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ABSTRACT. Comnected cubic (m,n)-metacirculant graphs,
other than the Petersen graph, have been previously
proved to be hamiltonian for m odd, m divisible by 4
sand m = 2. In this paper we give two sufficient con-
ditions for connected cubic (m,n)-metacirculant
graphs with m even, greater than 2 and not divisible
by 4 to be hamiltonian. As corollaries, we show that
every oconnected cubic {(m,n)-metacirculant graph,
other than +the Petersen graph, has a Hamilton cycle
if any one of the following conditions is met :

(i) Either m and n are positive integers such that
n is even and every odd prime divisor of n is also a
divisor of m; or

(ii) n = Zapb, where p is an odd prime, & > 0 and
b 3> 0. ‘

1. INTRODUCTION

The class of (m,n)-metacirculant graphs was introdu-

ced in [1] as an interesting class of vertex-transitive

graphs which included many non-Cayley graphs and which

might contain further examples of non-hemiltonian graphs.
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It has been asked [2] whether or not every connected (m,n)-
metacirculant graph, other than the Petersen graph, has a

Hamilton cycle.

There are several papers that consider the sbove ques-
tion. In [2, 3] it has been proved that if n is a prime,
then every connected (m,n)-metacirculant graph, other than
the Petersen graph, has a Hamilton cycle. Connected cubic
(m,n)-metacirculant graphs, other than the Petersen graph,
also have been proved to be hamiltoniam for m odd [8], m
divisible by 4 [11] (see also [9] for m = 4) and m = 2
{4, 8].

This paper ie & sequel to [8, 11] « We consider here
the above question for connected cubic (m,n)-metacirculant
graphs with m even, greater than 2 and not divisible by 4.
We will wuse techniques similar to ones used in [117. 1In
Section 3 we will give two sufficient conditions for con=-
nected cubic (m,n)-metacirculant graphs with m even, grea-
ter than 2 and not divisible by 4 to be hamiltonien. These
conditions will be applied in Section 4 to prove the fol-

lowing Theorem 1.

THEOREM 1. Let G be a connected cubic (m,n)-metacircu-~
lant graph, other than the Petersen graph. Then G has a Ha-
milton cycle if any one of the following conditions is met:

(i) Bither m 8snd n are positive integers such that n

is even and every odd prime divisor of n is also a divisor
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of m; or
(ii) n = zapb, where p is an odd prime, a > O and
b > 0.

It ies clear that this result is a partisl snswer to
the above question for connected cubic (m,n)-metacirculant
graphs with m even, greater than 2 and not divieible by 4.
In addition %o our result in Theorem 1 1t is useful to
mention that if ged(m,@p(n)) =1 where ¢ is the Euler
@-function, then every (m,n)-metacirculant graph is a Cay-
ley graph on an abelian group of order mn ([1], Coreollary
5). Therefore, if mn > 3 and ged(m,@(n)) = 1, then every
connected (m,n)-metacirculant graph has a Hamilton cycle

({2] , Corollary 3).

As a corcllary of Theorem 1, the above mentioned re-
sult and ones obtained in [4, 8, 11] we will have immedia-~
tely the following Theorem 2 which 1s a generalization of
the main theorem in [4].

THEOREM 2. Let G =(p, T : pr= T"=1, T = ¢
with o™ = 1 (mod n) > be the semidirect product of a cye-
lic group of order n with a cyclic group of order m. Then
every connected cublic Cayley graph on ig has & Hamilton
cycle if any ome of the following conditions is met:

(i) Either m is odd;

(ii) m is divisible by 4;

(iii) m = 23
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(iv) gcd(m,q)(n)) = 1, where (¢ is the Euler p-func-
tion;

(v) n is even such that every odd prime divisor of n
is also a divisor of m; or

(vi) n = 2apb with p an odd prime, a > 0 and b > 0.

2. PRELIMINARIES

(a) The reader is referred to [1] for basic proper-
ties of (m,n)-metacirculant graphs although their const-

ruction is now described.

We will denote the ring of integers modulo n by Zn
and the multiplicative group of units in Zn by Z:. Let m
and n be two positive integers, o € Z’;, tJ, =z (m/2] and So’
S1, vaey Sl" be subsets of Zn gatisfying the following con-

s m
ditions: (1) Oé,t S, = =5,3 (2) o S. =8

o} for 0<r < I
#
s

r

B = -SP" Then we define the

(m,n)-metacirculant graph G = MC(m,n,oc,So,S1,...,SH) to be

(3) if m is even, then o

the graph with vertex-set V(G) = {v% 1di€z ;] € Zn}
and edge-set E(G) = {v%‘vg‘l‘\r 0 g P‘;i € Z,3h, J € 2,

i

and (h-j) € « Sr}, where superscripts and subscripts are

always reduced modulo m and modulo n, respectively.

The above construction is designed to allow the per-

. i i
mute';tlons. P and T on V(G) defined by p(vj) = V5 and
t(vjj') = v;‘;? to be automorphisms of G. Thus, (m,n)-metacir~

culant graphs are vertex-transitive. Some (m,n)-metacircu-
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lant graphs are Cayley grephs, but many of them are non-

Cayley.

{(b) A permutation p is said to be semiregular if all
cycles in the disjoint cycle decomposition of p have the
same length. If a graph G has a semiregular automorphism
P’ then the quotient graph G/@ with respect to § ig defi-
ned as follows. The vertices of G/P are the orbits of the
subgroup~<@).generated by @ and two such vertices are ad-
jacent if and only if there is an edge in G joining a ver-
tex of one corresponding orbit to a vertex in the other

orbit.

Let p be of order t and ¢°, &', ..., GE be the sub-

graphs induced by G on the orbits of <@>. Let vi, v%, ceny
vi_. be a cyelic labelling of the vertices of G under the
action of @ and C = GOGiGj...GrGO be a cycle of G/P. Con-
sider a path P of G arising from a 1ifting of C, mnamely,
g and c¢hoose an edge from vg to a vertex v; of
Gi. Then take an edge from vi to a vertex v% of Gj follow-

gtart at v

ing Gi in C. Continue in +this way until returning to &
vertex vg of G°. The set of all paths that can be constru-
cted in this way using C is called in [5] the coil of C
and is denoted by coil(C).

It is not difficult to prove the following result.

LEMMA 1 ([9]). Let t be the order of a sgemiregular

automorphism F of a graph G and G¢° be the subgraph induced
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by G on an orbit of <p>. If there exists a Hamilton eycle
C in G/p such that c0il(C) contains s path P whose termi~-
nal vertices are distance 4 apart in G° where P starts and

terminates and ged(d,t) = 1, then G has a Hamilton cycle.

(c) The following results proved in [10] will be used.

LEMMA 2 ([10]). Let G = MC(m,n,oc,So.SP...,SH) be a
cubic (m,n)-metacirculant graph such that m is even and
greater than 2, Sy = @, 5; = {8} with 0 ¢ 8 < n for some
i€ §1,2,...,p-1}, 8y =P forall i ¢ j€ §1,2,000,p-1)
and SP‘ = {k} with 0 ¢ k < n. Then

(1) if G is connected, then either i is odd and
ged(i,m) = 1 or i is even, W is odd and ged(i,m) = 2;

(2) if i is odd and ged(i,m) = 1, then G is isomor-
phic to the cubic (m,n)-metacirculant greph G'= MC(m,n,a’,
Sg1S7s+eerSy) with &= o, S0 = 8, 8] ={s} (0¢s<n),

ésgk} (0 ¢ k ¢ n);
(3) if 1 is even, P is odd, ged(i,m) = 2 and i = 2Ti°

82= ces 289'1 = @ and S

with r > 1 and i odd, then G is isomorphic to the cubic
L4 & P )
Sr. =0 Szrzis}(ogs
<n), 87 = eeo =8 . =@ and S” = §k} (0 < k < n).

’ 2541 (o ¢ i }

(m,n)-metacirculant graph G~ = MC(m,n,Ol.",Sg,S{', eeesB

. o0 i e v
with o = o ,SO=S1=...

LEMMA 3 ([10])0 Let G’ - HC(m,n,a,So.S1,.e.,S ) be 8

s
cubic (m,n)-metacirculant graph such that m is even, grea-
ter than 2 and not divisible by 4, So = S1 Z oo = S =
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g withr > 1, Szr: {s} with 0 ¢ 8 < n, 82r+1 = eee =
Su-1 = P snd S, = {k} with 0 ¢ k < n. Then G is connected
if end only if gcd(h,n) = 1, where h is [k(1+al+ N

Tt 2 w=1
o NHes(1earo®+ ...+ ")) reduced modulo n.

(4) For the next section we also need the following

lemma .

LEMMA 4. Let G = MG(m,n,o&,So,Sv...,SH) be & connece

ted cubic (m,n)-metacirculant graph such that m is even,

greater than 2 and not divisible by 4, So = s1 = eee =

SZI‘_’1 s $ withr > 1, Szr={s} with 0 ¢ & < n, S

coe =Sp-1 = § and Sy“‘ék} with 0 { k < n. Let

2%41

n = gedlw-1,n) and
7= ged((1-asal = ... o, 0.

Then n/(fin) is a divisor of (o +1).

PROOF. By the definition of (m,n)-metacirculant
graphs, we have
1. o?ls £ & (mod n),

&> (oc+1)(1-oc+oc2 —aes +OLH-1)(0(.—1)(1+0L+0(.2 + .o salt e

£ 0 (mod n). (2.1)
1. o'k = -k (mod n),
e 1) (1-0+0f = oow+al ™Mk 2 0 (mod n). (2.2)

Since G is connected, it follows from Lemma 3 that ged(h,n)

2 2"-1 2
=1, wvhere h is [k(1+a+a+...+a" ~ ) -s(l+a+a+ ... +
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0&’1)3 reduced modulo n. Hence,
ged(ged(k,n) , ged(s(1+x+ L... +OLP'-1), n))= 1.

(2.3)

Assume first that (+1)(1-o+02 - ...+l

(mod n). Then we trivially have (oL+1)(1=c+ o - ... +

0

OLH“1)(OL-—1) = 0 (mod n). Therefore, n/(An) is a divisor

of (+1).

Assume next that (x+1)(1-oso- ... +OLP—1)¥ 0 (mod n)
and let

z = n/ged([(@+1)(1-q+al = ... +o¢““1)] s ).
Then, by (2.2), z is a divisor of gcd(k,n). Since (2.1)
and (2.3) hold, we see that 2z must be a divisor of (@=-1).
Thus, we again have (ot + 1)(1-q+0® = ... s M@-1) =0
(mod n). Therefore, n/(in) is a divisor of (w+1). Lemma

4 is proved.

3. SUFFICIENT CORDITIONS

In this section two sufficient conditions for connec-
ted cubic (m,n)-metacirculant graphs to be hamiltonian
will be given. Since connected cubic (m,n)-metacirculant
graphs, other than the Petersen graph, have been proved to
be hamiltonian for m odd [8], m divisible by 4 [1 17 and m
= 2 [4, 8], we may assume in the next lemmas that m is

even, greater than 2 and not divisible by 4.
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LEWA 50 Let G - MC(m,n,O{.,SO,S.‘,...,SP) be 8 connec-
ted cubic (m,n)-metacirculant graph such that m is even,
greater than 2 and not divisible by 4, So = S1 Z eee

=85, _4 =9 ands ={k} with 0 < k< n. Let n = gedl@a-1,n)

e o

and n = ged((1-a+ Z=.ootal™ "), n). Then G has & Hamil-

ton cycle if any one of the following conditions is met:
(i) Either gcd(n/(ﬁﬁ Y txﬁ- 1)Y= 13 or

(ii) 7 = 1.
PROOF. Let G, » and n be as in the formulation of
Lemma 5.

(o) Assume first that assumption (i) is matisfied.

. . i i
Let P be the sutomorphism of G defined by p(vj) = ij for
every vertex v%f & V(G). Then p°("1 is semiregular. Thus,

we can construct the quotient graph G/’(DOL"1 . It is not dif-

ficult to verify that G/(DO"“1 is isomorphic %to the (m,n)

metacirculant graph G = MC(m,ﬁ,&,§o,§1,... ,§H), where 1

a s a (mod n), S°=S1 = oo asar-1 =¢withr>/1, Sgr
2 +1 t

k] with ¥ £ k (mod n) and 0 k ¢ n. Therefore,

¢ and §

¢

from now on we can identify G/ pa’"‘l with © and in order to
avoid the confusion between vertices of G and T we assume
that V(§) = {w% : 1€ 2,53 €2} Since G is comnected,
it follows that G is connected. Therefore, by Lemma 3,
ged(B,m) = 1, (3.1)
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where b is

[F 4844 0e s @ ) -1 48482 4.0 + 5]

= [27K- pF ] (3.2)
reduced modulo n.

By definition, we have al'e z -k (mod n) & 2k:zo0

(mod n). This means that
2k s un (3.3)

for some integer u. If n is odd, then from (3.3) and O <k
< n it follows that kK = 0. Therefore, from (3.1) and (3.2)
we have gcd(HE »0) = 1 in this subcase. If 7 is even but
k = 0, then we still have gcd(p'é' y,0) = 1 as before. If &
is even but ¥ # O, then from (3.3) and 0 < K < 1 it fol-
lows thet k = f/2. Since r > 1, 2°F = 0 (mod ©). There-
fore, from (3.1) and (3.2) we again have gcd(yg,'ﬁ) =
gcd([zr‘i{a-yféj,ﬁ) = 1. Thus, in 8ll cases we have

gcd(HE,H) = 1.

. PR r o r N r
Denote Q(w') = w:‘jwl""?_ W1+2:2 ...wl+(H°1)_2. . Then,
J J J+8  j+2B J+(u-1)8

gince gcd(ttg,ﬁ') =1,

Q o O o]
Gy = Q(WO)Q(WgE)Q(wng)"'Q(w(ﬁ-1)yﬁ) and
= otwl Yo cw] 1 1
c, = Q(wo)Q(WHE)Q(W2 “)'”Q(w(ﬁ-ﬂgé')

are cycles of G. Moreover, V(C,) N V(C,) = @ and V(¥)=
1 2

V(C1) UV(C‘?). Since o = 1, it follows that the vertex wg
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of 01 is adjacent to the vertex wg of 02 and the vertex
2 27

w- of C, is adjacent to the vertex wi*c of C,. So, we
5 1 k+8 2

can construct the following Hamilton cycle C of G from C1

and 02 (see Figure 1). Start C with the edge wgwg. Then go

r
around 02 from WE in the direction of wg"g until reaching
-5

r r LT
wg*g . Proceed along it by taking the edge w9+€ wg and
k+8 . k+8 8
go now around the cycle C1 from wg in the direction of
8

r
wo-2  until reaching we.
28 o

Figure 1
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Let P be the path of coil(C) which starts at v3. This
path terminates at vg with

, r r r r
£z (k-at'™@ g gh=22Tg L | 2027 _peRt
r hod r r
alt+2 k+a2 s+027% g4 ces + cc((":'1)2's)(mod n),

r r r
where the numbers of -of'"2 g, 2275 | R

r r
2 ol? s,

«?’s, . o202 g ofH-1)27 Z

g and s terme are n,

s 9 e

whilst the numbers of s and -or.“s terms are (n-1) and the

r
numbers of k and o'*? k terms are 1. Therefore,

r r r
£z (oLfLe;---ewk»rocb‘”2 kK)+n(s+0% s+ a2 ? 8+

oo+ OLQ'L-”zra) -nt's +0Lp*2rs +ot,§'l+2‘2rs +
- +a.p'°2rs)(mod n). (3.4)

3ince r 3 1 and P: m/2 is odd, we have ged( 2r ,t).) =1,
Therefore, 0, 2%, 2.2%, ..., (9—1)2" are all even numbers
modulo m and H, y~+2r, p.+2‘2r, sony 9-2-21‘, t&—er are all

0dd numbers modulo m. Therefore,

r Ir r
s+ s+al? s+..’+a(t"'1)2 s = 8+als+

0L43+...+<x25*"28=s(1+oL+oc2+...+ocP"1)(1-
T O el B (3.5)
H 2T p-2f 3
and ocs+ocyL+ B84 coo+Q B =08+0 8+ ...,
v sz as(1s ot o+ ... S 2 Y P
ey (3.6)
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From (3.4), (3.5) and (3.6) we have

2

£z (s8la-1)(1+x+c bt N s k(-0 (1 + s

r
Y -1))+(1-0t)'ﬁs(1+ot.+oc2+ vee

+0LV"'1)(1-a+ot.2-...+oc9’1)(mod n). (3.7)

By the definition of metacirculant graphs, we have oaHk =

-k (mod n) & (OLP'-H)k £ 0 (mod n). Therefore, we have

2 r-1
05 (-aklls1) (1+6@) (1462 ) vee (1402 )

r
p (or.—-1)'ﬁk(1+oc+oc2+ ceetd? TH(1 -+

of = ou. +ocp'1)(mod n). (3.8)

From (3.7) and (3.8) it follows that
2 2%-1
£5£+0 5 {~-@-1)[k(1+a+a+...+0 ) -s(1+

at o+ oo+ 4 {@-DT(T -t o - ...

r
-n-oz.tl"1)(l((?“-«-c(,-s-<:(,2-|»...+oL2 “yos(1+a+

o+ ..o+ N]} = @-1)d (mod n),

r
where d = [k(1+oc+0(.2+ B B I S

OLP"")] [3(1 -Dl,+ol.2— e +q,y"1) - 1} .

It is not difficult to see that the automorphism pq'1

has order t = n/n = h(n/(mD)). Since G is conncted, by
r

Lemma 3, ged(h,n) = 1, where h is [k(1 + Ao eee e )

-s(1 +ot.+o(_2 + oo <}~oc?"'1 )] reduced modulo n. Hence,

ged(h,t) = 1, (3.9)
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It is also clear that

gcd([ﬁ(1-o¢+a2-...+0LP'_1)-1],§) = 1. (3.10)
Purthermore, we have o2t - ((0544—1)‘2)i = (©+1 )xi+1 and
P+t iy = ((+1 I)xg + N (l+1) =1) = (cx+1)yi -1, where

x; and y; are integers. Consequently, (1- o+ Beies

a1y 2 @+t)x 4+ p for some integer x. Thus,
[§(1-(X+d.2-...+0,tl~1)“1] = nl@+1)x+(pn-1). (3.11)

By Lemma 4, n/(in) is a divisor of (+1).  From this,
(3.11) end assumption (i) of our lemma it is easy to see
that
- 2 1
ged([n(1-a+af=.o4af1)=1],¢) = 1. (3.13)

Thus, ged(d,t) = 1 because (3.9) and (3.13) hold. By Lem-

ma 1, G has a Hamilton cycle in this case.

(B) Assume now that assumption (ii) is satisfied,
i.e., a=1. By the definition of metacirculant graphs, we
have af'k # ~k (mod n) & (at'+1)k = 0 (mod n). Therefo-
re,

2 r—1
= k(s 1) (e a2 (14 ) c(T40? )

()
L]

e

r
~k(1 40+l + ...+O(.2 -1)(1 ~a+of -
eee v+ Ty (mod n). (3.14)

On the other hand, since gcd(zr,tx,) = 1, the numbers 0, 2%,
2-2%, ..., (tL-1 y2¥ are all even integers modulo m., There~

fore, from (3.5) and (3.14), we have
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2

r r r

ga+0 8+Q 8+ .

”.+$L1Hkﬁ+a+d?+n.+a Hos(1eas

@+ .ee 4o 1)) (mod m). (3.15)
Sinece G is connected, by Lemma 3, ged(h,n) = 1, where h is

r -
[k(1+oc+c(.2+...+oc2 yes(lsasol+...+al™)] reduced

modulo n. Furthermore, by assumption (ii), B = 1. Therefo-

re, from (3.15) we have

T
gcd((a+o&2rs+ocz'2 3+“_.,,O¢P' -1)2" 8),n) =

(3.16)
r
Let Q(vj) ‘:.'j' 142 Ji+2: 2% o ...viJ'(f‘ -1)2" , where
j+m 8 j+oci(s+oc 8)
2 (p=2)2* 2r
j-j+oc(a+on B4 oco+ O 8)., Let z be (g+ca” 84+
T
P2 e 01,1't -1)2" 8) reduced modulo n. Then, since

(3.16) holds,
= Q(v°)Q(V°)Q(V§z)-"Q(Vzn-1)z) and
¢, = Q(v))alv) IRTICATS PORE-IC) SUPEO
are cycles of G. Moreover, V(C1) n V(Cz) = @ and V(G) =
v(c,) U v(c,).

Now we relabel the vertices of G as follows (see Fi-
gure 2). Choose a direction of 01. Pecause the chosen di-
rection, for every vertex v% of 01 we can talk about the
vertex following v‘} in 01. The vertex vg of (}'1 is relabel-
led by u,. The (unique) vertex of C, which is adjacent to

vg ig relabelled by Ve Suppose v?j' of 01 and the vertex
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of 02 adjacent to vgf have been relabelled by u, and Ve

respectively. Then the vertex v;', following v% in C, 1is

1

e

relabelled by Uy and the vertex of 02 adjacent to v;‘, is

relabelled by Vest®

—_—
o

Vo> U, u,
fz\i V4
C . €20 LG
K/‘}H Vx

u —vi. Ug < "%
x4+ 1 ’
Figure 2

We show now that the relabelled graph G is a genera-

lized Petersen graph. Let e and T be the automorphisms of

G defined by p(vg‘) = v§+1 and t(vg) = vi}’ for every v‘}

r
€ V(G). Then V = stcz is also an automorphism of G. For
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every v? € V(G), we have
r r . AT
'?(V?j') = 98’52 (Vg) = Qa(vi+§r ) = V1+2 2r N
(a° J) (8+a€ J)
In particular,

r r r
Y0 = vE, W(vE ) 2 PR

(s+0® 8)

so e e
r 9

This means that depending on the chosen direction of 01,
either ¥ maps every vertex of C1 to the vertex following
it in C1 or ¥ mapskevery vertex of C1 to the vertex prece-
ding it in C1f Without loss of generality we may assume
that ¥ maps every veriex of 01 to the vertex following it
in C,. Therefore, in the relabelled greph G, Y(ui) = Uy 4
and V(vy) = Vy,1- From this it follows immediately that
the relabelled graph G is a generalized Petersen graph
GP(mn/2,1).

On the other hand, G is vertex-tramsitive. Therefore,
either £ = %1 (mod mn/2) or mn/2 = 10 and { =2 [7]. 1In
both cases, G has a Hamilton cycle [6]. Lemma 5 is comple-

tely proved.

LEMMA 6. Let G = MC(m,n,q,So,s1,...,SH) be a connec~-
ted cubic (m,n)-metacireculant graph such that m is even,
greater than 2 and not divisible by 4, So = @, 31 = { s}
with 0 { 8 < n, sa=33=...=sv_1=¢andsyagk} with

0< k¥ ¢n., Then G hae a Hamilton cycle if n is even.
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PROOF. The proof of the main result in [11] (Theo-
rem 5) for the case of an even n can be repeated here to
pfove our Lemma 6 if some minor changes in this proof (in
connection with the assumption on m which here is even,
greater than 2 and not divisible by 4) are made. The rea-
der is invited to do all these in details to complete the

proof of Lemma 6.

4. PROOFS OF THEOREMS

PROOF OF THEOREM 1. Let G = MC(m,n,d"So,S1,...,SH) be
a connected cubic (m,n)-metacirculant graph, other than
the Petersen graph. If m is odd or m is divisible by 4 or
m = 2, then G has a Hamilton cycle [8, 11, 4]. If m is
even, greater than 2 and not divisible by 4 but SO $# 9,
then by [8] G hae a Hamilton cycle. Thus, we may assume
from now on that m is even, greater than 2 and net divigi-
ble by 4 and SO = P. Since G is cubie, it ig not difficult
to see that in this case S; = {8} with 0 ¢ 8 ¢ n for some
1€ {1,2,...,u-11, S;=@foralligje i1, 2, ..., p-1}
and SP = {k} with 0 ¢ k ¢ n. By Lemma 2, G is isomorphic
to G” or G, where G'and G” are as in Lemma 2. Since G is

connected, G~ and G” are also connected.

(A) Assume first that assumption (i) of Theorem 1 is
satisfied. If G is isomorphic to G', then G has a Hamilton
cycle because by Lemma 6 G° has a Hamilton cycle. If @ is

isomorphic to G, then let T and = be defined as in Lem-
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ma 5. Since n is even, the number n is also even. Therefo-
re, pn-1 is odd. Hence, d = ged(n/(na ), pa-1) is odd.
Suppose that d > 1 and let p be & prime divisor of d. Then
p is odd. Since d is a divisor of n/(in), p is also &
prime divisor of n. By assumption (i), p is also a divisor
of m. Being odd, in fact, p is a divisor of P On the
other hand, p is a divisor of H'ﬁ-1. Thus, p divides 1.
This contradiction shows that d = 1. By Lemma 5(i), G¢” has

a Hamilton cycle. Therefore, G has a Hamilton cycle.

(B) Assume now that n = 2apb, where p is an odd prime,
a >0and b > 0. If G is isomorphic to G°, then again by
Lemma 6 G~ has a Hamilton cycle. Therefore, G has a Hamil-
ton cycle. If G is isomorphic to G , then let N and o be
defined as in Lemma 5. Since n 1is even, o must be odd.
Therefore, n is even and T is odd. From this it follows
that pfi-1 is odd and B=p°with 0 ¢c ¢ b. If ¢ = O, then
G” has a Hamilton cycle by Lemma 5(ii). If ¢ > O and p is
a divisor of n/(in ), then p is also a divisor of (x+1) by
Lemmae 4. We have (1-a+al=..osat™) = +1)x+ p for
some integer x. Therefore, p is also a divisor of W. By
Theorem 1(i) above, G* has a Hemilton cycle in this subeca-
se, If ¢ > O and p is not a divisor of n/(nn ), then
0/(F5) = 2% with 0 ¢ 4 < a. Since pf-1 is odd, we have in
this subcase ged(n/(an ), pn-1) = 1 and G” again has a Ha-

milton cycle by Lemms 5(i). Thus, in any cases, G has a
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Hamilton cycle. Therefore, G has a Hamilton cycle,

Theorem 1 is completely proved.

PROOF OF THEOREM 2. It has been proved in [1] (Theo-
rem 2) that every Cayley graph on %; is an (m,n)-metacir-
culant graph. Therefore, the conclusions (i) - (iii) fol-
low from the results obtained in [8, 11, 4], respective~
ly. (iv) is the result mentioned after the formulation of
Theorem 1. Finally, (v) and (vi) follow from Theorem 1.

Theorem 2 is proved.
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