6-Cycle decompositions of complete 3-uniform hypergraphs

R. Lakshmi T. Poovaragavan
Department of Mathematics
Annamalai University, Annamalainagar-608 002
India
mathlakshmi@gmail.com poovamath@gmail.com

Abstract

A complete 3 -uniform hypergraph of order n has vertex set V with $|V|=$ n and the set of all 3 -subsets of V as its edge set. A 6 -cycle in this hypergraph is $v_{1}, e_{1}, v_{2}, e_{2}, v_{3}, e_{3}, v_{4}, e_{4}, v_{5}, e_{5}, v_{6}, e_{6}, v_{1}$ where $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}$ are distinct vertices and $e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}$ are distinct edges such that $v_{i}, v_{i+1} \in e_{i}$ for $i \in\{1,2,3,4,5\}$ and $v_{6}, v_{1} \in e_{6}$. A decomposition of a hypergraph is a partition of its edge set into disjoint subsets. In this paper we give necessary and sufficient conditions for a decomposition of the complete 3 -uniform hypergraph of order n into 6 -cycles.

1 Introduction

A hypergraph \mathcal{H} consists of a finite nonempty set V of vertices and a set $\mathcal{E}=$ $\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ of edges where each $e_{i} \subseteq V$ with $\left|e_{i}\right|>0$ for $i \in\{1,2, \ldots, m\}$. If $\left|e_{i}\right|=h$, then we call e_{i} an h-edge. If every edge of \mathcal{H} is an h-edge for some h, then we say that \mathcal{H} is h-uniform. The complete h-uniform hypergraph $K_{n}^{(h)}$ is the hypergraph with vertex set V, where $|V|=n$, in which every h-subset of V determines an h-edge. It then follows that $K_{n}^{(h)}$ has $\binom{n}{h}$ edges. When $h=2, K_{n}^{(2)}=K_{n}$, the complete graph on n vertices.

A decomposition of a hypergraph \mathcal{H} is a set $\mathcal{F}=\left\{\mathcal{F}_{1}, \mathcal{F}_{2}, \ldots, \mathcal{F}_{k}\right\}$ of subhypergraphs of \mathcal{H} such that $\mathcal{E}\left(\mathcal{F}_{1}\right) \cup \mathcal{E}\left(\mathcal{F}_{2}\right) \cup \cdots \cup \mathcal{E}\left(\mathcal{F}_{k}\right)=\mathcal{E}(\mathcal{H})$ and $\mathcal{E}\left(\mathcal{F}_{i}\right) \cap \mathcal{E}\left(\mathcal{F}_{j}\right)=\emptyset$ for all $i, j \in\{1,2, \ldots, k\}$ with $i \neq j$. We denote this by $\mathcal{H}=\mathcal{F}_{1} \oplus \mathcal{F}_{2} \oplus \cdots \oplus \mathcal{F}_{k}$. If $\mathcal{H}=\mathcal{F}_{1} \oplus \mathcal{F}_{2} \oplus \cdots \oplus \mathcal{F}_{k}$ is a decomposition such that $\mathcal{F}_{1} \cong \mathcal{F}_{2} \cong \cdots \cong \mathcal{F}_{k} \cong \mathcal{G}$, where \mathcal{G} is a fixed hypergraph, then \mathcal{F} is called a \mathcal{G}-decomposition of \mathcal{H}.

A cycle of length k in a hypergraph \mathcal{H} is a sequence of the form v_{1}, e_{1}, v_{2}, $e_{2}, \ldots, v_{k}, e_{k}, v_{1}$, where $v_{1}, v_{2}, \ldots, v_{k}$ are distinct vertices and $e_{1}, e_{2}, \ldots, e_{k}$ are distinct edges satisfying $v_{i}, v_{i+1} \in e_{i}$ for $i \in\{1,2, \ldots, k-1\}$ and $v_{k}, v_{1} \in e_{k}$.

Decompositions of $K_{n}^{(3)}$ into Hamilton cycles were considered in [1, 2] and the proof of their existence was given in [10]. Decompositions of $K_{n}^{(h)}$ into Hamilton
cycles were considered in [5, 6], a complete solution for $h \geq 4$ and $n \geq 30$ was given in [5], and cyclic decompositions were considered in [6]. In [3], necessary and sufficient conditions were given for a \mathcal{G}-decomposition of $K_{n}^{(3)}$, where \mathcal{G} is any 3 -uniform hypergraph with at most three edges and at most six vertices. In [4], decompositions of $K_{n}^{(3)}$ into 4-cycles were considered and their existence was established.

In this paper, we are interested in 6 -cycle decompositions of $K_{n}^{(3)}$. For convenience, we will often write the edge $\left\{v_{a}, v_{b}, v_{c}\right\}$ as $v_{a}-v_{b}-v_{c}$ and the cycle $v_{1}, e_{1}, v_{2}, e_{2}$, $v_{3}, e_{3}, v_{4}, e_{4}, v_{5}, e_{5}, v_{6}, e_{6}, v_{1}$ as $\left(v_{1}-y_{1}-v_{2}, v_{2}-y_{2}-v_{3}, v_{3}-y_{3}-v_{4}, v_{4}-y_{4}-v_{5}, v_{5}-y_{5}-v_{6}, v_{6}-y_{6}-v_{1}\right)$, where $e_{i}=v_{i}-y_{i}-v_{i+1}$ for $i \in\{1,2,3,4,5\}$ and $e_{6}=v_{6}-y_{6}-v_{1}$. A necessary condition for the existence of a 6 -cycle decomposition of $K_{n}^{(3)}$ is: 6 divides the number of edges in $K_{n}^{(3)}$, that is, $6 \left\lvert\,\binom{ n}{3}\right.$. Clearly, if n is even and $6 \left\lvert\,\binom{ n}{3}\right.$, then $n \equiv 0,2$ or $10(\bmod 18)$ and if n is odd and $6 \left\lvert\,\binom{ n}{3}\right.$, then $n \equiv 1,9$ or $29(\bmod 36)$. Thus we have:

Lemma 1.1. For $n \geq 6$, if there exists a 6 -cycle decomposition of $K_{n}^{(3)}$, then $n \equiv$ $0(\bmod 18), 2(\bmod 18), 10(\bmod 18), 1(\bmod 36), 9(\bmod 36)$ or $29(\bmod 36)$.

In Sections 3 through 8, we prove sufficiency. To prove it, we need the following theorems.

Theorem 1.1. (Šajna [7]) Let n be an odd integer and m be an even integer with $3 \leq m \leq n$. The complete graph K_{n} can be decomposed into cycles of length m whenever m divides the number of edges in K_{n}.

Theorem 1.2. (Tarsi [9]) Let t and n be positive integers. There exists a $P_{t+1^{-}}$ decomposition of the complete graph K_{n} if and only if $n \geq t+1$ and $n(n-1) \equiv$ $0(\bmod 2 t)$, where P_{t+1} is the path of length t.

Theorem 1.3. (Sotteau [8]) The complete bipartite graph $K_{m, n}$ can be decomposed into $2 k$-cycles if and only if m and n are even, $m \geq k, n \geq k$, and $2 k$ divides $m n$.

2 Preliminary lemmas

We assume the vertex set of $K_{n}^{(3)}$ is $\left\{v_{i}: i \in \mathbb{Z}_{n}\right\}$, where \mathbb{Z}_{n} is the set of integers modulo n. For non-negative integers i and j with $i<j$, we denote the set $\left\{v_{i}, v_{i+1}, \ldots, v_{j}\right\}$ by $\left[v_{i}, v_{j}\right]$, and the set $\{i, i+1, \ldots, j\}$ by $[i, j]$.

2.1 The hypergraph \mathcal{H}_{m}^{\prime}

Define the 3 -uniform hypergraph \mathcal{H}_{m}^{\prime} of order $3 m$ as follows. Let $V\left(\mathcal{H}_{m}^{\prime}\right)$ be $\left\{v_{i}\right.$: $\left.i \in \mathbb{Z}_{3 m}\right\}$, and let $\mathcal{E}\left(\mathcal{H}_{m}^{\prime}\right)$ be the set of all 3-edges $v_{a}-v_{b}-v_{c}$ such that $a \in[0, m-1]$, $b \in[m, 2 m-1]$ and $c \in[2 m, 3 m-1]$. Note that $\left|\mathcal{E}\left(\mathcal{H}_{m}^{\prime}\right)\right|=m^{3}$.

A necessary condition for the existence of a 6 -cycle decomposition of \mathcal{H}_{m}^{\prime} is: $6 \mid \mathrm{m}^{3}$, i.e., $m \equiv 0(\bmod 6)$. Our aim is to decompose \mathcal{H}_{m}^{\prime} into $\frac{m^{3}}{6}$ edge-disjoint 6 -cycles whenever $m \equiv 0(\bmod 6)$.

By Theorem 1.3, the complete bipartite graph $K_{m, m}$ with partite sets $\left[v_{0}, v_{m-1}\right.$] and $\left[v_{m}, v_{2 m-1}\right]$ can be decomposed into 6 -cycles if and only if $m \equiv 0(\bmod 6)$. Let \mathscr{F} be a decomposition of $K_{m, m}$ into 6 -cycles. For each 6 -cycle ($x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{1}$) of \mathscr{F}, construct m edge-disjoint 6 -cycles $\left(x_{1}-v_{i}-x_{2}, x_{2}-v_{i}-x_{3}, x_{3}-v_{i}-x_{4}, x_{4}-v_{i}-x_{5}, x_{5}-v_{i^{-}}\right.$ $\left.x_{6}, x_{6}-v_{i}-x_{1}\right)$ of \mathcal{H}_{m}^{\prime} where $i \in[2 m, 3 m-1]$. Thus, we have
Lemma 2.1. For $m \equiv 0(\bmod 6), \mathcal{H}_{m}^{\prime}$ decomposes into 6 -cycles.

2.2 The hypergraph $\mathcal{H}_{m}^{\prime \prime}$

Define the hypergraph $\mathcal{H}_{m}^{\prime \prime}$ of order $2 m+1$ as follows: let $V\left(\mathcal{H}_{m}^{\prime \prime}\right)=\{\infty\} \cup\left\{v_{i}\right.$: $\left.i \in \mathbb{Z}_{2 m}\right\}$ and let $\mathcal{E}\left(\mathcal{H}_{m}^{\prime \prime}\right)$ be the set of all 3-edges $\infty-v_{b}-v_{c}$ where $b \in[0, m-1]$ and $c \in[m, 2 m-1]$. Note that $\left|\mathcal{E}\left(\mathcal{H}_{m}^{\prime \prime}\right)\right|=m^{2}$.

A necessary condition for the existence of a 6 -cycle decomposition of $\mathcal{H}_{m}^{\prime \prime}$ is that $6 \mid m^{2}$, i.e., $m \equiv 0(\bmod 6)$. Our aim is to decompose $\mathcal{H}_{m}^{\prime \prime}$ into $\frac{m^{2}}{6}$ edge-disjoint 6 -cycles whenever $m \equiv 0(\bmod 6)$.

By Theorem 1.3, the complete bipartite graph $K_{m, m}$ with partite sets [v_{0}, v_{m-1}] and $\left[v_{m}, v_{2 m-1}\right]$ can be decomposed into 6 -cycles if and only if $m \equiv 0(\bmod 6)$. Let \mathscr{F} be a decomposition of $K_{m, m}$ into 6 -cycles. For each 6 -cycle ($x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{1}$) of \mathscr{F}, construct the 6 -cycle ($\left.x_{1}-\infty-x_{2}, x_{2}-\infty-x_{3}, x_{3}-\infty-x_{4}, x_{4}-\infty-x_{5}, x_{5}-\infty-x_{6}, x_{6}-\infty-x_{1}\right)$ of $\mathcal{H}_{m}^{\prime \prime}$. Thus, we have
Lemma 2.2. For $m \equiv 0(\bmod 6)$, $\mathcal{H}_{m}^{\prime \prime}$ decomposes into 6 -cycles.

2.3 The hypergraph \mathcal{H}_{m}

Define the 3-uniform hypergraph \mathcal{H}_{m} of order $2 m$ as follows: let $V\left(\mathcal{H}_{m}\right)=\left\{v_{i}: i \in\right.$ $\left.\mathbb{Z}_{2 m}\right\}$ grouped as $G_{0}=\left[v_{0}, v_{m-1}\right]$ and $G_{1}=\left[v_{m}, v_{2 m-1}\right]$. Let $\mathcal{E}\left(\mathcal{H}_{m}\right)$ be the set of all 3 -edges $v_{a}-v_{b}-v_{c}$ such that v_{a}, v_{b} and v_{c} are not all from the same group, that is, at least one of v_{a}, v_{b}, v_{c} is an element of G_{0} and at least one of v_{a}, v_{b}, v_{c} is an element of G_{1}. Note that $\left|\mathcal{E}\left(\mathcal{H}_{m}\right)\right|=m^{2}(m-1)$.

A necessary condition for the existence of a 6 -cycle decomposition of \mathcal{H}_{m} is that $6 \mid m^{2}(m-1)$, i.e., $m \equiv 0,1,3$ or $4(\bmod 6)$. For required m, our aim is to decompose \mathcal{H}_{m} into $\frac{m^{2}(m-1)}{6}$ edge-disjoint 6-cycles.

By Theorem 1.1, if m is odd and $12 \mid m(m-1)$, i.e., $m \equiv 1$ or $9(\bmod 12)$, then K_{m} with vertex set G_{0} and K_{m} with vertex set G_{1} are decomposable into 6 -cycles. Let \mathscr{F}_{0} and \mathscr{F}_{1} be decompositions of K_{m} into 6 -cycles with vertex sets G_{0} and G_{1}, respectively. For each 6 -cycle $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{1}\right)$ of \mathscr{F}_{0}, construct m edge-disjoint 6 -cycles $\left(x_{1}-v_{i}-x_{2}, x_{2}-v_{i}-x_{3}, x_{3}-v_{i}-x_{4}, x_{4}-v_{i}-x_{5}, x_{5}-v_{i}-x_{6}, x_{6}-v_{i}-x_{1}\right)$, where $v_{i} \in G_{1}$ and for each 6-cycle $\left(y_{1}, y_{2}, y_{3}, y_{4}, y_{5}, y_{6}, y_{1}\right)$ of \mathscr{F}_{1}, construct m edge-disjoint 6 -cycles (y_{1} -$\left.v_{j}-y_{2}, y_{2}-v_{j}-y_{3}, y_{3}-v_{j}-y_{4}, y_{4}-v_{j}-y_{5}, y_{5}-v_{j}-y_{6}, y_{6}-v_{j}-y_{1}\right)$, where $v_{j} \in G_{0}$. The collection of all these 6 -cycles yields a decomposition of \mathcal{H}_{m}. Thus, we have:

Lemma 2.3. Let $m \equiv 1$ or $9(\bmod 12)$. If $m \neq 1$, then \mathcal{H}_{m} decomposes into 6 -cycles.

Lemma 2.4. \mathcal{H}_{6} decomposes into 6 -cycles.
Proof. The 6-cycle decomposition of \mathcal{H}_{6} is as follows:
For $v_{i} \in\left[v_{6}, v_{11}\right]$,
$\left(v_{i}-v_{0}-v_{1}, v_{1}-v_{i}-v_{5}, v_{5}-v_{i}-v_{2}, v_{2}-v_{i}-v_{4}, v_{4}-v_{i}-v_{3}, v_{3}-v_{2}-v_{i}\right)$ and
$\left(v_{i}-v_{1}-v_{2}, v_{2}-v_{i}-v_{0}, v_{0}-v_{i}-v_{3}, v_{3}-v_{i}-v_{5}, v_{5}-v_{i}-v_{4}, v_{4}-v_{1}-v_{i}\right) ;$
for $v_{j} \in\left[v_{0}, v_{5}\right]$,
$\left(v_{j}-v_{6}-v_{7}, v_{7}-v_{j}-v_{11}, v_{11}-v_{j}-v_{8}, v_{8}-v_{j}-v_{10}, v_{10}-v_{j}-v_{9}, v_{9}-v_{8}-v_{j}\right)$ and
$\left(v_{j}-v_{7}-v_{8}, v_{8}-v_{j}-v_{6}, v_{6}-v_{j}-v_{9}, v_{9}-v_{j}-v_{11}, v_{11}-v_{j}-v_{10}, v_{10}-v_{7}-v_{j}\right)$;
for $(k, \ell) \in\{(6,7),(8,9),(10,11)\}$,
$\left(v_{\ell}-v_{3}-v_{1}, v_{1}-v_{3}-v_{k}, v_{k}-v_{0}-v_{4}, v_{4}-v_{\ell}-v_{0}, v_{0}-v_{k}-v_{5}, v_{5}-v_{0}-v_{\ell}\right) ;$
and for $(k, \ell) \in\{(0,1),(2,3),(4,5)\}$,
$\left(v_{\ell^{-}}-v_{9}-v_{7}, v_{7}-v_{9}-v_{k}, v_{k}-v_{6}-v_{10}, v_{10}-v_{\ell}-v_{6}, v_{6}-v_{k}-v_{11}, v_{11}-v_{6}-v_{\ell}\right)$.
Lemma 2.5. If $m \equiv 0(\bmod 18)$, then \mathcal{H}_{m} decomposes into 6 -cycles.
Proof. Let $m=18 k$, where k is a positive integer, $G_{0}=A_{1} \cup A_{2} \cup \cdots \cup A_{3 k}$ and $G_{1}=B_{1} \cup B_{2} \cup \cdots \cup B_{3 k}$, where $A_{i}=\left[v_{6 i-6}, v_{6 i-1}\right]$ and $B_{j}=\left[v_{18 k+6 j-6}, v_{18 k+6 j-1}\right]$.

For $i, j \in\{1,2, \ldots, 3 k\}$, let $\mathcal{H}_{i, j} \cong \mathcal{H}_{6}$ be the hypergraph with vertex set grouped A_{i} and B_{j}. By Lemma 2.4, \mathcal{H}_{6} is 6 -cycle decomposable.

For $i, j, k \in\{1,2, \ldots, 3 k\}$ with $j<k$, let $\mathcal{H}_{i ; j, k}^{\prime} \cong \mathcal{H}_{6}^{\prime}$ be the hypergraph with vertex set $A_{i} \cup B_{j} \cup B_{k}$ and edge set $\left\{E:\left|E \cap A_{i}\right|=\left|E \cap B_{j}\right|=\left|E \cap B_{k}\right|=1\right\}$. For $i, j, k \in\{1,2, \ldots, 3 k\}$ with $i<j$, let $\mathcal{H}_{i, j ; k}^{\prime \prime} \cong \mathcal{H}_{6}^{\prime}$ be the hypergraph with vertex set $A_{i} \cup A_{j} \cup B_{k}$ and edge set $\left\{E:\left|E \cap A_{i}\right|=\left|E \cap A_{j}\right|=\left|E \cap B_{k}\right|=1\right\}$. By Lemma 2.1, \mathcal{H}_{6}^{\prime} is 6-cycle decomposable.

Since $\mathcal{H}_{m}=\mathcal{H}_{18 k}=9 k^{2} \mathcal{H}_{6} \oplus 9 k^{2}(3 k-1) \mathcal{H}_{6}^{\prime}$, the lemma follows.
Lemma 2.6. \mathcal{H}_{10} decomposes into 6 -cycles.
Proof. Note that $V\left(\mathcal{H}_{10}\right)=\left\{v_{i}: i \in \mathbb{Z}_{20}\right\}, G_{0}=\left[v_{0}, v_{9}\right]$ and $G_{1}=\left[v_{10}, v_{19}\right]$.
The complete graph K_{10} with vertex set $\left[v_{0}, v_{9}\right]$ is Hamilton-path decomposable by Theorem 1.2. Decompose each Hamilton-path P_{10} in the decomposition into a P_{7} and a P_{4}. For each $P_{7}:\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right)$ in the resulting decomposition of $K_{10},\left(v_{i}-x_{1}-x_{2}, x_{2}-v_{i}-x_{3}, x_{3}-v_{i}-x_{4}, x_{4}-v_{i}-x_{5}, x_{5}-v_{i}-x_{6}, x_{6}-x_{7}-v_{i}\right)$, where $i \in$ [10,19], is a 6 -cycle in \mathcal{H}_{10}. For each $P_{4}:\left(y_{1}, y_{2}, y_{3}, y_{4}\right)$ in the resulting decomposition of $K_{10},\left(v_{k}-y_{2}-y_{1}, y_{1}-v_{\ell}-y_{2}, y_{2}-v_{k}-y_{3}, y_{3}-y_{2}-v_{\ell}, v_{\ell}-y_{3}-y_{4}, y_{4}-y_{3}-v_{k}\right)$, where $(k, \ell) \in$ $\{(10,11),(12,13),(14,15),(16,17),(18,19)\}$ is a 6 -cycle in \mathcal{H}_{10}.

Similarly, the complete graph K_{10} with vertex set $\left[v_{10}, v_{19}\right]$ is Hamilton-path decomposable. Decompose each Hamilton-path P_{10} in the decomposition into a P_{7} and a P_{4}. For each $P_{7}:\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right)$ in the resulting decomposition of K_{10}, $\left(v_{j}-x_{1}-x_{2}, x_{2}-v_{j}-x_{3}, x_{3}-v_{j}-x_{4}, x_{4}-v_{j}-x_{5}, x_{5}-v_{j}-x_{6}, x_{6}-x_{7}-v_{j}\right)$, where $j \in[0,9]$, is a 6 -cycle in \mathcal{H}_{10}. For each $P_{4}:\left(y_{1}, y_{2}, y_{3}, y_{4}\right)$ in the resulting decomposition of $K_{10},\left(v_{k}-y_{2}-y_{1}\right.$, $\left.y_{1}-v_{\ell}-y_{2}, y_{2}-v_{k}-y_{3}, y_{3}-y_{2}-v_{\ell}, v_{\ell}-y_{3}-y_{4}, y_{4}-y_{3}-v_{k}\right)$, where $(k, \ell) \in\{(0,1),(2,3),(4,5),(6,7)$, $(8,9)\}$, is a 6 -cycle in \mathcal{H}_{10}.

The collection of all these 6 -cycles yields a decomposition of \mathcal{H}_{10} into 6 -cycles.

2.4 The hypergraph $K_{m, n}^{(3)}$

Define the 3-uniform hypergraph $K_{m, n}^{(3)}$ of order $m+n$ as follows. Let $V\left(K_{m, n}^{(3)}\right)=\left\{v_{i}\right.$: $\left.i \in \mathbb{Z}_{m+n}\right\}$ be grouped as $G_{0}=\left[v_{0}, v_{m-1}\right]$ and $G_{1}=\left[v_{m}, v_{m+n-1}\right]$. Let $\mathcal{E}\left(K_{m, n}^{(3)}\right)$ be the set of all 3 -edges $v_{a}-v_{b}-v_{c}$ such that v_{a}, v_{b} and v_{c} are not all from the same group, that is, at least one of v_{a}, v_{b}, v_{c} is an element of G_{0} and at least one of v_{a}, v_{b}, v_{c} is an element of G_{1}. Note that $\left|\mathcal{E}\left(K_{m, n}^{(3)}\right)\right|=\frac{m n(m+n-2)}{2}$ and $K_{m, m}^{(3)}=\mathcal{H}_{m}$. A necessary condition for the existence of a 6 -cycle decomposition of $K_{m, n}^{(3)}$ is that $12 \mid m n(m+n-2)$.

Lemma 2.7. If $m \equiv 1$ or $9(\bmod 12), n \equiv 0,1,4$ or $9(\bmod 12)$ and $n \geq 7$, then $K_{m, n}^{(3)}$ decomposes into 6-cycles.

Proof. By Theorem 1.1, K_{m} with vertex set $\left[v_{0}, v_{m-1}\right]$ is 6 -cycle decomposable. For each 6-cycle $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{1}\right)$ in the C_{6}-decomposition of K_{m}, the 6-cycle ($v_{j}{ }^{-}$ $\left.x_{1}-x_{2}, x_{2}-v_{j}-x_{3}, x_{3}-v_{j}-x_{4}, x_{4}-v_{j}-x_{5}, x_{5}-v_{j}-x_{6}, x_{6}-x_{1}-v_{j}\right)$, where $j \in[m, m+n-1]$ is a 6 cycle in $K_{m, n}^{(3)}$. By Theorem 1.2, K_{n} with vertex set $\left[v_{m}, v_{m+n-1}\right]$ is P_{7}-decomposable. For each $P_{7}:\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right)$ in the P_{7}-decomposition of $K_{n},\left(v_{i}-x_{1}-x_{2}\right.$, $\left.x_{2}-v_{i}-x_{3}, x_{3}-v_{i}-x_{4}, x_{4}-v_{i}-x_{5}, x_{5}-v_{i}-x_{6}, x_{6}-x_{7}-v_{i}\right)$, where $i \in[0, m-1]$, is a 6 -cycle in $K_{m, n}^{(3)}$. The collection of all these 6 -cycles yields a 6 -cycle decomposition of $K_{m, n}^{(3)}$.

Lemma 2.8. $K_{10,18}^{(3)}$ decomposes into 6-cycles.
Proof. The 6-cycle decomposition of $K_{10,18}^{(3)}$ is as follows.
The complete graph K_{10} with vertex set $\left[v_{0}, v_{9}\right]$ is Hamilton-path decomposable. Decompose each Hamilton-path P_{10} in the decomposition into a P_{7} and a P_{4}. For each $P_{7}:\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right)$ in the resulting decomposition of $K_{10},\left(v_{i}-x_{1}-x_{2}, x_{2}-v_{i}-\right.$ $\left.x_{3}, x_{3}-v_{i}-x_{4}, x_{4}-v_{i}-x_{5}, x_{5}-v_{i}-x_{6}, x_{6}-x_{7}-v_{i}\right)$, where $i \in[10,27]$, is a 6 -cycle in $K_{10,18}^{(3)}$. For each $P_{4}:\left(y_{1}, y_{2}, y_{3}, y_{4}\right)$ in the resulting decomposition of $K_{10},\left(v_{k}-y_{2}-y_{1}, y_{1}-v_{\ell}-y_{2}, y_{2^{-}}\right.$ $\left.v_{k}-y_{3}, y_{3}-y_{2}-v_{\ell}, v_{\ell}-y_{3}-y_{4}, y_{4}-y_{3}-v_{k}\right)$, where $(k, \ell) \in\{(10,11),(12,13), \ldots,(26,27)\}$, is a 6 -cycle in $K_{10,18}^{(3)}$.

For convenience, relabel the vertices in $\left[v_{10}, v_{27}\right]$ by $\left[u_{0}, u_{17}\right]$. The complete graph K_{18} with vertex set $\left[u_{0}, u_{17}\right]$ is decomposable into $25 P_{7}$'s, one P_{3} and one P_{2}. To see this, for $i \in\{0,1, \ldots, 8\}$, let
$H_{i}=u_{i} u_{i+1} u_{i+17} u_{i+2} u_{i+16} u_{i+3} u_{i+15} u_{i+4} u_{i+14} u_{i+5} u_{i+13} u_{i+6} u_{i+12} u_{i+7} u_{i+11} u_{i+8} u_{i+10} u_{i+9}$
be a Hamilton path decomposition of K_{18}, where subscripts are reduced modulo 18 . For $i \in\{0,1, \ldots, 7\}$, decompose H_{i} into

$$
\begin{array}{rll}
u_{i} u_{i+1} u_{i+17} u_{i+2} u_{i+16} u_{i+3} & \oplus & u_{i+3} u_{i+15} u_{i+4} u_{i+14} u_{i+5} u_{i+13} u_{i+6} \\
& \oplus & u_{i+6} u_{i+12} u_{i+7} u_{i+11} u_{i+8} u_{i+10} u_{i+9}
\end{array}
$$

a P_{6} and two copies of P_{7}. Decompose H_{8} into $u_{8} u_{9} u_{7} u_{10} u_{6} u_{11} u_{5} \oplus u_{5} u_{12} u_{4} u_{13} u_{3} u_{14} u_{2}$ $\oplus u_{2} u_{15} u_{1} \oplus u_{1} u_{16} \oplus u_{16} u_{0} \oplus u_{0} u_{17}$, two copies of P_{7}, one P_{3} and three P_{2} 's. Now decompose (eight P_{6} 's and two P_{2} 's) $\left\{u_{i} u_{i+1} u_{i+17} u_{i+2} u_{i+16} u_{i+3}: i \in\{0,1, \ldots, 7\}\right\} \cup$
$\left\{u_{1} u_{16}, u_{0} u_{17}\right\}$ into (seven P_{7} 's) $\left\{u_{17} u_{0} u_{1} u_{17} u_{2} u_{16} u_{3}, u_{16} u_{1} u_{2} u_{0} u_{3} u_{17} u_{4}, u_{2} u_{3} u_{1} u_{4} u_{0}\right.$ $\left.u_{5} u_{10}, u_{3} u_{4} u_{2} u_{5} u_{1} u_{6} u_{9}, u_{4} u_{5} u_{3} u_{6} u_{2} u_{7} u_{8}, u_{5} u_{6} u_{4} u_{7} u_{3} u_{8} u_{6}, u_{6} u_{7} u_{5} u_{8} u_{4} u_{9} u_{5}\right\}$. For each $P_{7}:\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right)$ in the resulting decomposition of $K_{18},\left(v_{i}-x_{1}-x_{2}, x_{2}-v_{i^{-}}\right.$ $\left.x_{3}, x_{3}-v_{i}-x_{4}, x_{4}-v_{i}-x_{5}, x_{5}-v_{i}-x_{6}, x_{6}-x_{7}-v_{i}\right)$, where $i \in[0,9]$, is a 6 -cycle in $K_{10,18}^{(3)}$. Obtain from $P_{3} \cup P_{2}: u_{2} u_{15} u_{1} \cup u_{0} u_{16},\left(v_{k}-u_{15}-u_{2}, u_{2}-v_{\ell}-u_{15}, u_{15}-v_{k}-u_{1}, u_{1}-u_{15}-v_{\ell}, v_{\ell}-u_{0}-u_{16}\right.$, $\left.u_{16}-u_{0}-v_{k}\right)$, where $(k, \ell) \in\{(0,1),(2,3), \ldots,(8,9)\}$, a 6 -cycle in $K_{10,18}^{(3)}$.

The collection of all these 6 -cycles yields a decomposition of $K_{10,18}^{(3)}$ into 6 -cycles. \square
Lemma 2.9. $K_{29,36}^{(3)}$ decomposes into 6-cycles.
Proof. The complete graph K_{29} with vertex set $\left[v_{0}, v_{28}\right]$ is Hamilton-cycle decomposable. Decompose each Hamilton-cycle C_{29} in the decomposition into four P_{7}, one P_{4} and one P_{3}. For each $P_{7}:\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right)$ in the resulting decomposition of $K_{29},\left(v_{i}-x_{1}-x_{2}, x_{2}-v_{i}-x_{3}, x_{3}-v_{i}-x_{4}, x_{4}-v_{i}-x_{5}, x_{5}-v_{i}-x_{6}, x_{6}-x_{7}-v_{i}\right)$, where $i \in[29,64]$, is a 6 -cycle in $K_{29,36}^{(3)}$. For each $P_{4}:\left(y_{1}, y_{2}, y_{3}, y_{4}\right)$ in the resulting decomposition of $K_{29},\left\{v_{k}-y_{2}-y_{1}, y_{1}-v_{\ell}-y_{2}, y_{2}-v_{k}-y_{3}, y_{3}-y_{2}-v_{\ell}, v_{\ell}-y_{3}-y_{4}, y_{4}-y_{3}-v_{k}\right\}$, where $(k, \ell) \in$ $\{(29,30),(31,32), \ldots,(63,64)\}$, is a 6 -cycle in $K_{29,36}^{(3)}$. For each $P_{3}:\left(z_{1}, z_{2}, z_{3}\right)$ in the resulting decomposition of $K_{29},\left\{z_{2}-z_{3}-v_{k}, v_{k^{-}} z_{2}-z_{1}, z_{1}-z_{2}-v_{\ell}, v_{\ell^{-}} z_{2}-z_{3}, z_{3}-z_{2}-v_{m}, v_{m^{-}}\right.$ $\left.z_{1}-z_{2}\right\}$, where $(k, \ell, m) \in\{(29,30,31),(32,33,34), \ldots,(62,63,64)\}$, is a 6 -cycle in $K_{29,36}^{(3)}$.

By Theorem 1.2, the complete graph K_{36} with vertex set $\left[v_{29}, v_{64}\right]$ is P_{7}-decomposable. For each $P_{7}:\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right)$ in the P_{7}-decomposition of K_{36}, $\left(v_{i}-x_{1}-x_{2}, x_{2}-v_{i}-x_{3}, x_{3}-v_{i}-x_{4}, x_{4}-v_{i}-x_{5}, x_{5}-v_{i}-x_{6}, x_{6}-x_{7}-v_{i}\right)$, where $i \in[0,28]$, is a 6 -cycle in $K_{29,36}^{(3)}$.

The collection of all these 6-cycles yields a decomposition of $K_{29,36}^{(3)}$ into 6-cycles.

$2.5 K_{n}^{(3)}$ to $K_{n+1}^{(3)}$

Lemma 2.10. If $n \geq 7, n \equiv 0,1,4$, or $9(\bmod 12)$ and the hypergraph $K_{n}^{(3)}$ has a 6 -cycle decomposition, then the hypergraph $K_{n+1}^{(3)}$ has a 6 -cycle decomposition.

Proof. Let $V\left(K_{n+1}^{(3)}\right)=\{\infty\} \cup\left\{v_{i}: i \in \mathbb{Z}_{n}\right\}$ and $\mathcal{E}\left(K_{n+1}^{(3)}\right)=\mathcal{E}\left(K_{n}^{(3)}\right) \cup\left\{\left(\infty-v_{i^{-}}\right.\right.$ $\left.\left.v_{j}\right) \mid i, j \in[0, n-1]\right\}$. By hypothesis, $K_{n}^{(3)}$ has a 6 -cycle decomposition. It is enough to prove that the remaining 3 -uniform hypergraph $\left\{\infty-v_{i}-v_{j} \mid i, j \in[0, n-1]\right\}$ admits a 6 -cycle decomposition. By Theorem 1.2, the complete graph K_{n} has a $P_{7^{-}}$ decomposition. Let \mathcal{P} be the set of all paths of length 6 in the decomposition of K_{n}. If $P_{7}=\left(v_{0}, v_{1}, \ldots, v_{6}\right) \in \mathcal{P}$, then $\left(\infty-v_{0}-v_{1}, v_{1}-\infty-v_{2}, \ldots, v_{4}-\infty-v_{5}, v_{5}-v_{6}-\infty\right)$ is a 6 -cycle in $K_{n+1}^{(3)}$. Applying the method to each path $P_{7} \in \mathcal{P}$, we get a 6 -cycle decomposition of $K_{n+1}^{(3)}$.

$3 n \equiv 0(\bmod 18)$

Lemma 3.1. $K_{9}^{(3)}$ decomposes into 6-cycles.
Proof. A 6-cycle decomposition of $K_{9}^{(3)}$ is as follows:

$$
\begin{aligned}
& \left(v_{0}-v_{1}-v_{2}, v_{2}-v_{3}-v_{4}, v_{4}-v_{5}-v_{6}, v_{6}-v_{7}-v_{8}, v_{8}-v_{4}-v_{3}, v_{3}-v_{2}-v_{0}\right), \\
& \left(v_{0}-v_{1}-v_{3}, v_{3}-v_{2}-v_{5}, v_{5}-v_{7}-v_{4}, v_{4}-v_{6}-v_{8}, v_{8}-v_{5}-v_{7}, v_{7}-v_{8}-v_{0}\right), \\
& \left(v_{0}-v_{2}-v_{4}, v_{4}-v_{1}-v_{3}, v_{3}-v_{0}-v_{5}, v_{5}-v_{2}-v_{1}, v_{1}-v_{4}-v_{8}, v_{8}-v_{5}-v_{0}\right), \\
& \left(v_{0}-v_{4}-v_{1}, v_{1}-v_{5}-v_{6}, v_{6}-v_{8}-v_{2}, v_{2}-v_{5}-v_{7}, v_{7}-v_{0}-v_{4}, v_{4}-v_{5}-v_{0}\right), \\
& \left(v_{0}-v_{8}-v_{3}, v_{3}-v_{5}-v_{1}, v_{1}-v_{7}-v_{4}, v_{4}-v_{3}-v_{7}, v_{7}-v_{4}-v_{6}, v_{6}-v_{8}-v_{0}\right), \\
& \left(v_{0}-v_{8}-v_{1}, v_{1}-v_{3}-v_{8}, v_{8}-v_{5}-v_{3}, v_{3}-v_{7}-v_{6}, v_{6}-v_{4}-v_{2}, v_{2}-v_{6}-v_{0}\right), \\
& \left(v_{1}-v_{0}-v_{6}, v_{6}-v_{4}-v_{0}, v_{0}-v_{6}-v_{7}, v_{7}-v_{2}-v_{3}, v_{3}-v_{4}-v_{5}, v_{5}-v_{4}-v_{1}\right), \\
& \left(v_{4}-v_{3}-v_{0}, v_{0}-v_{5}-v_{6}, v_{6}-v_{8}-v_{1}, v_{1}-v_{6}-v_{7}, v_{7}-v_{1}-v_{8}, v_{8}-v_{0}-v_{4}\right), \\
& \left(v_{5}-v_{6}-v_{7}, v_{7}-v_{4}-v_{8}, v_{8}-v_{3}-v_{6}, v_{6}-v_{5}-v_{2}, v_{2}-v_{8}-v_{4}, v_{4}-v_{2}-v_{5}\right), \\
& \left(v_{5}-v_{2}-v_{0}, v_{0}-v_{7}-v_{3}, v_{3}-v_{1}-v_{7}, v_{7}-v_{0}-v_{2}, v_{2}-v_{7}-v_{6}, v_{6}-v_{3}-v_{5}\right), \\
& \left(v_{6}-v_{5}-v_{8}, v_{8}-v_{2}-v_{3}, v_{3}-v_{6}-v_{2}, v_{2}-v_{3}-v_{1}, v_{1}-v_{2}-v_{4}, v_{4}-v_{3}-v_{6}\right), \\
& \left(v_{6}-v_{3}-v_{0}, v_{0}-v_{5}-v_{2}, v_{2}-v_{8}-v_{5}, v_{5}-v_{3}-v_{7}, v_{7}-v_{5}-v_{1}, v_{1}-v_{2}-v_{6}\right), \\
& \left(v_{7}-v_{8}-v_{2}, v_{2}-v_{0}-v_{8}, v_{8}-v_{7}-v_{3}, v_{3}-v_{1}-v_{6}, v_{6}-v_{4}-v_{1}, v_{1}-v_{2}-v_{7}\right), \\
& \left(v_{8}-v_{5}-v_{4}, v_{4}-v_{7}-v_{2}, v_{2}-v_{8}-v_{1}, v_{1}-v_{0}-v_{7}, v_{7}-v_{0}-v_{5}, v_{5}-v_{1}-v_{8}\right),
\end{aligned},
$$

Lemma 3.2. $K_{18}^{(3)}$ decomposes into 6 -cycles.
Proof. By Lemmas 3.1 and 2.3, $K_{9}^{(3)}$ and \mathcal{H}_{9} are, respectively, 6-cycle decomposable, and so is $K_{18}^{(3)}=2 K_{9}^{(3)} \oplus \mathcal{H}_{9}$.
Lemma 3.3. For each positive integer $n \geq 36$, with $n \equiv 0(\bmod 18), K_{n}^{(3)}$ decomposes into 6-cycles.

Proof. Let $n=18 k$ where $k \geq 2$ is a positive integer. We may think of $K_{n}^{(3)}$ as k copies of $K_{18}^{(3)}, k(k-1) / 2$ copies of \mathcal{H}_{18} and $k(k-1)(k-2) / 6$ copies of $\mathcal{H}_{18}^{\prime}$. That is: for $k=2, K_{36}^{(3)}=2 K_{18}^{(3)} \oplus \mathcal{H}_{18}$; and for $k \geq 3, K_{18 k}^{(3)}=k K_{18}^{(3)} \oplus \frac{k(k-1)}{2} \mathcal{H}_{18} \oplus \frac{k(k-1)(k-2)}{6} \mathcal{H}_{18}^{\prime}$. As each of the hypergraphs $K_{18}^{(3)}, \mathcal{H}_{18}$ and $\mathcal{H}_{18}^{\prime}$ is decomposable into 6 -cycles by Lemmas 3.2, 2.5 and 2.1, respectively, we have the required decomposition.

$4 \quad n \equiv 2(\bmod 18)$

Lemma 4.1. $K_{20}^{(3)}$ decomposes into 6 -cycles.
Proof. By Lemmas 2.10 and 2.6, $K_{10}^{(3)}$ and \mathcal{H}_{10} are, respectively, 6-cycle decomposable and so is $K_{20}^{(3)}=2 K_{10}^{(3)} \oplus \mathcal{H}_{10}$.

Lemma 4.2. For each positive integer $n \geq 38$, with $n \equiv 2(\bmod 18)$, $K_{n}^{(3)}$ decomposes into 6-cycles.

Proof. Let $n=18 k+2$ where $k \geq 2$ is a positive integer. We may think of $K_{n}^{(3)}$ as k copies of $K_{20}^{(3)}, k(k-1) / 2$ copies of $\mathcal{H}_{18}, k(k-1)(k-2) / 6$ copies of $\mathcal{H}_{18}^{\prime}$ and $k(k-1)$ copies of $\mathcal{H}_{18}^{\prime \prime}$. That is: for $k \geq 2, K_{38}^{(3)}=2 K_{20}^{(3)} \oplus \mathcal{H}_{18} \oplus 2 \mathcal{H}_{18}^{\prime \prime}$; and for $k \geq 3, K_{18 k+2}^{(3)}=k K_{20}^{(3)} \oplus \frac{k(k-1)}{2} \mathcal{H}_{18} \oplus \frac{k(k-1)(k-2)}{6} \mathcal{H}_{18}^{\prime} \oplus k(k-1) \mathcal{H}_{18}^{\prime \prime}$. As each of the hypergraphs $K_{20}^{(3)}, \mathcal{H}_{18}, \mathcal{H}_{18}^{\prime}$ and $\mathcal{H}_{18}^{\prime \prime}$ is decomposable into 6 -cycles by Lemmas 4.1, 2.5, 2.1 and 2.2 , respectively, we have the required decomposition.

$5 n \equiv 1(\bmod 36)$

Lemma 5.1. For each positive integer $n \geq 37$, with $n \equiv 1(\bmod 36), K_{n}^{(3)}$ decomposes into 6-cycles.
Proof. By Lemma 3.3, $K_{36}^{(3)}$ is decomposable into 6-cycles, and therefore by Lemma 2.10, $K_{37}^{(3)}$ is decomposable into 6 -cycles.

Let $n=36 k+1$, where $k \geq 2$ is a positive integer. We may think of $K_{n}^{(3)}$ as k copies of $K_{36}^{(3)}, k(k-1) / 2$ copies of $\mathcal{H}_{36}, k(k-1)(k-2) / 6$ copies of $\mathcal{H}_{36}^{\prime}$ and $k(k-1) / 2$ copies of $\mathcal{H}_{36}^{\prime \prime}$. That is: for $k=2, K_{73}^{(3)}=2 K_{37}^{(3)} \oplus \mathcal{H}_{36} \oplus \mathcal{H}_{36}^{\prime \prime}$; and for $k \geq 3, K_{36 k+1}^{(3)}=k K_{37}^{(3)} \oplus \frac{k(k-1)}{2} \mathcal{H}_{36} \oplus \frac{k(k-1)(k-2)}{6} \mathcal{H}_{36}^{\prime} \oplus \frac{k(k-1)}{2} \mathcal{H}_{36}^{\prime \prime}$. As each of the hypergraphs $K_{37}^{(3)}, \mathcal{H}_{36}, \mathcal{H}_{36}^{\prime}$ and $\mathcal{H}_{36}^{\prime \prime}$ is decomposable into 6 -cycles by above and by Lemmas 2.5, 2.1 and 2.2, respectively, we have the required decomposition.

$6 \quad n \equiv 10(\bmod 18)$

Lemma 6.1. $K_{10}^{(3)}$ decomposes into 6-cycles.
Proof. By Lemma 3.1, $K_{9}^{(3)}$ is decomposable into 6 -cycles, and therefore by Lemma 2.10, $K_{10}^{(3)}$ is decomposable into 6-cycles.
Lemma 6.2. $K_{28}^{(3)}$ decomposes into 6 -cycles.
Proof. By Lemmas 6.1, 3.2 and 2.8, $K_{10}^{(3)}, K_{18}^{(3)}$ and $K_{10,18}^{(3)}$ are, respectively, 6-cycle decomposable, and so is $K_{28}^{(3)}=K_{10}^{(3)} \oplus K_{18}^{(3)} \oplus K_{10,18}^{(3)}$.
Lemma 6.3. For each positive integer $n \geq 46$, with $n \equiv 10(\bmod 18), K_{n}^{(3)}$ decomposes into 6-cycles.
Proof. Let $n=18 k+10$, where $k \geq 2$ is a positive integer. We may think of $K_{n}^{(3)}$ as an edge-disjoint union of a copy of $K_{10}^{(3)}, k$ copies of $K_{18}^{(3)}, k$ copies of $K_{10,18}^{(3)}$, $k(k-1) / 2$ copies of $\mathcal{H}_{18}, k(k-1)(k-2) / 6$ copies of $\mathcal{H}_{18}^{\prime}$ and $5 k(k-1)$ copies of $\mathcal{H}_{18}^{\prime \prime}$. That is: for $k=2, K_{46}^{(3)}=K_{10}^{(3)} \oplus 2 K_{18}^{(3)} \oplus 2 K_{10,18}^{(3)} \oplus \mathcal{H}_{18} \oplus 10 \mathcal{H}_{18}^{\prime \prime}$; and for $k \geq 3$, $K_{18 k+10}^{(3)}=K_{10}^{(3)} \oplus k K_{18}^{(3)} \oplus k K_{10,18}^{(3)} \oplus \frac{k(k-1)}{2} \mathcal{H}_{18} \oplus \frac{k(k-1)(k-2)}{6} \mathcal{H}_{18}^{\prime} \oplus 5 k(k-1) \mathcal{H}_{18}^{\prime \prime}$. As each of the hypergraphs $K_{10}^{(3)}, K_{18}^{(3)}, K_{10,18}^{(3)}, \mathcal{H}_{18}, \mathcal{H}_{18}^{\prime}$ and $\mathcal{H}_{18}^{\prime \prime}$ is decomposable into 6 -cycles by Lemmas 6.1, 3.2, 2.8, 2.5, 2.1 and 2.2 , respectively, we have the required decomposition.

$7 n \equiv 9(\bmod 36)$

Lemma 7.1. For each positive integer $n \geq 45$, with $n \equiv 9(\bmod 36), K_{n}^{(3)}$ decomposes into 6-cycles.

Proof. Let $n=36 k+9$, where k is a positive integer. We may think of $K_{n}^{(3)}$ as an edgedisjoint union of a copy of $K_{9}^{(3)}, k$ copies of $K_{36}^{(3)}, k$ copies of $K_{9,36}^{(3)}, k(k-1) / 2$ copies of $\mathcal{H}_{36}, k(k-1)(k-2) / 6$ copies of $\mathcal{H}_{36}^{\prime}$ and $9 k(k-1) / 2$ copies of $\mathcal{H}_{36}^{\prime \prime}$. That is: for $k=1, K_{45}^{(3)}=K_{9}^{(3)} \oplus K_{36}^{(3)} \oplus K_{9,36}^{(3)} ;$ for $k=2, K_{81}^{(3)}=K_{9}^{(3)} \oplus 2 K_{36}^{(3)} \oplus 2 K_{9,36}^{(3)} \oplus \mathcal{H}_{36} \oplus 9 \mathcal{H}_{36}^{\prime \prime}$; and for $k \geq 3, K_{36 k+9}^{(3)}=K_{9}^{(3)} \oplus k K_{36}^{(3)} \oplus k K_{9,36}^{(3)} \oplus \frac{k(k-1)}{2} \mathcal{H}_{36} \oplus \frac{k(k-1)(k-2)}{6} \mathcal{H}_{36}^{\prime} \oplus 9 \frac{k(k-1)}{2} \mathcal{H}_{36}^{\prime \prime}$. As each of the hypergraphs $K_{9}^{(3)}, K_{36}^{(3)}, K_{9,36}^{(3)}, \mathcal{H}_{36}, \mathcal{H}_{36}^{\prime}$ and $\mathcal{H}_{36}^{\prime \prime}$ is decomposable into 6 -cycles by Lemmas 3.1, 3.3, 2.7, 2.5, 2.1 and 2.2, respectively, we have the required decomposition.

$8 \quad n \equiv 29(\bmod 36)$

Lemma 8.1. $K_{29}^{(3)}$ decomposes into 6 -cycles.
Proof. By Lemma 6.2, $K_{28}^{(3)}$ is decomposable into 6-cycles, and therefore by Lemma 2.10, $K_{29}^{(3)}$ is decomposable into 6-cycles.

Lemma 8.2. For each positive integer $n \geq 65$, with $n \equiv 29(\bmod 36), K_{n}^{(3)}$ decomposes into 6-cycles.

Proof. Let $n=36 k+29$, where k is a positive integer. We may think of $K_{n}^{(3)}$ as an edge-disjoint union of a copy of $K_{29}^{(3)}, k$ copies of $K_{36}^{(3)}, k$ copies of $K_{29,36}^{(3)}$, $k(k-1) / 2$ copies of $\mathcal{H}_{36}, k(k-1)(k-2) / 6$ copies of $\mathcal{H}_{36}^{\prime}$ and $29 k(k-1) / 2$ copies of $\mathcal{H}_{36}^{\prime \prime}$. That is: for $k=1, K_{65}^{(3)}=K_{29}^{(3)} \oplus K_{36}^{(3)} \oplus K_{29,36}^{(3)}$; for $k=2, K_{101}^{(3)}=$ $K_{29}^{(3)} \oplus 2 K_{36}^{(3)} \oplus 2 K_{29,36}^{(3)} \oplus \mathcal{H}_{36} \oplus 29 \mathcal{H}_{36}^{\prime \prime}$; and for $k \geq 3, K_{36 k+29}^{(3)}=K_{29}^{(3)} \oplus k K_{36}^{(3)} \oplus$ $k K_{29,36}^{(3)} \oplus \frac{k(k-1)}{2} \mathcal{H}_{36} \oplus \frac{k(k-1)(k-2)}{6} \mathcal{H}_{36}^{\prime} \oplus 29 \frac{k(k-1)}{2} \mathcal{H}_{36}^{\prime \prime}$. As each of the hypergraphs $K_{29}^{(3)}$, $K_{36}^{(3)}, K_{29,36}^{(3)}, \mathcal{H}_{36}, \mathcal{H}_{36}^{\prime}$ and $\mathcal{H}_{36}^{\prime \prime}$ is decomposable into 6 -cycles by Lemmas 8.1, 3.3, $2.9,2.5,2.1$ and 2.2 , respectively, we have the required decomposition.

9 Main result

Theorem 9.1. For $n \geq 6$, the complete 3-uniform hypergraphs $K_{n}^{(3)}$ has a 6 -cycle decomposition if and only if $n \equiv 0(\bmod 18), 2(\bmod 18), 10(\bmod 18), 1(\bmod 36)$, $9(\bmod 36)$ or $29(\bmod 36)$.

Proof. This follows from Lemmas 1.1, 3.2, 3.3, 4.1, 4.2, 5.1, 6.1, 6.2, 6.3, 3.1, 7.1, 8.1 and 8.2.

Acknowledgements

We would like to thank the reviewers for their valuable suggestions which improved the presentation of the article.

References

[1] J. C. Bermond, Hamiltonian decompositions of graphs, directed graphs and hypergraphs, Ann. Discrete Math. 3 (1978), 21-28.
[2] J. C. Bermond, A. Germa, M. C. Heydemann and D. Sotteau, Hypergraphes hamiltoniens, in Probl̀mes combinatoires et thérie des graphes, (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976), pp. 39-43, Colloq. Internat. CNRS, 260, CNRS, Paris, 1978.
[3] D. Bryant, S. Herke, B. Maenhaut and W. Wannasit, Decompositions of complete 3 -uniform hypergraphs into small 3 -uniform hypergraphs, Australas. J. Combin. 60 (2) (2014), 227-254.
[4] H. Jordon and G. Newkirk, 4-Cycle decompositions of complete 3-uniform hypergraphs, Australas. J. Combin. 71 (2) (2018), 312-323.
[5] D. Kühn and D. Osthus, Decompositions of complete uniform hypergraphs into Hamilton Berge cycles, J. Combin. Theory Ser. A 126 (2014), 128-135.
[6] P. Petecki, On cyclic hamiltonian decompositions of complete k-uniform hypergraphs, Discrete Math. 325 (2014), 74-76.
[7] M. Šajna, Cycle decompositions III: Complete graphs and fixed length cycles, J. Combin. Des. 10, no. 1, (2002), 27-78.
[8] D. Sotteau, Decompositions of $K_{m, n}\left(K_{m, n}^{*}\right)$ into cycles (circuits) of length $2 k$, J. Combin. Theory Ser. $B 29$ (1981), 75-81.
[9] M. Tarsi, Decomposition of a complete multigraph into simple paths: nonbalanced handcuffed designs, J. Combin. Theory Ser. A 34 (1) (1983), 60-70.
[10] H. Verrall, Hamilton decompositions of complete 3-uniform hypergraphs, Discrete Math. 132 (1994), 333-348.

