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Let m and n be nonnegative integers and k be a positive integer. 

A graph G is said to have property P*(m,n,k) if for any set of m + n 

distinct vertices of G there are exactly k other vertices, each of 

which is adjacent to the first m vertices of the set but not adjacent 

to any of the latter n vertices. The case n = 0 is, of course, a 

generalization of the property in the Friendship Theorem. In this 

paper we show that, for m = n = 1, graphs with this property are the 

( (k+t)\l so-called strongly regular graphs with parameters t ,k+t, t-l, 

t) for some positive integer t. In particular, we show the existence 

of such graphs. For m ~ 1, n ~ 1, and m + n ~ 3, we show that, there 

is no graph having property P*(m,n,k), for any positive integer k. 

1. INTRODUCTION 

~or our purposes, graphs are finite, loopless and have no multiple 

edges. For the most part, our notation and terminology follows that of 
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Bondy and Murty [9]. Thus G is a graph with vertex set V(G). edge set 

E(G). v(G) vertices and c(G) edges. However, we denote the complement 

of G by G. The subgraph of G induced by a subset X of vertices of G is 

denoted by G[X] . 

Let G be a graph with the property that for any two vertices in 

the graph there is a unique vertex adjacent to both of them. The 

Friendship Theorem states that in such a graph there must be a vertex 

which is adjacent to all other vertices. Graphs satisfying this 

property are called friendship graphs. By virtue of the Friendship 

Theorem, a friendship graph is either a triangle or a union of 

triangles having precisely one vertex in common. This was first proved 

by Erdos, Renyi and Sos [19], and later alternate proofs were given by 

Wilf [30] and Longyear and Parsons [24]. 

Friendship graphs can be generalized in several ways. These 

generalizations are typically concerned with specifying either the 

number of paths between any two vertices or the size of the common 

neighbour set of any m-subset of vertices. We refer the interested 

reader to Bondy [8]. Delorme and Hahn [18] and the articles cited 

therein. 

Heinrich [22] determined all graphs G of order at least m + 1, 

m ~ 3, with the property that for any m-subset A of V(G) there is a 

unique vertex u, u ~ A, which has exactly two neighbours in A. 

Caccetta, Erdos and Vijayan [13] studied graphs G wi th the 

property that for any subsets A and B of V(G) with A (\ B = </> 

and IA v BI = t, there is a vertex u ~ A v B which is joined to every 

vertex of A but not joined to any vertex of B. This property has also 

been considered by Bollobas [7]. Exoo [20] considered graphs in which 
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the size of the sets A and B are specified as m and n respectively. 

More specifically, a graph G is said to have property P(m,n,k) if 

for any set of m + n distinct vertices of G there are at least k other 

vertices, each of which is adjacent to the first m vertices of the set 

but not adjacent to any of the latter n vertices. This property has 

been studied by a number of authors. For example, Ananchuen and 

Caccetta [2]. [3], Blass and Harary [5], Blass, Exoo and Harary [6], 

Caccetta and Vijayan [14], Caccetta, Vijayan and Wallis [15] and Exoo 

and Harary [21]. 

Blass and Harary [5] established, using probabilistic methods, 

that almost all graphs have property P(n,n,l). From this, it is not 

too difficult to show that almost all graphs have property PCm,n,kl. 

Since almost all graphs have this property, it is of interest to ask 

what happens if the conditions are varied. For example, what happens 

if there are exactly k other vertices, each of which is adjacent to the 

first m vertices of the set but not adjacent to any of the latter n 

vertices. We consider this question here. 

This problem was mentioned by Alspach, Chen and Heinrich [11. 

They also characterized the class of triangle-free graphs with a 

certain adjacency property. 

2. PRELIMINARIES 

A graph G is said to have property P*(m,n,k) if for any set of 

m + n distinct vertices of G there are exactly k other vertices, each 

of which is adjacent to the first m vertices of the set but not 

adjacent to any of the 

having property P*(m,n,k) 

latter n vertices. The 

is denoted by ~*(m,n,k). 
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G E §'* (m , n , k ), then G E §'* (n, m, k) . The cycle C
s 

of length 5 is a 

member of §'* (1, 1,1) . The well-known Petersen graph is a member of 

§,* (1 , 1 , 2) . Also, if G has property P*(m,n,k) then it has property 

P(m,n,k) . 

For a graph G and x E V(G) we write Nx for the neighbour set (in 

G) of x and N for the non-neighbour set of x. Further, for 
x 

A, B ~ V(G) we write 

N 
AB 

() N 
XEA x 

N 
A 

() N 

xEA x 
and 

Thus, for example, for x,y,z E V(G) we may write 

N xy 
N () N 

x Y 

N N () N () N 
x 

N 

xyz Y z 

N () N 
xy x Y 

Where appropriate, lower case letters will denote the cardinality of 

the set defined by the corresponding upper case letters. Thus, for 

example, n IN I. xy xy 

The case §'*(m,n,k) has been studied when one of m or n is zero. 

Trivially, the only members of §'*(l,O,k) and §'*(O,l,k) are the 

k-regular and the (v-k-1)-regular graphs, respectively. Erdos, REmyi 

and 56s [19] proved that a graph G E §'*(2,O,1) if and only if G 

triangles joined at one common vertex (ie. G 

This result is the well-known Friendship Theorem. For 
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other values of m, nand k there is a connection with the class of the 

so-called strongly regular graphs, first introduced by Bose [101. 

An r-regular graph of order v is called strongly regular with 

parameters (v,r,A,M) if G has the property that any two adjacent 

vertices have exactly A common neighbours and any two non-adjacent 

vertices have exactly M common neighbours. The following well-known 

result (see [23] pp.119-124) provides a necessary condition for a graph 

to be strongly regular. 

Theorem 2. 1 : Let G be a strongly regular graph with parameters 

(v,r,A,M). Then the following holds. 

(i) r(r-A-l) = M(v-r-l). 

Oi) G is a strongly regular graph with parameters (v, v-r-l, 

v-2r+M-2, v-2r+A). 

(iii) The adjacency matrix A of G has three distinct real 

eigenvalues r, sland s2 with respective multiplicities 1, 

ml and m2, satisfying ml 
+ m

2 
= v - 1 and s

l
m

i 
+ s2m2 = -r. 

Furthermore, sl and s2 are the zeros of the polynomial f(x) 

= x
2 

- (A-M)X - (r-M), and both are integral unless G has 

o 

Bose and Shrikhande [11] proved the following result. 

Theorem 2.2: For k 2: 2, G E §'*(2,0,k) if and only if G is a strongly 

regular graph with parameters (rCr-l)+l 
k ' 

r, k, k) for some positive 

integer rand there exists a positive integer s, such that r :: k + s 
2 

and s divides k. o 
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Some constructions of graphs in the class ~*(2,0,k) are also given 

in the above-mentioned paper. 

The only other known result is the following due to Carstens and 

Kruse [17] and Sudolsky' [27]. 

Theorem 2.3: For m ~ 3 and k ~ 1, ~*(m,O,k) o 

3. THE CASE m = n = 1 

In this section we will establish that the members of ~*(I.I,k) 

are strongly regular graphs with parameters ( (k+t)2 +1 
t • k+t, t-l, t). 

Further, we present some constructions to demonstrate the existence of 

graphs in this class. We make use of a particular strongly regular 

graph, the so-called pseudo-cyclic graph. 

A strongly regular graph with parameters (4k+l, 2k, k-l, k) is 

called pseudo-cyclic (PC) graph. We note that the complement of a 

PC-graph is again a PC graph with the same parameters as the original 

graph. Observe that the simplest PC-graph is the 5-cycle which gives 

rise to the parameters (5,2,0,1). The following result (see [28], p. 

294) provides a necessary condition for the existence of PC-graphs. 

Theorem 3.1: A necessary condition for the existence of a PC-graph of 

order v = 4k + 1, k > 0 is that v is the sum of the squares of two 

integers. o 

We now present our main result for this section. 
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Theorem 3. 2 : G E §'* (1,1, k) if and only if G is a strongly regular 

graph with t ( (k+t)2+1 k+t t-1, parame ers t ' • t) for some positive 

integer t. 

Proof: Let G E §'*(l,l,k) and u, v be any two adjacent vertices of 

G. Then n = n = k, and so o(G) ~ k + 1. Consequently any pair of 
uv uv 

non-adjacent vertices have at least one common neighbour. Hence G is 

connected. Now suppose that nuv = t - 1 for some positive integer t. 

Then n 
u 

k + t = nv' Hence G is (k+t)-regular. Therefore for any 

two non-adjacent vertices u, w of G, n = t. uw 

of G, we have 

and 

Thus 

n 
ux 

n 
xv 

k for any u E N
x 

k for any v E N 
x 

Consider a vertex x 

L n + n k(v-l) . 

uEN 
x 

ux 

Now, in the left hand side of 

the edges 

non-edges 

and so 

between the sets 

between the sets 

L n 

uEN 
x 

N 
x 

N x 

ux 

k(v-l) 

vEN xv 

x 

the above equation, 

and N 
x 

and N -
x 

+ 

vEN 

n n x -
x 
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x 

whilst the 

Therefore 

n 
xv 

n (v-n -1). 
x x 

the first sum counts 

second sum counts the 



Consequently 

2 
n 

x 
v= 1 +~ 

x 

(k + t)2 
1 + 

t 
(3.1) 

since n = k + t. x 
Therefore G is a strongly regular graph with the 

required parameters. 

The converse follows directly from the definition of strongly 

regular graphs. This completes the proof of the theorem. o 

We now present a number of corollaries to Theorem 3.2. 

Corollary 1: Let G E §'* ( 1 , 1 , k) . Then v(G) ~ 4k + 1, with 

equality possible if and only if G is a PC-graph with parameters 

(4k+1, 2k, k-1, k). 

Proof: The right hand side of equation (3.1) achieves its minimum 

value of 4k + 1 when k = t. Hence v(G) ~ 4k + 1. Further, if k * t 

then v(G) > 4k + 1, thus establishing the corollary. o 

Corollary 2: Let G E §'*(1,1,k) be a non PC-graph. Then k t(t-1) for 

some integer t > 1. 

Proof: This corollary is easily established by the application of 

Theorem 2.1 (iii). o 

Observe that, if k is a prime number or 1, the right hand side of 
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equation (3.1) is possible only if t = 1, k or k
2

. For these 

cases the graphs in the class §'* (1,1, k) are strongly regular graphs 

with parameters «k+l)2+1 , k+l, 0, 1), (4k+l. 2k. k-l, k) and 

Strongly regular graphs 

with parameters CCk+1) 2+1 , k+1, 0, 1) exists if and only if 

strongly regular graphs with parameters «k+l)2+1 , k(k+l), k
2-1, 

k
2

) exists (by Theorem 2.1 (ii)). If G is a strongly regular graph 

with A = ° and ~ = 1, then G has girth 5. So a strongly regular graph 

with parameters (Ck+l)2+1 , k+1, 0, 1) is a Moore graph. Further, from 

a result of Hoffman and Singleton (see [4], Chap. 23), it follows that 

a strongly regular graph with parameters «k+1)2+1 , k+l, 0, 1) 

exists only if k + 1 = 2, 3, 7 

strongly regular graphs with ~ = 1 

or (possibly) 57. Only three 

are known (see [12], p. 39) : the 

cycle of length 5 with parameters (5,2,0,1); the Petersen graph with 

parameters (10,3,0,1); and the Hoffman-Singleton graph with parameters 

(50, 7 , 0, 1) . The existence of the strongly regular graph with 

parameters (3250,57,0,1) remains an open question. USing this fact, 

the following corollaries to Theorem 3.2 are directly obtained. 

Corollary 3: §'*(1,1,1) o 

Corollary 4: G E §'*(1,1,2) if and only if G is the Petersen graph, the 

complement of the Petersen graph or a PC-graph with parameters 

(9,4,1,2)' 

Corollary 5: If k is an odd prime, then §'*(l,l,k) 

with parameters (4k+1, 2k, k-l, k)}. 
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Figure 3.1 below shows a PC-graph with parameters (9,4,1,2). 

Figure 3.1. 

Remark 1. Cameron and Van Lint in [16] (pp.136-137) constructed a 

class of strongly regular graphs with parameters (243, 22, 1. 2) from 

ternary Golay codes. These graphs along wi th their complements are 

members of ~·(1,1,20). 

Remark 2. A strongly regular graph with parameters 
(k+2)2 

(-2- +1. k+2. 1, 

2) exists only if k + 2 == 2, 4, 14. 22, 112 or 994 (see [16). p. 138). 

For k + 2 = 2 or 4 the graph is a triangle or a PC - graph of order 9 

respectively; an example with k + 2 == 22 is that mentioned in Remark 1. 

The other cases are undecided. 

Remark 3. The Hoffman - Singleton graph, HsO ' with parameters 

(50,7,0,1) and its complement are members of ~* 0, 1,6). By using 

Theorems 2.1 and 3.2, Remark 2 and results from the book [29] (Sections 

T and U), we get §,*O,1,6) = {H50 • H50 , PC-graph with parameters 

(25,12,5,6), strongly regular graph with parameters (26,10,3,4,) and 
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(26,15,8,9)}, since there are no strongly regular graphs with 

parameters (28,9,2,3), (28,18,11,12), (33,8,1,2) and (33,24,17,18). 

Remark 4. Let G e ~*(l,l,k). If v(G) ~ 49, then we can conclude from 

Theorems 2.1, 3.1 and 3.2 and its Corollaries and Remark 3 that G must 

be one of the following graphs. 

a PC-graph of order 5,9,13,17,25,29,37,41,45 or 49. 

the Petersen graph or its complement. 

a strongly regular graph with parameters (26,10,3,4) or 

(26 , 15, 8 , 9) . 

Note that (see [29]) there is only one PC-graph of order 5,9,13 and 17 

and there are 15 non-isomorphic PC-graphs of order 25. Further, there 

are 10 non-isomorphic strongly regular graphs with parameters 

(26,10,3,4). There are 1504 non-isomorphic PC graph of order 45 (see 

[25] ). 

Remark 5. The well-known Paley graphs [26] provide further examples of 

graphs in the class ~* (1,1, k). Let q = 4k + be a prime power. 

The Paley graph G of order q is the graph whose vertices are elements 
q 

of the finite field (Galois field) F, two vertices are adjacent if 
q 

and only if their difference is a quadratic residue. G is 
q 

self-complementary. Further, see [7] it is strongly regular with 

parameters (4k+l, 2k, k-l, k). Thus G e ~* (1 , 1 , k) . 
q 

graphs in Figure 3.1 is a Paley graph of order 9. 

Note that the 

Remark 6. There exists members of ~*(1,l,k) that are not PC-graphs. 

One construction is through partial geometries (Bose [10]). The graph 
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of a partial geometry is obtained by taking the vertices of the graph 

to correspond to the points of the partial geometry, and taking two 

vertices to be adjacent if and only if they are incident with the same 

line of the geometry. A partial geometry with parameters (t,~,t) (each 

point is incident to t lines, no two points are incident to more than 

one line, each line is incident to ~ points and if a point P is 

not incident to a line L, then there are t lines through P intersecting 

L.) gives rise to a strongly regular graph G wi th parameters 

(~ [ (£-1) (~-1) + t) 
t 

t(~-1), tt-1, tt). provided ~ = e + t. Thus G 

E ~*(1,1,e(t-1)) for some integer t > 1. 

4. THE CASE m ~ 1, n ~ 1 and m + n ~ 3. 

In this section we establish that, there is no graph having 

property P*(m,n,k) for m ~ 1, n ~ 1, m + n ~ 3 and k ~ 1. We begin 

with the following simple lemma. 

Lemma 4.1: Let G E ~*(m,n,k) and let w be any vertex of G. Then 

for m ~ 1 , n ~ 1 and k ~ 1 , 

~*(m,n-1,k). 

G[N ] 
w 

E ~*(m-l.n,k) and G[N_) 
w 

Lemma 4.2: If ~*(2,1,k) ¢, then ~*(m,n,k) ¢ for any m ~ 1, n ~ 

and m + n ~ 3. 

E 

o 

Proof: Suppose to the contrary that ~*(m,n,k) * ¢, and let mo+ no be 

the smallest value of m + n ~ 3 for which ~*(m,n,k) * ¢. Then, since 

~* (1 , 2, k) = ¢ when ~* (2, 1 , k ) ¢. we must have mo+ no ~ 4. Let G E 

~*(mo,no,k) and w be any vertex of G. By Lemma 4.1, G[N ] 
w 

E 
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§'*(mo-1,no.k) and G[N_l E §'*(mo,no-1.k). Since mo+ no 2:: 4 one of mo 
w 

or no is at least 2 and so, by our assumption. at least one of 

As w is arbitrary this 

implies that G is either the complete graph or its complement, which is 

impossible. Therefore §'*(m,n.k) =~. This prove the lemma. [J 

We now present our main result for this section. 

Theorem 4.1: For m 2:: 1. n 2:: 1, m + n 2:: 3 and k 2:: 1, §'*(m,n,k) =~. 

Proof: In view of Lemma 4.2, we need only to show that §'*(2.1,k) = ~. 

Suppose to the contrary that §'*(2.1,k) ¢~. Let G e §'*(2,1,k} and 

let w be any vertex of G. Observe that G cannot be a complete graph 

and its diameter is 2. Then Lemma 4.1 implies G[Nwl E §'*(1,1.k) and 

G[N_] e §'*(2,O.k). Hence G[Nw] is a strongly regular with parameters 
w 

«
k+t)2+ 

t 1, k+t, t-1, t) for some positive integer t, and G[N_l is a 
w 

2 2 
strongly regular with parameters «k+s ) ~k+S -1) + 1, k+s2• k, k) for 

some positive integer s, by Theorem 3.2 and 2.2 respectively. 

We now establish that G is a regular graph. Let x E N
w 

G[Nwl is (k+t)-regular we have 

Now consider x. 

nwx = dG[N lex) = k + t. 
w 

Using the above argument we can conclude that 

Since 

G[N ] 
x 

is (k+t' )-regular for some positive integer t'. Since wEN and 
x 

nwx k + t it follows that t' = t. Consequently, since G E ~*(2, 1,k), 

G[Ny] is (k+t)-regular for every y E V(G). Therefore, since G[N
w

l has 
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2 

(k+t) +1 vertices, G is 
t 

strongly regular graph. 

(k t)2 (--1-- +1)-regular. Consequently G is a 

Let x E Nw and YEN be non-adjacent vertices of G. Observe that 
w 

nxw = A = k + t and nxy = ~ Since G E ~* (2, 1 ,k), n = k and 
xwy 

n = k. Therefore ~ n xy k + t. Hence G is a strongly regular 
xyw 

graph with parameters 

(k+t)2 
+ 

Ck+S2) (k+s2-1) 
+ 3, v = -t- k 

(k+t)2 
+ 1, r = -t-

A k + t = ~, 

for some positive integers sand t. Further, since YEN and G[N_] is 

Ck+s2 )-regular we have 

n wy 

Now since ~ k + t n we have 
wy 

Since for any 

k
2 

t + 

X E N and 
w 

k + t, we have 

2 
S 

YEN n r - A-I 
w xw 

2 2 
(Ck+s )(k+s -1)+1)(k+t) 

k 

w w 

k(k+t) 
-t--

(4. 1 ) 

and 

(4.2) 

Equation (4.2) together with (4.1) yields k 0, a contradiction. This 

complete the proof of the theorem. o 

ACKNOWLEDGEMENTS 

This work has been supported by an Australian Research Council 

Grant A48932119. 

166 



REFERENCES 

[1] B. Alspach, C.C. Chen and K. Heinrich, Characterization of a class 
of triangle-free graphs with a certain adjacency property. J. 
Graph Theory 15 (1991), 375-388. 

[2] W. Ananchuen and L. Caccetta, Graphs with a prescribed adjacency 
property, The Australasian Journal of Combinatorics 6 

(1992), 155-175. 

[3] W. Ananchuen and L. Caccetta. On the adjacency properties of Paley 
graphs, Networks. (in press). 

[4] N.L. Biggs. Algebraic Graph Theory, Cambridge Univ. Press (1974). 

[5] A. Blass and F. Harary. Properties of almost all graphs and 
complexes, J. Graph Theory 3 (1979), 225-240. 

[6] A. Blass, G. 
first-order 
435-439. 

Exoo and F. Harary, 
adjacency axioms, J. 

Paley graphs satisfy all 
Graph Theory 5 (1981), 

[7] B. Bollobas. Random Graphs, Academic Press. London (1985). 

[8] J. A. Bondy. Kotzig's conjecture on generalized friendship graphs 
- A survey, Ann. Discrete Math. 27 (1985). 351-366. 

[9] J.A. Bondy and U.S.R. Murty, Graph Theory With Applications. The 
MacMillan Press. London (1977). 

[10] R.C. Bose. Strongly regular graphs, partial geometries and 
partially balanced designs, Pacific J. Math 13 (1963), 389-419. 

[ 11] R. C. Bose and S. S. Shr ikhande. Graphs in which each pair of 
vertices is adjacent to the same number d of other vertices, 
Studia Sci. Math. Hungar. 5 (1970). 181-195. 

[12] A.E. Brouwer, A.M. Cohen and A. Neumaier, Distance-Regular 
Graphs, Springer-Verlag, London (1989). 

[13] L. Caccetta. P. Erdos and K. Vijayan. A property of random graphs. 
ARS Combinatoria 19A (1985), 287-294. 

[14] L. Caccetta and K. Vijayan, On minimal graphs with prescribed 
adjacency property, ARS Combinatoria 21A (1986). 21-29. 

[15] L. Caccetta. K. Vijayan and W.O. Wallis, On strongly accessible 
graphs, ARS Combinatoria 17A (1984), 93-102. 

167 



[16] P.J. Cameron and J.H. Van Lint, Designs, Graphs, Codes and their 
Links, London Math. Soc. Student Texts 22, (1991). 

[17] H.G. Carstens and A. Kruse, Graphs in which each m-tuple of 
vertices is adjacent to the same number n of other vertices, J. 
Comb. Theory (B) 22, (1977), 286-288. 

[18] C. Delorme and G. Hahn, Infinite generalized friendship graphs. 
Discrete Math. 49 (1984), 261-266. 

[19] P. Erdos, A. REmyi and V. T. S6s, On a problem of graph theory. 
Studia Sci. Hungar. 1 (1966), 215-235. 

[20 J G. Exoo, On an adjacency property of graphs. J. Graph Theory 5 
(1981), 371-378. 

[21] G. Exoo and F. Harary, The smallest graphs with certain adjacency 
properties, Discrete math. 29 (1980), 25-32. 

[22] K. Heinrich, Graphs determined by an adjacency property, J. 
Combinatorial Mathematics and Combinatorial Computing 7 (1990), 
3-9. 

(23] D.R. Hughes and F.C. Piper, Design Theory, Cambridge Univ. Press, 
Cambridge (1988). 

[24] J.Q. Longyear and T.D. Parsons, The friendship theorem, 
Indagationes Math. 34 (1972), 257-262. 

[25] R. Mathon, Symmetric conference matrices of order pq2+ 1, Can. J. 
Math. 30 (1978), 321 - 331. 

[26] R.E.A.C. Paley, On orthogonal matrices, J. Math. and Phys. 12 
(1933), 311-320. 

[27] M. Sudolsky', A generalization of the friendship theorem, Math. 
Slovaca 28, (1978, No.1), 57-59. 

[28] W.D. Wallis, A.P. street and J.S. Wallis, Combinatorics Room 
Squares, Sum-Free Sets, Hadamard Matrices, Lecture Notes in 
Mathematics, 292, Springer-Verlag, Berlin, (1972). 

[29] B. Weisfeiler, On Construction and Identification of 
Lecture Notes in Mathematics, 558, Springer-Verlag, 
(1976) . 

Graphs, 
Berlin, 

[30] H.S. Wilf, The friendship theorem, in : Combinatorial Mathematics 
and its Applications, CD.J.A. Welsh, ed.) Academic Press, 
London, 1977, pp. 307-309. 

(Received 18/8/92) 

168 


