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ABSTRACT. Connected cubic (m,n)-metacircu1ant graphs, 
other than the Petersen , have been 

to be hamiltonian for m m divisible by 4 
and m = 2. In this paper we two sufficient con-
ditions tor connected cubic -metac1rcu1ant 

with m even, than 2 and not divisible 
by 4 to be hamiltonian. As corQ1laries, we show that 
every connected cubic -metacircu1ant 
other than the Petersen ,has a Hamilton 
if anyone of the conditions is met: 

(1) Either m and n are such that 
n is even and every odd divisor of n is also a 
divisor of m; or 

(ii) n = , where p is an odd ~---.-t a > 0 and 
b ~ 0" 

1 .. INTRODUCTION 

The class of (m,n)-metacircu1ant was introdu-

ced in [1] as an class of vertex-transitive 

graphs which included many non-Cayley graphs and which 

might contain further examples of non-hamiltonian graphs .. 
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It haa been asked [2J whether or not every connected (m,n)­

metacirculant graph, other than the Petersen graph, has a 

Hamilton cycle. 

There are several papers that consider the above ques­

tion. In [2, 3J it has been proved that if n is a prime, 

then every connected (mtn)-metacirculant graph. other than 

the Petersen graph, has a Hamilton cycle. Connected cubic 

(m,n)-metacirculant graphs, other than the Petersen graph, 

also have been proved to be hamiltonian for m odd [8], m 

divisible 4 [11] (aee also [9] for m:: 4) and m:: 2 

[4, 8]. 

This paper is a to [8, 11]. We consider here 

the above question for connected cubic (m,n)-metacirculant 

graphs with m event greater than 2 and not divisible by 4. 

We will use similar to ones used in [11J. In 

Section 3 we will give two sufficient conditions for con­

nected cubic (m,n)-metacirculant graphs with m even, grea­

ter than 2 and not divisible by 4 to be hamiltonian. These 

conditions will be applied in Section 4 to prove the fol­

lowing Theorem 1. 

THEOREM 1. Let G be a connected cubic (m,n)-metacircu­

lant graph, other tha.n the Petersen graph. Then G ha.s a Ha­

mil ton cycle if anyone of the following condi tiona is met: 

(i) Either m and n are positive integers such that n 

is even and every odd prime divisor of n is also a divisor 
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of m; or 

(ii) n = 28pb, where p is an odd prime, a > 0 and 

b ~ 0 .. 

It is clear that this result is a answer to 

the above for connected cubic -metacirculant 

wi th m even, than 2 and not divisible 

In addition to our result in Theorem 1 it is useful to 

mention that if gcd(m, tp( n » 1 where is the Euler 

, then every -metacirculant is a 

ley on an abelian group of order mn ([1], 

5). Therefore, if mn ~ 3 and 

connected -metacirculant 

( 3) .. 

::: 1, then every 

has s Hamil ton 

As of Theorem 1, the above mentioned re-

sult and ones obtained in [4~ 8, 11J we will have immedia-

the Theorem 2 which is a of 

the main theorem in [4). 

THEOREM 2.. Let ~ ::: < p , 't 
with a,m:: 1 n) > be the semidirect of a cyc-

lic group of order n with a 

every connected cubic 

if anyone of the 

(i) Either m is odd; 

(ii) m is divisible 4; 

(iii) m ::: 2; 
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group of order m. Then 

on has a Hamil ton 

conditions is met: 



(iv) gCd(m,~(n» = 1, where ~ is the Euler ~-func-

tion; 

(v) n is even such that every odd prime divisor of n 

is also a divisor of m; or 

(vi) n = 2ap b with p an odd prime, a > 0 and b ~ o. 

2. PRELIMINARIES 

(a) The reader is referred to [1] for basic proper­

ties of (m,n) -metacirculant graphs a.l though their const­

ruction is now described. 

We will denote the ring of integers modulo n by Zn 

* and the mul tiplicative group of units in Zn by Zn. Let m 

and n be two positive integers, 0(, E z:, tL::::: Lm/2J a.nd So' 

S1' ••• , S~ be subsets of Zn satisfying the following con­

ditions: (1) 0 ~ So ::: -So; (2) O(,mSr::::: 81" :for 0 ~ r ~ p.; 
(J) if m is even, then a.tlsp.::: -SP." Then we define the 

(m.n)-metacirculant graph G ::: MC(mtn,~,sO'S1' ••• 'S~) to be 

the graph with vertex-set V( G) ::: {v3 : i E Zm ; j E ZnJ 

and edge-set E( G) ::: {v~v~+r : 0 ~ 1" ~ P. ; i E Zm ; h 9 j E Zn 

and (h-j) E a,iSr1t where superscripts and subscripts are 

always reduced modulo m and modulo n, respectively. 

The above construction is designed to allow the per-
. i 

mutations p and ~ on V(G) defined by p(vj>::::: Vj+1 and 

t(v;) ::::: v~j1 to be automorphisms of G. Thus, (m,n)-metacir­

culant graphs are vertex-transitive. Some (m,n)-metacircu-
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lant graphs are Cayley graphs t but many of them are non-

Cayley. 

(b) A pe~utation ~ is said to be semiregular if all 

cycles in the disjoint cycle decomposition of ~ have the 

same length. If a graph G has a semiregular automorphism 

~, then the quotient graph G/~ with respect to ~ is defi­

ned as follows. The vertices of G/~ are the orbits of the 

subgroup < ~ > generated by ~ and two such vertices are ad­

jacent if and only if there is an edge in G joining a ver­

tex of one corresponding orbit to a vertex in the other 

orbit. 

Let ~ be of order t and GO, G 1 , .... , G
t be the sub-

graphs induced by G on the orbits of < ~> .. Let i i 
vo ' v

1
, ... *' • 

i 
vt - 1 

be a cyclic labelling of the vertices of ai under the 

action of ~ and C = GOGiGj ••• GrGo be a cycle of G/~. Con-

sider a path P of a arising from a lifting of C, namely, 

start at 0 
vo and choose an edge from v~ to a vertex v; of 

Gi .. Then take an edge from v! to a vertex v~ of aj follow-

ing Gi in C. Continue in this way until returning to a 

vertex v~ of GO. The set of all paths that can be constru­

cted in this way using C is called in [5J the coil of C 

and is denoted by c01l(C). 

It is not difficult to prove the following result. 

LEMMA 1 ([9]). Let t be the order of 

au tomorphism ~ of a graph G and GO be the eu bgraph induced 
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by G on an orbit of <~>. If there exists a Hamilton cycle 

C in G/~ such that coil(C) contains a path P whose termi­

nal vertices are distance d apart in GO where P starts and 

terminates and gcd(d,t) :: '. then G has a Hamilton cycle. 

(c) The following resul ts proved in [10] will be used. 

LEMMA 2 ([10]). Let G :: MC(mtn,~,sO'S1' ••• 'S~) be a 

cubic (m, -metacirculant graph such that m is even and 

than 29 = ¢, 8 i :::: is} with 0 ~ s < n for some 

i E ~ 1 ,2, . • • 1}, 8 j :::: ¢ for all i '# j E {1 92, ••• 'P.-1 } 

and :::: i k } with 0 ~ k< n. Then 

(1 ) if G is connected, then either i is odd and 

(1 1 or i is even, p. is odd and i :::: 2; 

(2) if i is odd and (i ::: 1 , then G is isomor-

to the cubic -metacirculant 

II • .... , ::: " :::: ¢,1 S; :::: { 
:: :: :::: ¢ and S ~ =: {k} (0 ~ k < 

( if i is even, ~ is odd, i,m) :::: 2 and i ::: 

with r ~ 1 and i# odd t then G is to the cubic 

(m G :::: MC(m,n, 11 .. • .. , 

... , 
with ex :::: :::: S"" ::: gJ, S";':::: is} (o~ s 

2 
<n),S" :: ¢ and S p. =: i k} (0 ~ k <: n) .. 

LEMMA 3 ([10]). Let G ::::: MC(m,n , a.,So .81 \I."" ,Sp.) be a 

cubic (m,n)-metacirculant graph such that m is even, grea­

ter than 2 and not divisible by 4, So ::::: 3, ::: ••• :: 3 r :::: 
2 -1 
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gj with r ~ 1 , S ::: {al with 0 ~ a < n~ S ::: ...... ::: 

~-1 ::: !lS a.nd ::: {k} with 0 ~ k < n .. Then G ia connected 

if and if ::: 1, where h ia [k( 1 + <X. + + .... e + 
r l!-1 )] ~2 -1) _ 13 (1 + 0(.+ + ...... +oc reduced modulo n" 

(d) For the next aection we alao need the 

lemma .. 

LEMMA 4 .. Let G ::: 1I" .. be a connec-

ted cubic -metacirculant such that m is even 

and not divisible 4 .... 0 * = 
s :: ~ wi th r ~ 1, S ::: {s} wi th 0 ~ s < n, S 

:: {a and with ~ k < Let 

n ::: and 

cx+ - ...... 

Then is a divisor of + 1)" 

PROOF .. the definition of -metacirculant 

I .. : s 

~ - ... -1)(1+ct+ + .. + 

:: 0 .. 1 ) 

II .. (mod 

~ ) (1 - ()(,+ - 0 .... +0(. 
P.-1 : 0 .. 2) 

Since G is connected, it follows from Lemma J that 

::: 19 where h is 1+0l.+ + ..... + ) - 13 (1 +0{,+ 
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cx,tt- 1 )] reduced modulo n. Hence, 

gcd(gcd(k ,n) , god(s( 1+<X+ cl- + ••• +cxP'-1), n» :: 1:. 

(2.3) 

Assume first that (ct + 1) (1 - cx,+ rx2 - .... + all -1) :: 0 

(mod n). Then we trivially have (ct + 1) (1 - ct + CA,2 - .... + 

ex p. -1) (<X - 1) :: 0 (mod n) .. Therefore, n/eii ~) is a divisor 

of (ex, + 1 ) • 

Assume next that (QI,+1) (1 .... QI,+ a 2 _ .... +cxP'-1) , 0 (mod n) 

and let 

z :: n/gcd([(cx+ 1)(1 -a+ci - .... +atl - 1 )], n). 

Then, (2 2), z is a divisor of \fin) .. Since (2 .. 1) 

and (2.3) hold, we see that z must be a divisor of (a-1) .. 

Thus, we have + 1 ) ( 1 - a. + - " 0 .. + Ol.fl-1 ) (QI, - 1) :; 0 

(mod n) $ Therefore, nl ~) is a divisor of + 1).. Lemma 

4 is 

3. SUFFICIENT CONDITIONS 

In this section two sufficient conditions for connec-

ted cubic (m, -metacirculant to be hamiltonian 

will be given. Since connected cubic (m p n) -metacirculant 

, other than the Petersen graph, have been proved to 

be hamiltonian for m odd [8]t m divisible by 4 [11] and m 

::: 2 [4, 8J t we may assume in the next 1 emmas that m is 

even, greater than 2 and not divisible by 4. 
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LEMMA 5. Let G :::: MC(m,n'~'SO'S1' ••• 'S~) be a connec­

ted cubic (m,n)-metacirculant graph such that m is even, 

than 2 and not divisible 4, :::: :::: e .... ::: 

S m " with 1" ~ 1, S :: t s} with o ~ s < n, S :: ... 

:: :: {k1 with o ~ k < no Let Ii :::: , n) 

ton if anyone of the 

(i) ii), 
) ii ::: 1 

PROOF Let G, nand 

Lemma 5 .. 

=: 
n 

first that 

Let e the 

every vertex 

we can construct the 

ficult 

metacirculant 

(i:d. 

fa} with s ;: s 

~ and s~ ::: ~ with Ie ;: k 

from now on we can 

of G 

Then 

) , n ). Then G has a Hamil-

conditions is met: 

1) ::: 1; or 

as in the formulation of 

(i satisfied .. 

Thus 

It is not dif­

the 

where 

m ~ with :::: 

and 0 ~ It < n Therefore 

-1 with G and in order to 

avoid the confusion between vertices of G and lr we a.ssume 

that i ; j " Since G is connected, 

it follows tha.t ~ is connected. Therefore, Lemma ), 

(3 .. 1 ) 
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where h is 

- - -2 _,r_ 1 - - -2 -11-1 
[ k (1 + ex. + ex; + ..... + rx;- ) - s (1 + Ct + ct +...... + ctt ) ] 

reduced modulo n. 
definition, we have aPf _ -E (mod n) ~ 2k = 0 

• This means that 

2k :: un () .. 

'for some u. If n is odd, then from ().) and 0 ~ k 

< n it follows that k ::: O. Therefore, from ().1) and () 

we have , n) ::: 1 in this subcase.. If n is even but 

K :::: 0, then we still have , :n) ::: 1 as before. If Ii 

is even but k :F Ot then from ( 3) and 0 ~ k < n it fol­

lows that k 

fore, from 

Denote 

since 

::: Q 

:::: Q 

are 

V( 01 ) lJ V( 

.. Since r ? 
( 3.1 ) and (3.2) we 

1 , 1{ - 0 

have 

There­

, n) ::: 
J, ii ::: Thus, in all cases we have 

, ii ) ::: 1 .. 

Q .> ::: 

J 

ii) :::: 1 , 

)Q )Q ). • Q ) and 

)Q(w 1 )Q ) ... "Q ) -) 
0 [-Ls 

of G. Moreover, V( n V( ) ::: ~ and V((D::: 

) . Since OL ::: 1, it follows that the vertex 
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Let P be the of coil(C) which starts at v~. This 

terminates at 

f :: (k 

r 
+ a(P.-1 ) k + ex? s + a.,2. s + ... s) (mod n)t 

where the numbers of s, .... (/I 't B t 

s, s, sand s terms are Il, 

whilst the numbers of B and terms are and the 

numbers of k and k terms are 1 .. Theref'ore, 

s+ s+ 

s+ 

n) .. 

Since r ~ 1 and fl:: is odd, we have 

Therefore, Ot are all even numbers 

modulo m and pot 2 r . , are all 

odd numbers modulo m. Therefore, 

s+ s+ S :: S + + 

+ .... + 1 ) (1 _ 

and B ill: as + + ...... 

(.3 
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From ().4), ().5) and ().6) we have 

f :: (13 (a -1 ) (1 + Of. + a.2 + .... + cf-1 ) + k ( 1 - a.) (1 + ct. + 

a.2 + ..... + a.2 r -1 » + (1 _ c:) iis (1 + Q'. + a.2 + ••• 

+a.P--1 ) (1 - ex. + cJ - • ... + ctlA--1 ) (mod n). ( ) .. 1 ) 

By the definition of metacirculant graphs t we have cx.P-k:: 

-k (mod n) ~ (oc.t\1)k =: 0 (mod n) .. Therefore. we have 

p. 2 22 2 r - 1 
0;; (a.-1)'iik(ct +1)(1+a:-)(1+Q.; ) ••• (1 +cx. ) 

r 
;; (ex. -1 ) iik (1 + oc. + oc.2 + ".. + cl -1) (1 - ct. + 

2 [J.-1) ( ) ct ......... + ex. mod n • ().8) 

From ().1) and ().8) it follows that 

r 
f ; f + 0 ; {- (et -1 ) [k (1 + ct + (j.2 + ..... + a.2 -1) - s ( ,- + 

(X; + r::J..2 + ..... +oc.~-1)]1 + {(ct.-1 )n(t - a+ a.,2 - ...... 

r 
+ cx.l-l- 1 ) [k (1 + ex. + ex.2 + ..... + 0(,2 -1) - s (1 + ct + 

a2 + " .. " + d,lA-- 1 )]} :: (cx.-1) d (mod n) t 

2r_t 2 
where d ::: [k (1 + <X + + ...... + ct ) - s (1 + Of. + a; + co .... + 

<::ttL- 1 )] [ii'1 - Ct + «2 ...... +a.ll - 1 ) - 1] " 

It is not difficult to see that the automorphism pa.-1 

has order t := n/ ii :::; ~(n/(ii ). Since G is connoted 11 by 

Lemma ), 

-s(1 +c:t+ 

tn) :: 1. where h is [k( 1 + (1.+ + ...... + 

+ ...... +oc.rt- 1 )] reduced modulo n .. Hence, 

gcd(h,t) := 1 .. 
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It is also clear that 

gcd( [ii( 1 - Q. + a.2 - .... + Q.l!-1 ) ... 1J t if) ::: 1. (3.10) 

Furthermore, we have cx.2i :: «Q,+1_1)2)i:: (cx,+1)Xi +1 and 

a,2i+1 ::: C(..
2icx. ::: «0.+1 )xi + 1) «a.+1) - 1) := (<x +1 )Yi .... 1 t where 

xi and Y i are integers .. Consequently t (1 .... a.+ ci ........ + 

cx,tt- 1 ) ::: (cr.+1)x + f for some integer x. Thus II 

[ii( 1-<l+<i- ..... +<X,1l .... 1 )-1] lIB ii(~+1 )X+(p-ii-1).. (3.11) 

By Lemma 4, n/ (ii ii) is a divisor of (a+ 1 ) .. lrom this, 

(3.11) and assumption (i) of our lemma it is easy to see 

that 

(3.13) 

Thus. gcd(d,t) := 1 because (3.9) and (3.13) hold. By Lem-

rna 1, G has a Hamilton in this case .. 

(B) Assume now that assumption (ii) is satisfied. 

the definition of metacirculant graphs, we 

have a.P-k iii -k ~ (a,1!- + 1 1i& 0 (mod n).. Therefo-

re, 

On the other hand, since 

(U-1 , .,.., [ are all even modulo m.. There-

fore, from (3.5) and (3.14) we have 
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r r () r 
s + 0.2 s + 0.2 • 2 s + .,,,.. + a. p. -1 2 s z - (1 - ct + Ci;2 -

r 
..... + a.tJ. .... 1 ) [k ( l' + ex. + ex.2 + ...... + cx,2 -1) .... s (1 + (X, + 

Ci,2 + .... " + ctll- 1)] (mod n) .. 

Since G is conneeted t Lemma ), gcd(h ::: 1, where h is 

)] reduced 

modulo n. Furthermore. (ii), ~ ::: 1. Therefo-

ret from (3 .. 1 we have 

(:3 16) 

Let t where 

s) .. Let z be + s+ 

s + ..... + s) reduced modulo n .. since 

( :3 • 1 6) ho 1 de , 

) ..... 

are ot G .. Moreover ) () ) ::: ~ and 

) U ) • 

Now we relabel the vertices of G as follows Fi-

gure 2) .. Choose a direction of .. Because the chosen di-

reetion for every vertex of we can talk about the 

vertex .. 'fhe vertex of is relabel-

led ) vertex of which is acent to 

is relabelled of and the vertex 
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of 02 adjacent to T3 have been relabelled by Ux and T
X

' 

respectively. Then the vertex v~: following v; in 01 is 

relabelled by ux+1 and the vertex of 02 adjacent to v~: is 

relabelled by vx+1. 

2 

We show now that the relabelled graph G i8 a genera-

lized Petersen • Let e and ~ be the automorphisma of 

G defined by p(v;) i (i) i+1 for vi :: Vj+1 and 't v j =: va.j every j 
r 

E V(G). Then "i:: ea~2 is also an automorphism of G .. For 
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every v~ E V( G), we have 
r 

~(v~) :::: ea~2 (v;) :: ea 

In 

) :: 

j) 

,. ., 0 ,. .. 

a) 

This means that on the chosen direction of 

ei ther "i maps every vertex of to the vertex 

it in or ~ maps every vertex the prece-

it in • Without 10s8 of we may assume 

that 1 maps every vertex of it 

in Therefore, in relabelled 

and ) II1II • From this it follows that 

the relabelled Petersen 

On the other hand, G is vertex-transitive. Therefore t 

either ;: ±1 ) or :::: 10 and f:::: 2 In 

both caaes, G has a Hamilton . Lemma 5 is 

LEMMA 6 .. Let G :::: , •• " II be a connec-

ted cubic auch that m ia even, 

than 2 and not divisible 4, :: {6, :: { S 3 
with 0 ~ s < n t :::: :: ...... :II: :: {6 and :: with 

o ~ k < n .. Then G has a Hamilton if n is even .. 
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PROOF. The proof of the main resul t in [11] (Theo-

rem 5) for the case of an even n can be repeated here to 

prove our Lemma 6 if some minor changes in this proof (in 

connection with the assumption on m which here is even, 

greater than 2 and not divisible by 4) are made. The rea­

der is invited to do all these in details to complete the 

proof of Lemma 6. 

4. PROOFS OF THEOREMS 

PROOF OF THEOREM 1. Let G = MC(m,n,~tSO.S1' ••• 'S~) be 

a connected cubic (m,n)-metacirculant graph, other than 

the Petersen • If m is odd or m is divisible by 4 or 

m = 2, then G has a Hamilton cycle [8, 11t 4J. If m is 

even, greater than 2 and not divisible by 4 but So * ~t 
then by [8J G has a Hamilton cycle. Thus, we may assume 

from now on that m is even, greater than 2 and not divisi-

ble 4 and So = ¢. Since G is cubic, it is not difficult 

to see that in this case Si = f s} with o ~ s < n for some 

i E {1,2,.."'P.-1}_ Sj ::: ¢ for all i;tjE~1t 2, ... , f-1} 

and S~ ::: {k} with 0 ~ k < n. By Lemma 2t G is isomorphic 

to G" or G ,." , where G' and G" are as in Lemma 2.. Since G is 

connected, G' and a" are also connected. 

(A) Assume first that assumption (i) of Theorem 1 is 

satisfied .. If G is isomorphic to G', then G has a Hamilton 

cycle because by Lemma 6 G' has a Hamilton cycle. If G is 

isomorphic to G" , then 1 et ii and Xi be defined as in Lem-
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ma 5. Since n is even, the number Ii is also even. Therefo­

re, P.ii'-1 is odd. Hence, d:: gcd(n/(ii~ ), p.ii - 1) is odd. 

Suppose that d > 1 and let p be a prime divisor of d. Then 

p is odd. Since d is a divisor of n/(ii~), p is also a 

prime divisor of n. By assumption (i), p is also a divisor 

of m. Being odd, in fact, p is a divisor of~. On the 

other hand, p is a divisor of p-ii-1. Thus, p divides 1. 

This contradiction shows that d = 1. By Lemma 5(i), G"has 

a Hamilton cycle. Therefore, G has a Hamilton cycle. 

(B) Assume now that n = 2apb \I where p is an odd prime, 

a > 0 and b ~ o. If G is isomorphic to G "', then again by 

Lemma 6 G' has a Hamilton cycle. Therefore, G has a Hamil­

ton cycle. If G is isomorphic to G ,then let n and Ii be 

defined as in Lemma 5. Since n is even, ~ must be odd. 

Therefore, ii is even and ~ is odd. From this it follows 

that rn-1 is odd and Ii :: pc with 0 ~ c ~ b. If c :: Ot then 

G"has a Hamilton cycle by Lemma 5(ii). If c > 0 and p is 

a divisor of n/(ii~), then p is also a divisor of (~+1) by 

Lemma 4. We have (1 - 0(,+ ~2 ....... +~P.-1) :: b+1)x + p- for 

some integer x. Therefore, p is also a divisor of ~. By 

Theorem 1(i) above, G has a Hamilton cycle in this subca­

se. If c > 0 and p is not a divisor of n/(ii~) 9 then 

n/(iii) == 2d with 0 ~ d ~ a. Since P.Ii-1 is odd, we have in 

this subcase gcd(n/(ii~) II p-n-1) == 1 and G" again has a Ha­

milton cycle by Lemma 5(i). Thus, in any cases. G has a 
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Hamilton cycle. Therefore, G has a Hamilton cycle. 

Theorem 1 is proved. 

PROOF OF THEOREM "It has been in [1] (Theo-

rem 2) that every on ~ is an -metacir-

culant Therefore ~ the conclusions (i) - (iii) fol-

low from the results obtained in 

(iv) is the result mentioned after the formulation of 

Theorem 1. ) and follow from Theorem 1. 

Theorem is 
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