ($y, x)$ is an arc in D. We denote by $N_{D}^{+}(x)$ (respectively, $N_{D}^{-}(x)$), the set of out-neighbors of x in D (respectively, the set of in-neighbors of x in $D)$. The out-degree of x will be denoted by $d_{D}^{+}(x)$ and its in-degree by $d_{D}^{-}(x)$. A block of an oriented path P is a maximal directed sub-path of P.

In this paper, we are dealing with the following problem: which oriented path of order n is contained in any n-chromatic digraph. Havet and Thomassé [8] proved that every tournament of order n contains any oriented path of length $n-1$ except in three cases: the directed 3 -cycle; the regular tournament on 5 vertices; and the Paley tournament on 7 vertices. In these cases it contains no antidirected path of length $n-1$.

In the general case, the situation is radically different. Gallai, Hasse, Roy and Vitaver [6, 7, 9, 10] proved that an n-directed path is contained in any n-chromatic digraph. Addario-Berry et al. [3] proved the same for any n-path with exactly two
blocks. Due to a result of Burr we may show that any n-path is contained in any $(n-1)^{2}$-chromatic digraph [2]. Beyond paths with two blocks, no linear bound is established. As a first step in this direction, we prove in this paper that any $(n+1)$ chromatic digraph contains any n-path with three blocks in which two consecutive of them are of length 1 . We denote by $P(k, l, r)$ an oriented path formed by k forward arcs followed by l backward arcs followed by r forward arcs. By considering a digraph D and its complement (the digraph obtained from D by reversing the orientation of all its arcs), it will suffice to prove that any $(n+1)$-chromatic digraph contains a path of type $P(n-3,1,1)$.

2 Maximal and final forest

An out-branching (respectively, in-branching) B is a digraph containing a vertex of in-degree (respectively, out-degree) 0, which is called the source (respectively, the sink) of B, and the other vertices are of in-degree (respectively, out-degree) 1 .

The level of a vertex v in an out-branching B, denoted by $l_{B}(v)$, is the order of the unique directed path starting from the source of B and ending at v.

An out-forest F is a digraph in which each connected component is an outbranching. The level of a vertex v in an out-forest F, denoted by $l_{F}(v)$, is its level in the out-branching containing it. For $i \geqslant 1$, set $L_{i}(F)=\left\{v \in V(F): l_{F}(v)=i\right\}$. We denote by $\ell(F)$ the maximum integer i such that $L_{i}(F) \neq \phi$. For all $v \in V(F)$, denote by P_{v} the unique directed path in F, starting from the source of the outbranching containing it and reaching v, and by $T_{v}(F)$ the sub-out-branching of F of source v.

Note that any digraph contains a spanning out-forest. Let F be a spanning out-forest of a digraph D. An arc $(u, v) \in E(D)$ is said to be a forward arc with respect to F if $l_{F}(u)<l_{F}(v)$; otherwise it is called a backward arc with respect to F. Addario-Berry et al. called a final forest of a digraph D each spanning out-forest F of D such that for any backward arc (u, v) with respect to F, the forest F contains a $v u$-directed path. A spanning out-forest of a digraph D is said to be maximal if $\sum_{v \in V(D)} l_{F}(v)$ is maximal. After introducing the concept of maximal forest, El Sahili and Kouider [4] proved that a maximal forest is a final forest.

It can be easily seen that if F is a final forest of a digraph D then $L_{i}(F)$ is stable in D for all $i \geqslant 1$, and consequently the number of levels in F should be at least $\chi(D)$.

Note that if D contains a Hamiltonian path, then this path is maximal and so is a final forest of D. Moreover, if F is a final forest of D, then the sub-forest F^{\prime} of F induced by the vertices of levels at least k (respectively, at most k), $k \geqslant 1$, is a final forest of D^{\prime}, the sub-digraph of D induced by the vertices of F^{\prime}. Also, if any leaf is removed from F, the remaining forest is final in the remaining digraph. But, in general, these properties may be not true for a maximal forest. In the following, we will need more characteristics for final and maximal forests that will be introduced in a sequence of lemmas.

Lemma 2.1. Let D be a digraph with $d^{-}(v) \leqslant 2$ for all $v \in D$, and suppose that D contains a final forest F with no backward arcs with respect to F. Then there exists a proper 3 -coloring of D such that all the vertices of $L_{1}(F)$ are of the same color.

Proof. We establish the proof by induction on $v(D)$. It is trivial for $v(D)=1$ and whenever $\ell(F)=1$ and $v(D) \geqslant 1$. Now suppose that $v(D) \geqslant 2$ and let $v \in L_{l}(F)$ where $l=\ell(F)=\max \left\{i \in \mathbb{N}^{*} \mid L_{i}(F) \neq \phi\right\}$. Then all vertices of $D-v$ are of in-degree at most 2, and $F-v$ is a final forest of $D-v$ which contains no backward arc with respect to it. By induction, there exists a proper 3 -coloring c^{\prime} of $D-v$ such that $\left|c^{\prime}\left(L_{1}(F-v)\right)\right|=1$. Since $v \in L_{l}(F)$ and D has no backward arc with respect to F, it follows that $d(v)=d^{-}(v) \leqslant 2$; hence c^{\prime} can be extended to a proper 3 -coloring c such that $\left|c\left(L_{1}(F)\right)\right|=1$.

Lemma 2.2. Let F be a maximal forest and let x be a leaf of F such that $(x, y) \in$ $E(D)$ with $y \in L_{1}(F)$. Then $T_{y}(F)=P_{x}$.

Proof. If the theorem is false, then $T_{y}(F) \backslash P_{x} \neq \phi$. Set $P_{x}=v_{1} \ldots v_{s}$, where $v_{s}=x$. Since F is a maximal forest and (x, y) is a backward arci, we have $v_{1}=y$. Consider the spanning out-forest of $D, F^{\prime}=F+(x, y)-(w, x)$, where w is the in-neighbor of x in F. Then $l_{F^{\prime}}(x)=l_{F}(x)-(s-1), l_{F^{\prime}}(z)=l_{F}(z)+1$ for all $z \in T_{y}(F) \backslash\{x\}$, and $l_{F^{\prime}}(z)=l_{F}(z)$ for all $z \notin T_{y}(F)$. Thus,

$$
\begin{aligned}
\sum_{z \in D} l_{F^{\prime}}(z)= & l_{F^{\prime}}(x)+\sum_{z \in P_{x} \backslash x} l_{F^{\prime}}(z)+\sum_{z \in T_{y}(F) \backslash P_{x}} l_{F^{\prime}}(z)+\sum_{z \notin T_{y}(F)} l_{F^{\prime}}(z) \\
= & l_{F}(x)-(s-1)+\sum_{z \in P_{x} \backslash x}\left(l_{F}(z)+1\right)+\sum_{z \in T_{y}(F) \backslash P_{x}}\left(l_{F}(z)+1\right) \\
& \quad+\sum_{z \notin T_{y}(F)} l_{F}(z) \\
= & l_{F}(x)-(s-1)+\sum_{z \in P_{x} \backslash x} l_{F}(z)+(s-1)+\sum_{z \in T_{y}(F) \backslash P_{x}} l_{F}(z) \\
& \quad+\left|T_{y}(F) \backslash P_{x}\right|+\sum_{z \notin T_{y}(F)} l_{F}(z) \\
\geqslant & \sum_{z \in D} l_{F}(z)+1,
\end{aligned}
$$

a contradiction.
Note that the above proof indicates that F^{\prime} is a maximal forest.
Lemma 2.3. Let F be a maximal forest of a digraph D, and let x be a leaf in F and $y \in L_{1}(F)$. If $(x, y) \in E(D)$, then $u v \notin E(G[D])$ for all $u \in V(C)$ and $v \notin V(C)$ with $l_{F}(v) \leqslant l_{F}(x)$, where C is the circuit formed by P_{x} and (x, y).

Proof. If the theorem is false, let $u \in C$ and $v \notin C$ such that $u v \in E(G[D])$ with $l_{F}(v) \leqslant l_{F}(x)$. Note that the maximal forest $F^{\prime}=F+(x, y)-(w, x)$, where w is the
in-neighbor of x in F, can be viewed as the forest obtained from F by rotating the circuit C exactly once. The same argument proves that the forest obtained from F after rotating C any number of times is maximal. So we rotate C until we reach the maximal forest F^{\prime} in which u and v are in the same level, a contradiction.

Note that if the digraph D considered in the above lemma is connected and $l_{F}(x)=\ell(F)$, then D is Hamiltonian due to the fact that $u v \notin E(G[D])$ for all $u \in C$ and $v \notin C$.

3 The main result

Theorem 3.1. Let D be an $(n+1)$-chromatic digraph, $n \geqslant 4$. Then D contains a path $P(n-3,1,1)$.

Proof. For the case $n=4$, dealing with the existence of the antidirected path $P(1,1,1)$ in a 5 -chromatic digraph, we may prove even more: the existence of such a path in a 4 -chromatic digraph based on [5]. In fact, consider a 4 -chromatic digraph D and let D_{3} be the sub-digraph of D induced by the vertices of degree at least 3 . Suppose to the contrary that D contains no $P(1,1,1)$; then D_{3} contains no acyclic triangle. Indeed, if x, y, z is an acyclic triangle in D_{3} such that $(x, y),(x, z)$ and $(y, z) \in E\left(D_{3}\right)$, then let $w \notin\{x, y, z\}$ such that $y w \in E(G[D])$. Note that w exists since $d(y) \geqslant 3$. Thus, either $x z y w$ or $w y x z$ is a $P(1,1,1)$, a contradiction. Then by Beineke [1], D_{3} is a line digraph. El Sahili in [5] proved that such a digraph is of chromatic number 3, a contradiction.

In what follows, we may suppose that $n \geqslant 5$. Let D be a digraph with chromatic number $\chi(D)=n+1$. We are going to establish our proof by contradiction. We may suppose that D is connected. Suppose that D contains no path $P(n-3,1,1)$ and let F be a maximal forest of D. Set $l=\ell(F)$; then $l \geqslant n+1$. Let H be the sub-digraph of D induced by the vertices of level at least $n-2$. Set $L=\{x \in H \mid x$ is a leaf in $F\}$ and let $H^{\prime}=D[L]$.
Claim 1. H^{\prime} is an in-forest.
Proof. H^{\prime} contains no backward arc with respect to F, since each backward arc (x, y) generates a $y x$-directed path and so $d_{F}^{+}(y) \geqslant 1$, a contradiction. Thus it contains no circuit. Now H^{\prime} contains no vertex x such that $d_{H^{\prime}}^{+}(x) \geqslant 2$, since otherwise let x be such a vertex and let $\{y, z\} \subseteq N_{H^{\prime}}^{+}(x)$. Then $P_{y} \cup(x, y) \cup(x, z)$ contains a path $P(n-3,1,1)$, a contradiction. Now one can easily prove that H^{\prime} contains no cycle, since any non-directed cycle contains a vertex of out-degree at least 2 . Thus H^{\prime} is a forest. But the out-degree of all vertices is at most 1 , so H^{\prime} is an in-forest.

Consequently H^{\prime} is a bipartite digraph. Set $V\left(H^{\prime}\right)=S_{1} \cup S_{2}$ such that S_{i} is stable for $i=1,2$ and S_{1} contains all the sinks of H^{\prime}. Note that any $x \in S_{2}$ has an outneighbor in S_{1}. Let $M=H-S_{1}$ and let F^{\prime} be the sub-forest of F induced by $V(M)$.

Clearly, F^{\prime} is a final forest of M. Set $S_{1}^{n-2}=S_{1} \cap L_{n-2}(F), S_{1}^{n-1}=S_{1} \cap L_{n-1}(F)$ and $S_{1}^{n}=S_{1}-\left(S_{1}^{n-2} \cup S_{1}^{n-1}\right)$.
Claim 2. M has no backward arcs with respect to F^{\prime}.
Proof. If not, let (x, y) be a backward arc of M with respect to F^{\prime}. Note that (x, y) is also a backward arc with respect to F. If $x \in S_{2}$ then x has out-neighbor in S_{1}, and if $x \notin S_{2}$ then x is not a leaf in F and so $d_{F}^{+}(x) \geqslant 1$. In both cases there exists $x^{\prime} \in N^{+}(x)-V\left(P_{y}\right)$, and so $P_{y} \cup(x, y) \cup\left(x, x^{\prime}\right)$ contains a path $P(n-3,1,1)$, a contradiction.

Claim 3. M has no vertex x such that $d_{M}^{-}(x) \geqslant 3$.
Proof. If not, let $x \in V(M)$ such that $d_{M}^{-}(x) \geqslant 3$. Let $\left\{x^{\prime}, y, z\right\} \subseteq N_{M}^{-}(x)$ such that $\left\{x^{\prime}\right\}=N_{F}^{-}(x)$. Clearly, (y, x) and (z, x) are two forward arcs with respect to F. Without loss of generality, we can suppose $l_{F}(y) \leqslant l_{F}(z)$. So if $z \in S_{2}$, then z has an out-neighbor in S_{1}, and if $z \notin S_{2}$ then $d_{F}^{+}(z) \geqslant 1$, and since $x^{\prime} \neq z$ then $x \notin N_{F}^{+}(z)$. In both cases there exists $z^{\prime} \in N_{D}^{+}(z)-\left(V\left(P_{y}\right) \cup\{x\}\right)$ such that $P_{y} \cup(y, x) \cup(z, x) \cup\left(z, z^{\prime}\right)$ contains a path $P(n-3,1,1)$, a contradiction.
Claim 4. $\chi\left(D\left[V(M) \cup S_{1}^{n-2} \cup S_{1}^{n-1}\right]\right) \leqslant 3$
Proof. We proved that M contains no backward arc with respect to F^{\prime} and all its vertices are of in-degree at most 2 . Then by Lemma 2.1, we can color the vertices of M by a proper 3 -coloring c that uses the colors $\{1,2,3\}$ such that $\left|c\left(L_{1}\left(F^{\prime}\right)\right)\right|=1$.

Let $x \in S_{1}^{n-2}$. Then one can easily prove that x has no in-neighbor in $V(M)$. Thus all neighbors of x in M are out-neighbors. Moreover, x has at most one out-neighbor in M; otherwise, let y and z be two out-neighbors of x in M where $l_{F}(y) \leqslant l_{F}(z)$. Then $P_{y} \cup(x, y) \cup(x, z)$ contains a path $P(n-3,1,1)$, a contradiction. Thus $\left|d_{M}^{+}(x)\right| \leqslant 1$, and so we can give x an appropriate color from the set $\{1,2,3\}$.

Let $x \in S_{1}^{n-1}$. Clearly $L_{1}\left(F^{\prime}\right)=L_{n-2}(F)-S_{1}$. Using the same reasoning as above, we may show that x has at most one neighbor with level at least n, and all its neighbors in $L_{n-2}(F)-S_{1}$ have the same color. Thus $\left|c\left(N_{M}(x)\right)\right| \leqslant 2$, and we may give x an appropriate color from the set $\{1,2,3\}$.

Claim 5. D is not Hamiltonian.
Proof. If not, let $C=v_{1} v_{2} \ldots v_{s}$ be a Hamiltonian circuit in D.
If $n \in\{5,6\}$, then $s \geqslant 2(n-3)+1$, since otherwise we have $l(C)<\chi(D)$, which is impossible. In both cases, $\chi(D) \geqslant 6$ and then D contains a vertex x such that $d^{-}(x) \geqslant 3$. Otherwise, $d^{-}(v) \leqslant 2$ for every $v \in D$ and this easily gives $\chi(D)<5$, a contradiction. Suppose that $d^{-}\left(v_{1}\right) \geqslant 3$. If there exists $v_{i} \in N^{-}\left(v_{1}\right) \cap\left\{v_{2}, \ldots, v_{n-3}\right\}$, then $v_{n-1} v_{n} \ldots v_{s} v_{1} \cup\left(v_{i}, v_{1}\right) \cup\left(v_{i}, v_{i+1}\right)$ contains a path $P(n-3,1,1)$, a contradiction. Otherwise, $N^{-}\left(v_{1}\right) \subseteq\left\{v_{n-2}, \ldots, v_{s}\right\}$. Let $\left\{v_{i}, v_{j}\right\} \subseteq N^{-}\left(v_{1}\right)-\left\{v_{s}\right\}$ where $i<j$; then $v_{2} v_{3} \ldots v_{i} \cup\left(v_{i}, v_{1}\right) \cup\left(v_{j}, v_{1}\right) \cup\left(v_{j}, v_{j+1}\right)$ contains a path $P(n-3,1,1)$, a contradiction.

For $n \geqslant 7, \chi(D) \geqslant 8$. We will consider two cases:
i) $l(C) \geqslant 2(n-3)$. As above, D contains a vertex of indegree at least 4 , say v_{1}. If there exists a vertex $v_{i} \in N^{-}\left(v_{1}\right) \cap\left\{v_{2}, \ldots, v_{n-4}\right\}$, then $v_{n-2} v_{n} \ldots v_{s} \cup\left(v_{i}, v_{1}\right) \cup$ $\left(v_{i}, v_{i+1}\right)$ contains a path $P(n-3,1,1)$. Otherwise, let $\left\{v_{i}, v_{j}, v_{k}\right\} \subseteq N^{-}\left(v_{1}\right)-$ $\left\{v_{s}\right\}$ where $n-3 \leqslant i<j<k$. Then $v_{2} v_{3} \ldots v_{i} \ldots v_{j} \cup\left(v_{j}, v_{1}\right) \cup\left(v_{k}, v_{1}\right) \cup\left(v_{k}, v_{k+1}\right)$ contains a path $P(n-3,1,1)$, a contradiction.
ii) $l(C)<2(n-3)$. Let $x, y \in V(D)$; then either $l\left(C_{[x, y]}\right) \leqslant(n-4)$ or $l\left(C_{[y, x]}\right) \leqslant$ $(n-4)$. Without loss of generality we can suppose that $l\left(C_{[x, y]}\right) \leqslant(n-4)$ and $v_{1}=x$. Clearly, $v_{1} v_{2} \ldots v_{s}$ is a maximal forest of D. Then, by Claim 4, we have $\chi\left(D\left[\left\{v_{n-2}, \ldots, v_{s-1}\right\}\right]\right) \leqslant 3$, and thus $\chi\left(D\left[\left\{v_{n-2}, \ldots, v_{s}\right\}\right]\right) \leqslant 4$. So, $\chi\left(D\left[\left\{v_{1}, \ldots, v_{n-3}\right\}\right]\right) \geqslant \chi(D)-\chi\left(D\left[\left\{v_{n-2}, \ldots, v_{s}\right\}\right]\right) \geqslant n+1-4=n-3$, but $\left|\left\{v_{1}, \ldots, v_{n-3}\right\}\right|=n-3$, so then $D\left[\left\{v_{1}, . ., v_{n-3}\right\}\right]$ is a tournament. Since $l\left(C_{\left[v_{1}, y\right]}\right) \leqslant(n-4)$, we have $y \in\left\{v_{2}, \ldots, v_{n-3}\right\}$, and so $x y \in E(G[D])$. Therefore D is a tournament of order $n+1$ containing a path $P(n-3,1,1)$ [8], a contradiction.

Claim 6. D has no backward arc (x, y) where $x \in L$ and $y \in L_{1}(F)$.
Proof. If not, let $C=P_{x} \cup(x, y)$ as noted in Lemma 2.2, $T_{y}(F)=P_{x}$, and by Lemma 2.3, uv $\notin E(G[D])$ for all $u \in P_{x}, v \notin P_{x}$ and $l_{F}(v) \leqslant l_{F}(x)$. If there exists $u v \in E(G[D])$ such that $u \in C$ and $v \notin C$, then $l_{F}(v)>l_{F}(x) \geqslant n-2$, and so $u v$ represents a forward arc with respect to F, since otherwise D contains a $u v$-directed path and so $C \subsetneq T_{y}(F)$, contradiction. Therefore $(u, v) \in E(D)$, and so $P_{v} \cup(u, v) \cup\left(u, u^{\prime}\right)$ contains $P(n-3,1,1)$ where u^{\prime} is the successor of u on C, a contradiction. Consequently $u v \notin E(G[D])$ for all $u \in C$ and $v \notin C$, and so D is Hamiltonian containing a $P(n-3,1,1)$, contradiction.

Let $N_{1}\left(S_{1}^{n}\right)=N\left(S_{1}^{n}\right) \cap L_{1}(F)$ and $N_{1}^{-}\left(S_{1}^{n}\right)=N^{-}\left(S_{1}^{n}\right) \cap L_{1}(F)$. Then by Claim 6 we have $N_{1}\left(S_{1}^{n}\right)=N_{1}^{-}\left(S_{1}^{n}\right)$. Let $L_{2}^{\prime}=L_{2}(F) \cup N_{1}\left(S_{1}^{n}\right)$. Then L_{2}^{\prime} is a stable set because, if not, there exists $u_{1} \in L_{1}(F)$ with at least two out-neighbors, u_{2} in $L_{2}(F)$ and u_{n} in S_{1}^{n}. i Since $u_{n} \in S_{1}^{n}$, we have $l_{F}\left(u_{n}\right) \geqslant n$ and so $l\left(P_{u_{n}}\right) \geqslant n-1$. Thus $P_{u_{n}} \cup\left(u_{1}, u_{n}\right) \cup\left(u_{1}, u_{2}\right)$ contains a $P(n-3,1,1)$, a contradiction.

Let $L_{1}^{\prime}=\left(L_{1}(F)-N_{1}\left(S_{1}^{n}\right)\right) \cup S_{1}^{n}$. Then $L_{1}^{\prime}, L_{2}^{\prime}, L_{3}(F), \ldots, L_{n-3}(F)$ are $n-3$ stable sets covering $D-\left(V(M) \cup S_{1}^{n-2} \cup S_{1}^{n-1}\right)$, and $\chi\left(D\left[V(M) \cup S_{1}^{n-2} \cup S_{1}^{n-1}\right]\right) \leqslant 3$ by Claim 4. Then $\chi(D) \leqslant n$, a contradiction. This completes the proof of Theorem 3.1.

References

[1] L. W. Beineke, Derived graphs and digraphs, In: Beitrage zur Graphentheorie (Eds. H. Sachs, H. J. Voss and H. Walter), Teubner, Leipzig, (1968), 17-23.
[2] S. A. Burr, Subtrees of directed graphs and hypergraphs, In: Proc. 11th Southeastern Conf. Combinatorics, Graph Theory and Computing, Florida Atlantic Univ., Boca Raton, Fla. I Vol. 28 (1980), 227-239.
[3] L. Addario-Berry, F. Havet and S. Thomassé, Paths with two blocks in n chromatic digraphs, J. Combin. Theory Ser. B 97 (2007), 620-626.
[4] A. El Sahili and M. Kouider, About paths with two blocks, J. Graph Theory 55 (2007), 221-226.
[5] A. El Sahili, Functions and line digraphs, J. Graph Theory 4 (2003), 296-303.
[6] T. Gallai, On directed paths and circuits, In: Theory of Graphs, (Eds. P. Erdős and G. Katona), Academic Press, New York (1968), 115-118.
[7] M. Hasse, Zur algeraischen Begündung der Graphentheorie I, Math. Nachr. 28 (1964/1965), 275-290.
[8] F. Havet and S. Thomassé, Oriented hamiltonian paths in tournaments: a proof of Rosenfeld's conjecture, J. Combin. Theory Ser B 78 (2000), 243-273.
[9] B. Roy, Nombre chromatique et plus longs chemins d'un graphe, Rev. Française Automat. Informat. Recherche Opérationelle Sér. Rouge, 1 (1967), 127-132.
[10] L. M. Vitaver, Determination of minimal coloring of vertices of a graph by means of Boolean powers of the incidence matrix, Dokl. Akad. Nauk SSSR 147 (1962), 758-789 (in Russian).

