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1. INTRODUCTION 

In infonnal tenns, a perfect threshold scheme is a method of sharing a secret key among a 

number of participants in such a way that 

(a) any t participants can detennine the key from the t portions of the secret (shadows) 

that they hold, and 

(b) if t' < t, it is impossible for any t' participants to obtain any partial information 

about the key using the t' shadows that they collectively hold. 

Threshold schemes were first introduced independently in 1979 by Shamir and Blakley. 

Since then quite a number of papers have been published on them. (For a bibliography one 

may refer to Simmons (1989).) Most of the early constructions were linear algebraic in 

nature. Stinson and Vanstone (1988) have developed a combinatorial design 

approach to threshold schemes. In their approach the shadows apportioned to the 

participants are taken to constitute an (unordered) set, and a threshold scheme is a certain 

sort of unifonn hypergraph. In Section 2 we introduce an analogous approach to threshold 

schemes using ordered rather than unordered sets. In our approach the shadows 

apportioned to the participants are taken to constitute an ordered set and a perfect threshold 

scheme is a certain sort of block code. We refer to our perfect threshold schemes as being 

"ordered" to distinguish them from those of Stinson and Vanstone (1988). This 

characterisation for threshold schemes is similar to the approach taken by Brickell and 

Davenport (1991). In this paper Bricken and Davenport characterise secret sharing 

schemes in tenns of matrices. They also mention that a 2-out-of-n threshold scheme can be 

constructed from orthogonal arrays of strength two. However the results in this paper goes 

beyond this and demonstrates that general t-out-of-n threshold schemes can be constructed 

from orthogonal arrays of strength t. 

Given v shadows, w participants and threshold t (as in (a) and (b) above), it is natural to 

seek to determine the maximum value M(t, w, v) that the number of keys can take. In the 

unordered case Stinson and Vanstone have established that M(t, w, v)::;; : -_ tt: 11 with 

equality if and only if there is a Steiner system Set, w, v) which can be partitioned into 

Steiner systems Set - 1, w, v). In Section 3 we adapt the methods of these authors to 

obtain: In the ordered case M(t, w, v) ::;; v with equality if and only if there is an 

orthogonal array based on v symbols of strength t, depth w + 1 and index one. This 
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enables us to show that M(t, t, v) = v for all relevant t and v. Clearly, this contrasts 

favourably with the unordered case, since M(3, 3, v) is not yet completely determined in 

the unordered case, even after considerable effort, and relatively little seems to be known 

about (unordered) M(t, t, v) for t > 3. (For a survey of results on unordered perfect 

threshold schemes Chen and Stinson (1990) should be consulted.) Also, using known 

results on orthogonal arrays we are able to show that M(t, w, v) = v for a further range of 

t, w, v. For example, we show that, for given t and w such that 2 $; t $; w, there are 

infinitely many v such that M(t, w, v) = v, and that, for every 

0.
1 

0.
1 

0.
1 

t < PI ' M(t, PI ,v) = v, where Pl ~ 3 is the smallest prime power in the prime 

power factorization of v. 

In Section 4 we discuss the implementation of ordered perfect threshold schemes. In 

particular, we show that ordered perfect threshold schemes with t = w and v keys can be 

constructed having the following desirable features 

(i) no ordered sets need to be constructed ahead of time, 

(ii) large numbers of ordered sets need not be and 

(iii) the key is easily computable given t shadows in their correct positions. 

2. ORDERED THRESHOLD SCHEMES 

Let w > O. A w-uniform ordered hypergraph is a pair (X, cS&), where X is a non-empty 

set of elements (called points) and cS& is a multiset of w-tuples of elements of X (called 

blocks). Note here that our w-tuples are ordered and that an element of X may occur more 
than once in a given w-tuple. If every w-tuple of (X, cS&) has multiplicity one (ie. ~ is a 

set), then we say that (X, ~) is simple. (A simple w-uniform ordered hypergraph is, of 

course, merely a block code.) 

Given a w-uniform ordered hypergraph (X, cS&), for the purposes of continuing our 

discussion, we adjoin a new element * to X and define a partial order ~ on the w-tuples 

of elements of x* = X u {*} by 
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if and only if, for all Xi::l= *, xi = Yi' (We can think of an occurrence of * in a w-tuple as 

the occurrence of a blank.) If x ~ y, then we say that x is contained in y. We define the 
width ro(x) of x to be the number of coordinates of x not equal to *. (When we deal 

with w-tuples of specified width it should be understood that such w-tuples are from 
X*=Xuh}·) 

Now, let 1 ~ t ~ w. We define the t-induced w-uniform ordered hypergraph of (X, cit) 

to be (X*, cit(t)), where 61(t) is the multiset union u fx: x ~ y and ro(x) = t}. 
y E.s1 

Two w-uniform ordered hypergraphs (X, 611) and (X, 612) are said to be t-disjoint if 

the multiset 611 (t) and the multi set cit2(t) are disjoint. Also (X, cit l ) and (X, cit2) are 

said to be t-identical if the multisets 611 (t) and cit2(t) are equal (that is, 811 (t) and 8:12(t) 

contain the same w-tuples with the same multiplicities). 

Let 1 < t ~ w, 1 < v and 1 < m. A (t, w, v; m) - ordered threshold scheme is a simple 
w-uniform ordered hypergraph (X, 8:1) such that I X I = v and 81 can be partitioned into 

w-uniform ordered hypergraphs (X, cit i)' i == 0, ... , m - 1, (called components of 

(X, 81)) such that 

(1) the (X, 81i ) are mutually t-disjoint, and 

(2) no w-tuple of width t' < t occurs in precisely one of the multi sets 81i(t'). 

The points of a (t, w, v; m) - ordered threshold scheme are referred to as shadows and the 

parameter t is its threshold. Also, each element of K = {O, 1, ... , m - I} is called a key. 
If the eX, 8:1i) are also mutually t'-identical for some t' such that 0 < t' < t, then we say 

that (X, cit) is t'-perfect. A (t - 1) - perfect (t, w, v, m) - ordered threshold scheme is 

said to be perfect. Furthermore, an ordered threshold scheme is called regular if 
I cit i I = I citj I for all i, j = 0, ... , m - 1. (Note here that our usage of the term 'regular' 

diverges somewhat from that in Stinson and Vanstone (1988).) 
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Example 

~o ~1 ~2 ~3 
0 0 0 0 0 3 2 0 2 1 3 0 3 2 1 

1 1 1 1 1 0 2 3 1 3 0 2 1 2 3 0 

2 2 2 2 2 3 1 0 2 0 3 1 2 1 0 3 

3 3 3 3 3 2 0 3 1 2 0 3 0 1 2 

0 1 2 3 0 0 1 1 0 3 3 0 0 2 0 2 

0 3 2 1 1 0 0 1 2 2 1 3 3 

2 3 o 1 2 2 3 3 2 1 1 2 2 0 2 0 

3 2 0 3 3 2 2 3 0 0 3 3 1 3 1 

0 2 3 1 0 3 0 3 0 0 2 2 o 1 1 0 

1 3 2 0 1 2 1 2 1 1 3 3 1 0 o 1 

2 o 1 3 2 2 1 2 2 0 0 2 3 3 2 

3 1 0 2 3 0 3 0 3 3 1 1 3 2 2 3 

0 3 1 2 0 2 2 0 0 o 1 0 0 3 3 

2 0 3 1 3 3 1 1 0 0 2 2 

2 1 3 0 2 0 0 2 2 3 2 3 2 2 1 1 

3 0 2 1 3 1 1 3 3 2 3 2 3 3 0 0 

A Perfect (3,4,4; 4) Ordered Threshold Scheme 

The following proposition is basic. 

Proposition 1 
Let (X, ~) be a (t, w, v; m) - ordered threshold scheme. If (X, ~) is t' - perfect for 

some t' such that 0 < t' < t, then (X, ~) is regular and ttl - perfect for all til such that 

1 :s; tit $; t'. 

Proof 
Suppose (X, ~) is t'-perfect. Counting the number of w-tuples of width t' contained in 

the w-tuples of ~i yields (~) I ~i I. Since (X, ~) is t'-perfect this number is 

independent of i. 
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Consider any w-tuple x of 81i(t"). For any w-tuple y of Jcl,i such that x::::; y, there 

(
w - til) 

are t' _ til w-tuples Z of 81i(t') such that x::::; Z ::::; y. Let A(Z) be the multiplicity of 

Z in 81 jet'). Now L A(Z), the summation being over all Z such that x::::; Z and 

ro(z) = 1', is the number of times such w-tuples are contained in a w-tuple of 81i. This 

sum is independent of i as 81 i(t') = 81 /t') for all i, j E to, 1, .... , m - I}. So the 

(
w - til) 

multiplicity of x in 81i(t") is L A(Z) / t' _ til , which is independent of i. 0 

The following protocol might be used for secret sharing. Suppose fP wants to 'share' a 

secret key k (0 ::::; k :s; m - 1) among a group of w people. The participants are ordered 

from first to wth, and we say that the ith participant holds position i. A participant's 

position need not be kept secret from the other participants. A suitable (t, W, v; m) -
ordered threshold scheme (X, 81) is made known to all of the participants. fP chooses at 

random a block x = (Xl' X2' ... , xw) of component 81k and then gives the participant 

holding position j the shadow Xj' Now, if t participants (holding positions 

ij. j = 1, ... , t, say) wish to determine the key k, they search through the set of blocks of 

(X, 81). When a block b is found whose irth co-ordinate is Xi., for each j = 1, .'" t, 
J 

then the key is k, where bE 81k. 

We now tum briefly to a consideration of the security of the secret sharing schemes we are 

discussing. 

Suppose that there is a probability distribution on the set K = to, .. " m - I} of keys of 
the ordered threshold scheme (X, 81). We also suppose that, for every key k, the blocks 

in 81k are chosen with equal probability. Given t' such that 0 < t' < t, eX, 81) is said 

to be perfectly t'- secure if, for every w-tuple Z of width t' that has positive multiplicity 
in ~(t') and for every key k E K, we have that the conditional probability p(k I z) 

equals p(k). 

Proposition 2 
Let Z be a w-tuple of width t' that has positive multiplicity in 81(t') and Ak(z) be the 

multiplicity of Z in 81k(t'). (X, 81) is perfectly t'-secure if and only if Ak(z) / I 81k I is 

independent of k. 
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Proof 

First, P(k I z) = p(k) p(z I k) for any k E K and z as in the statement of the 
p(z) 

Ak(Z) A (z) 
proposition. Now p(z I k) = ~k(t') = k and 

(;,) I~kl 

p(h) Ah (z) = "" p(h) Ah (z) . 

p(z) = L ~ (t') £..J (w) 
hE k h hE k I~ I 

t' h 

So we have 

_ (P(k) Ak (z) ) / ("" p(h) Ah (z) ) 
p(k I z) - I ~ I £..J I ~ I . 

k hE K h 

Suppose (X, ~) is perfectly t'-secure. From (1), we obtain 

Ak(Z) 
whence I ~ k I is independent of k. 

Ak(Z) 
Suppose -:::;;- is independent of k. Then, from (1), we have 

I cq,.k I 

p(k) 

L p(h) 
hE K 

= p(k). 0 
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Corollary 1 
(X, 81) is regular and perfectly t'-secure if and only if (X, 81) is t'-perfect. 

Proof 
Suppose (X, 81) is regular and perfectly t'-secure. Then I ~k I is independent of k. 

Using Proposition 2, Ak(z) is independent of k. 

Suppose (X, 81) is t'-perfect. By Proposition 1, (X, ~) is regular. Also Ak(z) is 

A (z) 
independent of k for z as in the statement of Proposition 2. So ~ is independent 

I c:q,k I 

of k, whence (X, 81) is perfectly t'-secure, by Proposition 2. 0 

Corollary 2 

If a regular ordered threshold scheme is perfectly t'-secure, then it is perfectly til-secure for 

all til such that 1 :s; til :s; t'. 

Proof 
Suppose (X, 81) is regular and perfectly t'-secure. Then (X, 81) is t'-perfect, by 

Corollary 1. By Proposition 1, (X, 81) is til_perfect for all t" such that 1:S; til :s; t', By 

Corollary 1, (X, 81) is perfectly til-secure for all such til. 0 

Remarks 

(a) Proposition 2 applies no matter what probability distribution we have on K. 

(b) Perfectly t'-secure ordered threshold schemes that are not t'-perfect can be obtained 
from a t' -perfect ordered threshold scheme (X, 81) by using unions of the 

components of (X, 81) as components. 
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3. ORTHOGONAL ARRAYS 

Let 1 ~ t ~ wand 2 ~ v. An orthogonal array of streng th t, depth wand index A 

based on v symbols (say 0, 1, ... , v - 1), is an N x w array such that for any N x t 

sub-array each ordered t-tuple from X = {O, 1, ... , v-I} occurs precisely A times as a 

row of the sub-array. It is common for such an orthogonal array to be denoted by 

OA(N, w, v, t) or simply (N, w, v, t). We will use the notation t-(v, w, A) ~A. The 

number N of rows of a t-(v, w, A) OA is Avt. For t> 1, any t-(v, w, A) OA is a 

(t - 1) - (v, w, VA) ~A. It is known (see MacWilliams and Sloan (1978) and Phelps 

(1984» that a t-(v, w, 1) OA is equivalent to a (w, vt, w - t + 1) code over an alphabet of 

v symbols (that is, to a "maximum distance separable" code) where the codewords are the 

row vectors. 

Consider a t-(v, w, A) OA A. The sub-array of A fonned by deleting a column (say the 

jth) of A and all rows of A except those that have a fixed element (say i) in the jth column 

of A is a (t - 1) - (v, w - 1, A) OA which we call the (i,j) - contraction of A. 

A t - (v, w, A) OA is said to be (t', J.l) - partitionable if its set of rows can be partitioned 

into AVt-t' / 11 t' - (v, w, 11) OAs. (Juxtaposing n t - (v, w, A) OAs yields a (t, A) -

partitionable t (v, w, nA) OA.) The component t' - (v, w, 11) OAs are said to fonn a 

(t', J.l) - partition of the t - (v, w, A) ~A. (Analogously to the unordered case, if A = 1 

and t' < t = w we might refer to the set of components of a (t', 11) - partition as a 'large 

set' of t' - (v, w, 11) OAs.) The 64 rows in the example in Section 1 fonn a 3 - (4, 4, 1) 
~A. cS1 0' cS1 1, cS12 and cS1 3 are the components of a (2, 1) - partition of this orthogonal 

array. 

Corresponding to an orthogonal array there is a w-unifonn ordered hypergraph whose 

blocks are the rows of the orthogonal array. We say that an orthogonal array is simple if 

its corresponding ordered hypergraph is simple. It does no harm to identify an orthogonal 

array with its corresponding ordered hypergraph. Indeed, we will find it convenient at 

times to consider an orthogonal array to be an ordered hypergraph. 

Let 1 ~ t' < t and 11 < v. A (t', 11) - partition able t - (v, w, 1) OA (X, cS1) is a t'-

perfect t W v· _v_ ordered threshold scheme. The components of the ordered 
( 

t t') 
, , , J..1 
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threshold scheme here are, of course, the components of the (t', Jl) - partition. For a 

construction of such ordered threshold schemes see Section 4. 

Remark 

Orthogonal arrays of index unity (in the guise of maximum distance separable codes) have 

been' introduced by a number of authors into the study of secret sharing schemes; for 

example, McEliece and Sarwate (1981) and Kamin, Greene and Hellman (1983). 

Let t,'w, v be such that there is a perfect (t, w, v; m) - ordered threshold scheme for some 

m. Wedefine M(t, w, v) by M(t, W, v) = max {m: there is a perfect (t, w, v; m) - ordered 

threshold scheme}. 

It is our aim to obtain an upper bound on M(t, w, v) and to characterizethe ordered 

threshold schemes which achieve the bound. In order to do this the following two lemmas 

are useful. 

Lemma 1 

Let t $; w. There exists a t-(v, w + 1, A) OA if and only if there exists a (t - 1, A) -

parritibnable t - (v, W,A) ~A. 

Proof 
Suppose there exists at - (v, w + 1, A) OA (X, 89-). For each j the (i, j) - contractions of 

(X:, 89-), as i runs from ° to v-I, form a (t - 1, A) - partition of a t - (v, w, A) ~A. 

Suppose there is a (t - 1, A) - partitionable t - (v, w, A) OA (X, 89-) with components 

(X, 89-.) , i = 0, ... , v - l. Adding an extra column c to (X, 89-.) with entry i in c 
1 1 

in the rows of 89-. yields a t- (v, W + 1, A) ~A. <> 
1 

Consider a w-tuple, x = (xl"'" xw) of X* of width s such that w:- l.~s~ 1 and a 

w-tuple of X* y = (yP ... , Yw) of width s + 1. If x $; y and Yk·i; xk = *, then we 

say y is a 1 - coordinate extension of x at k. If 5' is a set of w-tuples, we denote the set 

of all 1 - coordinate extensions of 5"' .by 5"'+. 
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Lemma 2 
Let (X,.,s6j,) be a perfect (t, w, v; v) - ordered threshold scheme with components 

(X, .,s6j,i)' i = 0, ... , v-I, where .,s6j,i (t - 1) = 3 for all i. Then 

(a) (x*,3) (and hence (X*, .,s6j,(t») is simple, 

(b) $+ = .,s6j,(t), and 

(c) .5&i(t), i = 0, ... , v-I, is a partition of 3+, 

Proof 
Consider x E 3. For i = 0, ... , v-I, there is at least one block Xi of cSZ1 i such that 

x 5ixi' For any appropriate k, let Yi(k) be the 1 - coordinate extension at k of x such 

that Yi(k) ~~. Since the .,s6j,i(t) are v in number and mutually t-disjoint we have that: 

the Yi(k) are all of the 1 - coordinate extensions of x at k. (2) 

(a) Suppose X. E .,s6j,. such that x:5; X. and let Y (k) be the 1 - coordinate extension 
1 Iii 

of x at k such that Y
i 

(k) :5; Xi . Since the .,s6j,i(t) are mutually t-disjoint and (2) 

applies we have that y.(k) = f(k) ,But then we have X. = x .. Since (X, cS1) is 
1 1 1 1 

simple, we infer that (X*, .3) is simple. In consequence, (X*, cS1(t» is also 

simple. 
(b) Returning to (2), we see that 3+ = cS1(t). 

(c) The .,s6j,i(t) partition cS1(t) = 3+. 0 

We are now in a position to establish our main result. 

Theorem 1 

M(t, w, v) ~ v with equality if and only if there exists a t-(v, w + 1, 1) OA. 

Proof 

The bound is well-known (see Brickell and Stinson (1991» but a proof is given for the 

sake of completeness. Suppose M(t, w, v) > v. Consider a perfect (t, w, v; M(t, w,v»­
ordered threshold scheme (X, cS1) with components (X, cS1i ) such that .,s6j,i(t - 1) = 3 for 

all i. Let x E 3. For each appropriate k, we can obtain a 1 coordinate extension Yi(k) 

of x at k from each .,s6j,i' Since there are precisely v such 1 - coordinate extensions of 

x at k and M(t, w, v) > v, we have that the .,s6j,i are not t - disjoint, a contradiction. 
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Suppose there is a t - (v, w + 1, 1) ~A. By Lemma 1, there is a (t - 1, 1) - partitionable 

t - (v, w, 1) ~A. The corresponding perfect (t, w, v; m) - ordered threshold scheme has m 

= v. So M(t, w, v) ~ v, whence M(t, w; v) = v. 

Suppose M(t, w, v) = v. Consider a perfect (t, w, v; v) - ordered threshold scheme 
(X,81). By Lemma 2(a), (X*, $) and (X*,81(t» are simple. 

Now, consider any w-tuple x" of width t. Let x' be a element of $+. We show that 

x" E 81(t) by reverse induction on the number n of coordinates at which x" and x' 

agree, that is, on the number of coordinates at which Xi" = Xi' ;¢: *. If n = t, then x" = x' 

and so x" E 81(t), by Lemma 2(b). Our inductive hypothesis is: x" E 81(t) for all x" 

such that n ~ t - j, where j ~ O. 

Consider x" such that n = t - j - 1. Then (i) there are k and e. such that xk' * xk" = * 

and * = x.e.' * x.e." or (ii) k where x'k * x\ and x'k' x"k * *. 

(i) Consider x * of width t defmed by xh * = xh" for all h * k, e. and xk * = xk' and 
x.e.* = *. Now the number of coordinates at which x* and x' agree is t - j. By 

the inductive hypothesis, x* E 81(t). Define x by x
h 

= x~ for all h * k and 

x
k 

= *. Now x is of width t - 1 and x ~ x * . So X E 3. But x" is a 

1 - coordinate extension of x at e., that is, x" E &5 +. By Lemma 2(b), 

x" E 81(t). 

(ii) Similarly it can be shown that x" E 81 (t). In the case where x'k * x\ and 

x'k ' x"k * *. 

That the set 81(t) equals the set {z: ro(z) = t} follows by induction and so (X,81) is a 

t - (v, w, 1) ~A. 

Finally, consider u of width t - 1. Let v be a 1 - coordinate extension of u. Since 
v E 81(t), we have u E $. So the set $ equals the set {z: ro(z) = t - 1} and therefore 

(X, 81 i) is a (t - 1) - (v, w, 1) ~A. Hence, (X, ~) is a (t - 1, 1) - partitionable 

t - (v, w, 1) ~A. By Lemma 1, there exists a t - (v, w + 1, 1) OA. 0 
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Corollary 1 

(a) For t, v ~ 2, M(t, t, v) = v. 

(b) (i) For w > t ~ 2, if M(t, w, v) = v, then M(t, w - 1, v) = v. 

(ii) For t ~ 3, if M(t, w, v) = v, then M(t - 1, w - 1, v) = v. 

(c) Let s ~ 2. If M(t, wi' vi) = vi for i = 1, ... , s, then 

M(t, min w., IT v.) = IT v .. 
I i =l

1 
i=1 1 

(d) (i) For t < q and q a prime power, M(t, q, q) = q. 

(ii) For q an even prime power, M(3, q + 1, q) = q. 

(e) If there is a Steiner system S(3, q + 1, v + 1) with q a prime power, then 

M(3, q, v) = v. 

Proof 
(a) Take a t (v, t, 1 )OA, (X, ~), where X = {O, ... , v-I}. (Here, of course, each 

t-tuple of X occurs precisely once as a block.) Add one extra column containing in 
a given row the sum modulo v of the entries in that row of (X, ~). The extended 

array is easily shown to be a t - (v, t + 1, I)OA. That M(t, t, v) = v then follows 

using Theorem 1. 

(b) (i) Deleting a column of a t - (v, w + 1, I)OA yields at - (v, w, 1) ~A. 

(ii) An (i, j) - contraction of a t - (v, w + 1, l)OA is a (t - 1) - (v, w, 1) ~A. 

(c) This part follows from Theorem 1 and Raghavarao (1971). 

(d) This follows from Theorem 1 and well known results of Bush (1952). 

(e) Theorem 1 and Phelps (1981). <) 

Corollary 2 

For all t and w such that 2:::; t :::; w, there are infinitely many values of v for which 

M(t, w, v) v. 
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Proof 

If t = w, then the result follows from Corollary l(a). If t < w, then choose a prime 

power q such that w < q. By Corollary l(d)(i), M(t, q, q) = q. Applying Corollary 

l(b)(i) an appropriate number of times yields M(t, w, q) = q. 0 

Corollary 3 

a 1 as a. a j 
Let the prime power factorization of v be PI ... Ps ' where p. 1 < p. when i < j, 

1 J 

Proof 

a. a. a. 
Using Corollary l(d)(i), M(t, p. \ p. 1) = p. \ i = 1, ... , s. If s = 1 there is nothing to 

1 1 1 

a 
prove. If s ~ 2, then applying Corollary l(c) yields M(t, p \ v) = v. 0 

I 

A perfect (t, w, v; v) - threshold scheme is said to be ideal. 

Remark 

Maximizing m for given t, w and v is related to minimizing v given t, w and m. As for 

the unordered case, by minimizing v we are minimizing the amount of secret information 

to be communicated in the form of shadows. 

4. CONCLUDING DISCUSSION 

From the following proposition we can infer the existence of t'-perfect ordered threshold 

schemes. 

Proposition 3 

Let G be a finite group of order v, tG be the t-fold direct sum of G with itself and H be a 

subgroup of tG. If the elements of H form a t'- (v, t, Jl) OA and Jl < v, then there is a 

t'-perfect t t V' _v_ - ordered threshold scheme. ( t t') 
, , , Jl 
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Proof 

The left (or right) co sets of H in G are the components of a (t', J.l) - partition of the 

t - (v, t, 1) OA whose rows are the elements of tG. These cosets are clearly mutually 

t-disjoint. 

Next, consider t" such that t' < t" < t. Each x" of width til is contained in precisely 

v t - tit elements of tG. Suppose such an x" is contained only in elements of a single left 

coset of H in G. Since J.l < v ~ vt - tft, there are x' of width t' contained in more than J.l 

elements of this coset, a contradiction. We infer that no x" of width t" < t is contained 

only in the elements of a single coset of H in G. 

Clearly, the left co sets of H in G form the components of a t'-perfect t t v -
( 

t - t') 
"v;~ 

ordered threshold scheme. 0 

Corollary 

Let q be a prime power and t' < t. If there is a linear (t, qt', t - t' + 1) code, then there is a 

t'-perfect (t, t, q; qt - t') - ordered threshold scheme. 

Consider the group Zv of integers modulo v, where v;::: 2. The rows of the 

t - (v, t + 1, 1) OA constructed in the proof of Corollary l(a) to Theorem 1 form a 
subgroup Ho of (t + 1) Zv' The co sets of Ho in (t + 1) Zv are the components of a 

perfect (t + 1, t + 1, v; v) - ordered threshold scheme. These cosets are 
(0, ... , 0, i) + Ho, i = 0, ... , v-I. Now suppose a trusted authority chooses at random a 

(t + 1) - tuple x = (x , ... , x, ± x. (mod V)) of Ho and distributes x· to the jth 
1 t j=l J J 

t 

participant, j = 1, ... , t, and I x. + i (mod v) to the (t + 1)th participant. The t + 1 
j = 1 J 

participants can derive the secret i by subtracting the sum of the shadows assigned to the 

first t participants from that assigned to the (t + l)th participant (working modulo v). 

Clearly this threshold scheme has the desirable features (i), (ii) and (iii) listed at the end of 

Section 1. 
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Stinson and Vanstone (1988) have interpreted the well known perfect threshold schemes of 

Shamir (1979) as unordered perfect threshold schemes. In that context Shamir's perfect 

threshold schemes are not ideal. It is, however, more natural to interpret Shamir's schemes 

as being perfect ordered threshold schemes. In the ordered context Shamir's schemes are 

ideal. 

Let us consider this further. For any prime p and t and w such that 2 ~ t ~ w < p we 

construct a t - (p, w + 1, 1) OA as follows: The rows of the array correspond bijectively 

to the polynomials of degree at most t - lover GF(p) and the columns to the elements of a 

subset of order w + 1 of GF(p) containing O. The entry in a given row and given 

column is the value of the polynomial corresponding to that row taken at the element of 

GF(p) corresponding to that column. Suppose 0 corresponds to column j. Then the 

(i, j) - contractions as i ranges over GF(p) form the components of a perfect (t, w, p; p) -
ordered threshold scheme (X, 89.,). A block of (X, ~) whose coordinates are distributed 

to w participants corresponds to a polynomial hex) of degree at most t - lover GF(p). 

The secret may be taken to be h(O). The secret may be recovered by any t participants by 

determining hex) using Lagrange interpolation and then evaluating h(O). Clearly these 

ideal perfect ordered threshold schemes also have the desirable properties listed at the end 

of Section 1. 

Remarks 

(a) For any prime power q, we could work over GF(q). 

(b) The close connection between the perfect threshold schemes of Shamir and 

orthogonal arrays of index unity of Bush (1952) is well known. 

(c) The classification of structures with M(t, v, w) = v (see Theorem 1) has also been 

done independently by Jackson and Martin (submitted), using t-transversal designs. 
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