On the construction of weighing matrices using negacyclic matrices

Tianbing Xia
School of Computing and Information Technology
University of Wollongong, NSW 2522
Australia
txia@uow.edu.au
Guoxin Zuo Mingyuan Xia
School of Mathematics and Statistics
Central China Normal University
Wuhan, Hubei 430079
P. R. China
zuogx@mail.ccnu.edu.cn xiamy@mail.ccnu.edu.cn
LiAntang Lou
College of Mathematics and Statistics
South-Central University for Nationalities
Wuhan, Hubei 430074
P. R. China
louliantang@163.com

Abstract

We construct weighing matrices by 2 -suitable negacyclic matrices, and study the conjecture by J.S. Wallis in 1972 that "For every $n \equiv 2$ $(\bmod 4)$, there exist weighing matrices $W(2 n, w)$ constructed from two circulant / negacyclic $(0, \pm 1)$ matrices of order n for every $0<w \leq 2 n$."

1 Introduction

A weighing matrix $W(n, w)$ is a $(0, \pm 1)$ square matrix of order n that satisfies $W W^{T}=w I_{n}$, where W^{T} is the transpose of the matrix W and I_{n} is the identity matrix of order n and w is the weight of the matrix. When $w=n$, a weighing matrix is a Hadamard matrix. When $w=n-1$, a weighing matrix is a conference
matrix, or a C-matrix. Delsarte, Goethals and Seidel [3] studied the types of weighing matrix of weights n and $n-1$, based on circulant and negacyclic matrices which we now define.

Throughout this paper indices for matrices and sequences begin with 0 . A negacyclic shift matrix P is a square matrix of order n, in which all entries $p_{i, j}$ are defined as follows:

$$
\begin{cases}p_{i, i+1}=1, & i=0,1, \ldots, n-2 \\ p_{n-1,0}=-1, \\ p_{i, j}=0, & \text { otherwise }\end{cases}
$$

The negacyclic shift matrix has the form

$$
P=\left(\begin{array}{rrrrr}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & & \vdots \\
\vdots \\
0 & 0 & 0 & \ldots & 1 \\
-1 & 0 & 0 & \ldots & 0
\end{array}\right) .
$$

It is easily checked that $P^{n}=-I_{n},\left(P^{i}\right)^{T}=P^{-i}$, for all i, j.
We denote the first row of a square matrix $A=\left(a_{i j}\right)$ of order n by $\left(a_{0}, a_{1}, \ldots\right.$, $\left.a_{n-1}\right)$. Then the entries of A are defined as follows:

$$
a_{i, j}= \begin{cases}a_{j-i}, & \text { where } 0 \leq i \leq j \leq n-1, \\ -a_{n+j-i}, & \text { where } 0 \leq j<i \leq n-1 .\end{cases}
$$

We call A a negacyclic matrix. The matrix A can also be defined as $A=\sum_{i=0}^{n-1} a_{i} P^{i}$. It is obvious that A^{T} is a negacyclic matrix.

Definition 1.1 (k-suitable negacyclic matrices) The k negacyclic matrices A_{1}, \ldots, A_{k} of order n are called k-suitable negacyclic matrices if

$$
\begin{equation*}
A_{1} A_{1}^{T}+\cdots+A_{k} A_{k}^{T}=w I_{n} \tag{1.1}
\end{equation*}
$$

for an integer w.
Recall that a circulant matrix A is one of the form $A=\sum_{i=0}^{n-1} a_{i} C^{i}$, where $\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$ is the first row of the square matrix A, and C is a cyclic shift matrix defined as

$$
C=\left(\begin{array}{rrrrr}
0 & 0 & \ldots & 0 & 1 \\
1 & 0 & \ldots & 0 & 0 \\
\vdots & \vdots & & \vdots & \vdots \\
\vdots \\
0 & 0 & \ldots & 0 & 0 \\
0 & 0 & \ldots & 1 & 0
\end{array}\right) .
$$

In this paper, we are interested in the case $k=2$.
Geramita and Seberry [5] conjectured the following.

Conjecture 1.1 For every $n>0$ where n is odd, there exist weighing matrices $W(2 n, w)$, where $w=a^{2}+b^{2}$, with a and b integers.

We also study the conjecture (J.S. Wallis [10]) below.
Conjecture 1.2 For every $n \equiv 2(\bmod 4)$, there exists a weighing matrix $W(2 n, w)$ constructed from two circulant or two negacyclic $(0, \pm 1)$ matrices of order n, for every w with $0 \leq w \leq 2 n$.

The rest of the paper is organized as follows. In Section 2 we give some definitions. In Section 3 we study the relationships between Golay sequences, ternary complementary pairs, and suitable sequences. In Section 4 we construct weighing matrices by 2-suitable negacyclic matrices. In Appendices A and B we list some results of weighing matrices constructed by 2-suitable negacyclic matrices.

2 Preliminaries

Definition 2.1 The weight of a sequence $a=\left(a_{0}, \ldots, a_{n-1}\right)$, denoted by $|a|$, is the total number of non-zero elements $\left(a_{i} \neq 0\right)$.

For two $(0, \pm 1)$ sequences a and b of length n, let s and t, respectively, be their weights. The sum $w=s+t$ is called the total weight of a and b.

Definition 2.2 The weight of a circulant matrix (or negacyclic matrix) A, denoted by $|A|$, is the weight of its first row.

Definition 2.3 The Kronecker product of two sequences $a=\left(a_{0}, \ldots, a_{n-1}\right)$ and $b=\left(b_{0}, \ldots, b_{m-1}\right)$ is denoted by

$$
a \otimes b=\left(a_{0} b_{0}, a_{0} b_{1}, \ldots, a_{0} b_{m-1}, \ldots, a_{n-1} b_{0}, a_{n-1} b_{1}, \ldots, a_{n-1} b_{m-1}\right) .
$$

Definition 2.4 The Kronecker product of two matrices

$$
A=\left(\begin{array}{llll}
a_{0,0} & a_{0,1} & \ldots & a_{0, m-1} \\
\ldots & \ldots & \ldots & \ldots \\
a_{n-1,0} & a_{n-1,1} & \ldots & a_{n-1, m-1}
\end{array}\right) \text { and } B=\left(\begin{array}{llll}
b_{0,0} & b_{0,1} & \ldots & b_{0, s-1} \\
\ldots & \ldots & \ldots & \ldots \\
b_{r-1,0} & b_{r-1,1} & \ldots & b_{r-1, s-1}
\end{array}\right)
$$

is denoted by

$$
A \otimes B=\left(\begin{array}{llll}
a_{0,0} B & a_{0,1} B & \ldots & a_{0, m-1} B \\
\ldots & \ldots & \ldots & \ldots \\
a_{n-1,0} B & a_{n-1,1} B & \ldots & a_{n-1, m-1} B
\end{array}\right) .
$$

Definition 2.5 A non-periodic autocorrelation function (NPAF) $N_{a}(j)$ of a sequence $a=\left(a_{0}, \ldots, a_{n-1}\right)$ is defined as

$$
N_{a}(j)=\sum_{i=0}^{n-1-j} a_{i} a_{i+j}, \quad j=0, \ldots, n-1 .
$$

Consider $(i+j) \bmod n$; then we have:
Definition 2.6 A periodic autocorrelation function (PAF) $P_{a}(j)$ of a sequence $a=$ $\left(a_{0}, \ldots, a_{n-1}\right)$ is defined as

$$
P_{a}(j)=\sum_{i=0}^{n-1} a_{i} a_{i+j}, \quad j=0, \ldots, n-1,
$$

where $i+j$ represents $(i+j) \bmod n$.
Golay sequences were introduced by Golay in 1949 [4].
Definition 2.7 (Golay sequences) Two ($1,-1$) sequences of length n, say a and b, are called Golay sequences (or Golay complementary sequences) if $N_{a}(i)+N_{b}(i)=0$ for $0<i<n$.

Definition 2.8 (Ternary complementary pairs) Two ($0, \pm 1$) sequences of length n, say a and b, are called ternary complementary pairs (TCPs) if $N_{a}(i)+N_{b}(i)=0$ for $0<i<n$.

Obviously, Golay sequences are TCPs.
Sequences of length n with zero NPAF or zero PAF can form the first rows of circulant or negacyclic matrices which can be used to construct Hadamard matrices, orthogonal designs and weighing matrices. See [3, 8] for more details. Arasu, Leung, et al. [1] have done a complete search of circulant weighing matrices of order 16.

For two sequences $a=\left(a_{0}, \ldots, a_{n-1}\right)$ and $b=\left(b_{0}, \ldots, b_{n-1}\right)$, we define

$$
\langle a, b\rangle=\sum_{i=0}^{n-1} a_{i} b_{i} .
$$

For a sequence $a=\left(a_{0}, \ldots, a_{n-1}\right)$ of length n, we define a nega-shift operator $f(a)$ as

$$
\begin{equation*}
f(a)=\left(-a_{n-1}, a_{0}, \ldots, a_{n-2}\right) \tag{2.1}
\end{equation*}
$$

It is easy to see that $f^{n}(a)=-a$. Define a shift operator $s(a)$ as

$$
\begin{equation*}
s(a)=\left(a_{n-1}, a_{0}, \ldots, a_{n-2}\right) \tag{2.2}
\end{equation*}
$$

Then $s^{n}(a)=a$.
Let $x=\left(x_{0}, \ldots, x_{n-1}\right)$; then

$$
\begin{equation*}
\left\langle x, f^{j}(x)\right\rangle=N_{x}(j)-N_{x}(n-j), \quad 0 \leq j<n . \tag{2.3}
\end{equation*}
$$

Theorem 2.1 If a and b form a pair of Golay sequences or TCPs then the negacycles with first rows a and b form a pair of 2-suitable negacyclic matrices.

Proof. Note that with these definitions in (2.3), if two sequences $a=\left(a_{0}, \ldots, a_{n-1}\right)$ and $b=\left(b_{0}, \ldots, b_{n-1}\right)$, where $a_{i}, b_{i} \in\{0, \pm 1\}, 0 \leq i<n$, are Golay sequences or TCPs, then

$$
N_{a}(j)+N_{b}(j)=0, \quad 0<j<n .
$$

We have, for $0<j<n$,

$$
\begin{aligned}
\left\langle a, f^{j}(a)\right\rangle+\left\langle b, f^{j}(b)\right\rangle & =\left(N_{a}(j)-N_{a}(n-j)\right)+\left(N_{b}(j)-N_{b}(n-j)\right) \\
& =\left(N_{a}(j)+N_{b}(j)\right)-\left(N_{a}(n-j)+N_{b}(n-j)\right) \\
& =0
\end{aligned}
$$

Let a and b be the first rows of two negacyclic matrices A and B. Then A and B are 2-suitable negacyclic matrices that satisfy (1.1) with $w=2$. The proof is now complete.

Example 2.1 Let $a=(1,0,1), b=(1,0,-1)$, where a and b are Golay complement sequences with zero NPAF for $j=1,2$. The two negacyclic matrices

$$
A=\left(\begin{array}{rrr}
1 & 0 & 1 \\
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right) \text { and } B=\left(\begin{array}{rrr}
1 & 0 & -1 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right)
$$

that are formed by the sequences a and b, are 2-suitable negacyclic matrices.
Golay sequences and TCPs have been studied by many researchers. See $[2, ~ ?, 7]$ for more details.

Definition 2.9 (k-suitable sequences) The $k(0, \pm 1)$ sequences of length n, say a_{1}, \ldots, a_{k}, are called k-suitable sequences (k-SSs) for $0<j \leq\left\lfloor\frac{n}{2}\right\rfloor$ if

$$
N_{a_{1}}(j)+\cdots+N_{a_{k}}(j)=N_{a_{1}}(n-j)+\cdots+N_{a_{k}}(n-j) .
$$

Clearly, TCPs are 2-suitable sequences, but the converse is not always true.
Example 2.2 Let $a=(1,1,1), b=(1,0,1)$; here a and b are 2-suitable sequences, but not TCPs.

Let 0_{m} denote a sequence of length m with all elements zero.
Corollary 2.1 Let $a=\left(a_{0}, \ldots, a_{n-1}\right)$ and $b=\left(b_{0}, \ldots, b_{n-1}\right)$ be TCPs of length n. The sequences a^{\prime} and b^{\prime} are TCPs of length $l+m+n$ where

$$
a^{\prime}=\left(a, 0_{m+l}\right) \text { or }\left(0_{l}, a, 0_{m}\right) \text { or }\left(0_{m+l}, a\right)
$$

and

$$
b^{\prime}=\left(b, 0_{m+l}\right) \text { or }\left(0_{m}, b, 0_{l}\right) \text { or }\left(0_{m+l}, b\right) .
$$

Proof. Since $a=\left(a_{0}, \ldots, a_{n-1}\right)$ and $b=\left(b_{0}, \ldots, b_{n-1}\right)$ are TCPs of length n, we have for $j=0, \ldots, n-1$,

$$
N_{a}(j)+N_{b}(j)=\sum_{i=0}^{n-1-j} a_{i} a_{i+j}+\sum_{i=0}^{n-1-j} b_{i} b_{i+j}=0
$$

Without loss of generality, let $a^{\prime}=\left(0_{l}, a, 0_{m}\right), b^{\prime}=\left(b, 0_{l+m}\right)$. Then

$$
\begin{aligned}
N_{a^{\prime}}(j)+N_{b^{\prime}}(j)= & \sum_{i=0}^{l+m+n-1-j} a_{i}^{\prime} a_{i+j}^{\prime}+\sum_{i=0}^{l+m+n-1-j} b_{i}^{\prime} b_{i+j}^{\prime} \\
= & \left(\sum_{i=0}^{l-1} a_{i}^{\prime} a_{i+j}^{\prime}+\sum_{i=l}^{l+n-1} a_{i}^{\prime} a_{i+j}^{\prime}+\sum_{i=l+n}^{l+n+m-1-j} a_{i}^{\prime} a_{i+j}^{\prime}\right) \\
& +\left(\sum_{i=0}^{n-1} b_{i}^{\prime} b_{i+j}^{\prime}+\sum_{i=n}^{l+m+n-1-j} b_{i}^{\prime} b_{i+j}^{\prime}\right) \\
= & \sum_{i=l}^{l+n-1} a_{i}^{\prime} a_{i+j}^{\prime}+\sum_{i=0}^{n-1} b_{i}^{\prime} b_{i+j}^{\prime} \\
= & \sum_{i=0}^{n-1} a_{i} a_{i+j}+\sum_{i=0}^{n-1} b_{i} b_{i+j} \\
= & N_{a}(j)+N_{b}(j)=0 .
\end{aligned}
$$

The proof is now complete.

Lemma 2.1 Let $a=\left(a_{0}, \ldots, a_{n-1}\right)$ and $b=\left(b_{0}, \ldots, b_{n-1}\right)$ be the first rows of negacyclic matrices A and B, respectively, i.e.,

$$
A=\sum_{i=0}^{n-1} a_{i} P^{i}, \quad B=\sum_{i=0}^{n-1} b_{i} P^{i},
$$

where P is the negacyclic shift matrix of order n. Then A and B are 2-suitable negacyclic matrices if and only if a and b are 2-suitable sequences.

Proof. We have

$$
\begin{aligned}
A A^{T}+B B^{T}= & \sum_{i=0}^{n-1}\left(a_{i}^{2}+b_{i}^{2}\right) I_{n}+\sum_{i=1}^{n-1}\left(N_{a}(i)+N_{b}(i)\right)\left(P^{i}+P^{2 n-i}\right) \\
= & \sum_{i=0}^{n-1}\left(a_{i}^{2}+b_{i}^{2}\right) I_{n} \\
& +\sum_{i=1}^{\left\lfloor\frac{n}{2}\right\rfloor}\left(N_{a}(i)+N_{b}(i)-N_{a}(n-i)-N_{b}(n-i)\right)\left(P^{i}+P^{2 n-i}\right),
\end{aligned}
$$

where we use the fact that $P^{i}+P^{2 m-i}=-P^{m+i}-P^{m-i}$, for $0<i \leq\left\lfloor\frac{m}{2}\right\rfloor$. From the above it follows that A and B are 2-suitable negacyclic matrices if and only if, for $0<i \leq\left\lfloor\frac{n}{2}\right\rfloor$,

$$
N_{a}(i)+N_{b}(i)=N_{a}(n-i)+N_{b}(n-i),
$$

which means that the two sequences a and b are 2 -suitable sequences.

Corollary 2.2 The negacyclic matrices A_{1}, \ldots, A_{k} are k-suitable negacyclic matrices if and only if the first rows of A_{1}, \ldots, A_{k} are k-suitable sequences.

Proof. Using the same method as in the proof of Lemma 2.1, one can easily prove that the corollary is true.

Lemma 2.2 If there exist 2-suitable sequences of length n with weight w, then there exist 2-suitable sequences of length $m n$ with weight w for all $m>0$.

Proof. Suppose $a=\left(a_{0}, \ldots, a_{n-1}\right), b=\left(b_{0}, \ldots, b_{n-1}\right)$ are 2-suitable sequences of length n with weight w. Set $c=\left(c_{0}, \ldots, c_{m n-1}\right), d=\left(d_{0}, \ldots, d_{m n-1}\right)$, where

$$
c_{i}=\left\{\begin{array}{ll}
a_{j}, & i=m j, \tag{2.4}\\
0, & \text { otherwise },
\end{array} \quad d_{i}= \begin{cases}b_{j}, & i=m j \\
0, & \text { otherwise }\end{cases}\right.
$$

for $0 \leq j<n, 0 \leq i<m n$. It is easy to verify that c and d are 2 -suitable sequences of length $m n$ with weight w.

Example 2.3 The sequences $a=(1,1,1)$ and $b=(1,0,1)$ are 2-suitable sequences of length 3 with weight 5 . For $m=2$, we can construct $c=(1,0,1,0,1,0)$ and $d=(1,0,0,0,1,0)$ by using (2.4). Then c and d are 2 -suitable sequences of length 6 with weight 5 .

Proposition 2.1 If n is odd, there does not exist a pair of 2-suitable sequences of length n with weight w if w cannot be represented by a sum of two squares.

Proof. If there exist 2-suitable sequences of length n with weight w, we will show that w must be a sum of two squares. Set 2-suitable sequences $a=\left(a_{0}, \ldots, a_{n-1}\right)$, $b=\left(b_{0}, \ldots, b_{n-1}\right)$ and their corresponding negacyclic matrices A, B respectively. Let

$$
\begin{align*}
& c=\left(c_{0}, \ldots, c_{n-1}\right), \quad c_{i}=(-1)^{i} a_{i}, \tag{2.5}\\
& d=\left(d_{0}, \ldots, d_{n-1}\right), \quad d_{i}=(-1)^{i} b_{i},
\end{align*} \quad 0<i<n .
$$

Define two circulant matrices C and D with the first rows being c and d respectively. It is easy to see that $A A^{T}+B B^{T}=w I_{n}=C C^{T}+D D^{T}$. The matrix C has the
same sum of each row (column), and so does the matrix D, say w_{1}, w_{2}, respectively. Let J be an n-dimensional row vector with all elements 1 . We have

$$
w n=J\left(w I_{n}\right) J^{T}=J\left(C C^{T}+D D^{T}\right) J^{T}=\left(w_{1}^{2}+w_{2}^{2}\right) n .
$$

That is,

$$
w=w_{1}^{2}+w_{2}^{2}
$$

The proof is now complete.

3 Golay sequences, TCPs and suitable sequences

Theorem 3.1 Suppose $a=\left(a_{0}, \ldots, a_{n-1}\right)$ and $b=\left(b_{0}, \ldots, b_{n-2}, 0\right)$ are 2-suitable sequences, one of them being symmetric and the other skew (or symmetric). If n is even, $a_{i}=-a_{n-1-i}$ and $b_{i}=b_{n-2-i}$ for $0 \leq i \leq \frac{n}{2}$; if n is odd, $a_{i}=a_{n-1-i}$ and $b_{i}=-b_{n-2-i}$ for $0 \leq i \leq \frac{n}{2}$. Then there exists a suitable sequence of length $2 n$ with weight $|a|+|b|=\sum_{i=0}^{n-1}\left(\left|a_{i}\right|+\left|b_{i}\right|\right)$.

Proof. We write $(/ a, b)$ for the sequence $\left(a_{0}, b_{0}, \ldots, a_{n-1}, b_{n-1}\right)$. We will prove that $c=(/ a, b)$ is the required sequence. First, for $0<i \leq \frac{n}{2}$,

$$
N_{c}(2 i)=N_{a}(i)+N_{b}(i)=N_{a}(n-i)+N_{b}(n-i)=N_{c}(2 n-2 i) .
$$

Then, for $2 i+1,0 \leq i<\frac{n}{2}$, we have

$$
\begin{aligned}
N_{c}(2 i+1) & =\sum_{j=0}^{n-2-i}\left(a_{j} b_{i+j}+b_{j} a_{i+1+j}\right)=\sum_{j=0}^{n-2-i}\left(a_{j} b_{i+j}+b_{n-2-j} a_{i+j+1}\right) \\
& =\sum_{j=0}^{n-2-i} a_{j} b_{i+j}+\sum_{s=0}^{n-2-i} b_{s+i} a_{n-1-s}=\sum_{j=0}^{n-2-i}\left(a_{j}+a_{n-1-j}\right) b_{i+j} \\
& =\sum_{j=0}^{n-2-i}\left(a_{j}-a_{j}\right) b_{i+j}=0,
\end{aligned}
$$

or

$$
\begin{aligned}
N_{c}(2 i+1) & =\sum_{j=0}^{n-2-i} a_{j} b_{i+j}-\sum_{j=0}^{n-2-i} b_{j} a_{n-2-i-j}=\sum_{j=0}^{n-2-i} a_{j} b_{i+j}-\sum_{j=0}^{n-2-i} b_{n-2-j} a_{n-i-j} \\
& =\sum_{j=0}^{n-2-i} a_{j} b_{i+j}-\sum_{s=0}^{n-2-i} b_{s+i} a_{2+s}=0 .
\end{aligned}
$$

The proof is now complete.

n	$a ; b$
1	$1 ; 0$
2	$-1 ; 10$
3	$---;-10$
4	$--11 ;---0$
5	$1---1 ;--110$
6	$--1-11 ;--1--0$
7	$1-----1 ; 1--11-0$
8	$-----1--;--1-1--0$
9	$11-----11 ;--1-1-110$
10	$--1----1--;---1-1---0$
12	$----1--1----;-111-1-111-0$
13	$----1---1----;--11-1-1--110$
14	$-----1--1-----;-11-1-1-11--0$
15	$-------1-11--1--;--11-101-11----$
16	$----1--11--1----;$
	$--1-1----1-1--0$

Table 1: In this table we use "-" as an abbreviation for -1 .

Corollary 3.1 There exist 2 -suitable sequences of length $2 n$ with weight $2 n-1$ for $n=1,2,3,4,5,6,7,8,9,10,12,13,14,15,16,19,21,25,27$.

The details can be found in Table 1.

Lemma 3.1 If there exist TCPs of length n with weight w, then there exist TCPs of length t for all $t \geq n$ with weight w.

Proof. Let $a=\left(a_{0}, \ldots, a_{n-1}\right)$ and $b=\left(b_{0}, \ldots, b_{n-1}\right)$ be TCPs of order n with weight w. We have

$$
N_{a}(j)+N_{b}(j)=0,0<j<n .
$$

Set

$$
\begin{aligned}
& c=\left(c_{0}, \ldots, c_{t-1}\right)=\left(a_{0}, \ldots, a_{n-1}, 0_{t-n}\right), \\
& d=\left(d_{0}, \ldots, d_{t-1}\right)=\left(b_{0}, \ldots, b_{n-1}, 0_{t-n}\right) .
\end{aligned}
$$

For $t \geq n$, we have

$$
\begin{aligned}
N_{c}(j)+N_{d}(j) & =\sum_{i=0}^{t-1-j} c_{i} c_{i+j}+\sum_{i=0}^{t-1-j} d_{i} d_{i+j} \\
& =\left(\sum_{i=0}^{n-1-j} c_{i} c_{i+j}+\sum_{i=n-j}^{t-1-j} c_{i} c_{i+j}\right)+\left(\sum_{i=0}^{n-1-j} d_{i} d_{i+j}+\sum_{i=n-j}^{t-1-j} d_{i} d_{i+j}\right) \\
& =\left(\sum_{i=0}^{n-1-j} a_{i} a_{i+j}+\sum_{i=n-j}^{t-1-j} a_{i} \cdot 0\right)+\left(\sum_{i=0}^{n-1-j} b_{i} b_{i+j}+\sum_{i=n-j}^{t-1-j} b_{i} \cdot 0\right) \\
& =N_{a}(j)+N_{b}(j)=i 0, \quad 0<j<n .
\end{aligned}
$$

Thus c and d are TCPs of order t with weight w.
Let $a=\left(a_{0}, \ldots, a_{n-1}\right)$ be a sequence of length n; we denote the reverse of a by a^{*}, that is, $a^{*}=\left(a_{n-1}, \ldots, a_{0}\right)$.

Theorem 3.2 Let $n \equiv 2(\bmod 4)$. If there exist 2 -suitable sequences of length n with weight $2 n-1$, such that $a=\left(0, a_{1}, \ldots, a_{n-1}\right), b=\left(b_{0}, \ldots, b_{n-1}\right)$, where $a_{i}=a_{n-i}$, $b_{i-1}=b_{n-i}, 0<i \leq \frac{n}{2}$, then $2 n-1=s^{2}+2 t^{2}$ with st $\equiv 1(\bmod 2)$.

Proof. Set four sequences of length $\frac{n}{2}$ as follows:

$$
\begin{array}{ll}
c_{0}=\left(0, a_{2}, a_{4}, \ldots, a_{n-2}\right), & c_{1}=\left(a_{1}, a_{3}, \ldots, a_{n-1}\right), \\
c_{2}=\left(b_{0}, b_{2}, b_{4}, \ldots, b_{n-2}\right), & c_{3}=\left(b_{1}, b_{3}, \ldots, b_{n-1}\right) .
\end{array}
$$

Then c_{0}, c_{1}, c_{2} and c_{3} are 4 -suitable sequences of length $\frac{n}{2}$ with weight $2 n-1$. Moreover, from the hypothesis of the theorem we know that c_{1} is symmetric, and $c_{3}=c_{2}^{*}$. Now set four sequences d_{0}, d_{1}, d_{2} and d_{3} of length $\frac{n}{2}$ from the sequences c_{0}, c_{1}, c_{2} and c_{3} by using the same method as in (2.5), such that the j th element of d_{i} is equal to the j th element of c_{i} multiplied by $(-1)^{j}, j=0, \ldots, \frac{n}{2}-1, i=0,1,2,3$. Let c_{0}, c_{1}, c_{2} and c_{3} be the first rows of negacyclic matrices C_{0}, C_{1}, C_{2} and C_{3}, and d_{0}, d_{1}, d_{2} and d_{3} be the first rows of 4 -suitable circulant matrices D_{0}, D_{1}, D_{2} and D_{3}, respectively. From the proof of Proposition 2.1, we can easily see that

$$
\sum_{i=0}^{3} C_{i} C_{i}^{T}=(2 n-1) I_{n}=\sum_{i=0}^{3} D_{i} D_{i}^{T} .
$$

Hence

$$
2 n-1=\left|d_{0}\right|^{2}+\left|d_{1}\right|^{2}+\left|d_{2}\right|^{2}+\left|d_{3}\right|^{2} .
$$

But $\left|d_{0}\right|=0,\left|d_{2}\right|^{2}=\left|d_{3}\right|^{2}$ and $\left|d_{1}\right|\left|d_{2}\right| \equiv 1(\bmod 2)$. The proof is now complete.
When $n \in\{18,46,58,78,98\}$, the weighing matrices $W(36,35), W(92,91)$, $W(116,115), W(156,155)$ and $W(196,195)$ cannot be constructed by 2-suitable circulant / negacyclic matrices.

Corollary 3.2 There exist TCPs of length $n=2^{i} 10^{j} 26^{k}$ for $0 \leq i, j, k$.
Proof. In the Corollary of [9], Turyn proves that binary complementary sequences of length $2^{i} 10^{j} 26^{k}$ exist for all $i, j, k \geq 0$. In this case, there exist two $(1,-1)$ complementary sequences of length $n=2^{i} 10^{j} 26^{k}$, say a and b, that satisfy

$$
N_{a}(0)+N_{b}(0)=2 n, \quad N_{a}(l)+N_{b}(l)=0 \text { for } 0<l<n
$$

Thus a and b are TCPs.

Lemma 3.2 If there exist Golay sequences of length $2 n$, then there exist TCPs of length $m \leq n$ with weight n.

Proof. Let $a=\left(a_{0}, \ldots, a_{2 n-1}\right)$ and $b=\left(b_{0}, \ldots, b_{2 n-1}\right)$ be Golay sequences. Set

$$
c=\frac{a+b}{2}, \quad d=\frac{a-b}{2} .
$$

Then c and d are TCPs of length $2 n$ with weight n. From the multiplication $a_{i} \cdot a_{2 n-1-i} \cdot b_{i} \cdot b_{2 n-1-i}=-1$ for $0 \leq i<n$, we know that $c_{i}= \pm d_{2 n-1-i}$. That is, $c_{i}=0$ or ± 1 if and only if $d_{2 n-1-i}=0$ or ± 1, respectively. Thus we can take

$$
e=\frac{c+d^{*}}{2}, \quad f=\frac{c-d^{*}}{2} .
$$

It is easy to verify that e and f are TCPs with weight n. Clearly, there exist TCPs of length $m \leq n$ with weight n.

Example $3.1 a=(-1,1,1,1,1,1,1,-1,-1,1), b=(-1,1,1,1,-1,1,-1,1,1,-1)$ are Golay sequences of length 10. From Lemma 3.2, we have

$$
c=\frac{a+b}{2}=(-1,1,1,1,0,1,0,0,0,0), \quad d=\frac{a-b}{2}=(0,0,0,0,1,0,1,-1,-1,1)
$$

and

$$
e=\frac{c+d^{*}}{2}=(0,0,0,1,0,1,0,0,0,0), \quad f=\frac{c-d^{*}}{2}=(-1,1,1,0,0,0,0,0,0,0)
$$

From Corollary 2.1, it follows that $g=(1,0,1), h=(-1,1,1)$ are TCPs of length 3 with weight 5 .

Example 3.2 From Golay sequences of length 26 we can get TCPs of length 11 with weight 13:

$$
g=(1,1,1,0,-1,1,1,0,-1,1,-1), \quad h=(-1,0,-1,0,0,0,1,0,0,0,-1) .
$$

Lemma 3.3 Let $a=\left(a_{0}, \ldots, a_{n-1}\right), b=\left(b_{0}, \ldots, b_{n-1}\right)$ be TCPs such that $\left|a_{i}\right|=\left|b_{i}\right|$ for $0 \leq i<n$, and c, d be TCPs of length m. Put

$$
\begin{equation*}
u=c \otimes \frac{a+b}{2}+d^{*} \otimes \frac{a-b}{2}, \quad v=d \otimes \frac{a+b}{2}-c^{*} \otimes \frac{a-b}{2} . \tag{3.1}
\end{equation*}
$$

Then u and v are TCPs of length $m n$.
Proof. For $0 \leq i<m-1,0<j<n$, we have

$$
\begin{aligned}
& N_{u}(i n+j)+N_{v}(i n+j)= \\
& \left\{\left[N_{c}(i)+N_{d}(i)\right]\left[N_{(a+b)}(j)+N_{(a-b}(j)\right]\right. \\
& \left.\quad+\left[N_{c}(i+1)+N_{d}(i+1)\right]\left[N_{(a+b)}(n-j)+N_{(a-b)}(n-j)\right]\right\} / 4 \\
& = \\
& \quad\left\{\left[N_{c}(i)+N_{d}(i)\right]\left[N_{a}(j)+N_{b}(j)\right]+\left[N_{c}(i+1)\right.\right. \\
& \left.\left.\quad+N_{d}(i+1)\right]\left[N_{a}(n-j)+N_{b}(n-j)\right]\right\} / 2=0 .
\end{aligned}
$$

When $0<i<m$ and $j=0$, we have

$$
N_{u}(i n)+N_{v}(i n)=\frac{\left[N_{c}(i)+N_{d}(i)\right]\left[N_{a}(0)+N_{b}(0)\right]}{2}=0 .
$$

When $i=m-1$ and $0<j<n$, we also have

$$
\begin{aligned}
N_{u}((m-1) n+j)+N_{v}((m-1) n+j) & =\frac{\left[N_{c}(m-1)+N_{d}(m-1)\right]\left[N_{c}(j)+N_{d}(j)\right]}{2} \\
& =0
\end{aligned}
$$

If we replace u and v in (3.1) by

$$
u=\frac{a+b}{2} \otimes c+\frac{a-b}{2} \otimes d^{*}, \quad v=\frac{a+b}{2} \otimes d-\frac{a-b}{2} \otimes c^{*},
$$

then the conclusion of Lemma 3.3 still holds.
Example 3.3 Let $a=(1,-1,-1), b=(1,0,1), c=(1,-1,-1,1,0,1)$ and $d=(1,-1,-1,1,0,1)$. Put

$$
u=a \otimes \frac{c+d}{2}+b^{*} \otimes \frac{c-d}{2}, \quad v=b \otimes \frac{c+d}{2}-a^{*} \otimes \frac{c-d}{2} .
$$

It is easy to verify that u and v are TCPs of length 18 with weight 25 .
Lemma 3.4 Suppose $a=\left(a_{0}, \ldots, a_{m-1}\right), b=\left(b_{0}, \ldots, b_{m-1}\right)$ are 2 -suitable sequences, and $c=\left(c_{0}, \ldots, c_{n-1}\right), d=\left(d_{0}, \ldots, d_{n-1}\right)$ are TCPs. If $\left|a_{i}\right|=\left|b_{i}\right|, 0 \leq i<m$. Set

$$
\begin{equation*}
u=\frac{a+b}{2} \otimes c+\frac{a-b}{2} \otimes d^{*}, \quad \quad v=\frac{a+b}{2} \otimes d-\frac{a-b}{\otimes} c^{*} . \tag{3.2}
\end{equation*}
$$

If $\left|c_{j}\right|=\left|d_{j}\right|, 0 \leq j<n$, set

$$
u=a \otimes \frac{c+d}{2}+b^{*} \otimes \frac{c-d}{2}, \quad v=b \otimes \frac{c+d}{2}-a^{*} \otimes \frac{c-d}{2} .
$$

Then u and v are suitable sequences.

Proof. For the first case, when $0 \leq i<m-1,0<j<n$, we have

$$
\begin{aligned}
N_{u}(i n+j)+N_{v}(i n+j)= & \left\{\left[N_{a}\right)(i)+N_{b}(i)\right]\left[N_{c}(j)+N_{d}(j)\right] \\
& \left.+\left[N_{a}(i+1)+N_{b}(i+1)\right]\left[N_{c}(n-j)+N_{d}(n-j)\right]\right\} / 2 \\
& =0
\end{aligned}
$$

Note that $m n-i n-j=(m-1-i) n+(n-j)$, so

$$
\begin{aligned}
& N_{u}(m n-i n-j)+N_{v}(m n-i n-j) \\
& \quad=\left\{\left[N_{a}(m-1-i)+N_{b}(m-1-i)\right]\left[N_{c}(n-j)+N_{d}(n-j)\right]\right. \\
& \left.\quad \quad+\left[N_{a}(m-i)+N_{b}(m-i)\right]\left[N_{c}(j)+N_{d}(j)\right]\right\} / 2 \\
& =0 .
\end{aligned}
$$

That is, for $0 \leq i<m-1,0<j<n$,

$$
N_{u}(i n+j)+N_{v}(i n+j)=N_{u}(m n-i n-j)+N_{v}(m n-i n-j) .
$$

For $0<i<m, j=0$, we have

$$
N_{u}(i n)+N_{v}(i n)=\frac{\left[N_{a}(i)+N_{b}(i)\right]\left[N_{c}(0)+N_{d}(0)\right]}{2}
$$

and

$$
N_{u}((m-i) n)+N_{v}((m-i) n)=\frac{\left[N_{a}(m-i)+N_{b}(m-i)\right]\left[N_{c}(0)+N_{d}(0)\right]}{2} .
$$

Since a, b are suitable sequences, it follows that

$$
N_{a}(i)+N_{b}(i)=N_{a}(m-i)+N_{b}(m-i), 0<i<m .
$$

That is,

$$
N_{u}(i n)+N_{v}(i n)=N_{u}(m n-i n)+N_{v}(m n-i n), 0<i<m .
$$

From the above it follows that

$$
N_{u}(s)+N_{v}(s)=N_{u}(m n-s)+N_{v}(m n-s), 0<s<\left\lfloor\frac{m n}{2}\right\rfloor .
$$

Consequently, u, v are 2 -suitable sequences. Similarly, we can prove the second case. The proof is now complete.

Under the assumption of Lemma 3.4, if we define two sequences u and v as in (3.1) instead of (3.2), the conclusion of the lemma may not be true (see Example 3.4 for the details).

Example 3.4 Let $c=(1,1,-1), d=(1,0,1)$ are TCPs of length $3, a=b=$ $(1,1,-1,0)$ are the first rows of suitable negacyclic matrices respectively. From (3.2) it follows that

$$
u=(1,1,-1,1,1,-1,-1,-1,1,0,0,0), v=(1,0,1,1,0,1,-1,0,-1,0,0,0)
$$

It easy to verify that u and v above are 2 -suitable sequences of length 12 with weight 15 . If we apply (3.1), then the sequences

$$
u=(1,1,-1,0,1,1,-1,0,-1,-1,1,0), v=(1,1,-1,0,0,0,0,0,1,1,-1,0)
$$

are not 2-suitable sequences.
Example 3.5 Two sequences $c=(1,-1,-1), d=(-1,0,-1)$ are TCPs of length 3 with weight 5 ,

$$
a=b=(1,-1,-1,1,1,1,0,1,0,1,-1,0,0)
$$

are suitable sequences of length 13. By applying (3.2) and Lemma 2.1, we can construct a weighing matrix $W(78,45)$.

In Table 2 we list minimum length TCPs for several low-valued weights.

w	TCPs of the smallest length	Remarks	Source
1	$1 ; 0$	$W(n, 1)$ exists for $n \geq 1$	
2	$1 ; 1$	$W(n, 2)$ exists for $n \geq 1$	
4	$11 ; 1-$	$W(n, 4)$ exists for $n \geq 2$	
5	$1--;-0-$	$W(n, 5)$ exists for $n \geq 3$	
8	$1---;-1--$	$W(n, 8)$ exists for $n \geq 4$	
9		does not exist	
10	$1---0-;-11-0-$	$W(n, 10)$ exists for $n \geq 6$	
13	$11-11100-; 1100-1-01$	$W(n, 13)$ exists for $n \geq 9$	
16	$11111--1 ; 11--1-1-$	$W(n, 16)$ exists for $n \geq 8$	$[7]$
17	$1-10-00011101 ;-0-0110-011-1$	$W(n, 17)$ exists for $n \geq 13$	
18		does not exist	
20	$1-1--00-0--011 ; 10100-11-1110-$	$W(n, 20)$ exists for $n \geq 14$	$[2]$
25	$1---11-11101000101 ;$	$L e m m a 3.3$	
$101-0--0-11-00011-$	$W(n, 25)$ exists for $n \geq 18$		
26	$1111-11--1-101 ; 111--111-1--0-1$	$W(n, 26)$ exists for $n \geq 14$	
29	$1111-1---1----1000 ; 11-11--011-1-11000$	$W(n, 29)$ exists for $n \geq 18$	
32	$111111---11--1-1 ;$	$W(n, 32)$ exists for $n \geq 16$	$[7]$
	$111--11-11-1-1-$		

Table 2: TCPs of weight w, where $w=a^{2}+b^{2}, a$ and b are integers

4 Construction of weighing matrices from 2-suitable negacyclic matrices

Theorem 4.1 If there exists a weighing matrix $W(n, w)$, then there exists a weighing matrix $W(m n, w)$ for any $m \geq 0$.

Proof. It is easily checked that $I_{m} \otimes W(n, w)$ is a weighing matrix $W(m n, w)$.

Corollary 4.1 There exists a weighing matrix $W(n, 1)$ for any $n \geq 1$.
Proof. The 1×1 matrix (1) is a weighing matrix $W(1,1)$ so by Theorem 4.1 the corollary follows.

Theorem 4.2 If there exist weighing matrices $W\left(n, w_{1}\right)$ and $W\left(n, w_{2}\right)$, and they are commutative, then there exists a weighing matrix $W\left(2 n, w_{1}+w_{2}\right)$.

Proof. Let A and B be weighing matrices of $W\left(n, w_{1}\right)$ and $W\left(n, w_{2}\right)$ respectively. Set

$$
C=\left(\begin{array}{ll}
A & B \tag{4.1}\\
B^{T} & -A^{T}
\end{array}\right) .
$$

Obviously, C is a weighing matrix $W\left(2 n, w_{1}+w_{2}\right)$.

Corollary 4.2 If there exist Golay sequences or TCPs of length n and weight w, then there exist weighing matrices $W(2 t, 2 w)$ for all $t \geq n$.

The proof is similar to the proof of Lemma 3.1.
Corollary 4.3 There exists a weighing matrix of $W(2 n, 2)$ for any $n \geq 1$.
Proof. Since there exists a weighing matrix of $W(1,1)$, from Theorem 4.2 we know there exists a weighing matrix of $W(2,2)$. From Theorem 4.1 the corollary is true.

Let A be a negacyclic matrix of order 4 with first row $a=(1,-,-, 0)$. It is easy to verify that $A A^{T}=3 I_{4}$. We conclude that

- There exists a weighing matrix $W(4 n, 3)$ for any $n \geq 1$.
- There exists a weighing matrix $W(8 n, 6)$ for any $n \geq 1$.

From the above it follows that there exists a weighing matrix $W(4, w)$ for $w=$ $1,2,3,4$.

Theorem 4.3 If 2-suitable negacyclic matrices A and B of order n exist, then a weighing matrix $W(2 n, w)$ exists, where w is the sum of the weights of two negacyclic matrices.

Proof. Matrices A and B are 2-suitable negacyclic matrices of order n. Let $a=$ $\left(a_{0}, \ldots, a_{n-1}\right)$ and $b=\left(b_{0}, \ldots, b_{n-1}\right)$ be the first rows of A and B. From Lemma 2.1, we have

$$
A A^{T}+B B^{T}=\sum_{i=0}^{n-1}\left(a_{i}^{2}+b_{i}^{2}\right) I_{n}, \quad A B^{T}=B A^{T} .
$$

By using (4.1), we can construct a matrix C. It is easy to verify that C is a weighing matrix $W(2 n, w)$, where $w=|a|+|b|$. The proof is now complete.

Lemma 4.1 Weighing matrices $W(2 n, w)$ can be constructed from 2-suitable negacyclic matrices when n is odd, $w<2 n, w=a^{2}+b^{2}$, where a and b are two integers, for $n \in\{3,5,7,9,11,13,15\}$, except for $n=9$ and $w=9$.

Proof. Tables 3 to 9 in Appendix A show the result of weighing matrices $W(2 n, w)$ constructed by 2 -suitable negacyclic matrices, where $n=3,5,7,9,11,13,15$, $w=a^{2}+b^{2}$, with a, b integers. No 2-suitable negacyclic matrices were found for $n=9$ and $w=9$ after an exhaustive search.

Theorem 4.4 Suppose $n>0$ is odd. Then there exist 2-suitable negacyclic matrices of order n if and only if there exist 2-suitable circulant matrices of order n.

Proof. Let $a=\left(a_{0}, \ldots, a_{n-1}\right)$ be the first row of a negacyclic matrix A. The i-th row of A is $f^{i-1}(a)$. Let $b=\left(b_{0}, \ldots, b_{n-1}\right)$ be the first row of a negacyclic matrix B. The i-th row of B is $f^{i-1}(b)$. Define

$$
\begin{aligned}
& x=\left(x_{0}, \ldots, x_{n-1}\right), \text { where } x_{i}=(-1)^{i} a_{i}, \\
& y=\left(y_{0}, \ldots, y_{n-1}\right), \text { where } y_{i}=(-1)^{i} b_{i}, \quad 0 \leq i<n .
\end{aligned}
$$

Since n is odd, consider nega-shift and shift operators defined in (2.1) and (2.2). We have

$$
\begin{aligned}
\left\langle x, s^{j}(x)\right\rangle & =N_{x}(j)+N_{x}(n-j) \\
& =\sum_{i=0}^{n-1-j}(-1)^{i} a_{i}(-1)^{i+j} a_{i+j}+\sum_{i=0}^{j-1}(-1)^{i} a_{i}(-1)^{i+n-j} a_{i+n-j} \\
& =(-1)^{j}\left(\sum_{i=0}^{n-1-j} a_{i} a_{i+j}+(-1)^{n-j} \sum_{i=0}^{j-1} a_{i} a_{i+n-j}\right) \\
& =(-1)^{j}\left(N_{a}(j)-N_{a}(n-j)\right)=\left\langle(-1)^{j} a, f^{j}(a)\right\rangle, 0<j<n .
\end{aligned}
$$

Similarly, we have $\left\langle y, s^{j}(y)\right\rangle=\left\langle(-1)^{j} b, f^{j}(b)\right\rangle, 0<j<n$.
Let x and y be the first rows of circulant matrices X and Y. Now A and B are 2 -suitable negacyclic matrices if and only if

$$
\left\langle a, f^{i}(a)\right\rangle+\left\langle b, f^{i}(b)\right\rangle=0,0<i<n,
$$

if and only if

$$
\left\langle x, s^{i}(x)\right\rangle+\left\langle y, s^{i}(y)\right\rangle=0,0<i<n,
$$

if and only if X and Y are 2-suitable circulant matrices. The proof is now complete.

Koukouvinos and Seberry [6] found, after a complete search, that the weighing matrix $W(18,9)$ cannot be constructed by two circulant matrices of order 9 . The weighing matrix $W(18,9)$ cannot be constructed by two negacyclic matrices of order 9 either.

Theorem 4.5 There exist weighing matrices $W(2 n, w), w=1,2,4,2 n \geq w$, constructed by 2-suitable negacyclic matrices.

Proof. When $w=1$, let $a=\left(1,0_{n-1}\right)$ and $b=\left(0_{n}\right)$ be the first rows of negacyclic matrices A and B. It is easy to verify that A and B are 2 -suitable negacyclic matrices.

When $w=2$, let $a=\left(0_{i}, 1,0_{n-i-1}\right)$, where $0 \leq i<n$, and $b=\left(0_{j}, 1,0_{n-j-1}\right)$, where $0 \leq j<n$ and $j \neq i$. Letting a and b be the first rows of negacyclic matrices A and B, respectively, we have $A A^{T}+B B^{T}=2 I_{n}$.

When $w=4$, let $a=\left(1,0_{i-1}, 1,0_{n-i-1}\right)$, where $0<i<n$, and $b=\left(1,0_{j-1},-1\right.$, 0_{n-j-1}), where $0 \leq j<n$ and $j \neq i$. Construct two negacyclic matrices A and B from a and b as their first rows; then $A A^{T}+B B^{T}=4 I_{n}$. The proof is now complete.

Lemma 4.2 When $n \equiv 2(\bmod 4)$, there exist weighing matrices $W(2 n, w), 1 \leq$ $w \leq 2 n$, constructed by two negacyclic matrices of order n, with $n \in\{6,10,14,18\}$, except for $n=18$ and $w=35$.

Proof. In Tables 10-13 in Appendix B, we list the first rows of 2-suitable negacyclic matrices of order n with weight $w, n=6,10,14,18,1 \leq w \leq 2 n$. No 2-suitable negacyclic matrices were found for $n=18$ and $w=35$ after a complete search.

Appendix A \quad Weighing matrices $W(2 n, w), n$ odd, $3 \leq n \leq 15$,
constructed by 2 -suitable negacyclic matrices

w	First rows	w	First rows
1	$100 ; 000$	4	$110 ; 101$
2	$100 ; 010$	5	$111 ; 101$

Table 3: $W(6, w)$ constructed by 2-suitable negacyclic matrices of order 3 .

w	First rows	w	First rows
1	$10000 ; 00000$	5	$11001 ; 10100$
2	$10000 ; 01000$	8	11101; 110-1
4	$11000 ; 10001$	9	111-1; 11011

Table 4: $W(10, w)$ constructed by 2 -suitable negacyclic matrices of order 5.

w	First rows
1	$10000000 ; 0000000$
2	$10000000 ; 0100000$
	8
	$100000--1000001$
	$100000-0 ; 1100001$

Table 5: $W(14, w)$ constructed by 2-suitable negacyclic matrices of order 7 .

w	First rows	w
1	$100000000 ; 000000000$	10
2	$1000000000 ; 010000000$	13
4	$100000000-; 100000001$	16
5	$1000000-11---; 1111-1-; 1111-110-1$	
8	$1000000-0 ; 110000001$	17

Table 6: $W(18, w)$ constructed by 2-suitable negacyclic matrices of order 9 .

w	First rows	w	First rows
1	$10000000000 ; 00000000000$	10	111-1--0000; 10-000-0000
2	$10000000000 ; 01000000000$	13	11-1-11--00; 11100-00000
4	$11000000000 ; 1-000000000$	16	$1111-1--10 ; 1--0-10-000$
5	$11-00000000 ; 10100000000$	17	1111-11-111; 1-10110-000
8	$111-10-0000 ; 100-0000000$	18	$1111-1-1100 ; 111-11-100$
9	$111-01-0000 ; 10100-00000$	20	$11111-1--10 ; 11--111-1-0$

Table 7: $W(22, w)$ constructed by 2-suitable negacyclic matrices of order 11.

Table 8: $W(26, w)$ constructed by 2-suitable negacyclic matrices of order 13.

w	First rows	w	First rows
1	$\left.\begin{array}{lllllllllllll} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{array}\right)$	16	$\begin{aligned} & 11-1111-1---0100 ; \\ & 1001001000-0000 \end{aligned}$
2	$\begin{array}{lllllllllllllll} \hline 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{array}$	17	
4		18	$\begin{aligned} & 1111-1--11-0000 ; \\ & 1111-0-100000-00 \end{aligned}$
5	$\begin{array}{lllllllllllll} \hline 1 & 1 & - & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{array} 0$		$\begin{aligned} & \hline-1 \end{aligned} 11101001--101000 ;$
8	$\begin{aligned} & 1---00-00010000 ; \\ & 1-0000000000000 \end{aligned}$	25	$\begin{aligned} & 1111111-11-1-1111 ; \\ & 1111-0-10-01-010 \end{aligned}$
9	$\begin{aligned} & 1-11100-0-000-000 ; \\ & 1000000-00000000 \end{aligned}$		$\begin{aligned} & 11-11111-0-1-01 ; \\ & 11-111--01-10- \end{aligned}$
			$\begin{aligned} & 11111111-1--11-1 ; \\ & 1-11--111--1-0 \end{aligned}$
	$\left.\begin{array}{lllllllllll} 1 & 1 & 1--1-0-0 & -1 & 0 & 0 & \text {; } \\ 1 & 0 & 0 & 0 & 0 & 0 & 0-0 & 0 & 0 & 0 & 0 \end{array}\right)$		

Table 9: $W(30, w)$ constructed by 2-suitable negacyclic matrices of order 15.

Appendix B Weighing matrices $W(2 n, w), n=6,10,14,18$, constructed by 2 -suitable negacyclic matrices

w	First rows	w	First rows
1	$100000 ; 000000$	7	$1110-1 ; 001001$
2	$100000 ; 010000$	8	$111001 ; 1100-1$
3	$100000 ; 0100-0$	9	111011;-10-10
4	$10000-; 100001$	10	1111-1; 110-10
5	$1000-0 ; 110001$	11	1111-1; 111-01
6	$111001 ; 100001$	12	1111-1; 111-11

Table 10: $W(12, w)$ constructed by 2-suitable negacyclic matrices of order 6 .

w	First rows	w	First rows
1	$1000000000 ; 0000000000$	11	$1111000001 ; 11-100-001$
2	$1000000000 ; 1000000000$	12	$1111000-10 ; 0001-0-11$ -
3	$1000010000 ; 1000000000$	13	$111101-001 ; 100--1-010$
4	$1000010000 ; 1000010000$	14	11111-0001; $011-0101-1$
5	$1100000001 ; 1010000000$	15	11111-0101; $1010-110-1$
6	$1100000001 ; 101000-000$	16	$1111100-11 ; 11001-1-11$
7	$1100000000 ; 1100001-10$	17	$111101-110 ; 01-1-11--$
8	$11000000-1 ; 1110000001$	18	$111110-111 ; 110-1-1--1$
9	$1111-10001 ; 0100000001$	19	$111111--11 ; 111-1-01-1$
10	$1111000001 ; 001-01-001$	20	$111111--11 ; 111-1-11-1$

Table 11: $W(20, w)$ constructed by 2-suitable negacyclic matrices of order 10 .

w	First rows
1	$10000000000000 ; 00000000000000$
2	$10000000000000 ; 00000000000001$
3	$10000000000000 ; 10000001000000$
4	$11000000000000 ; 10000000000001$
5	$10000000000000 ; 10100000100010$
6	$11000000000000 ; 1001000000-001$
7	$11000000000000 ; 101000001-0100$
8	$1110010-1-0010 ; 00000000000000$
9	$11100000000000 ; 1010-01-000001$
10	11101010-1-011; 00000000000000
11	001111-00001-0; 1000010-000001
12	$001111-0100-10 ; 10001000-00001$
13	1-11111--01--1; 00000000000000
14	1-11111--01--1; 10000000000000
	1-11111-001001; 11000000000-11
16	$0011111-0000-1 ; 110-00100-10-1$
17	$0011111-0010-1 ; 1100-001-10-10$
18	$00111110-01-10 ; 1--101-0-0001-$
	$001111100-10-1 ; 1-100-11--0011$
	$001111100-11-1 ; 1-001-1-0011-$
	$11111100-1--11 ; 1100-1-10-0101$
22	$1111110-010-1 ; 11--1010-101-1$
	1111110-1-0-11; 11010-011-1-11
	$11111100--11-1 ; 111-1-1001--11$
	1111101-11-101; 1110-11--1-111
26	$1111110-1-1-10 ; 1---11-11-11--$
	$1111111--10-11 ; 111---1-1--1-1$
	$1111111--11-11 ; 1---1-1--1-1--$

Table 12: $W(28, w)$ constructed by 2-suitable negacyclic matrices of order 14.

w	First rows	w	First rows
1	$\begin{aligned} & 1 \\ & 1 \end{aligned} 000000000000000000000 ;$		$\begin{aligned} & 1 \\ & 1 \end{aligned} 1111---1--1--1-10 ;$
2	$\left.\begin{array}{lllllllllllllllll} \hline 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{array}\right)$		$\begin{aligned} & 1-1--00-0--011 \text {; } \\ & 10100-11-1110- \end{aligned}$
3	$\left.\begin{array}{lllllllllllllllll} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{array}\right)$		$\begin{aligned} & 111111-1--11000000000 ; \\ & 11-1-001--0001010 c \end{aligned}$
4	$\begin{array}{llllllllllllllllll} 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{array}$		$\begin{aligned} & 11111-111--1-111-00 \\ & 1-00010-0001010000 \end{aligned}$
5	$\begin{array}{llllllllllllllll} \hline 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & - & 0 & 0 & 1 & 0 & 0 & 0 \end{array} 0$		$\begin{aligned} & \hline 1 \\ & 1 \end{aligned} 11111--11-1-1000000 ;$
6	$\begin{array}{lllllllllllllllll} 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & - & 0 & 0 & 1 & 0 & 0 & 0 & 0 \end{array} \text {; ; }$		$\begin{aligned} & 1111111--1-11000000 ; \\ & 11--01-01-1-0-0010 \\ & \hline \end{aligned}$
7			$\begin{aligned} & 1---11-11101000101 \text {; } \\ & 101-0--0-11-00011- \end{aligned}$
8	$\begin{aligned} & 1111-00000 \\ & 1-000 \end{aligned} 1$		$\begin{aligned} & 111111111--11-1-1-11 ; \\ & 1110-00-00-10-00100 \end{aligned}$
9			
10	111--1-00000000000; 101000100000000000		$\begin{aligned} & 11111-1---11--0000 ; \\ & 1-11-101-0-1-11-00 \end{aligned}$
1			$\begin{aligned} & 1111-1--1---1000 ; \\ & 11-11-011-1-11000 \end{aligned}$
1	$\begin{aligned} & 11--10110111000-0000-0 ; \\ & 1-00000000000000000 \end{aligned}$		$\begin{aligned} & 111111-1-11--11-000 ; \\ & 1-111-1011---1010 \end{aligned}$
13			$\begin{aligned} & 1111111--11-1-111-0 ; \\ & 111-01-1011-01-10 \end{aligned}$
1	$\left.\begin{array}{llllllllllll} 1 & 1 & 1 & 1-1-0 & 0-0 & 1-- & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{array}\right) 00000$		$\begin{aligned} & 10111111-1--1--110-; \\ & 101-1-1111--111-01 \end{aligned}$
1	$\begin{aligned} & 11-1111-0-00000000-0 ; \\ & 110-00-0001-000000 \end{aligned}$		$\begin{aligned} & 1-1--111111111--1-1 ; \\ & 11-10--11---01-11 \end{aligned}$
16	$\begin{aligned} & 11111--100000000 ; \\ & 11--1-1-00000000 \end{aligned}$		$\begin{aligned} & 1-1--11111111--1-1 ; \\ & 11-10--11--1-11 \end{aligned}$
17	$\begin{gathered} 1-10-000111101000000 \\ -0-0110-011-100000 \end{gathered}$		oes not exist
	$1111---1--1--1-10$; 100000000000000000		$\begin{aligned} & 1 \\ & 1 \end{aligned} 111111111-11--1-111 \text {; }$

Table 13: $W(36, w)$ constructed by 2-suitable negacyclic matrices of order 18 .

Acknowledgements

The authors are grateful to the referees and an Editor for their helpful comments.

References

[1] K. T. Arasu, K. H. Leung, S. L. Ma, A. Nabavi and D. K. Ray-Chaudhuri, Circulant weighing matrices of weight $2^{2 t}$, Des. Codes Crypto. 41 (1) (2006), 111-123.
[2] R. Craigen and C. Koukouvinos, A Theory of Ternary Complementary Pairs, J. Combin. Theory Ser. A 96 (2001), 358-375.
[3] P. Delsarte, J. M. Goethals and J. J. Seidel, Orthogonal matrices with zero diagonal II, Canad. J. Math. 23 (1971), 816-832.
[4] M. J.E. Golay, Multislit Spectroscopy, J. Optical Soc. Amer. 39 (6) (1949), 437-444.
[5] A. V. Geramita and J. Seberry, Orthogonal Designs: Quadratic Forms and Hadamard Matrices, Marcel Dekker, New York-Basel, 1979.
[6] C. Koukouvinos and J. Seberry, New weighing matrices and orthogonal designs constructed using two sequences with zero autocorrelation function - a review, J. Stat. Plann. Inference 81 (1999), 153-182.
[7] M. Gysin and J. Seberry, On ternary complementary pairs, Australas. J. Combin. 23 (2001), 153-170.
[8] J. Seberry and M. Yamada, Hadamard matrices, sequences, and block designs, in: Contemporary Design Theory, Wiley, New York, 1992, pp.431-560.
[9] R. J. Turyn, Hadamard matrices, Baumert-Hall units, four symbol sequences, pulse compression and surface wave encoding, J. Combin. Theory Ser. A 16 (1974), 313-333.
[10] J. S. Wallis, Orthogonal ($0,1,-1$)-matrices, Proc. First Austral. Conf. Combin. Math. TUNRA, Newcastle, 1972, pp. 61-84.
[11] M. Xia, T. Xia, J. Seberry and J. Wu, An infinite family of Goethals-Seidel arrays, Discrete Appl. Math. 145 (3) (2005), 498-504.
[12] M. Xia, T. Xia, J. Seberry and J. Wu, Hadamard matrices constructed by circulant and negacyclic matrices, Australas. J. Combin. 34 (2006), 105-116.
(Received 12 Mar 2019; revised 22 Aug 2020, 1 Mar 2021)

