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Abstract

A complete 3-uniform hypergraph of order n has vertex set V with |V | =
n and the set of all 3-subsets of V as its edge set. A 6-cycle in this hyper-
graph is v1, e1, v2, e2, v3, e3, v4, e4, v5, e5, v6, e6, v1 where v1, v2, v3, v4, v5, v6
are distinct vertices and e1, e2, e3, e4, e5, e6 are distinct edges such that
vi, vi+1 ∈ ei for i ∈ {1, 2, 3, 4, 5} and v6, v1 ∈ e6. A decomposition of
a hypergraph is a partition of its edge set into disjoint subsets. In this
paper we give necessary and sufficient conditions for a decomposition of
the complete 3-uniform hypergraph of order n into 6-cycles.

1 Introduction

A hypergraph H consists of a finite nonempty set V of vertices and a set E =
{e1, e2, . . . , em} of edges where each ei ⊆ V with |ei| > 0 for i ∈ {1, 2, . . . , m}.
If |ei| = h, then we call ei an h-edge. If every edge of H is an h-edge for some h,

then we say that H is h-uniform. The complete h-uniform hypergraph K
(h)
n is the

hypergraph with vertex set V , where |V | = n, in which every h-subset of V deter-

mines an h-edge. It then follows that K
(h)
n has

(
n
h

)
edges. When h = 2, K

(2)
n = Kn,

the complete graph on n vertices.

A decomposition of a hypergraph H is a set F = {F1,F2, . . . ,Fk} of subhyper-
graphs of H such that E(F1) ∪ E(F2) ∪ · · · ∪ E(Fk) = E(H) and E(Fi) ∩ E(Fj) = ∅
for all i, j ∈ {1, 2, . . . , k} with i �= j. We denote this by H = F1 ⊕ F2 ⊕ · · · ⊕ Fk.
If H = F1 ⊕ F2 ⊕ · · · ⊕ Fk is a decomposition such that F1

∼= F2
∼= · · · ∼= Fk

∼= G,
where G is a fixed hypergraph, then F is called a G-decomposition of H.

A cycle of length k in a hypergraph H is a sequence of the form v1, e1, v2,
e2, . . . , vk, ek, v1, where v1, v2, . . . , vk are distinct vertices and e1, e2, . . . , ek are dis-
tinct edges satisfying vi, vi+1 ∈ ei for i ∈ {1, 2, . . . , k − 1} and vk, v1 ∈ ek.

Decompositions of K
(3)
n into Hamilton cycles were considered in [1, 2] and the

proof of their existence was given in [10]. Decompositions of K
(h)
n into Hamilton
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cycles were considered in [5, 6], a complete solution for h ≥ 4 and n ≥ 30 was given
in [5], and cyclic decompositions were considered in [6]. In [3], necessary and suffi-

cient conditions were given for a G-decomposition of K
(3)
n , where G is any 3-uniform

hypergraph with at most three edges and at most six vertices. In [4], decompositions

of K
(3)
n into 4-cycles were considered and their existence was established.

In this paper, we are interested in 6-cycle decompositions of K
(3)
n . For conve-

nience, we will often write the edge {va, vb, vc} as va-vb-vc and the cycle v1, e1, v2, e2,
v3, e3, v4, e4, v5, e5, v6, e6, v1 as (v1-y1-v2, v2-y2-v3, v3-y3-v4, v4-y4-v5, v5-y5-v6, v6-y6-v1),
where ei = vi-yi-vi+1 for i ∈ {1, 2, 3, 4, 5} and e6 = v6-y6-v1. A necessary condition

for the existence of a 6-cycle decomposition of K
(3)
n is: 6 divides the number of edges

in K
(3)
n , that is, 6|(n

3

)
. Clearly, if n is even and 6|(n

3

)
, then n ≡ 0, 2 or 10 (mod 18)

and if n is odd and 6|(n
3

)
, then n ≡ 1, 9 or 29 (mod 36). Thus we have:

Lemma 1.1. For n ≥ 6, if there exists a 6-cycle decomposition of K
(3)
n , then n ≡

0 (mod 18), 2 (mod 18), 10 (mod 18), 1 (mod 36), 9 (mod 36) or 29 (mod 36).

In Sections 3 through 8, we prove sufficiency. To prove it, we need the following
theorems.

Theorem 1.1. (Šajna [7]) Let n be an odd integer and m be an even integer with
3 ≤ m ≤ n. The complete graph Kn can be decomposed into cycles of length m
whenever m divides the number of edges in Kn.

Theorem 1.2. (Tarsi [9]) Let t and n be positive integers. There exists a Pt+1-
decomposition of the complete graph Kn if and only if n ≥ t + 1 and n(n − 1) ≡
0 (mod 2t), where Pt+1 is the path of length t.

Theorem 1.3. (Sotteau [8]) The complete bipartite graph Km,n can be decomposed
into 2k-cycles if and only if m and n are even, m ≥ k, n ≥ k, and 2k divides mn.

2 Preliminary lemmas

We assume the vertex set of K
(3)
n is {vi : i ∈ Zn}, where Zn is the set of inte-

gers modulo n. For non-negative integers i and j with i < j, we denote the set
{vi, vi+1, . . . , vj} by [vi, vj ], and the set {i, i+ 1, . . . , j} by [i, j].

2.1 The hypergraph H′
m

Define the 3-uniform hypergraph H′
m of order 3m as follows. Let V (H′

m) be {vi :
i ∈ Z3m}, and let E(H′

m) be the set of all 3-edges va-vb-vc such that a ∈ [0, m − 1],
b ∈ [m, 2m− 1] and c ∈ [2m, 3m− 1]. Note that

∣
∣E(H′

m)
∣
∣ = m3.

A necessary condition for the existence of a 6-cycle decomposition of H′
m is: 6|m3,

i.e., m ≡ 0 (mod 6). Our aim is to decompose H′
m into m3

6
edge-disjoint 6-cycles

whenever m ≡ 0 (mod 6).
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By Theorem 1.3, the complete bipartite graph Km,m with partite sets [v0, vm−1]
and [vm, v2m−1] can be decomposed into 6-cycles if and only if m ≡ 0 (mod 6). Let F
be a decomposition of Km,m into 6-cycles. For each 6-cycle (x1, x2, x3, x4, x5, x6, x1)
of F , construct m edge-disjoint 6-cycles (x1-vi-x2, x2-vi-x3, x3-vi-x4, x4-vi-x5, x5-vi-
x6, x6-vi-x1) of H′

m where i ∈ [2m, 3m− 1]. Thus, we have

Lemma 2.1. For m ≡ 0 (mod 6), H′
m decomposes into 6-cycles.

2.2 The hypergraph H′′
m

Define the hypergraph H′′
m of order 2m + 1 as follows: let V (H′′

m) = {∞} ∪ {vi :
i ∈ Z2m} and let E(H′′

m) be the set of all 3-edges ∞-vb-vc where b ∈ [0, m − 1] and
c ∈ [m, 2m− 1]. Note that

∣
∣E(H′′

m)
∣
∣ = m2.

A necessary condition for the existence of a 6-cycle decomposition of H′′
m is that

6|m2, i.e., m ≡ 0 (mod 6). Our aim is to decompose H′′
m into m2

6
edge-disjoint 6-cycles

whenever m ≡ 0 (mod 6).

By Theorem 1.3, the complete bipartite graph Km,m with partite sets [v0, vm−1]
and [vm, v2m−1] can be decomposed into 6-cycles if and only if m ≡ 0 (mod 6). Let F
be a decomposition of Km,m into 6-cycles. For each 6-cycle (x1, x2, x3, x4, x5, x6, x1)
of F , construct the 6-cycle (x1-∞-x2, x2-∞-x3, x3-∞-x4, x4-∞-x5, x5-∞-x6, x6-∞-x1)
of H′′

m. Thus, we have

Lemma 2.2. For m ≡ 0 (mod 6), H′′
m decomposes into 6-cycles.

2.3 The hypergraph Hm

Define the 3-uniform hypergraph Hm of order 2m as follows: let V (Hm) = {vi : i ∈
Z2m} grouped as G0 = [v0, vm−1] and G1 = [vm, v2m−1]. Let E(Hm) be the set of all
3-edges va-vb-vc such that va, vb and vc are not all from the same group, that is, at
least one of va, vb, vc is an element of G0 and at least one of va, vb, vc is an element of
G1. Note that |E(Hm)| = m2(m− 1).

A necessary condition for the existence of a 6-cycle decomposition of Hm is that
6|m2(m−1), i.e., m ≡ 0, 1, 3 or 4 (mod 6). For required m, our aim is to decompose

Hm into m2(m−1)
6

edge-disjoint 6-cycles.

By Theorem 1.1, if m is odd and 12|m(m−1), i.e., m ≡ 1 or 9 (mod 12), then Km

with vertex set G0 andKm with vertex set G1 are decomposable into 6-cycles. Let F0

and F1 be decompositions of Km into 6-cycles with vertex sets G0 and G1, respec-
tively. For each 6-cycle (x1, x2, x3, x4, x5, x6, x1) of F0, construct m edge-disjoint
6-cycles (x1-vi-x2, x2-vi-x3, x3-vi-x4, x4-vi-x5, x5-vi-x6, x6-vi-x1), where vi ∈ G1 and
for each 6-cycle (y1, y2, y3, y4, y5, y6, y1) of F1, construct m edge-disjoint 6-cycles (y1-
vj-y2, y2-vj-y3, y3-vj-y4, y4-vj-y5, y5-vj-y6, y6-vj-y1), where vj ∈ G0. The collection of
all these 6-cycles yields a decomposition of Hm. Thus, we have:

Lemma 2.3. Let m ≡ 1 or 9 (mod 12). If m �= 1, then Hm decomposes into 6-cycles.
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Lemma 2.4. H6 decomposes into 6-cycles.

Proof. The 6-cycle decomposition of H6 is as follows:
For vi ∈ [v6, v11],

(vi-v0-v1, v1-vi-v5, v5-vi-v2, v2-vi-v4, v4-vi-v3, v3-v2-vi) and
(vi-v1-v2, v2-vi-v0, v0-vi-v3, v3-vi-v5, v5-vi-v4, v4-v1-vi);

for vj ∈ [v0, v5],
(vj-v6-v7, v7-vj-v11, v11-vj-v8, v8-vj-v10, v10-vj-v9, v9-v8-vj) and
(vj-v7-v8, v8-vj-v6, v6-vj-v9, v9-vj-v11, v11-vj-v10, v10-v7-vj);

for (k, �) ∈ {(6, 7), (8, 9), (10, 11)},
(v�-v3-v1, v1-v3-vk, vk-v0-v4, v4-v�-v0, v0-vk-v5, v5-v0-v�);

and for (k, �) ∈ {(0, 1), (2, 3), (4, 5)},
(v�-v9-v7, v7-v9-vk, vk-v6-v10, v10-v�-v6, v6-vk-v11, v11-v6-v�). �

Lemma 2.5. If m ≡ 0 (mod 18), then Hm decomposes into 6-cycles.

Proof. Let m = 18k, where k is a positive integer, G0 = A1 ∪ A2 ∪ · · · ∪ A3k and
G1 = B1 ∪B2 ∪ · · · ∪B3k, where Ai = [v6i−6, v6i−1] and Bj = [v18k+6j−6, v18k+6j−1].

For i, j ∈ {1, 2, . . . , 3k}, let Hi,j
∼= H6 be the hypergraph with vertex set grouped

Ai and Bj . By Lemma 2.4, H6 is 6-cycle decomposable.

For i, j, k ∈ {1, 2, . . . , 3k} with j < k, let H′
i;j,k

∼= H′
6 be the hypergraph with

vertex set Ai ∪ Bj ∪Bk and edge set {E : |E ∩Ai| = |E ∩ Bj| = |E ∩Bk| = 1}. For
i, j, k ∈ {1, 2, . . . , 3k} with i < j, let H′′

i,j;k
∼= H′

6 be the hypergraph with vertex set
Ai ∪Aj ∪Bk and edge set {E : |E ∩Ai| = |E ∩Aj| = |E ∩Bk| = 1}. By Lemma 2.1,
H′

6 is 6-cycle decomposable.

Since Hm = H18k = 9k2H6 ⊕ 9k2(3k − 1)H′
6, the lemma follows. �

Lemma 2.6. H10 decomposes into 6-cycles.

Proof. Note that V (H10) = {vi : i ∈ Z20}, G0 = [v0, v9] and G1 = [v10, v19].

The complete graph K10 with vertex set [v0, v9] is Hamilton-path decomposable
by Theorem 1.2. Decompose each Hamilton-path P10 in the decomposition into
a P7 and a P4. For each P7 : (x1, x2, x3, x4, x5, x6, x7) in the resulting decom-
position of K10, (vi-x1-x2, x2-vi-x3, x3-vi-x4, x4-vi-x5, x5-vi-x6, x6-x7-vi), where i ∈
[10, 19], is a 6-cycle in H10. For each P4 : (y1, y2, y3, y4) in the resulting decom-
position of K10, (vk-y2-y1, y1-v�-y2, y2-vk-y3, y3-y2-v�, v�-y3-y4, y4-y3-vk), where (k, �) ∈
{(10, 11), (12, 13), (14, 15), (16, 17), (18, 19)} is a 6-cycle in H10.

Similarly, the complete graph K10 with vertex set [v10, v19] is Hamilton-path de-
composable. Decompose each Hamilton-path P10 in the decomposition into a P7 and
a P4. For each P7 : (x1, x2, x3, x4, x5, x6, x7) in the resulting decomposition of K10,
(vj-x1-x2, x2-vj-x3, x3-vj-x4, x4-vj-x5, x5-vj-x6, x6-x7-vj), where j ∈ [0, 9], is a 6-cycle
in H10. For each P4 : (y1, y2, y3, y4) in the resulting decomposition of K10, (vk-y2-y1,
y1-v�-y2, y2-vk-y3, y3-y2-v�, v�-y3-y4, y4-y3-vk), where (k, �) ∈ {(0, 1), (2, 3), (4, 5), (6, 7),
(8, 9)}, is a 6-cycle in H10.

The collection of all these 6-cycles yields a decomposition of H10 into 6-cycles.�
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2.4 The hypergraph K
(3)
m,n

Define the 3-uniform hypergraph K
(3)
m,n of order m+n as follows. Let V (K

(3)
m,n) = {vi :

i ∈ Zm+n} be grouped as G0 = [v0, vm−1] and G1 = [vm, vm+n−1]. Let E(K(3)
m,n) be the

set of all 3-edges va-vb-vc such that va, vb and vc are not all from the same group, that
is, at least one of va, vb, vc is an element of G0 and at least one of va, vb, vc is an element

of G1. Note that
∣
∣
∣E(K(3)

m,n)
∣
∣
∣ = mn(m+n−2)

2
and K

(3)
m,m = Hm. A necessary condition

for the existence of a 6-cycle decomposition of K
(3)
m,n is that 12|mn(m+ n− 2).

Lemma 2.7. If m ≡ 1 or 9 (mod 12), n ≡ 0, 1, 4 or 9 (mod 12) and n ≥ 7, then

K
(3)
m,n decomposes into 6-cycles.

Proof. By Theorem 1.1, Km with vertex set [v0, vm−1] is 6-cycle decomposable. For
each 6-cycle (x1, x2, x3, x4, x5, x6, x1) in the C6-decomposition of Km, the 6-cycle (vj-
x1-x2, x2-vj-x3, x3-vj-x4, x4-vj-x5, x5-vj-x6, x6-x1-vj), where j ∈ [m,m+ n− 1] is a 6-

cycle in K
(3)
m,n. By Theorem 1.2, Kn with vertex set [vm, vm+n−1] is P7-decomposable.

For each P7 : (x1, x2, x3, x4, x5, x6, x7) in the P7-decomposition of Kn, (vi-x1-x2,
x2-vi-x3, x3-vi-x4, x4-vi-x5, x5-vi-x6, x6-x7-vi), where i ∈ [0, m − 1], is a 6-cycle in

K
(3)
m,n. The collection of all these 6-cycles yields a 6-cycle decomposition of K

(3)
m,n. �

Lemma 2.8. K
(3)
10,18 decomposes into 6-cycles.

Proof. The 6-cycle decomposition of K
(3)
10,18 is as follows.

The complete graph K10 with vertex set [v0, v9] is Hamilton-path decomposable.
Decompose each Hamilton-path P10 in the decomposition into a P7 and a P4. For each
P7 : (x1, x2, x3, x4, x5, x6, x7) in the resulting decomposition of K10, (vi-x1-x2, x2-vi-

x3, x3-vi-x4, x4-vi-x5, x5-vi-x6, x6-x7-vi), where i ∈ [10, 27], is a 6-cycle in K
(3)
10,18. For

each P4 : (y1, y2, y3, y4) in the resulting decomposition of K10, (vk-y2-y1, y1-v�-y2, y2-
vk-y3, y3-y2-v�, v�-y3-y4, y4-y3-vk), where (k, �) ∈ {(10, 11), (12, 13), . . . , (26, 27)}, is a

6-cycle in K
(3)
10,18.

For convenience, relabel the vertices in [v10, v27] by [u0, u17]. The complete graph
K18 with vertex set [u0, u17] is decomposable into 25 P7’s, one P3 and one P2. To see
this, for i ∈ {0, 1, . . . , 8}, let
Hi = uiui+1ui+17ui+2ui+16ui+3ui+15ui+4ui+14ui+5ui+13ui+6ui+12ui+7ui+11ui+8ui+10ui+9

be a Hamilton path decomposition of K18, where subscripts are reduced modulo 18.
For i ∈ {0, 1, . . . , 7}, decompose Hi into

uiui+1ui+17ui+2ui+16ui+3 ⊕ ui+3ui+15ui+4ui+14ui+5ui+13ui+6

⊕ ui+6ui+12ui+7ui+11ui+8ui+10ui+9,

a P6 and two copies of P7. Decompose H8 into u8u9u7u10u6u11u5⊕u5u12u4u13u3u14u2

⊕ u2u15u1 ⊕ u1u16 ⊕ u16u0 ⊕ u0u17, two copies of P7, one P3 and three P2’s. Now
decompose (eight P6’s and two P2’s) {uiui+1ui+17ui+2ui+16ui+3 : i ∈ {0, 1, . . . , 7}} ∪
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{u1u16, u0u17} into (seven P7’s) {u17u0u1u17u2u16u3, u16u1u2u0u3u17u4, u2u3u1u4u0

u5u10, u3u4u2u5u1u6u9, u4u5u3u6u2u7u8, u5u6u4u7u3u8u6, u6u7u5u8u4u9u5}. For each
P7 : (x1, x2, x3, x4, x5, x6, x7) in the resulting decomposition of K18, (vi-x1-x2, x2-vi-

x3, x3-vi-x4, x4-vi-x5, x5-vi-x6, x6-x7-vi), where i ∈ [0, 9], is a 6-cycle in K
(3)
10,18. Ob-

tain from P3∪P2: u2u15u1∪u0u16, (vk-u15-u2, u2-v�-u15, u15-vk-u1, u1-u15-v�, v�-u0-u16,

u16-u0-vk), where (k, �) ∈ {(0, 1), (2, 3), . . . , (8, 9)}, a 6-cycle in K
(3)
10,18.

The collection of all these 6-cycles yields a decomposition of K
(3)
10,18 into 6-cycles.�

Lemma 2.9. K
(3)
29,36 decomposes into 6-cycles.

Proof. The complete graph K29 with vertex set [v0, v28] is Hamilton-cycle decompos-
able. Decompose each Hamilton-cycle C29 in the decomposition into four P7, one P4

and one P3. For each P7 : (x1, x2, x3, x4, x5, x6, x7) in the resulting decomposition
of K29, (vi-x1-x2, x2-vi-x3, x3-vi-x4, x4-vi-x5, x5-vi-x6, x6-x7-vi), where i ∈ [29, 64],

is a 6-cycle in K
(3)
29,36. For each P4 : (y1, y2, y3, y4) in the resulting decomposi-

tion of K29, {vk-y2-y1, y1-v�-y2, y2-vk-y3, y3-y2-v�, v�-y3-y4, y4-y3-vk}, where (k, �) ∈
{(29, 30), (31, 32), . . . , (63, 64)}, is a 6-cycle in K

(3)
29,36. For each P3 : (z1, z2, z3) in

the resulting decomposition of K29, {z2-z3-vk, vk-z2-z1, z1-z2-v�, v�-z2-z3, z3-z2-vm, vm-
z1-z2}, where (k, �,m) ∈ {(29, 30, 31), (32, 33, 34), . . . , (62, 63, 64)}, is a 6-cycle in

K
(3)
29,36.

By Theorem 1.2, the complete graph K36 with vertex set [v29, v64] is P7-decom-
posable. For each P7 : (x1, x2, x3, x4, x5, x6, x7) in the P7-decomposition of K36,
(vi-x1-x2, x2-vi-x3, x3-vi-x4, x4-vi-x5, x5-vi-x6, x6-x7-vi), where i ∈ [0, 28], is a 6-cycle

in K
(3)
29,36.

The collection of all these 6-cycles yields a decomposition of K
(3)
29,36 into 6-cycles.�

2.5 K
(3)
n to K

(3)
n+1

Lemma 2.10. If n ≥ 7, n ≡ 0, 1, 4, or 9 (mod 12) and the hypergraph K
(3)
n has a

6-cycle decomposition, then the hypergraph K
(3)
n+1 has a 6-cycle decomposition.

Proof. Let V (K
(3)
n+1) = {∞} ∪ {vi : i ∈ Zn} and E(K(3)

n+1) = E(K(3)
n ) ∪ {(∞-vi-

vj) | i, j ∈ [0, n − 1]}. By hypothesis, K
(3)
n has a 6-cycle decomposition. It is

enough to prove that the remaining 3-uniform hypergraph {∞-vi-vj | i, j ∈ [0, n−1]}
admits a 6-cycle decomposition. By Theorem 1.2, the complete graph Kn has a P7-
decomposition. Let P be the set of all paths of length 6 in the decomposition of
Kn. If P7 = (v0, v1, . . . , v6) ∈ P, then (∞-v0-v1, v1-∞-v2, . . . , v4-∞-v5, v5-v6-∞) is

a 6-cycle in K
(3)
n+1. Applying the method to each path P7 ∈ P, we get a 6-cycle

decomposition of K
(3)
n+1. �
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3 n ≡ 0 (mod 18)

Lemma 3.1. K
(3)
9 decomposes into 6-cycles.

Proof. A 6-cycle decomposition of K
(3)
9 is as follows:

(v0-v1-v2, v2-v3-v4, v4-v5-v6, v6-v7-v8, v8-v4-v3, v3-v2-v0),
(v0-v1-v3, v3-v2-v5, v5-v7-v4, v4-v6-v8, v8-v5-v7, v7-v8-v0),
(v0-v2-v4, v4-v1-v3, v3-v0-v5, v5-v2-v1, v1-v4-v8, v8-v5-v0),
(v0-v4-v1, v1-v5-v6, v6-v8-v2, v2-v5-v7, v7-v0-v4, v4-v5-v0),
(v0-v8-v3, v3-v5-v1, v1-v7-v4, v4-v3-v7, v7-v4-v6, v6-v8-v0),
(v0-v8-v1, v1-v3-v8, v8-v5-v3, v3-v7-v6, v6-v4-v2, v2-v6-v0),
(v1-v0-v6, v6-v4-v0, v0-v6-v7, v7-v2-v3, v3-v4-v5, v5-v4-v1),
(v4-v3-v0, v0-v5-v6, v6-v8-v1, v1-v6-v7, v7-v1-v8, v8-v0-v4),
(v5-v6-v7, v7-v4-v8, v8-v3-v6, v6-v5-v2, v2-v8-v4, v4-v2-v5),
(v5-v1-v0, v0-v7-v3, v3-v1-v7, v7-v0-v2, v2-v7-v6, v6-v3-v5),
(v6-v5-v8, v8-v2-v3, v3-v6-v2, v2-v3-v1, v1-v2-v4, v4-v3-v6),
(v6-v3-v0, v0-v5-v2, v2-v8-v5, v5-v3-v7, v7-v5-v1, v1-v2-v6),
(v7-v8-v2, v2-v0-v8, v8-v7-v3, v3-v1-v6, v6-v4-v1, v1-v2-v7),
(v8-v5-v4, v4-v7-v2, v2-v8-v1, v1-v0-v7, v7-v0-v5, v5-v1-v8). �

Lemma 3.2. K
(3)
18 decomposes into 6-cycles.

Proof. By Lemmas 3.1 and 2.3, K
(3)
9 and H9 are, respectively, 6-cycle decomposable,

and so is K
(3)
18 = 2K

(3)
9 ⊕H9. �

Lemma 3.3. For each positive integer n ≥ 36, with n ≡ 0(mod 18), K
(3)
n decomposes

into 6-cycles.

Proof. Let n = 18k where k ≥ 2 is a positive integer. We may think ofK
(3)
n as k copies

of K
(3)
18 , k(k − 1)/2 copies of H18 and k(k − 1)(k − 2)/6 copies of H′

18. That is: for

k = 2, K
(3)
36 = 2K

(3)
18 ⊕H18; and for k ≥ 3, K

(3)
18k = kK

(3)
18 ⊕ k(k−1)

2
H18⊕ k(k−1)(k−2)

6
H′

18.

As each of the hypergraphs K
(3)
18 , H18 and H′

18 is decomposable into 6-cycles by
Lemmas 3.2, 2.5 and 2.1, respectively, we have the required decomposition. �

4 n ≡ 2 (mod 18)

Lemma 4.1. K
(3)
20 decomposes into 6-cycles.

Proof. By Lemmas 2.10 and 2.6, K
(3)
10 andH10 are, respectively, 6-cycle decomposable

and so is K
(3)
20 = 2K

(3)
10 ⊕H10. �

Lemma 4.2. For each positive integer n ≥ 38, with n ≡ 2 (mod 18), K
(3)
n decomposes

into 6-cycles.
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Proof. Let n = 18k + 2 where k ≥ 2 is a positive integer. We may think of K
(3)
n

as k copies of K
(3)
20 , k(k − 1)/2 copies of H18, k(k − 1)(k − 2)/6 copies of H′

18 and

k(k − 1) copies of H′′
18. That is: for k ≥ 2, K

(3)
38 = 2K

(3)
20 ⊕ H18 ⊕ 2H′′

18; and for

k ≥ 3, K
(3)
18k+2 = kK

(3)
20 ⊕ k(k−1)

2
H18 ⊕ k(k−1)(k−2)

6
H′

18 ⊕ k(k − 1)H′′
18. As each of the

hypergraphs K
(3)
20 , H18, H′

18 and H′′
18 is decomposable into 6-cycles by Lemmas 4.1,

2.5, 2.1 and 2.2, respectively, we have the required decomposition. �

5 n ≡ 1 (mod 36)

Lemma 5.1. For each positive integer n ≥ 37, with n ≡ 1 (mod 36), K
(3)
n decomposes

into 6-cycles.

Proof. By Lemma 3.3, K
(3)
36 is decomposable into 6-cycles, and therefore by Lemma

2.10, K
(3)
37 is decomposable into 6-cycles.

Let n = 36k + 1, where k ≥ 2 is a positive integer. We may think of K
(3)
n

as k copies of K
(3)
36 , k(k − 1)/2 copies of H36, k(k − 1)(k − 2)/6 copies of H′

36 and

k(k − 1)/2 copies of H′′
36. That is: for k = 2, K

(3)
73 = 2K

(3)
37 ⊕ H36 ⊕ H′′

36; and for

k ≥ 3, K
(3)
36k+1 = kK

(3)
37 ⊕ k(k−1)

2
H36 ⊕ k(k−1)(k−2)

6
H′

36 ⊕ k(k−1)
2

H′′
36. As each of the

hypergraphs K
(3)
37 , H36, H′

36 and H′′
36 is decomposable into 6-cycles by above and by

Lemmas 2.5, 2.1 and 2.2, respectively, we have the required decomposition. �

6 n ≡ 10 (mod 18)

Lemma 6.1. K
(3)
10 decomposes into 6-cycles.

Proof. By Lemma 3.1, K
(3)
9 is decomposable into 6-cycles, and therefore by

Lemma 2.10, K
(3)
10 is decomposable into 6-cycles. �

Lemma 6.2. K
(3)
28 decomposes into 6-cycles.

Proof. By Lemmas 6.1, 3.2 and 2.8, K
(3)
10 , K

(3)
18 and K

(3)
10,18 are, respectively, 6-cycle

decomposable, and so is K
(3)
28 = K

(3)
10 ⊕K

(3)
18 ⊕K

(3)
10,18. �

Lemma 6.3. For each positive integer n ≥ 46, with n ≡ 10 (mod 18), K
(3)
n decom-

poses into 6-cycles.

Proof. Let n = 18k + 10, where k ≥ 2 is a positive integer. We may think of K
(3)
n

as an edge-disjoint union of a copy of K
(3)
10 , k copies of K

(3)
18 , k copies of K

(3)
10,18,

k(k − 1)/2 copies of H18, k(k − 1)(k − 2)/6 copies of H′
18 and 5k(k − 1) copies of

H′′
18. That is: for k = 2, K

(3)
46 = K

(3)
10 ⊕2K

(3)
18 ⊕2K

(3)
10,18⊕H18⊕10H′′

18; and for k ≥ 3,

K
(3)
18k+10 = K

(3)
10 ⊕ kK

(3)
18 ⊕ kK

(3)
10,18 ⊕ k(k−1)

2
H18 ⊕ k(k−1)(k−2)

6
H′

18 ⊕ 5k(k − 1)H′′
18. As

each of the hypergraphs K
(3)
10 , K

(3)
18 , K

(3)
10,18, H18, H′

18 and H′′
18 is decomposable into

6-cycles by Lemmas 6.1, 3.2, 2.8, 2.5, 2.1 and 2.2, respectively, we have the required
decomposition. �
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7 n ≡ 9 (mod 36)

Lemma 7.1. For each positive integer n ≥ 45, with n ≡ 9 (mod 36), K
(3)
n decomposes

into 6-cycles.

Proof. Let n = 36k+9, where k is a positive integer. We may think ofK
(3)
n as an edge-

disjoint union of a copy of K
(3)
9 , k copies of K

(3)
36 , k copies of K

(3)
9,36, k(k − 1)/2 copies

of H36, k(k − 1)(k − 2)/6 copies of H′
36 and 9k(k − 1)/2 copies of H′′

36. That is: for

k = 1, K
(3)
45 = K

(3)
9 ⊕K

(3)
36 ⊕K

(3)
9,36; for k = 2, K

(3)
81 = K

(3)
9 ⊕2K

(3)
36 ⊕2K

(3)
9,36⊕H36⊕9H′′

36;

and for k ≥ 3,K
(3)
36k+9 = K

(3)
9 ⊕kK

(3)
36 ⊕kK

(3)
9,36⊕k(k−1)

2
H36⊕k(k−1)(k−2)

6
H′

36⊕9k(k−1)
2

H′′
36.

As each of the hypergraphs K
(3)
9 , K

(3)
36 , K

(3)
9,36, H36, H′

36 and H′′
36 is decomposable into

6-cycles by Lemmas 3.1, 3.3, 2.7, 2.5, 2.1 and 2.2, respectively, we have the required
decomposition. �

8 n ≡ 29 (mod 36)

Lemma 8.1. K
(3)
29 decomposes into 6-cycles.

Proof. By Lemma 6.2, K
(3)
28 is decomposable into 6-cycles, and therefore by

Lemma 2.10, K
(3)
29 is decomposable into 6-cycles. �

Lemma 8.2. For each positive integer n ≥ 65, with n ≡ 29 (mod 36), K
(3)
n decom-

poses into 6-cycles.

Proof. Let n = 36k + 29, where k is a positive integer. We may think of K
(3)
n

as an edge-disjoint union of a copy of K
(3)
29 , k copies of K

(3)
36 , k copies of K

(3)
29,36,

k(k − 1)/2 copies of H36, k(k − 1)(k − 2)/6 copies of H′
36 and 29k(k − 1)/2 copies

of H′′
36. That is: for k = 1, K

(3)
65 = K

(3)
29 ⊕ K

(3)
36 ⊕ K

(3)
29,36; for k = 2, K

(3)
101 =

K
(3)
29 ⊕ 2K

(3)
36 ⊕ 2K

(3)
29,36 ⊕ H36 ⊕ 29H′′

36; and for k ≥ 3, K
(3)
36k+29 = K

(3)
29 ⊕ kK

(3)
36 ⊕

kK
(3)
29,36⊕ k(k−1)

2
H36⊕ k(k−1)(k−2)

6
H′

36⊕29k(k−1)
2

H′′
36. As each of the hypergraphs K

(3)
29 ,

K
(3)
36 , K

(3)
29,36, H36, H′

36 and H′′
36 is decomposable into 6-cycles by Lemmas 8.1, 3.3,

2.9, 2.5, 2.1 and 2.2, respectively, we have the required decomposition. �

9 Main result

Theorem 9.1. For n ≥ 6, the complete 3-uniform hypergraphs K
(3)
n has a 6-cycle

decomposition if and only if n ≡ 0 (mod 18), 2 (mod 18), 10 (mod 18), 1 (mod 36),
9 (mod 36) or 29 (mod 36).

Proof. This follows from Lemmas 1.1, 3.2, 3.3, 4.1, 4.2, 5.1, 6.1, 6.2, 6.3, 3.1, 7.1, 8.1
and 8.2. �
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