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Abstract 

A defining set of a block design is a subset of the blocks of the design which are 
a subset of no other design with the same parameters. This paper describes and 
proves the existence of a certain type of set of blocks in the infinite family of Steiner 
triple systems isomorphic to the points and lines of the projective geometries over 
GF(2). It is then proven that these sets of blocks are defining sets for the designs 
and furthermore that they are minimal defining sets. 

1. Introduction. 
In 1990 Gray [2] introduced the notion of defining sets of block designs. Some 

work has been done into the study of defining sets for a number of designs with 
smail parameters. Some lower bounds on the minimum size of defining sets have 
been found and while these can be applied to designs with large parameters, lit­
tle is known in the way of actual examples of defining sets for designs with large 
parameters. In this paper a class of minimal defining set for the infinite family of 
Steiner Triple Systems isomorphic to the points and lines of projective geometries 
over GF(2) is presented. In some of the smail-parameter members of this family 
the results could be obtained by manual or computer calculation but this work goes 
well beyond the scope of computer searches. 

The first part of this work makes use of the fact that a Steiner Triple System can 
be characterised by a loop. The operation table of this algebra is a Latin square. 
There is a relationship between critical sets in the Latin square afforded by the loop 
and defining sets in the Steiner Triple Systems. A result of Stinson and van Rees [6] 
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about critical sets is used to help prove a result about defining sets for the infinite 
family of Steiner Triple Systems described above. 

The second part of this work makes use of the structure of the geometry to prove 
that the defining sets are minimal. 

2. Definitions and preliminaries. 

Definition 2.1. A Steiner Triple System of order v, sometimes denoted by ST S( v), 
is a set V of size v, and a collection B of subsets of V, each of size 3 such that 
each pair of elements of V occurs in precisely one of these subsets. A necessary and 
sufficient condition for the existence of Steiner Triple Systems is that v == 1 or 3 
(mod 6). STS is often used as an abbreviation for Steiner Triple System and will 
be used for that purpose from time to time in this paper. (For n ~ 7 Steiner Triple 
Systems are BIBD(v,b,r,k,)..) with k = 3 and)" = 1.) 

Let V denote a vector space of dimension d + 1 over GF(q), the Galois Field of 
order q. 

Definition 2.2. The projective geometry associated with V, denoted by PG(V), has 
as points the 1-dimensional subspaces of V, as lines the 2-dimensional subspaces 
and, in general, r-dimensional projective geometric objects are given by the (r + 1)­
dimensional subspaces of V. Incidence is set-theoretic inclusion. The dimension of 
PG(V) is one less than the dimension of the vector space V; since V was defined to 
have dimension d + 1, PG(V) has dimension d. The geometry PG(V) is sometimes 
denoted by PG( d, q) and this is the notation which will be used most often in this 
paper. 

In the case of q = 2 the projective points are simply the nonzero vectors of V. 

Definition 2.:1. A subspace of PG( d, q) of dimension d - 1 is called a hyperplane. 

This paper is concerned only with those Steiner Triple Systems of order 2d+1 - 1 
for d = 2,3,4, ... which are isomorphic to the point-line designs of PG( d, 2). Here 
the vertex-set of the Steiner Triple System corresponds to the point-set of the 
projective geometry and the blocks of the Steiner Triple System correspond to the 
lines of the projective geometry. This paper will make repeated use of the structure 
within the geometries. 

Definition 2.4. A loop is a set S together with a binary operation 0 such that S is 
closed under the binary operation 0, there is an identity element with respect to 0 

and in the equation XOY = z the choice of any two of the three elements x, y and z 
uniquely determines the third element. 

A Steiner Triple System with vertex set V can be used to construct a loop. The 
set S on which the loop is based is the set V U {e} where e is the identity element 
and the operation 0 is defined in the following way: 

(i) (Vv E V U {e})(vov = e); 
(ii) (Vv E V)( voe = v = eov); 

(iii) (Vu,v E V,u =1= v)(vou = z and uov = z) if and only if (u,v,z) is a block of 
the Steiner Triple System. 
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This is a loop with some extra properties. It is called a Steiner loop or sloop. 
Conversely, a Steiner loop can be used to construct a Steiner Triple System, (see 

Ganter and Werner [1]). It is said that the sloop co-:ordinatizes the STS and vice 
versa. Hence it can be seen that there is a one-to-one correspondence between 
sloops and Steiner Triple Systems. 

Definition 2.5. A Latin square of order n is an n X n array with entries chosen from 
a set of size n such that each entry occurs precisely once in each row and column. 

The operation table of a loop is a Latin square. 

Definition 2.6. A partial Latin square P of order n is an n X n array with entries 
chosen from a set of size n in such a way that each element occurs at most once in 
each row and each column. Then P may contain a number of empty cells. So P 
may be written as {(i,jik)li,j E {l, ... ,n},k E K}, where K is the set of entries 
of the partial Latin square and IKI = n. Then a triple (i,j; k) is in this set if and 
only if the (i,j) position of the partial Latin square has entry k. 

Definition 2.7. A partial Latin square P of order n, P {(i,j; k)li,j E {I, ... ,n}, 
k E K}, where K is the set of entries of the partial Latin square and IKI = n, is 
said to be uniquely compldable (or P has (UC)) if there is one and only one Latin 
square of order n which has element k in position (i,j) for each (i,ji k) E P. 

Definition 2.8. A critical set in a Latin square L is a partial Latin square P, which 
is uniquely completable to L with the property that no proper subset of P has (UC). 

Definition 2.9. A set of blocks which is a subset of a unique STS(v) is said to be 
a defining set of the design. 

Definition 2.10. A minimal defining set is a defining set, no proper subset of which 
is a defining set. 

Critical sets are to Latin squares as minimal defining sets are to designs. 

3. Results about partial Latin squares. 
In the last section it was shown how to construct a loop from the blocks of a 

Steiner Triple System and it was observed that the operation table of the loop is a 
Latin square. In this manner a Latin square can be obtained from a Steiner Triple 
System. 

Suppose that instead of knowing the complete set of blocks B, of the STS, just 
the blocks of a subset, D, of B are known. In this case a partial Latin square can 
be obtained from D by defining the loop operation only for those pairs of elements 
from V U {e} about which there is some information. Let W = {wlw E V and 
wEB} where B is a block of D. Define e by: 

(i) (Vv E W U {e})( VeV = e); 
(ii) (Vv E W)( vee = V = eev); 

(iii) (Vu,v E W,U =1= v)(veu = z and UeV = z) if and only if (u,v,z) E D. 

Example 3.1. Consider the Steiner Triple of order 7 with blocks (1,2,3), 
(1,4,5), (1, 6, 7), (2,4,6), (2, 5, 7), (3,5,6) and (3,4, Let D = {(I, 2, 3), (1,4,5), 



(2,4,6)}. (Incidentally, D is a minimal defining set for this STS, [2].) Then W = 
{l, 2, 3, 4, 5, 6} and the resulting partial Latin square is: 

e 1 2 3 4 5 6 * 
1 e 3 2 5 4 * * 
2 3 e 1 6 * 4 * 
3 2 1 e * * * * 
4 5 6 * e 1 2 * 
5 4 * * 1 e * * 
6 * 4 * 2 * e * 
* * * * * * * * 

The *'s have been used to indicate blank entries in the array and K is fixed to be 
the set {e,1,2,3,4,5,6, 7}. 

Definition 3.2. An element, p of a partial Latin square P is 2-essential if there is 
a 2 X 2 subsquare S of the Latin square L such that (P \ {p}) n S does not have 
(UC) in S. 

A partial Latin square of order 2 needs only one entry to be uniquely completable 
(for fixed K), so (P \ {p}) n S does not have (UC) if and only if (P \ {p}) n S = 0. 

Definition 3.3. A partial Latin square P is 2-critical if it has unique completion to 
the Latin square L and every element p of P is 2-essential. 

For a partial Latin square to be 2-critical is a special case of the partial Latin 
square being a critical set. 

Example 3.1 cont. The partial Latin square shown previously completes uniquely 
to the following Latin square. 

e 1 2 3 4 5 6 7 
1 e 3 2 5 4 7 6 
2 3 e 1 6 7 4 5 
3 2 1 e 7 6 5 4 
4 5 6 7 e 1 2 3 
5 4 7 6 1 e 3 2 
6 7 4 5 2 3 e 1 
7 6 5 4 3 2 1 e 

Furthermore, removing any entry from the partial Latin square results in a new par­
tial Latin square which has an empty intersection with one of the 2 X 2 subsquares 
of the Latin square, so this partial Latin square is 2-critical. 

The interest in constructing a partial Latin square from a subset, D, of the set 
of blocks of a Steiner Triple System is due to the following lemma which transforms 
information about the partial Latin square into information about D, the subset of 
blocks. . 
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Lemma 3.4. Suppose D is a subset of, B, the set of blocks of Steiner Triple 
System of order v and that the blocks of D are used to construct a partial Latin 
square in the manner described earlier in this section. If this partial Latin square 
has (UC) then the set of blocks, D, is a defining set for the STS. 

Proof. Suppose D is not a defining set, then there are (at least) two different Steiner 
Triple of order v containing D. Then each of these STS's can be co­
ordinatized as a sloop on v+1 elements. These sloops must be distinct (or the STS's 
would not be distinct) and they must contain the partial Latin square constructed 
from D. 

Therefore the partial Latin square constructed from D does not have (UC). 
Hence by the contrapositive, D is a defining set for the Steiner System. D 

At this point it is convenient to introduce another lemma which is a combination 
of two results of Stinson and van but there are a few details to consider first. 

Notation 3.5. The abelian group of order 2 is denoted 

Definition 3.6. Let L be a Latin square of order n with entries {0,1, .. ,n-1} and 
M be a Latin square of order m with entries {O, 1, ... , m - Define Lr to be the 
array obtained from L by adding rn to each entry of L, for r = 0,1, ... , m -1. The 
direct product of M with L is the mn X mn array L * constructed by replacing the 
entry r in M by the array Lr. 

Example 3.7. The direct product of O2 with a Latin square Lis: 

Since the array LO is identical to the array L, the superscript is left off in the 
remainder of this paper. 

Lemma 3.8. (Due to Stinson and van Rees [6].) Given L, a Latin square of order 
n, and 0, a 2-critical set of L, then in the Latin square L* of order 2n which is the 
direct product of O2 with the partial Latin square 0* is 2-critical, where 

and 0 1 is the appropriate image of 0 in L1. 

Proof. it is necessary to show that 0* has (DC). Consider the top, right­
hand n x n subarray of 0*. Remember that C* is being completed to a Latin square 
so each entry can only occur once in a row. Since each element of the set of entries 
of L occurs once in the columns 1 to n of each of the rows 1 to n, none of 
the entries of the Latin square L can occur in columns n + 1 to 2n of these rows. 
Hence the entries of the top right-hand n X n subarray can only be elements of the 
set of entries of L1. Since C 1 has unique completion to LIon that set of entries, 
the top n X n can be to L1 alone. 



Similarly, the bottom left-hand n X n can complete only to L1. 
N ow the columns n + to 2n of the rows n + 1 to 2n are forced to contain none of 

the entries of L1 because all these entries have occurred in these rows and 
in these columns. Therefore contain entries of L but C has 
COJffil)letlOll to L on that set of so the bottom n x n subarray 
can to L. 

Hence C* to L*. 
it must be shown that for every element c of C* there is a 2 X 2 

S of L* such that \ n S does not have (UC) in S. That is to 
say, each element c is 2--essential. 

Recall that C* has the form: 

C* 

"'"'nn,'~"p we first consider an element of C* chosen from one of the n X n 

which is copy of C1 or Since C 1 is 2-critical in L1 and C is 2-critical in 
by the definition of 2-critical, any element from one of these subarrays must be 
2-essential. 

The elements of the 
considered in two parts; 
are also in C. 

left-hand n X n subarray, which is a copy of L, must be 
those to L \ C and those elements of L which 

Consider an element of the top left-hand n X which is one of the 
elements of \ C. this element the entry x in position the 
2n X array L *', then there is a of L * which makes this element 2-
essential. The other elements of this have as their entries and .... ""'.,...,c'r1"·nrp 

PO:Sltl.ons, X + n), x + n in + n,j) and x in (i + n,j + n), none of which 
are in C* since belong to L1 \ and L \ C T'PC,npf""tl,<ypjj" 

Now consider element of the top left-hand n X n which is one of the 
elements of C. this element is the entry x in (i,j) of C and hence 
of C* too. Since C is 2-critical, there must be a 2 X 2 subsquare of called S 
say, which makes x 2-essential. Suppose S has as elements; the entry x in position 
(i,j), yin (i,k),yinposition (l,j) and x in (l,k). These last three 
elements of L are not elements of C. y + n in positions (i, k + n) 
and (l + n,j) and x in position (l + n, k + are not elements of the partial Latin 
square C*. These three elements of L* and the entry x in position (i,j) form a 2 X 2 
subsquare of L * and so the entry x in position (i, j) is 2-essential in C*. 

Hence every entry of C* is 2-essential and so C* is 2-critical. o 

4. The sets and their structure. 
As mentioned earlier, this paper is concerned only with the family of Steiner 

which are isomorphic to the of the projective 
over GF(2). The main theorem of this paper is about defining sets 

of designs. The blocks which belong to the defining set are chosen 
according to the structure of the geometry. 
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Define a set of type 1i to be a set of d + 1 hyperplanes of PG( d, 2), for d ~ 2, 
with the property that there is no point of PG( d, 2) incident with all of these d + 1 
hyperplanes. 

Theorem 4.1. Consider tbe Stemer Triple System of order 2d+1 - 1 wbicb is 
isomorphic to tbe point-line design of PG( d, 2) for d ~ 2. Tbe set of blocks of tbis 
ST S(2d+1 - 1) wbicb correspond to tbe lines of tbe byperplanes of a set of type 1i 
is a defining set for tbis design. 

The proof of this theorem will be given later, first it is necessary to introduce 
some lemmas and definitions. 

Lemma 4.2. A set of type 1i exists for eacb PG( d, 2), d ~ 2. 

Proof. Consider the set of hyperplanes with equations; 

la~d + OXd-l + OXd-2 + ... + OX1 + OXo 0 

OXd + lXd-1 + OXd-2 + ... + OX1 + OXo = 0 

OXd + OXd-l + OXd-2 + ... + lx1 + OXo 0 

OXd + OXd-l + OXd-2 + .. + OXI + 1xo 0 

where the Xo Xl , •• , Xd are the co-ordinates of in the hyperplane 
with respect to a of d + 1 basis vectors of the vector space. 

This is a of d + 1 hyperplanes with no common point. Suppose the point 
(xo Xl,"" common to all these then Xo = Xl Xd = 0 
and the zero vector does not to a point of the projective space. 0 

Of particular use in projective is the Principle of Duality which is 
explained in Hirschfeld p.31] as follows. To any S = q), there is a dual 
space 5*, whose points and are respectively the hyperplanes and points 
of For any theorem which is true in there is an equivalent theorem which is 
true in 5*. In if T is a theorem in S stated in tenllS of points, hyperplanes 
and incidence, the same theorem is true in 5* and gives a dual theorem T* in 5 by 
interchanging 'point' and 'hyperplane' whenever they occur. Hence the dual of an 
r-space in q) is an (n - r I)-space. 

Definition 4.3. A frame of PG(d, q) an ordered set of d + 2 points such that no 
d + 1 points chosen from this set are incident with a single hyperplane of the space. 

Let 5 and 5' be two projective spaces, PG( d, q). 

Definition 4.4. A projectivity is a bijection P : 5 ~ 5' given by a non-singular 
matrix T. (T is the matrix of a linear transformation from the underlying vector 
space of 5 to the underlying vector space of S.) 

Definition 4.5. A collineation P : 5 ~ 5' is a bijection which preserves incidence. 

A projectivity is a collineation. 



If S S', the set of collineations of PG( d, q) is precisely the set of automorphisms 
of PG( d, q) and the set of projectivities is a subset of Aut( PG( d, q)). 

The following lemma is taken from Hirschfeld, [3, p.30] and is stated without 
proof. 

Lemma 4.6. If FI = {Pl,P21"" Pd+2} and F2 {p~, p~, ... ,P~+2} are two frames 
of S PG(d, q), then there is a unique projectivity P mapping FI to F2 such that 
p~ = PiP for all i E {I, 2, ... ,d + 2}. 

In the case of q = 2, that is, if S = PG( d, 2), it suffices to give the images of PI, 
P2, ... ,Pd+I to determine P. 

Definition 4.7. The meet of two subspaces 7rr and trs of PG( d, q) is the set of points 
common to both 7rr and trs and is also a of PG( d, q). 

Lemma 4.8. For any two sets of type H in 2), there exists an automorphism 
of the projective space which maps one set to the other. 

This lemma will be verified the dual lemma. Define the dual 
of type H to be set of type P. Then a set of type P is 

of 2) with the that there no of 
is incident with all of these d + The statement of the 
follows: 

For any two sets of there exists a.n of the 
space which maps one set to other. 

The d + 1 of a of P are a subset of a frame as are the 
other set of type P in So Lemma 4.6 there is a 
mapping the (ordered) points of one set of type P to the (ordered) points of the 
second set of type P. 

Hence duality there is an autornorpJtllsrn .LJ..lGl-'jJAJ.LF, the h"'(nnpl'nl,::.n,"'" of one set 
of type H to any other set of type H. 0 

Lemma 4.9. In 2), d ~ 2, for each set of type H tbere is one point 
II of PG( d, 2) which is incident with none of the of the set of H. 

Proof. The proof of this lemma is in three parts. it is shown that for all 
d ~ 2, there is one set of type H in PG( d, 2) such that there is at least one point of 
PG( d,2) which is incident with none of the hyperplanes of this set of type H. 

Secondly it is shown that for any set of type H in 2) there is at least one 
point of the space which is incident with none of the hyperplanes of the set of type 
H. 

Finally it is shown that for any set of type H there can be at most one point of 
PG( d, 2) which is incident with none of the hyperplanes of the set of type H. 

In order to verify the first step of the proof, consider the following hyperplanes 
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which form a set of type 1t as discussed in Lemma 4.2; 

h::d + OXd-l + OXd-2 + ... + OXl + OXo = 0 

OXd + 1Xd-l + OXd-2 + ... + OXl + OXo = 0 

OXd + OXd-l + OXd-2 + ... + lXl + OXo = 0 

OXd + OXd-l + OXd-2 + .. + OXI + 1xo = 0 

where the Xo, Xl, X2, . •. Xd are the co-ordinates of the points lying in the hyperplane 
in terms of a set of d 1 basis vectors of the underlying vector space. The point 
(1,1, ... ,1,1) is not incident with any of these hyperplanes, so for each PG(d,2) 
there is a set of type 1t and a point which is incident with none of the hyperplanes 
of this set. 

Next it is to be shown that for any set of type 1t of PG( d,2) there exists a point 
which is incident with none of the hyperplanes of this set of type 1t. 

By Lemma 4.8 there is an automorphism, if> , mapping the hyperplanes of the 
above set of type H to the hyperplanes of any other set of type H. This auto­
morphism preserves incidence so none of the hyperplanes of another set of type 1t 
are incident with (1,1, ... 1,1)if>, the image of the point (1,1, ... ,1,1) under the 
appropriate if>. So there is at least one point of PG( d, 2) incident 
with none of the of any set of type 1t. 

Now it has been shown that for any set of type 1t of PC( d, 2) there is at least 
one point incident with none of the hyperplanes or'this set of type H. It remains 
to be shown that there is at most one such point. This will be shown by praying 
the dual statement which is: For any set of type P of PG( d, 2) there is at most one 
hyperplane incident with none of the points of this set of type P. 

Suppose there are two hyperplanes which are incident vrith none of the .::>f 
a set of type P. These two hyperplanes meet each other in a (d - 2)-space, call it 
S'. There are three hyperplanes incident with S' and between them they contain all 
the points of PG(d,2), (this is a property of all (d - 2)-spaces in PG(d,2)). Xow, 
two of the three hyperplanes incident with S' are not incident with any of the points 
of the set of type P, therefore, all the points of the set of type P must be incident 
with the third hyperplane which is incident with S'. This is in contradiction with 
the fact that a set of type P (defined in Lemma 4.8) is a set of d + 1 points such 
that no hyperplane of PG( d, 2) is incident with all these points. 

Hence there can be at most one hyperplane incident with none of the points of 
the set of type P. Now the dual statement is proved and it can be concluded that 
there is at most one point which is not incident with any of the hyperplanes of a 
set of type H. 

Hence there must be precisely one such point II incident 'with none of the hyper-
planes. 0 

The following lemma is due to Gray [2} and is stated here v,ithout proof. 
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Lemma 4.10. Suppose D is a particular defining set· of a STS, S, and p E Aut(S), 
then p( D) is also a defining set of S . 

Recall that the ST S(2d+1 - 1) is isomorphic to the point-line design of PG( d, 2) 
which is PG(V) where V is the (d+ I)-dimensional vector space over GF(2). So the 
blocks of the STS are the lines of PG( d, 2) and they in turn are the 2-dimensional 
subspaces of V. That is to say, three points/vertices of the STS are in a block if 
and only if the corresponding vectors in V are linearly dependent. Consequently, 
the sloop operation is derived from the vector addition. Hence the sloop table is 
both associative and commutative and is actually the elementary abelian group of 
order . The vectors of V are (d + 1 )-tuples whose entries are zeros and ones. It 
is possible (and sometimes convenient) to think of these vectors as being the binary 
representations of the numbers from a to 2d+1 - 1. Obviously, a corresponds to the 
'zero vector' which is not point of PG(d,2), hence the points of PG(d,2) can be 
represented in a natural fashion by the numbers from 1 to - 1. 

Proof of Theorem 4.1. This is done as follows, firstly it is shown that for any dimen­
sion d, d ~ 2, there exists a set of type H such that the blocks of the ST S(2dH 1) 
which correspond to the lines incident with the hyperplanes of this set of type H 
are a defining set for the STS. Then this will be used to show that any set of type 
H will yield a defining set in this way. 

Induction will be used to show the existence of a set of type 1i yielding a defining 
set in the STS(2d+1 - 1) for any d ~ 2. 

Consider the case d 2, suppose we write the lines of PG(2,2) as (1,2,3), 
(1,4,5), (1,6,7), 4,6), (2, 5, 7), (3,5,6) and (3,4,7). In this case the hyperplanes 
of the space are just the lines of the space. Consider the set of hyperplanes, {(I, 2, 3), 
(1,4,5),(2,4,6)}, these are set of type Hfor PG(2,2) and this set oftype 1i gives 
us a set of blocks which are a defining set for the STS(7). Furthermore, this defining 
set gives rise to a 2-critical partial Latin square, (see Example 3.1). 

Now let d k, k ~ 2. Let L be the Latin square which is the sloop table of 
the ST S(2 k+1 1) corresponding to PG( k, 2), with a used as the identity element. 
Assume that there is a set of type 1i which yields a defining set in the STS and 
that the blocks of this defining set give rise to a partial Latin square P which is 
2-critical in L. Suppose that the hyperplanes of this set of type 1i of PG(k, 2) have 
the equations; 

alkXk + alk-l Xk-l + ... + all Xl alOxO = a 
a2 k X k + a2 k -1 X k -1 + ... + a21 Xl + a2 OX ° = a 

akkxk + akk-lxk-l + ... + aklxl + akOxO = a 
ak+l,kXk + ak+l,k-lXk-l + ... + ak+l,lXl + ak+l,OXO = a 

where the constants aij are elements of GF(2) and Xo, Xl, X2, • .. , Xk are the co­
ordinates of points lying in the hyperplane with respect to a set of k + 1 basis 
vectors of the underlying vector space. (The equations are written this way around 
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so that all points/vectors can be represented by the numbers 1 to 2 k+1 - 1 in their 
binary form with the co-ordinate Xi representing the contribution of the binary 
component 2i.) 

Now consider the case d k + 1 and the hyperplanes of PG(k + 1,2) with 
equations; 

OXk+l + alkXk + alk-lxk-l + ... + allxl + alOxO = 0 

OXk+l + a2k x k + a2k-Ixk-1 + .. '. + a21 x l + a20XO = 0 

OXk+l + akkxk + akk-lxk-l + ... + aklxl + akOXO = 0 

OXk+l + ak+l,kxk + ak+l,k-l X k-l + ... + ak+l,lxl + ak+l,OxO = 0 

+ OXk + OXk-1 ... + OXl + Oxo = 0 

with the constants Uij identical to those in the of the case d k above 
and with Xo, Xl, X2, ... ,Xk also in the d k and X k+l the co-ordinate in 
terms of the new vector for the vector space. It is claimed that 
these hyperplanes form a set of type H in + 1, It is also claimed that the 
blocks of the - 1) which to the lines which are incident with 
these rise to a Latin square with (UC) and so these blocks 
are a defining for the STS (by Lemma there is indeed a set of type 
H which yields a set as .,..""",,,,,"<>ri 

Certainly these are a set of d + 1 = k + in order to prove that they 
form set of 7i all that n~eds to be shown that no of PG(k + 1,2) is 
incident with all of these hyperplanes. there is a point which is incident 
with all of these hyperplanes, then it must to a vector with a zero-valued 
co-ordinate in the direction of the new basis vector ~k+l or it can not be incident 
with the last hyperplane in the list. Therefore the point may only belong to the 
set {I, 2, ... ,2k+1 - I}, but by the inductive assumption, no point frOID this set is 
incident with all of the first k + 1 hyperplanes of the list. Whence, there can be no 
such point and these hyperplanes form a set of type H. 

The blocks of the STS which correspond the the lines of the hyperplanes listed 
above give rise to a partial Latin square P* of order 2k+2. It is claimed that P* 

has the following form; 
P*_ L 

- pI 
pI 

P 

where P is the 2-critical partial Latin square of order 2 k +1 from the inductive 
assumption pertaining to the case d = k and pI is a copy of P with each entry X 

of P replaced by X + 2k+l. By Lemma 3.8, P* completes uniquely to 

Consider the last of the hyperplane equations in the list. This hyperplane is 
isomorphic to PG(k,2) and the lines incident with t~is hyperplane correspond to 
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blocks of a sub design of the STS(2k+2 
- 1). Thissubdesign is isomorphic to the 

ST S(2k+l 1) and its blocks give rise to the top left-hand, 2k+l X 2k+1 array of 
the partial Latin square P*. 

N ow consider the first k+ 1 equations of the list which correspond to the equations 
of the hyperplanes in the case d = k. Suppose that in the case d = k, the block 
(i,j, I) corresponds to a line of PG(k, 2) which is incident with the hyperplane with 
the m th equation. Then the partial Latin square P would have entry I in the (i, j) 
position, entry j in the (i, 1) position, entry i in the (j, 1) position etc. Since the 
block (i, j, 1) corresponds to a line which satisfies the m th equation in the d = k 
case, this block still corresponds to a line which satisfies the mth equation in the 
d k + case (as the equation is unchanged except for a term with a zero-valued 
coefficient in the co-ordinate associated with the new basis vector). Further, the 
blocks (i, j + 2k+\ 1 + 2k+1

), (i + 2k+\j, I + 2k+1
) and (i + 2k+I,j + 2k+1

, I) also 
correspond to lines which satisfy the m th equation in the d k + 1 case. So in the 
partial Latin square constructed (in the method of Section 3) from the blocks of the 
STS which to lines of the projective space which satisfy these equations, 
the blocks listed above woul-d lead to the entry 1 + 2k+1 in the (i, j + 2k+l ) position, 
the entry 1+2k+l in the (i+2 k+1 ,j) position and the entry I in the (i+2k+ 1 ,j +2k+1) 

position and so on. These entries all occur in these positions in P*. 
also that in the case d = k, the point i is incident with the mth hy­

perplane. That is, the binary form of the number i when considered as vector 
co-ordinates, satisfies the mth hyperplane equation. Then the partial Latin square 
P has entries; i in the positions (0, i) and (i, 0) and an entry of ° in the position 
(i,i). Now, in the case d = k+1, the block (i,2 k+\i+2k+1 ) of the STS corresponds 
to a line which satisfies the m th hyperplane equation. This leads to entries; i + 2k+1 

in (0,i+2 k+1
) and (i+2 k+1 ,O); and ° in position (i+2 k +1 ,i+2k+1

) from the rules 
(i) and (ii) about constructing a partial Latin square from a subset of the blocks. 
From the rule (iii) the following entries are obtained; i in position (2 k+1 ,i + 2k+1

) 

and (i + 2k+1 , 2k+l); 2k+l in positions (i, i + 2k +1 ) and (i + 2k +1 , i) (these form the 
entries of the diagonals of the top right-hand and bottom left-hand 2k+1 x 2k+l 
arrays); and i + 2k+1 in the positions (i, 2k+1

) and (2 k+\ i). These entries all occur 
in these positions in P*. 

Hence by induction it is shown that there is a set of type 1i for each d which 
yields a defining set for the ST S (2 d+ 1 - 1). Now it remains to be shown that any 
set of type 1i will yield a defining set. 

By Lemma 4.8, for any two sets of type 1i of PG( d, 2) there is an automorphism 
of PG( d, 2) which maps the hyperplanes (and the points and lines incident with 
them) of one set of type 1i to the other. By Lemma 4.10, if iP is an automorphism 
of the STS(2d+1 -1) and D is a defining set for the STS then so is (D)iP. Since it 
has been shown that for all d ~ 2 there is a set of type 1i which yields a defining 
set and there is an automorphism which maps this set of type 1i to any other set 
of type 1i then all sets of type 1i yield defining sets. 0 

From the structure of the partial Latin square P* described in the last proof, it 
is apparent that the number of blocks in a defining set arising from a set of type H 
in PG( d, 2) can be determined as follows. Let D( d) denote such a defining set in 
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the STS isomorphic to PG( d, 2). Then 

ID(d)1 number of lines of PG(d -1,2) + number of points incident with 

the hyperplanes of a set of type 1i of PG(d - 1,2) + 31D(d -1)1 

The first term comes from the top left-hand 2d X 2d array; the entries of this array 
are due to blocks of the STS which correspond to the lines of a complete hyperplane. 
The final term comes from the copies of P and pI, the number of blocks needed to 
produce these entries is 3 times the number of blocks needed to produce the entries 
in one of these arrays and that number is the number of blocks from a defining set of 
this class in the STS isomorphic to PG(d-1,2). The middle term is obtained from 
the blocks of type (i, 2d

, i + 2d
) which were discussed in the last proof, these blocks 

contribute entries to the main diagonals of the P and to the head-line 
and side-line of the subarray pI etc. There is one of these blocks for each point 
incident with a hyperplane of set of 1i of PG(d -1,2). 

Now, the number of lines of PG( d - 1,2) is equal to the number of blocks of 

the STS(2d 1) and the number of blocks of an STS(v) , see Lindner [4]. 
Also, by Lemma 4.9 the number of points in a set of type 1i one less than the 
number of points in the which for PG(d 1,2) is - 1. Hence, 

ID(d)1 =-'---~-6--'---""":" + ((2d -1) -1) + 31D(d - 1)1 

=(2d-2lCd;1 +1) +3ID(d-1ll 

-1)(~)((2d -1) + 6) + 31D(d 

=(~)(2d + 5)(2d- 1 -1) + 31D(d -1)1 
k 

i=O 

1)1 

Now, sets of type 1i are defined only for d 2 so D(d) is only defined for d ~ 2. 
Therefore, in the expression above d -1 - k must begreater than or equal to two. 
Set d 1 k = 2 , then k = d - 3 and k + 1 = d 2, so, 

d-3 

ID(d)1 = I)3 i
-

1 (2d- i + 5)(2d
-

I
-

i -1)) + ID(2)1 
i=O 

Now ID(2)1 3, therefore, 

d-3 

ID(d)1 = l:(3 i
-

I (2d
-

i + 5)(2d- 1
-

i 1)) + 3d
-

2 .3 
i=O 

d-3 

=3d - 1 + l:(3i - I (2 d - i + 5)(2d - I - i 1)) 
i=O 
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It is possible to rewrite this without the summation sign. The first step is to 
multiply out the factors in the above expression. 

=3d - 1 d-3 [(3i2~) (~) (3
i 5) (~) _ (3i2~) _ 3i (~)] + L 3.2l 2.2~ + 3 2~.2 3.2l 3 

i=O 

=3d-1 
+ :~: [U;,) C:.~d) + G:) [C~~:) -C:)]- 3' G)] 

d-3 [(3)i (4
d

) (3)i (2
d

) (5 ) . (5)] =3
d

-
1 
+ i=O 4: "6 + 2 3" 2 - 1 - 3

l 

"3 

Now this can be broken into three separate summations. 

Each of these summations is the sum of the first d - 2 terms of a geometric series. 
This is used to rewrite the expression without the summations as follows. 

D d =3d-1 (4
d

) [1 -(~)d-2] (2
d.3) [(~)d-2 -1] _ (~) [3

d
-

2 -1] 
I () I + 6 1 - (£) + 3.2 (~) - 1 3 3 - 1 

d-1 + u:) [1-(t-2
] + en [md~2 -1] -G) [3

d
-: 1] 

=3d-1 + (~)4d [1 - (!:=:)] + (2d) [G:=:) -1]- {~)[3d-' -lj 
=3d - 1 + [(j)4d _ (j)(42 3d - 2 )] + [(223d- 2) - 2d]_ (%)[3d- 2 -1] 

=(~)4d + [3 + 22 - (~)42 - (~)]3d-2 - 2d + (V 
=(~)4d _ (~)3d-2 _ 2d + (~) 
=( ~ )4d _ (~)3d _ 2d + (%) 

5. Minimality of these defining sets. 
Not only are the sets of Theorem 4.1 defining sets, they are also minimal defining 

sets for these STS's. That is the main theorem of this section, but before the 
theorem is stated and proved some more definitions and lemmas are introduced. 

Lemma 5.1. The (d~l) meets of the d + 1 hyperplanes of a set of type 1i of 
PG( d, 2) are all distinct, (d ~ 2). . 

Proof. The hyperplanes of a set of type 1i all meet each other in (d - 2)-spaces of 
PG( d, 2) and each (d - 2)-space of PG( d, 2) is incident with three hyperplanes of 

68 



the space. not all the meets are distinct, then there are three hyperplanes 
of this set 1i which meet each other in a common (d 2)-space. Then 
between them these three hyperplanes are incident with all the points of PG( d, 2) 
but this contradicts Lemma 4.9 which states that there is one point of the 
space which is incident with none of the of a set of type 1i. 0 

Lemma 5.2. Consider a set of type 1i of PG(d,2) and let 7r be hyperplane 
of PG( d, 2) such that 7r is not one of the hyperplanes of the set of type 1i. Let 
Sl .. Sd+l be the (d-2)-spaces in which 7r meets each of the d+ 1 hyperplanes 
of the set of type 1i, then at most one of the is not 
distinct. That to say, either d or d + 1 of these SU,DS1Ja(;eS 

Proof. that only d -1 of the S2, .. 1 are distinct. Then 
either three of the of the set of type 1i ~ll meet 7r in single (d 

hV'np'rnl~n,D" of this of type 1i such that both the 
meet 7r in the (d 

Lemma 5.1, which states that the nR'lr-Wl~:p 
of type 1i are the former 5U1Ppl:)SltlOll 

type 1i all meet 7r in a (d can not be correct. 
So it must be the 

each other in common (d -
,Hk, in the of type 1i 

and HI both meet 7r in Now Si and are both (d-
meet each other in a (d - 3)-space of 1r, call it T*. So 
the set of 1i which are all incident with this (d-

Consider one of these four then 
the set of type 1i meet in d (d which are all distinct 
That is to say, the (d - 1 )-space, contains d (d which cannot have 
a common point (or there would be point common to all the hyperplanes of the 
set of 1i) so these d (d - 2)-spaces form a set of type H Hi. Now these 
(d - 2)-spaces all meet each other in (d - 3)-spaces of which Lemma 5.1 must 
be distinct. However, T* is a (d - 3)-space which is incident with Hi and three of 
the other hyperplanes of the set of 1i, so three of these d (d 2)-spaces of 
Hi are also incident with T*. In other words the (d - T* is the common 
intersection of 3 of the d (d - 2)-spaces of the set of type H in Hi which is in 
contradiction to the result of Lemma 5.1. 

Therefore the supposition that only d 1 of the meets of the hyperplanes of the 
set of type 1i with another hyperplane 7r are distinct was incorrect. 0 

Definition 5.S. A set {'Ii,7;} where 'Ii and 7; are distinct collections of blocks 
containing precisely the same pairs is called a trade. 

Consequently, given a STS with block-set B and a trade {'Ii, T2} such that 'Ii ~ B 
then the set 7; U {B \ 'Ii} is another STS with the same parameters. 

Such collections of blocks are sometimes described as mutually balanced. 

The following lemma is due to Gray [ 2] and is stated without proof. 
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Lemma5.4. If {7i, 12} is a trade and 7i ~ B then any defining set of the design 
with block-set B must contain at least one block of 7i. 

To show a defining set is minimal it is necessary to show that removing any block 
from the defining set results in a set of blocks which can belong to more than one 
design of the given parameters. 

Lemma 5.5. A defining set D of a design with block-set B is minimal if for each 
block {3 of D there exists a subdesign with block-set B', (8' c B) with {3 E B' such 
that D n B' is a defining set in B' but (D n B') \ {{3} is not a defining set in B', 

Proof. If D n B' is a defining set in Bf but (D n B') \ {,B} is not, then there exists a 
set of blocks of B' which has empty intersection with (D n [3') \ {{3} but non-empty 
intersection with D n B', which can be substituted for by another set of blocks which 
also complete the subdesign. That is to say, there is a trade {7i 12} with 7i E B' 
and hence 7i E B too, such that the only block of common with D is fJ. By 
Lemma 5.4 D \ {{3} is not a defining set, therefore {3 cannot be removed from D. 

If this is true for every block, (3, in D then D is minimal as no proper subset of 
D is a defining set. 0 

Lemma 5.6. Consider the ST S(15) which is isomorphic to PG(3,2). The set of 
blocks of this STS which correspond to the lines of any set of type 1-l of PG(3, 2) 
are a minimal defining set for the STS. 

Proof. Consider the set of type 1-l whose hyperplanes are given by the equations; 
X3 = 0, X2 0, Xl = 0 and Xo = 0 where these equations are written in the same 
notation as described in Section 4. Each of these hyperplanes is isomorphic to the 
Fano plane. These hyperplanes meet in (d - which, since d = 3 means 
that they intersect in lines. 

The lines incident with the hyperplane whose equation is X3 = 0 are; (1,2,3), 
(1,4,5), (1, 6, 7), (2,4,6), (2, 5, 7), (3,4,7) and (3,5,6). 

The lines incident with the hyperplane whose equation is X2 = 0 are; (1,2,3), 
(1,8,9), (1, 10, 11), (2, 8, 10), (2, 9, 11), (3,8,11) and (3,9,10). 

The lines incident with the hyperplane whose equation is Xl = 0 are; (1,4,5), 
(1,8,9), (1, 12, 13), (4,8,12), (4,9,13), (5,8,13) and (5,9,12). 

The lines incident with the hyperplane whose equation is Xo = 0 are; (2,4,6), 
(2,8,10), (2, 12, 14), (4,10,14), (4,8,12), (6, 8,14) and (6,10,12). 

It is sufficient to consider only the lines of one of these planes and to show that 
each of these is needed in the defining set to show that all the lines of these four 
hyperplanes are needed. 

The first hyperplane meets the hyperplane with equation X2 = 0 in the line 
(1,2,3); the hyperplane with equation Xl = 0 in the line (1,4,5) and the hyperplane 
with equation Xo = 0 in the line (2,4,6). Suppose the block corresponding to a line 
which is the meet of two of these planes is removed from the defining set, then the 
resulting set permits a trade and is not a defining set. 

For example, if (1,2,3) is removed from the defining set then the trade {7i, 12} 
with 7i = {(I, 2, 3), (3, 13, 14), (2, 13, 15), (1, 14, 15)} and 72 = {(I, 2,15), (2, 3, 13), 
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(13,14,15), (1,3, 14)} can be made as there is no longer any block of 11 is in the 
defining set. 

The lines (1,6,7),(2,5,7) and (3,4,7) are each incident with a hyperplane of 
PG(3,2) which is in turn incident with one of the lines which are the meets of the 
other three hyperplanes of the set of type 1i listed above. The removal of anyone 
of these blocks from the defining set also results in a set which permits a trade. 

For example, the line (1,6,7) is incident with the hyperplane whose equation is 
X2 + Xl O. The lines incident with this hyperplane a:re (1,6,7), (1, 8, 9), (1, 14, 15), 
(6,9,15), (6, 8, 14), (7, 8, 15) and (7,9,14). Now the line (1,8,9) is also incident 
with the hyperplane whose equation is X2 = 0 and the hyperplane whose equation 
is Xl = 0 so it is the meet of two of the hyperplanes of the set of type 1i listed above. 
Removing the block (1,6, 7) from the defining set permits a trade in the sub design 
corresponding to this plane. The blocks {(I, 14, 15), (1, 6, 7), (6,9,15), (7, 9, 14)} can 
be traded for {(I, 6,15), (1, 7, 14), (6, 7, 9), (9, 14, 15)} as no block of the first collec­
tion, besides (1,6,7) is in the defining set. 

Now, all lines of the plane have been shown to be necessary in the defining set 
except for the line (3,5,6). The line (3,5,6) is incident with the hyperplane whose 
equation is X2 + Xl + Xo = 0 and whose lines are: (3,5,6), (3, 8, 11), (3, 13, 14), 
(5,11,14), (5, 8, 13), (6,8,14) and (6,11,13). Removing the block (3,5,6) from the 
defining set leaves a trade in the sub design corresponding to this plane, namely 
{1l,12} where 11 = {(3,5,6),(3,13,14),(5,11,14),(6,11,13)} and 12 = ((3,5,14), 
(3,6,13), (5,6,11), (11, 13, 14)}. Although there are still three blocks of this sub­
design in the defining set, namely, (3,8,11),(5,8,13) and (6,8,14), they are all 
incident with the point 8 so they are not a defining set for the subdesj::n. 0 

Consider a set of type H of PG( d, 2), let {} denote the point of PG( d, 2) which 
is incident with none of the hyperplanes of the set of type H. (Such a point exists 
for each set of type H by Lemma 4.9.) 

Lemma 5.7. Given a set of type H of PG( d, 2), d 2:: 4, every line which is jrrirJent 
with one of the hyperplanes of this set is also incident with a hyperplane of the 
space which contains both the point {} and the meet of two of the hyperplanes of 
the set of type H. 

Proof. Due to Penttila [5]. Firstly consider the set of type H which has as elements 
the hyperplanes with equations: 

1xd + OXd-1 + OXd-2 + ... + OXI + OXo = 0 

OXd + 1Xd-1 + OXd-2 + ... + OXI + OXo 0 

OXd + OXd-1 + OXd-2 + ... + lXI + OXo = 0 

OXd + OXd-1 + OXd-2 + ... + OXI + 1xo = 0 

where the Xo, Xl, X2, •.. , Xd are the co-ordinates of the points lying in the hyperplane 
in terms of a set of d + 1 basis vectors. 



Then f} is the point (1,1, ... ,1,1) and the hyperplanes which contain both a 
meet of two hyperplanes from the set of type Hand f} have equations of the form; 

where precisely two of the constants ai (chosen from G F( 2)) have the value 1 and 
the rest have the value O. So it is necessary to show that any line incident with a 
hyperplane of the set of type H above is incident with a hyperplane of this form. 

Now, any line incident with a hyperplane of the set of type H is the span of 
two points / vectors (Yo, Yl , ... ,Yd) and (zo, Zl "Zd) with Yi Zi 0 if this line is 
incident with the hyperplane OXd + OXd-l + ... + OXi+l + 1xi + OXi-l + ... + OXo = 
o from the set of type H. Suppose such a line is not incident with one of the 
hyperplanes described above. Consider the pairs (Yh Zj) for j =I- i, none of these 
pairs can be the pair (0,0) or the line would be incident with the hyperplane with 
equation adXd + ad-lxd-l + .,. + alXl + aoxo = 0 where ai aj 1 and all the 
other ak are O. Moreover, no two pairs are equal, for if (Yj,Zj) = (Yk,Zk) then the 
hyperplane with equation adxd+ad-lxd-l + .. '+alxl +aoxo = 0 where aj = ak = 1 
and all the rest are 0 would contain the line. Hence there are three pairs which can 
occur namely (0,1),(1,0) and (1,1) and each occurs at most once. But there 
are d pairs to consider so d :::; 3. Hence for d 2: 4 the supposition that a line incident 
with a hyperplane of the set of type H is not incident with one of these hyperplanes 
is incorrect. 

By Lemma 4.8 this holds for any set of type H in PG( d, 2), d 2: 4. D 

Theorem 5.8. The defining sets of Theorem 4.1 are minimal defining sets. 

Proof. Consider the case d = 2. The defining set arising from a set of type H in 
PG(2, 2) is minimal, see Gray [2]. 

The remainder of the proof is by induction. The basis step is the case d = 3, the 
defining set arising from a set of type H in PG(3, 2) is minimal, see Lemma 5.6. 

Assume that for d = k, k 2: 3 the defining set arising from a set of type H in 
PG(k,2) is minimal. 

Consider the case, d = k + 1, k 2: 3 so d 2: 4. Each block f3 of the defining set 
D(k + 1) arising from a set of type H in PG(k+l, 2) corresponds to a projective line, 
1{3, which is incident with a hyperplane of the set of type 1l. By Lemma 5.7, each 
line 1 which is incident with a hyperplane of the set of type H, is also incident with 
a hyperplane, 1rI, which contains the meet of two hyperplanes of the set of type H. 
Therefore 1r1 meets the hyperplanes of the set of type H in d distinct (d - 2)-spaces 
(by Lemma 5.2). There is no point common to these d (d - 2)-spaces, since, if this 
was the case there must have been a point common to all the hyperplanes of the set 
of type H. Hence these d (d - 2)-spaces of the hyperplanes 1r1 form a set of type H 
in 1r1. That is to say the defining set D(k + 1) intersects the sub design of the STS 
which corresponds to 1rl in a defining set D(k), which by the inductive assumption 
is minimal. Hence, by Lemma 5.5, the defining set D(k + 1) is minimal. D 
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